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1. Introduction

A seminal contribution in financial econometrics was the development of the GARCH model
by Bollerslev (1986) where a time-varying conditional variance is expressed as a linear func-
tion of past squared returns and past conditional variances. The GARCH model is today
a widespread tool for dealing with the heteroscedasticity observed in financial time series.
However, estimation of GARCH models often leads to a very high persistence or even non-
stationarity in the conditional variance (Caporale et al. 2003). An explanation proposed in
the literature is the presence of structural breaks in the conditional variance dynamics (Lam-
oureux and Lastrapes 1990; Mikosch and Stărică 2004; Hillebrand 2005). These structural
breaks typically occur during periods of financial turmoil. Estimating a regular GARCH
model on data displaying one or more structural breaks yields a substantially misspecified
model, which may imply very poor risk predictions. A way to cope with this problem is
provided by Markov-switching GARCH (MSGARCH) whose parameters vary over time ac-
cording to some regimes. These models can quickly adapt to variations in the unconditional
volatility level, which improves risk predictions (see Ardia 2008).

The R package MSGARCH aims to provide a comprehensive set of methods for the estimation,
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the simulation and the forecasting of MSGARCH models. Also, methods for risk management
such as Value-at-Risk and Expected-Shortfall calculations are available. In this vignette, we
describe the models and the functions/methods available in the package.

2. Model specification

We provide in this section the steps to create simple or complex specifications using the
function create.spec. The R package MSGARCH supports single-regime models as they
are the building blocks for multiple-regime models. The simplest specification we can build
is a GARCH model with a symmetric Normal conditional distribution:

R> spec = create.spec(model = "sGARCH", distribution = "norm", do.skew = FALSE)

The simplest MSGARCH process we can create is a two regime GARCH process with each
regime having a symmetric Normal conditional distributions:

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

The argument model takes one or more single-regime specifications describing each regime con-
ditional variance process while the argument distribution contains each regime respective
conditional distribution. Valid models (see Section 2.1) are "sGARCH", "eGARCH", "gjrGARCH",
"tGARCH", and "GAS". All single-regime conditional variance processes are one-lag processes
(e.g., GARCH(1,1)). One-lag conditional variance processes has proved to be sufficient in
financial econometrics and it reduces models complexity. Valid conditional distributions (see
Section 2.3) are "norm", "std", and "ged". Each conditional distribution have a skewed ver-
sion (see Section 2.3.4) which can be selected by setting the argument do.skew = TRUE. The
argument do.mix allow the user to create a Mixture of GARCH process (see Section 2.2.2)
instead of a MSGARCH process (see Section 2.2.1). Finally, the the do.shape.ind argument
allows for regime-independent shape parameters (see Section 2.2.3).

The user can technically create an infinite amount of different specification by combining and
adding single-regime models. See for example this complex three state MSGARCH process:

R> spec = create.spec(model = c("sGARCH", "tGARCH", "eGARCH"),

distribution = c("norm", "std", "ged"),

do.skew = c(TRUE, FALSE, TRUE),

do.mix = FALSE, do.shape.ind = FALSE)

However, care should be taken when adding complexity to the specification since reliable
optimization can become very difficult (see Section 3 for more details).

The output of the function create.spec is a list of class MSGARCH_SPEC which contains func-
tions and variables. The relevant information are summarize in the print or summary function.

R> spec = create.spec()

R> print(spec)
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[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0 alpha1 beta alpha0 alpha1 beta P P

[1,] 0.1 0.1 0.8 0.1 0.1 0.8 0.5 0.5

2.1. Single-regime specifications

We present in this section the various single-regime specifications available in the R package
MSGARCH.

GARCH model

The GARCH model by Bollerslev (1986) can be written as:

yt = ηh
1/2
t (1)

ht ≡ α0 + α1y
2
t−1 + βht−1 , (2)

where η ∼ i.i.d.D(0, 1, λ) with D a distribution with zero mean, unit variance, and shape
parameters λ. To ensure positivity, we require α0 > 0, α1 ≥ 0, β ≥ 0. Covariance-stationarity
is obtained by adding the condition α1+β < 1. To create a single-regime GARCH specification
we use model = "sGARCH" in the function create.spec.

EGARCH model

The Exponential GARCH (EGARCH) of Nelson (1991) can be written as:

ln(ht) ≡ α0 + α1

(
|yt−1| − E[|yt−1|]

)
+ α2yt−1 + β ln(ht−1) , (3)

where the natural logarithm of conditional variance ln(ht) is modeled instead of ht. This model
takes into consideration the leverage effect where past negative returns have a larger influence
on the conditional volatility than past positive returns of the same magnitude (Black 1976;
Christie 1982). The persistence of the models is captured by the coefficient β. The creation
of a single-regime EGARCH specification is done by using model = "eGARCH" in the function
create.spec.

GJR model

Glosten et al. (1993) have developed the GJR model that also captures the asymmetry in the
conditional volatility process:

ht ≡ α0 + α1y
2
t−1 + α2y

2
t−1Iyt−1<0 + βht−1 , (4)

where Iyt≥0 ≡ 0 if yt ≥ 0 and Iyt<0 ≡ 1 otherwise. The parameter α2 controls the degree of
asymmetry. To ensure positivity, we usually set α0 > 0, α1 ≥ 0, α2 ≥ 0, β ≥ 0 (sufficient
condition). To ensure covariance-stationarity we make sure that α1 + α2E[η2Iη<0] + β < 1.
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The single-regime GJR specification is created by using model = "gjrGARCH" in the function
create.spec:

TGARCH model

Zakoian (1994) introduces the TGARCH which has the conditional volatility as dependent
variable instead of the conditional variance:

h
1/2
t ≡ α0 + α1yt−1Iyt−1≥0 + α2yt−1Iyt−1<0 + βh

1/2
t−1 . (5)

