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Abstract

State space modelling is an efficient and flexible method for statistical inference of
broad class of time series and other data. This paper describes an R package KFAS for
modelling state space models with the observations from exponential family, namely Gaus-
sian, Poisson, binomial, negative binomial and gamma distributions. After introducing
the basic theory behind the state space modelling, an illustrative example is provided,
and finally a short comparison to alternative modelling framework is presented.
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1. Introduction

State space models offer an unified framework for modelling several types of time series and
other data. Structural time series, ARIMA models, simple regression, generalized linear mixed
models, and cubic spline smoothing are just some examples of the statistical models which
can be represented as a state space model. One of the simplest classes of state space models
are linear Gaussian state space models (also known as dynamic linear models), which are
analytically tractable, and are therefore often used in many fields of science.

Petris and Petrone (2011) and Tusell (2011) introduce and review some of the contributed
packages available at Comprehensive R Archive Network (CRAN) for R (R Core Team 2014)
for Gaussian state space modelling. Since then, several new additions have emerged in CRAN.
Most of these packages use one or multiple packages reviewed in Tusell (2011) for filtering
and smoothing, and add new user interface and functionality for certain type of models.
For example, package rucm (Chowdhury 2014) is focused on structural time series, while
dlmodeler (Szymanski 2014) provides unified interface compatible with multiple packages, and
MARSS (Holmes, Ward, and Wills 2013, 2012) provides functions for a maximum likelihood
estimation of large class of Gaussian state space models via the EM-algorithm.

One of the packages reviewed in the aforementioned papers is KFAS (Kalman Filtering And
Smoothing) which, in addition, of modelling the general linear Gaussian state space mod-
els, it can also be used in cases where the observations are from other exponential family
models, namely binomial, Poisson, negative binomial, and Gamma models. To my knowl-
edge, KFAS is currently the only package which supports non-Gaussian models in a classi-
cal state space modelling framework. Package sspir (Dethlefsen, Lundbye-Christensen, and
Christensen 2012) included similar capabilities, but it was removed from CRAN in 2013. In
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addition to KFAS, there are at least two packages which are designed for more broader class
of problems, but can also be used for exponential family state space modelling. Package pomp
(King, Ionides, Bretó, Ellner, Ferrari, Kendall, Lavine, Nguyen, Reuman, Wearing, and Wood
2014) offers functions for inference of state space models with non-Gaussian and non-linear
observation and state equations by particle filtering and related methods. Another pack-
age suitable for state space modelling is INLA (Rue, Martino, Lindgren, Simpson, Riebler,
and Krainski 2015) (not available on CRAN), which can be used for Bayesian analysis via
integrated nested Laplace approximation technique. Although it is often used in a spatial
modelling via Gaussian random fields, it can also be used for certain temporal state space
models where the state transitions are Gaussian.

After the papers by Petris and Petrone (2011) and Tusell (2011), KFAS has been completely
rewritten. Package is now much more user friendly due to the use of R’s symbolic formulas
in model definition. The non-Gaussian modelling, which was somewhat experimental in old
versions of KFAS, is now fully functional supporting multivariate models with different dis-
tributions. Many other features have also been added (such as methods for computing model
residuals), performance of the main functions have improved and in the process several bugs
have been also fixed.

In this paper I first introduce the basic theory related to state space modelling, and then
proceed to show main aspects of KFAS in more detail, illustrate its functionality by applying
it to real life dataset and finally make short comparison between INLA and KFAS (comparison
to INLA is removed from vignette as INLA is not available at CRAN).

2. Gaussian state space model

The theory behind KFAS is mostly based on Durbin and Koopman (2012) and related articles
by the same authors, and therefore the basic notation is nearly identical with the one used
by Durbin and Koopman. For linear Gaussian state space model with continuous states and
discrete time intervals t = 1, . . . , n we have

yt = Ztαt + εt, (observation equation)

αt+1 = Ttαt +Rtηt, (state equation)
(1)

where εt ∼ N(0, Ht), ηt ∼ N(0, Qt) and α1 ∼ N(a1, P1) independently of each other. We
assume that yt is p×1, αt+1 is m×1 and ηt is k×1 vector. We also denote α = (α>1 , . . . , α

>
n )>

and similarly y = (y>1 , . . . , y
>
n )>.

Here yt contains the observations at time t, whereas αt is a vector of latent state process
at time point t. The system matrices Zt, Tt, and Rt, together with the covariance matrices
Ht and Qt depend on the particular model definition, and are often time invariant, i.e., do
not depend on t. Usually at least some of these matrices contain unknown parameters which
need to be estimated. In KFAS one defines the model with the function SSModel. Function
SSModel only builds the model, and does not perform estimation of unknown parameters,
which differs from functions like lm which builds and estimates the model with one command.

The main goal of the state space modelling is to gain knowledge of the latent states α given
the observations y. This is achieved by using two important recursive algorithms, Kalman
filtering and smoothing. From Kalman filtering algorithm we obtain the one step ahead
predictions and the prediction errors
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at+1 = E(αt+1|yt, . . . , y1),
vt = yt − Ztat,

and the related covariance matrices

Pt+1 = VAR(αt+1|yt, . . . , y1),
Ft = VAR(vt) = ZtPtZ

>
t +Ht.

Using the results of the Kalman filtering, we establish the state smoothing equations running
backwards in time and yielding

α̂t = E(αt|yn, . . . , y1),
Vt = VAR(αt|yn, . . . , y1).

Similar smoothed estimates can also be computed for the disturbance terms εt and ηt, and
straightforwardly for the mean signal θt = Ztαt. For details on these algoritms, see Appendix
A and Durbin and Koopman (2012).

A prior distribution of the initial state vector α1 can be defined as a multivariate Gaussian
distribution with mean a1 and covariance matrix P1. For uninformative diffuse prior, one
typically sets P1 = κI, where κ is for example 107. However, this method can be numerically
unstable due to cumulative roundoff errors. To solve this issue Koopman and Durbin (2003)
present the exact diffuse initialization method, where the diffuse elements in a1 are set to zero
and P1 is decomposed as κP∞,1 + P∗,1, where κ → ∞. Here P∞,1 is a diagonal matrix with
ones on those diagonal elements which relate to the nonstationary elements of α1, and P∗,1
contains the covariances of the stationary elements of α1 (and zeros elsewhere). At the start
of the Kalman filtering (and at the end of backward smoothing) we use so called exact diffuse
initialisation formulas until P∞,t becomes zero matrix, and then continue with usual Kalman
filtering equations. This exact method should be less prone to numerical errors, although
they can still occur especially in the smoothing phase, if we have for example high collinearity
between the explanatory variables of the model. Note that given all the parameters in the
system matrices, results from the Kalman filter and smoother are equivalent with Bayesian
analysis given the same prior distribution for α1.

