
July 24, 2000 1

Contents

1 Other sections to be added 1

2 The R-Java Interface 1

3 Initialization Errors 3

4 Accessing Java Classes 3

5 Creating Arrays 4

6 Data Conversion 5

7 Reflectance 7

8 The Omegahat Evaluator 7

9 Where to Compute 9

10 Bugs, Anomalies, and errors 9

11 Callbacks 9

12 Generating Interface methods in R 12

13 Errors in R functions 14

14 Debugging 14

15 JNI and Java Classes 14

1 Other sections to be added

• Omegahat and evaluator functionality.

• C routines for creating and assigning references in Java - anonymous and named.

• Adding converters

• Converters (in C) for R/S objects to Java.

2 The R-Java Interface

This is a description of what elements are used to make this system work. It is a high-level description for users who
want to modify the system or simply understand how it works. It is written to remind the authors of these details.
The first thing is to compile the librarylibRSNativeJava.so. This is in “Env –OMEGA˙HOME˝/Interfaces/Java/ .
This contains routines to manage the embedding of the JVM in an arbitrary C application with many convenience
routines for dealing with the JNI facilities. Also, it provides routines that are shared by both R and S implementations.
This is then installed in“Env –OMEGA˙HOME˝/lib/ and the header files used by both the R and S packages that use
this library are copied to“Env –OMEGA˙HOME˝/include/ .
The next thing to do is compile theR.so shared library in this package.
Ideally, both of these shared libraries will have been compiled with the -rpath or -R linker flags so that they contain
the location of the files against which they link.
Using JDK1.2 on Linux (installed in/home/duncan/jdk1.2.2/), the dependencies are

July 24, 2000 2

[*]
% ldd R.so
libRSNativeJava.so => /home/duncan/Projects/org/omegahat/lib/libRSNative Java.so (0x40007000)
libc.so.6 => /lib/libc.so.6 (0x40014000)
libjvm.so => /home/duncan/jdk1.2.2/jre/lib/i386/classic/libjvm.so (0x401 07000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x80000000)
libm.so.6 => /lib/libm.so.6 (0x40176000)
libnsl.so.1 => /lib/libnsl.so.1 (0x40192000)
libdl.so.2 => /lib/libdl.so.2 (0x401a8000)
libhpi.so => /home/duncan/jdk1.2.2/jre/lib/i386/native_threads/libhpi.so (0x401ac000)
libpthread.so.0 => /lib/libpthread.so.0 (0x401b6000)

If the libraries are not found usingldd , set the environment variableLD_LIBRARY_PATHto include the directories
in which they are contained. For example, in the case above,

[*]
setenv LD_LIBRARY_PATH /home/duncan/Projects/org/omegahat/lib:/home/duncan/jdk1.2.2/jre/lib/i386/classic:/home/duncan/jdk1.2.2/jre/lib/i386/native_threads

At this point, we can test the validity of the shared libraries. Run R and load the library.

[*]
% R

dyn.load("R.so")

This should give no error messages. If it does, it is likely that the dynamic loading is failing because of theLD_LIBRARY_PATH
setting. If it complains about a missing symbol, this is more serious. Most of the symbols we use in this package have
a prefixRS_JAVA() . If it complains about any of these, the compilation is likely to have been corrupted. Finally,
one can usenmto examine which symbols are undefined.

[*]
nm R.so | grep ’ U ’