For positivity we set α0 > 0, α1 ≥ 0, α2 ≥ 0 and β ≥ 0. To ensure covariance-stationarity,
we make sure that α2

1 + β2 − 2β(α1 + α2)E[ηIη<0]− (α2
1 − α

2
2)E[η2Iη<0] < 1 (see Francq and

Zakoian 2011, Section 10.2). The single-regime TGARCH specification is created by using
model = "tGARCH" in function create.spec:

GAS model

Generalized Autoregressive Score models were proposed in their full generality in Creal et al.
(2013). It provides a general framework for modeling time variation in parametric models.
The GAS model can be written as:

ht ≡ α0 + α1st−1 + βht−1, st−1 ≡ St−1∇t−1, ∇t−1 ≡
∂ ln f(yt−1|ht−1, λ)

∂ht−1
, (6)

where f(yt−1|ht−1, λ) is the likelihood of yt−1 given ht−1 and the distribution’s shape parame-
ters λ, st−1 is the score function, and St−1 is a scaling function for the score of the observation
log-density. The scaling function in this case is defined as:

St−1 ≡ E[∇t−1∇
′
t−1]−1 . (7)

The single-regime GAS model is created by using model = "GAS" in the function create.spec.

2.2. Multiple-regime specifications

We present in this section the two multiple-regime specifications available in the R package
MSGARCH.

Markov-switching GARCH

Suppose ∆t is a Markov chain with a finite state space S ≡ {1, 2, ...,K} with an irreducible
and primitive K ×K transition matrix P defined as:

P ≡


p1,1 p2,1 . . . pK,1
p1,2 p2,2 . . . pK,2

...
...

. . .
...

p1,K p2,K . . . pK,K

 , (8)

where 0 ≤ pi,j ≤ 1 is the probability of switching from state ∆t−1 = i to state ∆t = j and∑K
j=1 pi,j = 1 (i = 1, . . . ,K).
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Let the returns of a financial asset at time t be expressed as:

yt = η∆t
h

1/2
∆t,t

, (9)

where η∆t
∼ i.i.d.D∆t

(0, 1, λ∆t
), with D∆t

a distribution with zero mean, unit variance, and

shape parameters λ∆t
, and h

1/2
∆t,t

the conditional variance in state ∆t at time t. For a the
single-regime specification in state k, we define θk as the parameters of the conditional variance
process, λk as the shape parameters of the conditional distribution Dk, and the (T ×1) vector
hk ≡ (hk,1, hk,2, . . . , hk,T )′ as the resulting conditional variance vector from this specification.
The MSGARCH specification is constructed following the approach by Haas et al. (2004a),
which consists of many distinct single-regime specifications evolving in parallel. We define
Θ ≡ [θ1, θ2, ..., θK ], D ≡ [D1,D2, . . . ,DK ], Λ ≡ [λ1, λ2, ..., λK ] and H ≡ [h1,h2, ...,hK ].

We create a two-state MSGARCH model from two single-regime GARCH processes each
following a Normal distribution. We fit the model to the sp500 dataset which consists of the
S&P 500 index closing value log-returns ranging from 1998-01-01 to 2015-12-31.

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0), itermax = 500,

do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.1 0.1 0.8 0.1 0.1

beta_2 P P

[1,] 0.8 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.001601 0.02711 0.8913 0.03795 0.1177

beta_2 P P

[1,] 0.8778 3.212e-07 0.3704

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 3.212e-07 0.3704

t + 1 = 2 1.000e+00 0.6296

[1] "Stable probabilities:"
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Stable probabilities

State 1 0.2703

State 2 0.7297

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.14 2.892

[1] "Log-kernel: -6506.63976020117"

[1] "AIC: 13235.894384861"

[1] "BIC: 13287.2404364094"

Model is fitted by Maximum likelihood with the function fit.mle (see Section 3.0.1). The
resulting parameters are collected in the vector theta where each parameter are labeled
according to the model and their state. The function transmat is an helper function that
builds the transition matrix from the fitted parameters for better readability.

Mixture of GARCH

Haas et al. (2004b) propose a general class of Mixture of GARCH models. They specify
a Mixture of Normal distributions where the variance process of each Normal component
is a GARCH process. They name this new class the MNGARCH models. A special case
of this specification named the Full and Diagonal MNGARCH is encountered when all the
covariance between each component is constrained to be zero. This special case has a direct
relationship with the MSGARCH model. Indeed, we can constrain the transition matrix P
of the MSGARCH model to make the probability pi,j of switching from any state ∆t−1 = i
to state ∆t = j the same. That is, P (∆t = j|∆t−1 = i) ≡ pj (i = 1, . . . ,K). The transition
matrix reduces then to a probability vector P ≡ [p1, p2, ..., pK ]. This constraint converts the
Markov-switching behavior to a Mixture behavior since the probabilities do not depend on
the current state. For demonstration, lets repeat the experiment done previously, but with
the argument do.mix = TRUE.

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = TRUE, do.shape.ind = FALSE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0), itermax = 500,

do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)

[1] "Specification Type: Mixture"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"
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alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.1 0.1 0.8 0.1 0.1

beta_2 P

[1,] 0.8 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.0003265 0.01765 0.9099 0.02865 0.1067

beta_2 P

[1,] 0.8886 0.199

[1] "Stable probabilities:"

Stable probabilities

State 1 0.199

State 2 0.801

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.06712 2.472

[1] "Log-kernel: -6518.18297178244"

[1] "AIC: 13188.2083263841"

[1] "BIC: 13233.136121489"

We can observe that we have less parameters label as P since a Mixture of GARCH will always
have less parameters than a Markov-Switching GARCH process. The transmat function, for
a Mixture of GARCH, will output a probability vector and not a probability matrix.