When we have multivariate observations, it is possible that in the diffuse phase, the matrix
Ft is not invertible, and the computation of at+1 and Pt+1 becomes impossible. On the other
hand, even if Ft is invertible, the computations can become slow when dimensionality of Ft,
i.e., the number of series increases. Also in case of multivariate observations, the formulas
relating to the diffuse initialization become cumbersome. Based on the ideas of Anderson and
Moore (1979), a complete univariate approach for filtering and smoothing was introduced by
Koopman and Durbin (2000) (known as sequential processing by Anderson and Moore). The
univariate approach is based on the alternative representation of the model (1), namely

yt,i = Zt,iαt,i + εt,i, i = 1, . . . , pt, t = 1, . . . , n,

αt,i+1 = αt,i, i = 1, . . . , pt − 1,

αt+1,1 = Ttαt,pt +Rtηt, t = 1, . . . , n,

and a1,1 ∼ N(a1, P1), with an assumption that Ht is diagonal for all t. Here the dimension of
the observation vector yt can vary over time and therefore missing observations are handled
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straightforwardly by adjusting the dimensionality of yt. In case of non-diagonal Ht, the origi-
nal model can be transformed either by taking the LDL decomposition of Ht, and multiplying
the observation equation with the L−1t , so ε∗t ∼ N(0, Dt), or by augmenting the state vector
with ε, when Qt becomes block diagonal with blocks Qt and Ht. The augmenting can also be
used for introducing correlation between ε and η. Both LDL decomposition and state vector
augmentation is supported in KFAS.

In theory when using the univariate approach, the computational costs of filtering and smooth-
ing decrease, as the number of matrix multiplications decrease, and there is no need for solving
the system of equations (Durbin and Koopman 2012, p. 159). As noted in (Tusell 2011), these
gains can somewhat cancel out as more calls to linear algebra functions are needed and the
memory management might not be as effective as working with larger objects at once. Nev-
ertheless as noted previously, the sequential processing has also other clear benefits especially
with diffuse initialization where the univariate approach simplifies the recursions considerably
(Durbin and Koopman 2012).

KFAS uses this univariate approach in all cases. Although Kt = PtZ
>
t = COV(at, yt|yt −

1, . . . , y1), vt, and Ft differ from the standard multivariate versions, we get at = at,1 and
Pt = Pt,1 by using the univariate approach. If standard multivariate matrices Ft and Kt

are needed for inference, they can be computed later from the results of the univariate filter.
As F∗,i,t, K∗,i,t, and P∗,t coincide with the nondiffuse counterparts if F∞,i,t = 0, the asterisk
is dropped from the variable names in KFAS, and for example variable F is a n × p array
containing F∗,i,t and Fi,t, whereas Finf is a n × d, where d is the last time point before the
diffuse phase ended.

2.1. Log-likelihood of the Gaussian state space model

The Kalman filter equations can be used for computing the log-likelihood, which in its stan-
dard form is

logL =
np

2
log 2π − 1

2

n∑
t=1

(log |Ft|+ v′tF
−1
t vt).

In case of the univariate treatment and diffuse initialization, the diffuse log-likelihood can be
written as

logLd = −1

2

n∑
t=1

pt∑
i=1

wi,t,

where

wi,t =

{
logF∞,i,t, if F∞,i,t > 0,

I(Fi,t > 0)(log 2π + logFi,t + v2i,tF
−1
i,t ), if F∞,i,t = 0.

See Durbin and Koopman (2012, Chapter 7) for details. Francke, Koopman, and De Vos
(2010) show that there are cases where the above definition of diffuse log-likelihood is not
optimal. Without going into the details, if system matrices Zt or Tt contain unknown pa-
rameters in their diffuse parts, the diffuse likelihood is missing one term which depends on
those unknown parameters. Francke et al. (2010, p.411–412) present a recursive formula for
computing this extra term, which is also supported by KFAS.

3. State space models for exponential family
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KFAS can also deal with observations which come from distributions of exponential family
class other than Gaussian. We assume that the state equation as is in the Gaussian case, but
the observation equation has the form

p(yt|θt) = p(yt|Ztαt),

where θt = Ztαt is the signal and p(yt|θt) is the observational density.

The signal θt is the linear predictor which is connected to the expected value E(yt) = µt via
a link function l(µt) = θt. In KFAS, the following distributions and links are available:

1. Gaussian distribution with mean µt and variance ut with identity link θt = µt.

2. Poisson distribution with intensity λt and exposure ut together with log-link θt =
log(λt). Thus we have E(yt|θt) = VAR(yt|θt) = ute

θt .

3. Binomial distribution with size ut and probability of success πt. KFAS uses logit-link
so θt = logit(πt) resulting E(yt|θt) = utπt and VAR(yt|θt) = ut(πt(1− πt)).

4. Gamma distribution with a shape parameter ut and an expected value µt, again with
log-link θt = log(µ), where Gamma distribution is defined as

p(yt|µt, ut) =
uutt

Γ(ut)
µ−utt yut−1t e

ytut
µt .

This gives us E(yt|θt) = eθt and VAR(yt|θt) = e2θt/ut.

5. Negative binomial distribution with a dispersion parameter ut and an expected value
µt with log-link θt = log(µt), where the negative binomial distribution is defined as

p(yt|µt, ut) =
Γ(yt + ut)

Γ(ut)yt!

µytt u
ut
t

(µt + ut)ut+yt
,

giving us E(yt|θt) = eθt and VAR(yt|θt) = eθt + e2θt/ut.

Note that variable ut has a different meaning depending on the distribution it is linked to. In
KFAS one defines the distribution for each time series via argument distribution and the
additional known parameters ut corresponding to each series as columns of matrix u.

In order to make inferences of the non-Gaussian models, we first find a Gaussian model which
has the same conditional posterior mode as p(θ|y) (Durbin and Koopman 2000). This is done
using an iterative process with Laplace approximation of p(θ|y), where the updated estimates
for θt are computed via Kalman filtering and smoothing from the approximating Gaussian
model. In approximating Gaussian model the observation equation is replaced by

ỹt = Ztαt + εt, εt ∼ N(0, Ht)

where the pseudo-observations ỹt variances Ht are based on first and second derivatives of
logp(yt|θt) with respect to θt (Durbin and Koopman 2000).