Next, we want to make use of some of the functionality provided by the embedded JVM. We start by initializing the
JVM. The function.JavaInit()performs this task.
The .JavaInit() must provide the necessary arguments to the JVM initialization routine to set the classpath so that
it can locate the Omegahat classes. Additionally, it can set any system level properties that one would usually pass
to the java executable via the D argument. The pair of classpath and properties are then passed to the C routine
s_start_VM() which initializes the JVM and starts the Omegahat evaluator which will be used to process subse-
quent commands from R.
Specifying the correct classpath can be a tedious and delicate process. The functionjavaConfig()is used to simplify
this and return a suitable value. It has access to a default classpath that is created during the configuration of the R-Java
package.
javaConfig()returns a list with 3 elements. The first is the classpath. It merges any user-specified values with the
defaults in the approrpriate order. The second element is a character vector of the properties. Again, the user specified
properties are merged with the defaults. And finally, the library path for shared libraries is constructed. By default,
this is empty. One specifies values for it when the additional Java classes that one wishes to access during the session
use native code in shared libraries. More on this later. (See 15)
The properties are specifed as a named character vector. For example, to specify the equivalent of the Java invocation

[*]
java -DHOME=/home/duncan -DOMEGA_HOME=/home/duncan/Projects/org/omegahat -DreadSerializedClassLists=false -
DOmegaInit=OmegaInit -DUserScript=/home/duncan/.omegahatrc

July 24, 2000 3

we would use the following R commands

[*]
javaConfig(properties=c(HOME="/home/duncan", "OMEGA_HOME"="/home/duncan/Projects/org/omegahat", read-

SerializedClassLists=F, OmegaInit="OmegaInit", UserScript="/home/duncan/.omegahatrc"))

Note that name OMEGA˙HOME must be quoted as R treats the underscore specially.
The properties can be conveniently converted to command line form for java via the R expression (wherep() refers to
the properties)

[*]
paste("-D", paste(names(p), p,sep="="),sep="")

In fact, the functionmergeProperties()is used to do this same task and also allowing the user to specify additional
properties. This is done automaticall in.JavaInit().
The first call below shows how one can add more properties to the JVM initialization. The second call shows how to
replace the default configuration properties values. The third call shows how to override all the values.

[*]
.JavaInit(list(classpath=, properties=c(HOME="/home/duncan", "OMEGA_HOME"="/home/duncan/Projects/org/omegahat", read-
SerializedClassLists=F, OmegaInit="OmegaInit", UserScript="/home/duncan/.omegahatrc"),libraryPath))

.JavaInit(default=javaConfig(classpath=.javaConfig$classpath, properties=c(HOME="/home/duncan", "OMEGA_HOME"="/home/duncan/Projects/org/omegahat", read-
SerializedClassLists=F, OmegaInit="OmegaInit", UserScript="/home/duncan/.omegahatrc"),libraryPath))

.JavaInit(default=javaConfig())

It is often convenient to specify the propertyjava.compiler with the valueNONEwhen initializing the JVM. This
can be done permanently in the.javaConfig(). This turns off the Just-in-time compilation in the virtual machine and
means that stack traces displayed when an exception is displayed contain the line numbers of the Java classes. This is
“useful” when debugging.
The call to.JavaInit()passes the arguments to a C routine which calls another routinecreate_Java_vm() in the
library shared by both R and S. This initializes the virtual machine and then creates the evaluation manager which will
broker the requests from R to the Java classes. When.JavaInit()returns, the virtual machine is alive and we are ready
to issue Java commands.
By default, the evaluation manager created during the initialization of the R-Java connection is an instance of class
OmegaInterfaceManager. However, a different class can be used. The fully qualified name of a class (in internal

Java notation i.e. separating package qualifiers with a / rather than a .) can be specified as the value of the property
InterfaceManagerClass.

3 Initialization Errors

Most of the initialization errors arise from a mis-specified classpath. Alternatively, if one specifies a different class for
the evaluator manager, it may not be found in the classpath or does not provide a constructor with no arguments.

4 Accessing Java Classes

The following R commands exercise the basic functionality of the interface.

July 24, 2000 4

[*]
.JavaConstructor("java.util.Vector", as.integer(10), .name="vv")
.Java("vv","add", "A string")
.Java("vv","addElement", 1)
.Java("vv","addElement", as.integer(10))
x <- rnorm(10)
.Java("vv","addElement", x)
.Java("vv","elementAt", as.integer(0))
.Java("vv","size")

More interesting and gratifying examples can be generated via the GUI facilities.