Regime-independent shape parameters

Sometimes it is useful to have a regime-switching behavior only in the conditional variance
and keep the same conditional distribution across regimes. We call this regime-independent
shape parameters since all distributions Dk in D and λk in Λ are restricted to be the same
(i.e., they only differ via the conditional variance process of each regime). This can be done by
setting the parameter do.shape.ind = TRUE. We illustrate this with a two-state MSGARCH
model with two single-regime GARCH processes following the same Student-t distribution.

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("std", "std"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = TRUE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0), itermax = 500,

do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)

[1] "Specification Type: Markov-Switching with Regime-Independent distribution"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"
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[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in distribution: 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.1 0.1 0.8 0.1 0.1

beta_2 nu_1 P P

[1,] 0.8 10 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2

[1,] 0.000298 0.02191 0.88 0.02331 0.1016

beta_2 nu_1 P P

[1,] 0.8938 15.73 4.918e-06 0.1838

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 4.918e-06 0.1838

t + 1 = 2 1.000e+00 0.8162

[1] "Stable probabilities:"

Stable probabilities

State 1 0.1553

State 2 0.8447

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.05512 2.232

[1] "Log-kernel: -6505.99800787707"

[1] "AIC: 13121.7705309498"

[1] "BIC: 13179.5348389418"

As we can see, the output only contains one parameter nu with no regime indication instead
of two parameters nu_1 and nu_2.

2.3. Distributions

We present here the conditional distributions and their functionalities available in the R
package MSGARCH. There are two functions directly related to the conditional distribution:
The probability density function (PDF) and the cumulative density function (CDF):

cdf(object, x, theta, y, is.log, do.its)

pdf(object, x, theta, y, is.log, do.its)

First, the object argument accepts a specification created with create.spec (see Section 2)
or a fitted object (see Section 3). When a specification is passed to the method, theta and
y must be provided. This is not the case when a fitted object is passed as the fitted object
already has relevant theta (which is found during optimization) and y (which is used in the
optimization). The cdf and pdf functions can be used in two different ways via the do.its

argument. When do.its = TRUE, we do an in-sample evaluation of y, that is: F (y|H,ψ,Λ)
or f(y|H,ψ,Λ) where F (·) is for the CDF, f(·) is for the PDF, and ψ ≡ [ψ1, ψ2, ..., ψT ] where
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ψt are the vector of conditional probabilities to be in each state at time t (see Section 3). When
do.its = FALSE, we evaluate the points x as T + 1 realizations, that is: F (x|HT+1, ψT+1,Λ)
or f(x|HT+1, ψT+1,Λ) where HT+1 ≡ [hT+1,1, hT+1,2, ..., hT+1,K ].

The Normal distribution

The PDF of the standardized Normal distribution can be written as:

fN (0,1)(z) ≡
1√
2π

e−
1
2
z
2

, (10)

where z ≡ x−µ
σ . The Normal distribution is completely described by its first two moments:

the mean and the variance. The distribution is symmetric. The CDF is calculated with the
function pnorm from the stats namespace. To create any specification with a symmetric
Normal distribution we use distribution = "norm" in the function create.spec.

The Student-t distribution

The PDF of the standardized Student-t distribution can be written as:

fS(0,1,ν)(z) ≡
√

ν

ν − 2

Γ
(
ν+1

2

)
√
νπ Γ

(
ν
2

) (1 +
z2

ν

)− ν+1
2

, (11)

where Γ is the Gamma function (we use the gamma function from the base namespace) and ν >
2 is the shape parameter. It is completely described by the shape parameter ν. The kurtosis
of a Student-t distribution is higher for lower ν. For ν = ∞, the Student-t distribution is
equivalent to the Normal distribution. The distribution is symmetric. The CDF is calculated
with the function pt from the stats namespace. To create any specification with a symmetric
Student-t distribution we use distribution = "std" in the function create.spec.

The GED distribution

The PDF of the standardized GED distribution can be written as:

fGED(0,1,ν)(z) ≡
νe−

1
2
|z/λ|ν

λ2(1+1/ν)Γ(1/ν)
, (12)

where λ ≡ [2−2/νΓ(1/ν)/Γ(3/ν)]1/2. As in the Student-t distribution, the GED distribution
is described completely by the shape parameter ν. As ν decreases the density gets flatter.
Special cases are the Normal distribution when ν = 2 and the Laplace distribution when
ν = 1. The distribution is symmetric. The CDF of the standardized GED distribution can
be written as:

FGED(0,1,ν)(z) ≡

{
1
2 −

1
2FGAM(1,1/ν)

(
1
2

(
|z|
λ

)ν)
if z ≤ 0

1
2 + 1

2FGAM(1,1/ν)

(
1
2

(
z
λ

)ν)
if z ≥ 0 ,

(13)

where FGAM(1,1/ν)(·) is the Gamma distribution CDF with parameter β = 1 and α = 1/ν.
The Gamma distribution CDF is calculated with the function pgamma from the stats names-
pace. To create any specification with a symmetric GED distribution we use distribution

= "ged" in the function create.spec.
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Skewed distributions

Fernández and Steel (1998) provide a simple way to include skewness into a unimodal stan-
dardized distribution. Trottier and Ardia (2016) derive the moments of the standardized
Fernandez-Steel skewed distributiosn which are needed in the estimation of the GJR, EGARCH,
and TGARCH models. Following Trottier and Ardia (2016), the standardized Fernandez-Steel
skewed PDF can be written as:

fDskew(ξ,λ) ≡
2σ2

ξ

ξ + ξ−1 fDsym(λ)(zξ), zξ ≡

{
ξ−1(σξz + µξ) if z ≥ −µξ/σξ
ξ(σξz + µξ) if z < −µξ/σξ ,

(14)

where 0 < ξ < ∞ is the parameter describing the degree of asymmetry and fDsym(λ) is
any symmetric uni-modal PDF with zero mean, unit variance, and shape parameters λ. To
create any specification with skewed distribution we use the argument do.skew = TRUE in
the function create.spec.