Final estimates θ̂t correspond to the mode of p(θ|y). In Gaussian case the mode is also the
mean. In cases listed in (1)-(5) the difference between the mode and mean is often negligible.
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Nevertheless, we are usually more interested in µt than in the linear predictor θt. As the
link function is non-linear, direct transformation µ̂t = l−1(θ̂t) introduces some bias. To solve
this problem KFAS also contains methods based on importance sampling, which allows us
to correct these possible approximation errors. With importance sampling technique we can
also compute the log-likelihood and the smoothed estimates for f(α), where f is an arbitrary
function of states, exp(Ztαt) being typical example.

In importance sampling scheme, we first find the approximating Gaussian model, simulate
the states αi from this Gaussian model and then compute the corresponding weights wi =
p(y|αi)/g(y|αi), where p(y|αi) represents the conditional non-Gaussian density of the original
observations, and g(y|αi) is the conditional Gaussian density of the pseudo-observations ỹ.
These weights are then used for computing

E(f(α)|y) =

∑N
i=1 f(αi)wi∑N

i=1wi
.

The simulation of Gaussian state space models in KFAS is based on simulation smoothing
algorithm by Durbin and Koopman (2002). In order to improve the simulation efficiency,
KFAS can use two antithetic variables in the simulation algorithms. See Durbin and Koopman
(2012, p. 265-266) for details how these are constructed.

KFAS also provides means for filtering of non-Gaussian models. This is achieved by sequen-
tially using the smoothing scheme for (y1, . . . , yt), t = 1 . . . , n with yt set as missing. This is
relatively slow procedure for large models, as the importance sampling algorithms need to be
performed n times, although the first steps are much faster than the one using whole data.
The non-Gaussian filtering is mainly for computation of recursive residuals (see Section 4)
and for illustrative purposes, where the computational efficiency is not that important. With
large models or online-filtering problems, one is recommended to use proper particle filter
approach which is out of the scope of this paper.

3.1. Log-likelihood of the non-Gaussian state space model

The log-likelihood function for the non-Gaussian model can be written as (Durbin and Koop-
man 2012, p. 272)

logL(y) = log

∫
p(α, y)dα

= logLg(y) + logEg

[
p(y|θ)
g(y|θ)

]
,

where Lg(y) is the log-likelihood of the Gaussian approximating model and the expectation
is taken with respect to the Gaussian density g(α|y). The expectation can be approximated
by

logEg

[
p(y|θ)
g(y|θ)

]
≈ log

1

N

N∑
i=1

wi. (2)

In many cases, good approximation of the log-likelihood can be computed without any simu-
lation, by setting N = 0 and using the mode estimate θ̂ from the approximating model.

In practice (2) suffer from the fact that wi = p(y|θi)/g(y|θi) is numerically unstable; when
number of observations is large, the discrete probability mass function p(y|θi) tends to zero,



Jouni Helske 7

even when the Gaussian density function g(y|αi) does not. Therefore it is better to redefine
the weights as

w∗i =
p(y|θi)/p(y|θ̂)
g(y|θi)/g(y|θ̂)

.

The log-likelihood is then computed as

log L̂(y) = logLg(y) + log ŵ + log
1

N

N∑
i=1

w∗i ,

where ŵ = p(y|θ̂)/g(y|θ̂).

4. Residuals

For exponential family state space models, multiple types of residuals can be computed.
Probably the most useful ones are standardized recursive residuals, which are based on the
one-step ahead predictions from the Kalman filter. For univariate case these are defined as

yt − E(yt|yt−1, . . . , y1)√
VAR(yt|yt−1, . . . , y1)

, t = d+ 1 . . . , n,

where d is the last time point of diffuse phase, and the denominator can be decomposed as

VAR(yt|yt−1, . . . , y1) = VAR(E(yt|θt, yt−1, . . . , y1)|yt−1, . . . , y1)
+ E(VAR(yt|θt, yt−1, . . . , y1)|yt−1, . . . , y1)
= VAR(E(yt|θt)|yt−1, . . . , y1) + E(VAR(yt|θt)|yt−1, . . . , y1).

In the Gaussian case this simplifies to vtF
− 1

2
t .

For multivariate observations we have several options on how to standardize the residuals.
The most common one is a marginal standardization approach where each residual series
is divided by its standard deviation, so we get standard normal distributed residual series
which have no autocorrelation or cross-correlation with non-zero lags. Another option is to
use for example Cholesky decomposition for the prediction error covariance matrix Ft and
standardize the residuals by L−1t (yt − ŷt) where LtL

>
t = Ft. Now the whole residual series

should look like a draw from standard normal distributed without any autocorrelation.

For computing the marginally standardized residuals, multivariate versions of Ft and vt are
needed, wheras the Cholesky standardized residuals can be computed directly from sequential
Kalman filter as

vi,tF
− 1

2
it

, j = 1, . . . , p, t = d+ 1 . . . , n.

These multivariate residuals depend on the ordering of the series, so if the residual diagnostics
exhibit deviations from model assumptions, then the intepretation is somewhat more difficult
than when using the marginal residuals. Therefore marginal residuals might be preferred.
Note that if we want quadratic form residuals (yt − ŷt)F−1t (yt − ŷt), then the ordering of the
series does not matter.

The recursive residuals are defined just for the non-diffuse phase, which is problematic if the
model contains long diffuse phase for example if a dummy variable with a diffuse prior is
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incorporated to the model. This is because the diffuse phase cannot end before the dummy
variable changes its value at least once. In order to circumvent this, one can set the a proper
but highly non-informative prior distribution for the intervention variable when computing
the residuals, which should have negligible effect on the visual inspection of the residual plots.

Other potentially useful residuals are auxiliary residuals which are based on smoothed values
of states. For details, see Harvey and Koopman (1992) and Durbin and Koopman (2012,
Chapter 7).

5. Functionality of KFAS

The state space model used with KFAS is built using function SSModel. The function uses R’s
formula object in a similar way as for example functions lm and glm. In order to define the
different components of the state space model, auxiliary functions SSMtrend, SSMseasonal,
SSMcycle, SSMarima, SSMregression are provided These functions can be used to define the
structural, ARIMA, and regression components of the model. The function SSMcustom can
be used for constructing an arbitrary component by directly defining the system matrices of
model (1). More details on how to construct common state space models with KFAS are
presented in Section 6.

The function SSModel returns an object of class SSModel, which contains the observations y

as the ts object, system matrices Z,H,T,R,Q as arrays of appropriate dimensions, together with
matrices a1, P1, and P1inf defining the initial state distribution. Additional components con-
tains the system matrix u which is used in non-Gaussian models for additional parameters,
character vector distribution which defines the distributions of the observations (multi-
variate series can have different distributions), and tolerance parameter tol which is used in
diffuse phase for checking whether F∞ is nonzero.

SSModel object also contains some attributes, namely integer valued attributes p,m,k,n

which define the dimensions of the system matrices, and character vectors state_types and
eta_types which define the elements of αt and ηt. These attributes are used internally by
KFAS, although user can carefully modify them if needed. For example, if the user wishes
to redefine the error term ηt by changing the dimensions of R and Q, the attributes k and
eta_types need to be updated accordingly.

The unknown model parameters can be estimated with fitSSM, which is a wrapper around
the R’s optim function and the logLik method for SSModel object. For fitSSM, user gives
the model object, initial values of unknown parameters and a function updatefn which is
used to update the model given the parameters (the help page of fitSSM gives an example
of updatefn). As the numerical optimization routines update the model and compute the
likelihood thousands of times, the user is encouraged to build his own problem-specific model
updating function for maximum efficiency. By default, fitSSM estimates the NA values in the
time invariant covariance matrices H and Q, but no general estimation function is provided.
Of course, user can also directly use logLik method for computing the likelihood and thus is
free to choose a suitable optimization method for his problem.

Function KFS computes the filtered (one step ahead prediction) and smoothed estimates for
states, signals, and the values of the inverse link function (expected value µ or probability π)
in a non-Gaussian case. For Gaussian models, disturbance smoothing is also available.

With simulateSSM user can simulate the states, signals or disturbances of the Gaussian
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state space models given the model and the observations. If the model contains missing
observations, these can also be simulated by simulateSSM in similar way. It is also possible
to simulate states from predictive distributions p(αt|y1, . . . , yt−1), t = 1, . . . , n. For these
simulations, instead of using marginal distributions N(at, Pt), KFAS uses a modification of
Durbin and Koopman (2002), where smoothing is replaced by filtering.

For non-Gaussian models, importanceSSM returns the states or signals simulated from the
approximating Gaussian model, and the corresponding weights wi, which can then be used
to compute arbitrary functions of the states or signals.

There are several S3 methods available for SSModel and KFS objects. For both objects,
simple print methods are provided, and for SSModel objects there is the logLik method.
The predict method is for computation of the point predictions together with confidence
or prediction intervals. Extraction operator [ for extracting and replacing the subsets of
model elements is also provided for class SSModel. Use of this method when modifying model
is suggested instead of common list extractor $, as the latter can accidentally modify the
dimensions of the corresponding model matrices.

For KFS object, the methods residuals, rstandard and hatvalues are provided. Also,
function signal can be used for extracting subsets of signals from KFS objects, for example
the part of Ztαt that corresponds to the regression part of the model.

6. Constructing common state space models with KFAS

In this section we present some typical models which can be presented in a state space form.
More examples can be found on the main help page of KFAS by typing ?KFAS after the
package is loaded via library(KFAS).

All the auxialiary functions used in formula argument of the function SSModel have some
common arguments which are not directly related to the system matrices of the corresponding
component. In complex multivariate models, important argument is index, which defines the
series for which the corresponding component is constructed. For example, if we have four
time series (p = 4), we may want to use certain regression component only for series 2 and
4. In this case we use argument index=c(2,4) when calling the appropriate SSMregression

function. By default the index is 1:p so the component is constructed for all series.

Another argument used in several auxiliary functions is type, which can take two possible
values. Value "distinct" defines the component separately for each series defined by index

(with covariance structure defined by argument Q), whereas value "common" constructs single
component which applies to all series defined by index. For example we can define distinct
local level components for all series together with covariance matrix which captures the de-
pendencies of the different series, or we can define just a single local level component which
is common to all series.

6.1. Structural time series

Structural time series refers to class of state space models where the observed time series
is decomposed into several underlying components, such as trend and seasonal effects. The
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basic structural time series model is of the form

yt = µt + γt + ct + εt, εt ∼ N(0, Ht),

µt+1 = µt + νt + ξt, ξt ∼ N(0, Qlevel,t),

νt+1 = νt + ζt, ζt ∼ N(0, Qslope,t),

(3)

where µt is the trend component, γt is the seasonal component and ct is the cycle component.
The seasonal component with period s can be defined in a dummy variable form

γt+1 = −
s−1∑
j=1

γt+1−j + ωt, ωt ∼ N(0, Qseasonal,t),

or trigonometric form where

γt =

bs/2c∑
j=1

γj,t,

γj,t+1 = γj,t cosλj + γ∗j,t sinλj + ωj,t,

γ∗j,t+1 = −γj,t sinλj + γ∗j,t cosλj + ω∗j,t, j = 1, . . . , bs/2c,

with ωj,t and ω∗j,t being independently distributed variables with N(0, Qseasonal,t) distribution
and λj = 2πj/s.

Cycle component with period s is defined as

ct+1 = ct cosλc + c∗t sinλc + ωt,

c∗t+1 = −ct sinλc + c∗t cosλc + ω∗t ,

with ωt and ω∗t being independent variables from N(0, Qcycle,t) distribution and frequency
λc = 2π/s.

For non-Gaussian models the observation equation of (3) is replaced by p(yt|θt) where θt =
µt + γt + ct. Additional Gaussian noise term εt can also be included in θt using SSMcustom

function (this is illustrated in Section 7)

SSModel contains three auxiliary functions, SSMtrend, SSMcycle, and SSMseasonal, for build-
ing structural time series. Argument degree of SSMtrend defines the degree of the polynomial
component, where 1 corresponds to local level model and 2 to local linear trend model. Higher
order polynomials can also be defined with larger values. Another important argument for
SSMtrend is Q which defines the covariance structure of the trend component. This is typically
a list of p×p matrices (with p being the number of series for which the component is defined),
where the first matrix corresponds to level component (µ in (3)), second to slope component
ν and so forth.