3. Estimation

Estimation is done by maximizing the negative log-likelihood which corresponds to the nega-
tive value of the function kernel. The kernel is a combination of the prior and the likelihood
function. The kernel is equal to prior(Θ) + prior(Λ) + prior(P) +L(y|Θ,Λ,P) where L is the
likelihood of y given the parameter Θ, Λ, and P . The prior is different for each conditional
variance process (see Section 2.1), conditional distribution (see Section 2.3), and type of model
(see Section 2.2). It ensures that the Θ makes the conditional variance processes stationary
and positive, that Λ respect the parameters bounds of all the conditional distributions, and
that P respects that the sums of the probabilities in the case of a multiple-regime models are
all equal to one. If any of these conditions is not respected, the prior returns -1e10.

The log-likelihood of a single-regime model is:

LLH(θ, λ |y) ≡
T∑
t=1

ln (ft(yt |ht, θ, λ)) , (15)

where ft is the conditional density at time t. The log-likelihood for a multiple-regime process
is more complex since it has to be calculated with a recursive calculation (Hamilton 1989):

LLH(Θ,Λ,P|y) ≡
T∑
t=1

ln
(
ψ′tft(yt|Ht,Θ,Λ)

)
, (16)

where the vector ψt contains the filtered probabilities to be in each states at time t and the
vector ft contains the conditional density of each regime at time t. The vector ψt is easily
computed with the Hamilton filter:

ψ̊t ≡
ψt−1 ◦ ft(yt|Ht,Θ,Λ)

ι′(ψt−1 ◦ ft(yt|Ht,Θ,Λ))

ψt ≡Pψ̊t .
(17)

The R package MSGARCH allows Maximum likelihood and Bayesian estimation of MSGARCH
models.



David Ardia, Keven Bluteau, Kris Boudt, Brian G. Peterson 11

Maximum likelihood estimation

Obtaining the Maximum likelihood estimator of a multiple-regime specification can be diffi-
cult using a standard optimization scheme. Because of this, we rely by default on a two-step
procedure. We first use differential evolution (Price et al. 2006) implemented in the R pack-
age DEoptim (Mullen et al. 2011) as a global optimizer and then use the resulting fitted
parameters as initialization for a local optimization using a sequential least-squares quadratic
programming algorithm (Kraft 1988) implemented in the function slsqp of the R package
nloptr Johnson (2014).

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("std", "std"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle = list(do.init = TRUE, NP = 10*length(spec$theta0),

itermax = 500, do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = ctr.mle)

R> summary(fit.mle)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 1 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

[1,] 0.1 0.1 0.8 10 0.1

alpha1_2 beta_2 nu_2 P P

[1,] 0.1 0.8 10 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

[1,] 0.004169 0.05999 0.8968 3.351 0.02612

alpha1_2 beta_2 nu_2 P P

[1,] 0.1037 0.8917 25 2.884e-05 0.3958

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 2.884e-05 0.3958

t + 1 = 2 1.000e+00 0.6042

[1] "Stable probabilities:"

Stable probabilities

State 1 0.2836

State 2 0.7164

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.3106 2.383
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[1] "Log-kernel: -6503.83678207374"

[1] "AIC: 13080.1083894088"

[1] "BIC: 13144.2909538444"

As shown in the example above, we allow the user to directly control some of the argument of
DEoptim in the list ctr. The argument do.init indicates if there is a pre-optimization with
the R package DEoptim. For simpler specifications such as single-regime specifications, setting
do.init = FALSE and skipping the initialization step should provide a good estimation. The
argument NP sets the number of vector of parameters in the population while itermax sets
the maximum number of iterations (number of populations generated). Please refers to the
DEoptim documentation for more details. Finally, do.enhance.theta0 uses the volatilities
of rolling windows of y and adjust the default parameters so that the unconditional volatility
of each regime is set to different quantiles of the volatilities obtained with rolling windows on
y.

Bayesian estimation

To perform Bayesian estimation we use the Adaptive Metropolis-Hastings sampler described
in Vihola (2012) and available in the R package adaptMCMC (Andreas 2012).

R> data("sp500")

R> spec = create.spec(model = c("sGARCH", "sGARCH"),

distribution = c("norm", "norm"),

do.skew = c(FALSE, FALSE),

do.mix = FALSE, do.shape.ind = FALSE)

R> set.seed(123)

R> ctr.bay = list(N.burn = 20000, N.mcmc = 10000, N.thin = 10,

do.enhance.theta0 = TRUE)

R> fit.bay= MSGARCH::fit.bayes(spec = spec, y = sp500, ctr = ctr.bay)

R> tail(fit.bay$theta, 5)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 1 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

[1,] 0.1 0.1 0.8 10 0.1

alpha1_2 beta_2 nu_2 P P

[1,] 0.1 0.8 10 0.5 0.5

[1] "Bayesian posterior mean:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2