Function SSMcycle differs from SSMtrend only by one argument. SSMcycle does not have
argument degree, but instead it has argument period which defines the length of the cy-
cle ct. Same argument is also used in function SSMseasonal, which contains also another
important argument sea.type, which can be used to define whether user wants a dummy or
trigonometric seasonal.
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6.2. ARIMA models

ARIMA models are another typical time series modelling framework, which are also possible
to define as a state space model. Auxiliary SSMarima defines ARIMA model using vectors ar
and ma, which define the autoregressive and moving average coefficients respectively. Function
assumes that all series defined by the index have the same coefficients. Argument d defines
the degree of differencing, and logical argument stationary defines whether stationarity
(after differencing) is assumed (if not, a diffuse initial states are used instead of stationary
distribution). Univariate ARIMA(p,d,q) model can be written as

y∗t = φ1y
∗
t−1 + . . .+ φpy

∗
t−p + ξt + θ1ξt−1 + . . .+ θqξt−q,

where y∗t = ∆dyt and ξt ∼ N(0, σ2). Let r = max(p, q + 1). KFAS defines the state space
representation of ARIMA(p,d,q) model with stationary initial distribution as

Z>t =


1d+1

0
...
0

 , T =


Ud 1>d 0 · · · 0
0 φ1 1 0
...

. . .
... φr−1 0 1
0 φr 0 · · · 0

 , R =


0d
1
θ1
...

θr−1

 ,

αt =



yt−1
...

∆d−1yt−1
y∗t

φ2y
∗
t−1 + . . .+ φry

∗
t−r+1 + θ1ηt + . . .+ θr−1ηt−r+2

...
φry
∗
t−1 + θr−1ηt


, Q = σ2,

a1 =

 0
...
0

 , P∗,1 =

(
0 0
0 Sr

)
, P∞,1 =

(
Id 0
0 0

)
, ηt = ξt+1

where φp+1 = . . . = φr = θq+1 = . . . = θr−1 = 0, 1d+1 is a 1 × (d + 1) vector of ones, Ud is
d× d upper triangular matrix of ones and Sr is the covariance matrix of stationary elements
of α1. The elements of the initial state vector α1, which correspond to the differenced values
y0, . . . ,∆

d−1y0 are treated as diffuse. The covariance matrix Sr can be computed by solving
the linear equation (I − T ⊗ T )vec(Sr) = vec(RR>) (Durbin and Koopman 2012, p.138).

Note that the arima function from stats also uses the same state space approach to univariate
ARIMA models for estimating model coefficients.

6.3. Linear and generalized linear models

An ordinary linear regression model

yt = x>t β + εt, t = 1, . . . , n,

where εt ∼ N(0, σ2) can be written as a Gaussian state space model by defining Zt = x>t ,
Ht = σ2, Rt = Qt = 0 and αt = β. Assuming that the prior distribution of β is defined as
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diffuse, the diffuse likelihood of this state space model corresponds to a restricted maximum
likelihood (REML). Then the estimate for σ2 obtained from fitSSM would be the familiar
unbiased REML estimate of residual variance. It is important to notice that for this simple
model numerical optimization is not needed, since we can estimate σ2 by running the Kalman
filter with Ht = 1, which gives us

σ̂2 =
1∑

I(F∞,t = 0)

n∑
t=1

I(F∞,t = 0)v2t /Ft,

which equals to the REML estimate of σ2. The initial Kalman filter already provides correct
estimates of β as an+1, and running Kalman filter again with Ht = σ2 gives also the covariance
matrix of β̂ as Pn+1.

The extension from linear model to generalized linear model is straightforward as the basic
theory behind the exponential family state space modelling can be formulated from the theory
of generalized linear models (GLM), and can be thought of as a extension to GLMs with addi-
tional dynamic structure. The iterative process of finding the approximating Gaussian model
is equivalent with the famous iterative reweighted least squares (IRLS) algoritm (McCullagh
and Nelder 1989, p. 40). If the model is ordinary GLM the final estimates of regression coeffi-
cients β and their standard errors coincide with maximum likelihood estimates obtained from
ordinary GLM fitting. By adjusting the prior distribution for β we can use KFAS also for
Bayesian analysis of Poisson and binomial regression (as those distributions do not depend
on any additional parameters such as residual variance) with Gaussian prior.

A simple (generalized) linear model can be defined using SSModel without any auxiliary
functions by defining the regression formula in the main part of the formula. For example
the following code defines a Poisson GLM which is identical to the one found in help page of
glm:

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

d.AD <- data.frame(treatment, outcome, counts)

glmModel1 <- SSModel(counts ~ outcome + treatment,

data = d.AD, distribution = "poisson")

The previous model could also be defined using the auxiliary function SSMregression:

glmModel2 <- SSModel(counts ~

SSMregression(~outcome + treatment, data = d.AD),

distribution = "poisson")

Note also the data argument in SSMregression. This overrides the data argument of
SSModel, but both can exist at the same time. SSModel tries to be clever in finding the
correct variables in case of multiple data arguments, see example in the help page of SSModel
for an illustration.

If our observations are multivariate, a distinct regression components are defined for each
of the series. For example, if counts counts above were a bivariate series, then both series
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would have own regression coefficients but same covariate values. By using SSMregression

explicitly, one could also define type="common" which would construct common regression
coefficients for all series.

With SSMregression one can also define more complex regression models. The first argument
of SSMregression, rformula can used to provide single formula or a list of formulas, where
each component of the list contains the appropriate formula to be used for the corresponding
series (ith formula in the list is used for the ith series defined by argument index). When
rformula is a list, the data argument of SSMregression can be a single data frame (or
environment), or a list of such data objects. If data is a list, ith element of that list is used
for ith formula, and if data is a single data frame or environment, same data is used for all
formulas.

6.4. Generalized linear mixed models

Just like in GLM setting, it is also possible to write generalized linear mixed model (GLMM)
as a state space model. The difference between fixed and random effects lies in the initial
state distribution; fixed effects are initialized via diffuse prior whereas random effects have
proper variance defined by elements of P1. Both types of states are automatically estimated
by the Kalman filter, given the covariance structure of the random effects (and the residual
variance or other parameters related to distribution of observation equation).

In practice, the mixed model formulation becomes quite cumbersome especially in hierarchical
settings, but with large longitudinal settings it might still be useful to write mixed model as
state space model, as it is then straightforward to add for example stochastic cycles or trends
to the model. An example of defining the linear mixed model using the sleep study data from
lme4 (Bates, Maechler, Bolker, and Walker 2015, 2014) package proceeds as follows:

suppressWarnings(library("lme4",quietly=TRUE))

# Split data by grouping variable

Y <- split(sleepstudy["Reaction"], sleepstudy["Subject"])

p <- length(Y) # Number of series

Y <- matrix(unlist(Y), ncol = p,

dimnames = list(NULL, paste("Subject", names(Y))))

dataf <- split(sleepstudy, sleepstudy["Subject"])

# Assume that we know the covariance structure

# of random effects and the residual variance

covRandom <- matrix(c(625,36,36,625),2,2)

sigma2 <- 650

# Common fixed effect part and distinct random effect parts for each "series"

# Set P1inf = 0 so diffuse initialization is not used for random effects

lmmModel <- SSModel(Y ~ -1

+ SSMregression(rep(list(~ Days), p), type = "common",

data = dataf, remove.intercept = FALSE)

+ SSMregression(rep(list(~ Days), p), P1inf = 0,
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data = dataf, remove.intercept = FALSE),

H = diag(sigma2, p))

# Set covariance structure of the random effects which are states 3 to 38

# One could also use more common way lmmModel£P1[-(1:2),-(1:2)] <- ...

lmmModel["P1", 2+1:(2*p)] <-

as.matrix(.bdiag(replicate(p, covRandom, simplify = FALSE)))

7. Illustration

I now illustrate the use of KFAS with an example case. Our data consists of alcohol related
deaths in Finland for years 1969–2012, in age groups 30–39, 40–49, 50–59 and 60–69. We also
have an offset term of yearly population sizes in corresponding age groups. The data is taken
from Statistics Finland (2014a,b). As an illustration, we use only observations until 2007,
and make predictions for years 2008–2013. Figure 1 shows the number of deaths per 100,000
persons for all age groups.

data("alcohol")

colnames(alcohol)

## [1] "death at age 30-39" "death at age 40-49"

## [3] "death at age 50-59" "death at age 60-69"

## [5] "population by age 30-39" "population by age 40-49"

## [7] "population by age 50-59" "population by age 60-69"

ts.plot(window(alcohol[,1:4]/alcohol[,5:8], end = 2007), col = 1:4,

ylab = "Alcohol related deaths in Finland per 100,000 persons",

xlab = "Year")

legend("topleft",col = 1:4, lty = 1,

legend = colnames(alcohol)[1:4])

Natural distributional assumption for modelling counts is a Poisson distribution. Based on
the time series plot, we can think of several candidates for capturing the time series aspects
of the series. One could try for example an ARIMA model or a structural time series model
such as local level or local linear trend. These are closely related, but I feel that the latter
models are more easily interpretable so I will use structural time series approach.

Here I choose a multivariate Poisson model

p(yt|θt) = Poisson(ute
θt), ut = populationt,

θt = µt + εt, εt ∼ N(0, Qnoise),

µt+1 = µt + νt + ξt, ξt ∼ N(0, Qlevel),

νt+1 = νt,

where µt is the random walk with drift component, νt is a constant slope and εt is an additional
white noise component which captures the extra variation of the series. I make no restrictions
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Figure 1: Alcohol related deaths per 100,000 persons in Finland in 1969–2007.

for the covariance structures of the level or the noise component. Note that the random walk
with drift is a special case of local linear trend model where the covariance structure of the
slope term is set to zero.

We estimate the model parameters first without simulation, and then using those estimates
as initial values run the estimation procedure again with importance sampling. In this case,
the results obtained from the importance sampling step are practically identical with the ones
obtained from the initial step.

# remove the last observations

alcoholPred <- window(alcohol, start = 1969, end = 2007)
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model <- SSModel(alcoholPred[,1:4] ~

SSMtrend(2, Q = list(matrix(NA,4,4), matrix(0,4,4))) +

SSMcustom(Z = diag(1,4), T = diag(0,4),

Q = matrix(NA,4,4), P1 = matrix(NA,4,4)),

distribution = "poisson", u = alcoholPred[,5:8])

# Model updating function for fitSSM

updatefn <- function(pars, model, ...){

Q <- diag(exp(pars[1:4]))

Q[upper.tri(Q)] <- pars[5:10]

model["Q",etas="level"] <- crossprod(Q)

Q <- diag(exp(pars[11:14]))

Q[upper.tri(Q)] <- pars[15:20]

model["Q",etas=9:12] <- model["P1",states=9:12] <- crossprod(Q)

model

}

# Initial the covariance structure of the random walks and extra noise

# theta = log(intensity) = log(y/u)

# covariance matrices are parameterized via log-Cholesky in fitSSM

init <- chol(cov(log(alcoholPred[,1:4]/alcoholPred[,5:8]))/10)

fitinit <- fitSSM(model, updatefn = updatefn,

inits = rep(c(log(diag(init)), init[upper.tri(init)]),2),

method = "BFGS")

# Now with simulation

fit<-fitSSM(model, updatefn = updatefn,

inits = fitinit$optim.out$par, method = "BFGS", nsim = 250)

varcor <- fit$model["Q", etas = "level"]

varcor[upper.tri(varcor)] <- cov2cor(varcor)[upper.tri(varcor)]

print(varcor,digits=2) #local level component

## [,1] [,2] [,3] [,4]

## [1,] 0.0074 0.66022 0.8062 0.856

## [2,] 0.0028 0.00239 0.1654 0.711

## [3,] 0.0040 0.00047 0.0034 0.755

## [4,] 0.0033 0.00156 0.0020 0.002

varcor <- fit$model["Q", etas = "custom"]

varcor[upper.tri(varcor)] <- cov2cor(varcor)[upper.tri(varcor)]

print(varcor,digits=2) #local level component #extra noise component

## [,1] [,2] [,3] [,4]

## [1,] 0.00537 0.73118 0.75627 8.0e-01

## [2,] 0.00315 0.00346 0.99924 9.9e-01

## [3,] 0.00295 0.00313 0.00283 1.0e+00

## [4,] 0.00043 0.00043 0.00039 5.4e-05
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-fitinit$optim.out$val #log-likelihood without simulation

## [1] -704.8052

-fit$optim.out$val #log-likelihood with simulation

## [1] -704.8034

Parameter estimation of state space model is often a difficult task, as the likelihood surface
contains multiple maxima, thus making the optimization problem highly dependent on the
initial values. Often the unknown parameters are related to the unobserved latent states such
as the covariance matrix in this example, without much a priori knowledge. Therefore, it
is challenging to guess good initial values especially in more complex settings and multiple
initial value configurations possibly with several different type of optimization routines is
recommended before one can be reasonably sure that proper optimum is found. Here we use
the covariance matrix of the observed series as initial values for the covariance structures.