0.01146 0.08429 0.90644 9.86376 0.55834

alpha1_2 beta_2 nu_2 P P

0.38338 0.49062 10.11514 0.97443 0.67645

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 beta_1
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alpha0_1 1.306e-05 2.052e-05 -2.920e-05

alpha1_1 2.052e-05 1.097e-04 -1.100e-04

beta_1 -2.920e-05 -1.100e-04 1.233e-04

nu_1 -5.745e-05 -5.996e-05 6.688e-05

nu_1 alpha0_2 alpha1_2

alpha0_1 -5.745e-05 7.725e-05 6.534e-05

alpha1_1 -5.996e-05 1.389e-04 1.365e-04

beta_1 6.688e-05 -1.002e-04 -1.218e-04

nu_1 1.716e-02 -3.352e-03 -6.777e-03

beta_2 nu_2 P

alpha0_1 -9.290e-05 -0.0000229 3.352e-05

alpha1_1 -3.238e-04 -0.0001215 5.504e-05

beta_1 2.584e-04 0.0001008 -6.261e-05

nu_1 1.597e-02 -0.0045914 3.114e-04

P

alpha0_1 6.665e-05

alpha1_1 2.033e-04

beta_1 -1.899e-04

nu_1 -1.810e-02

[ reached getOption("max.print") -- omitted 6 rows ]

[1] "Posterior mean transition matrix:"

t = 1 t = 2

t + 1 = 1 0.97443 0.6764

t + 1 = 2 0.02557 0.3236

[1] "Posterior mean stable probabilities:"

Stable probabilities

State 1 0.96357

State 2 0.03643

[1] "Posterior mean unconditional volatility:"

State 1 State 2

[1,] 1.112 2.105

[1] "Acceptance rate: 0.986"

[1] "AIC: 13006.9565090122"

[1] "BIC: 13071.1390734477"

[1] "DIC: 13003.1027841308"

The function fit.bayes takes up to five controls arguments in ctr. The argument N.mcmc

is the number of draws to keep, N.burn is number of discarded draws, and N.thin is the
thinning factor. N.burn and N.thin main purpose is to remove auto-correlation in the chain.
The argument N.burn also serve as pre-optimization which is why N.burn is so high in the
example. This is due to the fact that the chain begins with the specification default parameters
which are not good estimators and it can take many iterations before converging to stable
estimators. One alternative is to use a custom starting parameters theta0 in the ctr argument
or to set do.enhance.theta0 = TRUE. For example, we could set theta0 as the Maximum
likelihood estimator estimated with fit.mle. The total length of the chain is: N.mcmc /
N.thin. The chain is converted to a coda object meaning that all function for MCMC analysis
available in the R package coda (Plummer et al. 2006) are available.
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4. Other functionalities

4.1. Filtering

There are two functions related to filtering:

ht(object, theta, y)

Pstate(object, theta, y)

As in the pdf and cdf functions, the object argument accepts a specification created with
create.spec (see Section 2) or a fitted object (see Section 3). When a specification is passed
to the method, theta and y must be provided which is not the case when a fitted object is
passed to object. The function ht outputs the filtered volatility of each regime by simply
running the variance update function (see Section 2.1) of each single-regime specification up
to time T + 1. The function Pstate runs the Hamilton filter (see Section 3) and gives the
states probabilities up to time T + 1. These functions are useful to analyze the evolution of
the volatilities and state probabilities over time.

4.2. Simulation

Simulations are carried out by two functions:

sim(spec, n, m, theta, burnin)

simahead(object, n, m, theta, y)

The object argument works like the object argument of the previous functions. The function
sim simulate an entire process while the function simahead simulate n-step ahead to the vector
of observation y. The argument n sets the length of each simulation while the argument m

sets the number of simulations. If a matrix of parameters such as a MCMC chain (see
Section 3.0.2) is passed to theta, we automatically sets m = M where M is the number of
MCMC draws. Finally, the argument burnin, unique to sim, sets the number of simulation
to discare to diminishes the impact of initial state probabilities set to 1/K, where K is the
number of states.

4.3. Predictive density and Probability integral transform

The predictive density function is essentially useful for a MCMC chain since it does not behave
like the function pdf when given a matrix of parameters:

pred(object, x, theta, y, log = TRUE, do.its = FALSE)

pit(object, x, theta, y, do.norm, is.its = FALSE)

The difference between the pdf and the pred function is that when a matrix of parameters
is passed to theta, each vector of parameters are not evaluated individually. That is, we
average the resulting PDF of each density estimation of each individiual vector of parameters
in the matrix.
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f(x) ≡ 1

M

M∑
m=1

f(x|H [m]
T+1, ψ

[m]
T+1,Λ

[m]) . (18)

whereM is the total number of draws in the MCMC chain. When a single vector of parameters
is passed to theta the results are the same as calling the function pdf (see Section(2.3)). When
do.its = TRUE, we calculate the in-sample predictive evaluated at the observations in y. As
for the Probability intgral transform (PIT), only replace pdf by cdf. The do.norm argument
serves as to transform the PIT into standard Normal variate.

4.4. Risk measures

Calculation of the Value-at-Risk (VaR) and Expected-shortfall (ES) is a crucial step in risk
management. We provide the function risk which allows us to calculate these risk measures
in-sample or at time t = T + 1.

risk(object, theta, y, level = 0.95, ES = FALSE, do.its = FALSE)

The object argument works as in the previous functions. The argument level is a vector that
sets the risk level. The argument ES indicates if the ES is computed. Finally, the argument
do.its indicates if in-sample evaluation or T + 1 evaluation is performed.

The function can calculate the risk estimators from Maximum likelihood or Bayesian esti-
mation. We first extract the predictive density f(x) given the information at time t. This
is essentially the pred function with do.its = FALSE. When do.its = TRUE in the risk

function, we iteratively pass y up to observation t in the function pred which gives us the
predictive density at time t+ 1. We do this up to time T − 1 which gives us the risk estima-
tors from t = 2 to t = T . When do.its = FALSE, we pass all data in y and obtain the risk
estimators at time T + 1. To extract the VaR, we solve the VaR at risk level 1− α:∫ V aRα

−∞
f(x)dx = α . (19)

We do this by first running the R function uniroot from the stats namespace for a gross
approximate of the VaR and then we run the Newton-Raphson algorithm to obtain better
estimations. The ES is then found by integration:

ESα ≡
∫ V aRα

−∞
xf(x)dx . (20)

We use the R function integrate from the stats namespace to perform the numerical inte-
gration.

4.5. Information critera

The Akaike information criterion (AIC) (Akaike 1974), the Bayesian information criterion
(BIC) (Schwarz et al. 1978), and the deviance information criterion (DIC) (Gelman et al.
2014) are all measure of the relative quality of statistical models for a given set of data where
lower measure are preferred.
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AIC(fit)

BIC(fit)

DIC(fit)

Both BIC and AIC prevents overfitting by introducing a penalty term to the number of
parameters k in the model, but the penalty term is larger in the BIC than in the AIC. When
a Bayesian fit is passed to the BIC or AIC function, the the BIC or AIC on the posterior mean
Θ̄,Λ̄, and P̄ is calculated.

The DIC is particularly useful in Bayesian model selection problems where the posterior dis-
tributions of the models have been obtained by MCMC simulation (see Section 3). We define
the deviance as D(Θ,Λ,P)) ≡ −2LLH(y|Θ,Λ,P), where y are the data. The expectation

D̄ ≡ EΘ,Λ,P[D(Θ,Λ,P)] is a measure of how well the model fits the data. The larger this
is, the worse the fit. The effective number of parameters of the model can be define as
pD ≡ 1

2 v̂ar (D(Θ,Λ,P)). The larger the effective number of parameters is, the easier it is for
the model to fit the data, and so the deviance needs to be penalized.

5. Empirical illustration

We illustrate the package’s usage on daily log-returns of the Swiss market index for a period
ranging from November 12, 1990, to October 20, 2000. We are using the data from Mullen
et al. (2011). We consider a single-regime GJR model with a skewed Student-t distribution
and a two-state Markov-switching GJR model with skewed Student-t distributions in each
regime. Figure 1 displays the time series of log-returns.

[Insert Figure 1 about here.]

We first estimate both models by Maximum Likelihood with the pre-optimization argument
do.init = TRUE and the argument do.enhance.theta0 = TRUE:

R> data("SMI")

R> plot(y, xlab = "Date", ylab = "Log-return")

R> SMI = as.matrix(y)

R> date = as.Date(rownames(SMI))

R> date = c(date, date[length(date)] + 1)

R> spec1 = create.spec(model = c("gjrGARCH"),

distribution = c("std"),

do.skew = c(TRUE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle1 = list(do.init = TRUE, NP = 10*length(spec1$theta0),

itermax = 500, do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle1 = MSGARCH::fit.mle(spec = spec1, y = SMI, ctr = ctr.mle1)

R> summary(fit.mle1)

[1] "Specification Type: Single-Regime"

[1] "Specification Name: gjrGARCH_student_skew"
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[1] "Number of parameters in variance model: 4"

[1] "Number of parameters in distribution: 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

[1,] 0.03933 0.04298 0.1143 0.8702 8.138

xi_1

[1,] 0.8554

[1] "Unconditional volatility:"

State 1

[1,] 1.285

[1] "Log-kernel: -3376.27190288128"

[1] "AIC: 6743.30840993793"

[1] "BIC: 6778.25268600307"

R> ht = MSGARCH::ht(fit.mle1)

R> plot(ht, date = date)

[Insert Figures 2 about here.]

We plot in Figure 2 the conditional variance of the single-regime model. We note the high
level of volatility persistence, skewness and a fat-tailed distribution.

R> spec2 = create.spec(model = c("gjrGARCH", "gjrGARCH"),

distribution = c("std", "std"),

do.skew = c(TRUE, TRUE),

do.mix = FALSE, do.shape.ind = FALSE)

R> ctr.mle2 = list(do.init = TRUE, NP = 50*length(spec2$theta0),

itermax = 500, do.enhance.theta0 = TRUE)

R> set.seed(123)

R> fit.mle2 = MSGARCH::fit.mle(spec = spec2, y = SMI, ctr = ctr.mle2)

R> summary(fit.mle2)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: gjrGARCH_student_skew gjrGARCH_student_skew"

[1] "Number of parameters in each variance model: 4 4"

[1] "Number of parameters in each distribution: 2 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

alpha0_2 alpha1_2 alpha2_2 beta_2 nu_2 xi_2

[1,] 0.1 0.05 0.1 0.8 10 1

P P
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[1,] 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

[1,] 0.2229 7.648e-06 0.2139 0.5404 5.945

xi_1 alpha0_2 alpha1_2 alpha2_2 beta_2

[1,] 0.8521 0.083 0.006211 0.1393 0.8774

nu_2 xi_2 P P

[1,] 20.01 0.8582 0.9981 0.00313

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 0.998052 0.00313

t + 1 = 2 0.001948 0.99687

[1] "Stable probabilities:"

Stable probabilities

State 1 0.5464

State 2 0.4536

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.8101 1.423

[1] "Log-kernel: -3364.58904570219"

[1] "AIC: 6687.68084240918"

[1] "BIC: 6769.21748656117"

R> ht = ht(fit.mle2)

R> plot(ht, date = date)

R> state = Pstate(fit.mle2)

R> plot(state, date = date)

We first note that the first regime of the MSGARCH specification is less persitent then that
of the second regime (see Figure 3). We can also observe that the alpha2_1 parameter is
very high showing a larger leverage effect inthe first regime than in the second regime. The
estimated degrees of freedom suggests that the first regime is more fat-tailed than the second
regime, but the unconditional volatility of the first regime is much lower than that of the
second regime. Both conditional distributions are negatively skewed. As we could expect,
the unconditional volatility of the single-regime specification is close to the average of the
two unconditional volatilities of the MSGARCH specification. The transtion matrix indicates
that the regime does not switch very often which can be seen in Figure 4.