Another issue in case of non-Gaussian models is the fact that the likelihood computation is
based on iterative procedure which is stopped using some stopping criteria (such as relative
change of log-likelihood), so the function actually contains some noise. This in turn affects the
gradient computations in BFGS and can in theory give unreliable results. Using derivative
free method like Nelder-Mead is therefore sometimes recommended. On the other hand BFGS
is usually much faster than Nelder-Mead and thus I prefer to try first BFGS at least in
preliminary analysis.

Using function KFS we can compute the smoothed estimates of states:

out <- KFS(fit$model, nsim = 1000)

out

##

## Smoothed values of states and standard errors at time n = 39:

## Estimate Std. Error

## level.death at age 30-39 2.8559160 0.0784371

## slope.death at age 30-39 0.0107142 0.0137135

## level.death at age 40-49 4.0313117 0.0423763

## slope.death at age 40-49 0.0237188 0.0076318

## level.death at age 50-59 4.7578026 0.0398295

## slope.death at age 50-59 0.0503715 0.0095850

## level.death at age 60-69 4.4938371 0.0332897

## slope.death at age 60-69 0.0482386 0.0072090

## custom1 -0.0004021 0.0603946

## custom2 -0.0195488 0.0408846

## custom3 -0.0169493 0.0370236

## custom4 -0.0021345 0.0051427

From the output of KFS we see that the slope term is not significant in the first age group. For
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time-varying states we can easily plot the estimated level and noise components, which shows
clear trends in three age groups and highly correlated additional variation in all groups:

plot(coef(out,states=c("level","custom")),

main = "Smoothed states", yax.flip=TRUE)
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Figure 2: Smoothed level and white noise components.

Note the large drop in noise component which relates to possible outlier in 1973 of the mor-
tality series. As an illustration of model diagnostics, we compute recursive residuals for our
model and check whether there is autocorrelation left in the residuals (Figure 3).
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res <- rstandard(KFS(fit$model, filtering = "mean",

smoothing = "none", nsim = 1000))

acf(res, na.action = na.pass)
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Figure 3: Autocorrelations and cross-correlations of recursive residuals.

We see occasional lagged cross-correlation between the residuals, but overall we can be rela-
tively satisfied with our model.

We can now predict the intensity eθt of alcohol related deaths per 100,000 persons for each
age group for years 2008–2015 using our estimated model. As our model is time varying (u
varies), we need to provide the model for the future observations via newdata argument. In
this case we can use SSMcustom function and provide all the necessary system matrices as
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once, together with constant u=1 (our signal θ is already scaled properly as the original ut
was the population per 100,000 persons).

pred<-predict(fit$model, newdata =

SSModel(ts(matrix(NA,6,4), start = 2008) ~ -1

+ SSMcustom(Z = fit$model$Z, T = fit$model$T,

R = fit$model$R, Q = fit$model$Q), u = 1,

distribution= "poisson"),

interval = "confidence", nsim = 10000)

trend <- exp(signal(out, "trend")$signal)

par(mfrow = c(2,2), mar = c(2,2,2,2) + 0.1, oma = c(2,2,0,0))

for(i in 1:4)

ts.plot(alcohol[,i]/alcohol[,4+i],

trend[,i],

pred[[i]],

col = c(1,2,rep(3,3)), xlab = NULL, ylab = NULL,

main = colnames(alcohol)[i])

mtext("Number of alcohol related deaths per 100,000 persons in Finland",

side = 2, outer = TRUE)

mtext("Year",side=1,outer=TRUE)

Figure 4 shows the observed deaths, smoothed trends for 1969–2007, and intensity predictions
for 2008–2012 together with 95% prediction intervals for intensity. When we compare our
predictions to true observations, we see that in reality the number of deaths slightly increased
in the oldest age group (ages 60–69), whereas in other age they decreased substantially during
the forecasting period. This is partly explained by the fact that during this period the total
alcohol consumption decreased almost monotonically, which in turn might have been caused
by the increase in taxation of alcohol in 2008, 2009 and 2012.

8. Discussion

State space models offers tools for solving a large class of statistical problems. Here I intro-
duced an R package KFAS for linear state space modelling where the observations are from an
exponential family. With such a general framework, different aspects of the modelling need
to be taken into account. Therefore the focus of the package has been to provide reliable and
relatively fast tools for multiple inference problems, such as maximum likelihood estimation,
filtering, smoothing and simulation. Compared to the early versions of KFAS, constructing a
state space model with simple components is now possible without explicit definition of the
system matrices by using the auxiliary functions and symbolic descriptions with the help of
formula objects, which should greatly ease the use of the package.

Currently all the time consuming parts of KFAS are written in Fortran, which makes it rela-
tively fast, given the general nature of problems KFAS can handle. Still, converting the pack-
age to C++ and S4 classes with help of Rcpp (Eddelbuettel and François 2011; Eddelbuettel
2013) could result potential improvements in terms of memory management, scalability and
maintenance.
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Figure 4: Observed number of alcohol related deaths per 100,000 persons in Finland (black),
fitted values (red) and intensity predictions for years 2008–2012 together with 95% prediction
intervals (green).
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A. Appendix: Filtering and smoothing recursions

The following formulas summarize the Kalman filtering and smoothing formulas for diffuse
and sequential case and are based on Durbin and Koopman (2001) and related articles. The
original formulas are somewhat scattered between the references with slightly different nota-
tions. Therefore I have collected the equations used in KFAS to this Appendix.

A.1. Filtering

Denote
at+1 = E(αt+1|yt, . . . , y1) and

Pt+1 = VAR(αt+1|yt, . . . , y1).