[Insert Figure 3 and Figure 4 about here.]

We also perform the Bayesian estimation using as starting values the ML values.

R> ctr.bay1 = list(N.burn = 5000, N.mcmc = 10000,

N.thin = 10, theta0fit.mle1$theta)

R> set.seed(123)
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R> fit.bay1 = MSGARCH::fit.bayes(spec = spec1, y = SMI, ctr = ctr.bay1)

R> summary(fit.bay1)

[1] "Specification Type: Single-Regime"

[1] "Specification Name: gjrGARCH_student_skew"

[1] "Number of parameters in variance model: 4"

[1] "Number of parameters in distribution: 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

[1] "Bayesian posterior mean:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

0.017720 0.013427 0.009124 0.981166 3.402079

xi_1

1.027325

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 alpha2_1

alpha0_1 4.531e-05 3.160e-06 1.520e-05

alpha1_1 3.160e-06 6.317e-06 -4.729e-06

alpha2_1 1.520e-05 -4.729e-06 2.238e-05

beta_1 -1.352e-05 -4.002e-06 -6.982e-06

nu_1 6.904e-06 -1.256e-05 3.064e-05

xi_1 1.325e-06 7.229e-06 -1.804e-05

beta_1 nu_1 xi_1

alpha0_1 -1.352e-05 6.904e-06 1.325e-06

alpha1_1 -4.002e-06 -1.256e-05 7.229e-06

alpha2_1 -6.982e-06 3.064e-05 -1.804e-05

beta_1 8.097e-06 -2.742e-06 1.338e-06

nu_1 -2.742e-06 5.052e-05 -3.088e-05

xi_1 1.338e-06 -3.088e-05 2.019e-05

[1] "Posterior mean unconditional volatility:"

State 1

[1,] 4.229

[1] "Acceptance rate: 0.992"

[1] "AIC: 22471.2046441839"

[1] "BIC: 22509.7141828453"

[1] "DIC: 22468.3407630412"

R> coda::traceplot(fit.bay1$theta)

R> pairs(x = as.matrix(fit.bay1$theta), pch = 20, cex = 0.8)

R> ht = ht(fit.bay1)

R> plot(ht, date = date)

[Insert Figure 5 and Figure 6 about here.]

From Figure 5 we observe that the chain is mixing well. Figure 6 shows that nu_1 and
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alpha2_1 are highly positively correlated while beta_1 and alpha0_1 are highly negatively
correlated.

[Insert Figure 7 about here.]

The Bayesian conditional variance in Figure 7 looks similar to the MLE case, but now with
a narrow band indicating relatively low uncertainty.

R> ctr.bay2 = list(N.burn = 5000, N.mcmc = 10000,

N.thin = 10, theta0 = fit.mle2$theta)

R> set.seed(123)

R> fit.bay2 = MSGARCH::fit.bayes(spec = spec2, y = SMI, ctr = ctr.bay2)

R> summary(fit.bay2)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: gjrGARCH_student_skew gjrGARCH_student_skew"

[1] "Number of parameters in each variance model: 4 4"

[1] "Number of parameters in each distribution: 2 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

alpha0_2 alpha1_2 alpha2_2 beta_2 nu_2 xi_2

[1,] 0.1 0.05 0.1 0.8 10 1

P P

[1,] 0.5 0.5

[1] "Bayesian posterior mean:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1

0.223706 0.006811 0.234363 0.535547 5.951993

xi_1 alpha0_2 alpha1_2 alpha2_2 beta_2

0.848133 0.084816 0.011409 0.155874 0.866230

nu_2 xi_2 P P

19.997764 0.862992 0.996872 0.004549

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 alpha2_1

alpha0_1 8.391e-05 -4.415e-06 -1.010e-04

alpha1_1 -4.415e-06 2.955e-05 8.658e-05

beta_1 nu_1 xi_1

alpha0_1 2.623e-05 -2.188e-04 1.144e-04

alpha1_1 -7.793e-06 4.085e-05 -2.881e-05

alpha0_2 alpha1_2 alpha2_2

alpha0_1 -6.799e-05 6.192e-06 -1.172e-04

alpha1_1 3.302e-05 2.371e-06 7.230e-05

beta_2 nu_2 xi_2

alpha0_1 8.185e-05 8.469e-06 5.016e-05

alpha1_1 -4.671e-05 -6.221e-05 1.984e-05

P P
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alpha0_1 -4.778e-07 -1.360e-06

alpha1_1 2.629e-07 8.527e-07

[ reached getOption("max.print") -- omitted 12 rows ]

[1] "Posterior mean transition matrix:"

t = 1 t = 2

t + 1 = 1 0.996872 0.004549

t + 1 = 2 0.003128 0.995451

[1] "Posterior mean stable probabilities:"

Stable probabilities

State 1 0.5497

State 2 0.4503

[1] "Posterior mean unconditional volatility:"

State 1 State 2

[1,] 0.8286 1.488

[1] "Acceptance rate: 0.984"

[1] "AIC: 6689.39263252908"

[1] "BIC: 6770.92927668107"

[1] "DIC: 6672.09065870322"

R> coda::traceplot(fit.bay2$theta)

R> pairs(x = as.matrix(fit.bay2$theta[,c(1,3,4,7,9,10)]),

pch = 20, cex = 0.8)

R> ht = ht(fit.bay2)

R> plot(ht, date = date)

R> state = Pstate(fit.bay2)

R> plot(state, date = date)

[Insert Figure 8 and Figure 9 about here.]

From Figure 8 we see that the chain is also mixing well fot the MSGARCH model. We can
observe in Figure 9 that there is an high positive correlation between alpha2_1 and alpha2_2,
an high negative correlation between alpha2_1 and beta_2, and an high negative correlation
between alpha2_2 and beta_2.