The Kalman filter recursions for the general Gaussian model of form (1) are

vt = yt − Ztat
Ft = ZtPtZ

>
t +Ht

Kt = PtZ
>
t

at+1 = Tt(at +KtF
−1
t vt)

Pt+1 = Tt(Pt −KtF
−1
t K>t )T>t +RtQtRt,

For the univariate approach, the filtering equations are

vt,i = yt,i − Zt,iat,i
Ft,i = Zt,iPt,iZ

>
t,i + σ2t,i

Kt,i = Pt,iZ
>
t,i

at,i+1 = at,i +Kt,iF
−1
t,i vt,i

Pt,i+1 = Pt,i −Kt,iK
>
t,iF

−1
t,i

at+1,1 = Ttat,pt+1

Pt+1,1 = TtPt,pt+1T
>
t +RtQtRt,

for t = 1, . . . , n and i = 1, . . . , pt, where vt,i and Ft,i are scalars, Kt,i is a column vector and
σ2t,i is the ith diagonal element of Ht. It is possible that Ft,i = 0, which case at,i+1 = at,i,
Pt,i+1 = Pt,i, and vt,i is computed as usual.

The diffuse filtering equations for univariate approach are

vt,i = yt,i − Zt,iat,i
F∗,t,i = Zt,iP∗,t,iZ

>
t,i + σ2t,i

F∞,t,i = Zt,iP∞,t,iZ
>
t,i

K∗,t,i = P∗,t,iZ
>
t,i

K∞,t,i = P∞,t,iZ
>
t,i,

and
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at,i+1 = at,i +K∞,t,ivt,iF
−1
∞,t,i

P∗,t,i+1 = P∗,t,i +K∞,t,iK
>
∞,t,iF∗,t,iF

−2
∞,t,i − (K∗,t,iK

>
∞,t,i +K∗,t,iK

>
∞,t,i)F

−1
∞,t,i

P∞,t,i+1 = P∞,t,i −K∞,t,iK>∞,t,iF−1∞,t,i

if F∞,t,i > 0, and

at,i+1 = at,i +K∗,t,ivt,iF
−1
∗,t,i

P∗,t,i+1 = P∗,t,i −K∗,t,iK>∗,t,iF−1∗,t,i
P∞,t,i+1 = P∞,t,i,

if F∞,t,i = 0. The transition equations from t to t+ 1 are

at+1,1 = Ttat,pt+1

P∗,t+1,1 = TtP∗,t,pt+1T
>
t +RtQtRt

P∞,t+1,1 = TtP∞,t,pt+1T
>
t .

A.2. Smoothing

Denote
α̂t = E(αt|yn, . . . , y1) and

Vt = VAR(αt|yn, . . . , y1).

The smoothing algorithms of KFAS are based on the following recursions:

rt,i−1 = Z>t,ivt,iF
−1
t,i + L>t,irt,i,

rt−1,pt = T>t−1rt,0,

Nt,i−1 = Z>t,iZt,iF
−1
t,i + L>t,iNt,iLt,i,

Nt−1,pt = T>t−1Nt,0Tt−1,

Lt,i = I −Kt,iZ
>
t,iF

−1
t,i ,

for t = n, . . . , 1 and i = pt, . . . , 1, with rn,pn = 0 and Nn,pn = 0. From these recursions, we
get state smoothing recursions

α̂t = at,1 + Pt,1rt,0

Vt = Pt,1 − Pt,1Nt,0Pt,1,

and disturbance smoothing recursions

ε̂t,i = σ2t,iF
−1
t,i (vt,i −K>t,irt,i),

VAR(ε̂t,i) = σ2t,i − σ4t,i(F−1t,i −K
>
t,iNt,iKt,iF

−2
t,i ),

η̂t = QtR
>
t rt,0,

VAR(η̂t,i) = QtR
>
t Nt,0RtQt.
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The recursions for diffuse phase are as follows.

L∞,t,i = I −K∞,t,iZt,iF−1∞,t,i,
Lt,i = (K∞,t,iFt,iF

−1
∞,t,i −Kt,i)Zt,iF

−1
∞,t,i,

r0,t,i−1 = L>∞,t,ir0,t,i,

r1,t,i−1 = Z>t,ivt,iF
−1
∞,t,i + L>∞,t,ir1,t,i + L>t,ir0,t,i,

N0,t,i−1 = L>∞,t,iN0,t,iL∞,t,i

N1,t,i−1 = L>t,iN0,t,iL∞,t,i + L>∞,t,iN1,t,iL∞,t,i + Z>t,iZt,iF
−1
∞,t,i,

N2,t,i−1 = L>t,iN0,t,iLt,i + L>∞,t,iN1,t,iLt,i + (L>∞,t,iN1,t,iLt,i)
> + L∞,t,iN

>
2,t,iL∞,t,i − Z>t,iZt,iFt,iF−2∞,t,i,

Nt−1,pt = T>t−1Nt,0Tt−1,

if F∞,t,i > 0, and

Lt,i = I −Kt,iZt,iF
−1
t,i ,

r0,t,i−1 = Z>t,ivt,iF
−1
t,i + L>t,ir0,t,i,

r1,t,i−1 = L>t,ir1,t,i,

N0,t,i−1 = L>t,iN0,t,iLt,i + Z>t,iZt,iF
−1
t,i

N1,t,i−1 = N1,t,iLt,i

N2,t,i−1 = N2,t,iLt,i,

otherwise. The transition from time t to t− 1 is by Nj,t−1,pt = T>t−1Nj,t,0Tt−1 for j = 0, 1, 2,
and rj,t−1,pt = T>t−1rj,t,0 for j = 0, 1, with r0,d,j = rd,j , r1,d,j = 0, N0,d,j = Nd,j , and N1,d,j =
N2,d,j = 0, where (d, j) is the last point of diffuse phase. From these basic recursions, we get
state smoothing recursions for diffuse phase as

α̂t = at,1 + Pt,1r0,t,0 + P∞,t,1r1,t,0,

Vt = Pt,1 − Pt,1N0,t,0Pt,1 − (P∞,t,1N1,t,0Pt,1)
> − P∞,t,1N1,t,0Pt,1 − P∞,t,1N2,t,0P∞,t,1,

and disturbance smoothing recursions

ε̂t,i = −σ2t,iK>∞,t,ir0,t,i,
VAR(ε̂t,i) = σ2t,i − σ4t,iK>∞,t,iN0,t,iK∞,t,iF

−2
∞,t,i,

if F∞,t,i > 0, and

ε̂t,i = −σ2t,i(vt,iF−1∞,t,i −K
>
t,ir0,t,i),

VAR(ε̂t,i) = σ2t,i − σ4t,i(F−1t,i −K
>
t,iN0,t,iKt,iF

−2
t,i ),

if F∞,t,i = 0. For η̂, recursions are

η̂t = QtR
>
t r0,t,0,

VAR(η̂t,i) = QtR
>
t N0,t,0RtQt.
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