[Insert Figure 10 and Figure 11 about here.]

As in the single regime model, the Bayesian conditional volatility is similar the MLE coun-
terpart. We can obsvere that the band on the second regime is larger than the one of the
first regime indicating more uncertainty in the second regime. The same effect is observe in
Figure 11 where we show the probability to be in the first state.

To determine the best model in-sample, we compare the AIC and the BIC from the ML
esimation and the DIC from the Bayesian esimation. Lowest values should be preferred:

R> c(MSGARCH::AIC(fit.mle1), MSGARCH::AIC(fit.mle2))

[1] 6743 6688
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R> c(MSGARCH::BIC(fit.mle1), MSGARCH::BIC(fit.mle2))

[1] 6778 6769

R> c(MSGARCH::DIC(fit.bay1)$DIC, MSGARCH::DIC(fit.bay2)$DIC)

[1] 6740 6672

We can observe that the MSGARCH specification is better for all information criteria.

We now analyze the Value-at-Risk at the 95% risk level for all models:

R> risk.mle1 = MSGARCH::risk(fit.mle1, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> risk.mle2 = MSGARCH::risk(fit.mle2, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> risk.bay1 = MSGARCH::risk(fit.bay1, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> risk.bay2 = MSGARCH::risk(fit.bay2, level = c(0.95),

ES = FALSE, do.its = TRUE)

R> par(oma = c(4, 1, 1, 1))

R> plot(zoo::zoo(risk, order.by = date),plot.type = "single",

col = tsRainbow, ylab = "VaR",xlab = "Date")

R> legend("bottomright",legend = colnames(risk),

lty = 3, col = tsRainbow, xpd = TRUE, horiz = TRUE,

R> inset = c(0,-0.5), bty = "n", pch = c(4, 2, 15, 19), cex = 1)

[Insert Figure 12 about here.]

The Value-at-Risk at 5% for both MLE estimation of each model can be seen in Figure 12.
They look similar except that the MSGARCH model often shows bigger spikes than the
single-regime model when there is a large shift in volatility.

6. Conclusion

This vignette introduced the R package MSGARCH which allows us to estimate, simulate
and forecast Markov-switching GARCH models in the R statistical sofware. We detailed
how to create various single-regime and regime-switching specifications with various scedastic
functions and conditional distributions. We documented how to perfom Maximum Likeli-
hood and Bayesian estimation of these models. In an empirical illustration to real financial
data, we showed how to fit and compare the in-sample performance of two complex GARCH
specifications.

The R language has become an important vector for knowledge transfer in quantitative finance
over the last years. We hope the R package MSGARCH will provide risk managers and
regulators with new methodologies for improving risk forecasts of their portfolios.
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Finally, if you use R or MSGARCH, please cite the software in publications.

Computational details

The results in this paper were obtained using R 3.2.3 (R Core Team 2016) with the packages:
MSGARCH version 0.1.0 (Bluteau et al. 2016), adaptMCMC version XXX (Andreas 2012),
DEoptim version XXX (Mullen et al. 2011), nloptr version XXX (Johnson 2014), Rcpp version
0.12.5 (Eddelbuettel and François 2011; Eddelbuettel et al. 2016a), RcppArmadillo version
0.7.100.3.1 (Eddelbuettel and Sanderson 2014; Eddelbuettel et al. 2016b), Rsolnp version
1.15 (Ghalanos and Theussl 2016), xts version 0.9-7 (Ryan and Ulrich 2015) and quantmod
version 0.4-5 (Ryan 2015). R itself and all packages used are available from CRAN at http://
CRAN.R-project.org/. The package MSGARCH is under development in GitHub at https:
//github.com/keblu/MSGARCH. Computations were performed on a Genuine Intel® quad
core CPU i7–3630QM 2.40Ghz processor. Code outputs were obtained using options(digits

= 4, max.print = 40, prompt = "R> ", width = 50).
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Figure 1: Log-returns of the Swiss Market Index. Data range from November 12, 1990, to
October 20, 2000.
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Figure 2: Conditional volatility of the single-regime GJR model with skewed Student-t inno-
vations estimated by Maximum Likelihood.
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Figure 3: Conditional volatility in each states of the two-state Markov-switching GJR with
skewed Student-t innovations estimated by Maximum Likelihood.
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Figure 4: Filtered probabilities of the first regime obtain by Maximum Likelihood for the
two-state Markov-switching GJR model with skewed Student-t innovations.
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Figure 5: Trace of the single-regime GJR model with skewed Student-t innovations.
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Figure 6: Pairs plot of the single-regime GJR model with skewed Student-t innovations.
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Figure 7: Conditional volatility of the single-regime GJR model with skewed Student-t inno-
vations estimated by MCMC. Blue line indicates the median.
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Figure 8: Trace of the two-state Markov-switching GJR with skewed Student-t innovations.
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Figure 9: Pairs plot of the two-state Markov-switching GJR with skewed Student-t innova-
tions.
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Figure 10: Conditional volatility in each states of the two-state Markov-switching GJR with
skewed Student-t innovations estimated by MCMC. Blue line indicates the median.
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Figure 11: Filtered probabilities of the first regime obtain by MCMC for the two-state Markov-
switching GJR model with skewed Student-t innovations. Blue line indicates the median.

0.00.20.40.60.81.0

F
ilt

er
ed

 p
ro

b
ab

ili
ty

 t
o

 b
e 

in
 S

ta
te

 1

D
at

e

Probability

19
92

19
94

19
96

19
98

20
00

L9
5%

L8
0%

L5
0%

U
50

%
U

80
%

U
95

%

M



38 Markov-Switching GARCH Models in R: The MSGARCH Package

Figure 12: In-sample Value-at-Risk at the 95% risk leval for the single-regime and regime-
switching models.
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