[*]
.Java(NULL, "help")

b <- .JavaConstructor("javax.swing.JButton","Click me")
.JavaConstructor("GenericFrame", b, T)

The heart of the.Java()function is the C routineRS_JAVA_genericJavaCall() which connects the R engine
with the JVM via the JNI. This routine is quite simple (since it relies on other routines to perform the sub-tasks.) The
steps it takes are as follows.

• Convert the specification of the object on which the method is to be invoked to a Java object. This handles the
special caseNULL which identifies the evaluator manager as the object. Also, R objects of class Omegahat
references are converted to their counterpart in Java.

• The R arguments are converted to an array of JavaObject s. They are converted to Java objects as they are
added using the same conversion as for the qualifier above.

• The names of the R arguments (specified via the. . . mechanism in R) are converted to an array ofString
values. These are used to create permanent references to the converted values in Java for future use. (Unnamed
arguments are removed after the call.)

• The value specified via the.nameargument is converted to a JavaString .

• At this point, we can call the methodgenericCallMethod() with the signature

public Object genericCallMethod(Object qualifier,
String methodName,

Object[] args, String[] names,
String returnName)

The method name is specified expclicitly as the second argument to the.Java()function and it is converted to a
JavaString .

• Finally, the value returned from this call is converted to an R object. This uses the registered converters for Java
objects to R objects and the built-in converters for primitives (and references).

5 Creating Arrays

Arrays can be returned from a Java method and R vectors are converted to arrays as needed. However, we cannot use
the.JavaConstructor()and.Java()methods directly to create and manipulate arrays.
We want to be able to create arrays in the following manner

July 24, 2000 5

[]
.JavaArray("String", dim=n)
.JavaArray("String", attributes(eurodist)$Labels[1:4])

.JavaArray("util.Vector", dim=n)

Creating nested arrays can be handled in the same manner. Initializing them is slightly tricky. We specify a vector as
the length of t

[]
.JavaArray("String", dim=c(3,4,))

Finally, we want to be able to treat array objects as if they were vectors in S.

[]
a <- .JavaArrayConstruct("String", letters[1:6])
a[1:3]
a[1:3] <-

6 Data Conversion

The “innovative” aspect of this (and the CORBA) interface is the way we handle the transfer of data between the two
systems - Java and R. The idea is quite simple. We leave all non-primitive objects (where primtive objects are ints,
doubles, long, short, characters, void, float, strings and booleans) in the system in which they were created. Instead of
copying their contents recursively or generating some ad hoc general mechanism for transferring them, we store them
in their native system and pass a reference to the object to the other system. That reference can be used by the foreign
system to invoke methods and access fields in that object. It is this approach that makes the interface facilities rich. It
can be termed “lazy transfer” and avoids copying data unecessarily. It also allows us to deal with all data types in the
same manner, whether they were known at compile time or not.
There are classes for which it does make sense to convert a Java value/instance to an R object. An obvious example
of this is the reference classes themselves. Also, property tables, reflectance objects (e.g. Method and Constructor
instances), and so on are convenient to explcitly transfer. Basically, these are all known at compile time and we have a
natural way to represent them in R. Additionally, they are important classes which we want to efficiently copy between
systems.
When Java returns an object/value as the result of a call, it determines whether its is considered convertible. The
evaluator manager does this by asking itsConvertibleClassifier object whether the object is convertible. If this returns
false, a reference to the object is returned. Otherwise, it is assumed that the C code will convert the object appropriately.
The basic convertible classifiers used maintain a list or vector of classes that are deemed convertible. If the class of the
object is contained in this list, the object is deemed convertible and passed to the JNI code that connects R and Java as
is.
Note that if the R call to a Java method or constructor specifies a name for the return value (via the.nameargument),
no attempt to copy the object is made by the interface manager. Instead, a (named) reference is automatically returned.
The default ConvertibleClassifierInt object is constructed when the interface manager is created (during the call
to the R function.JavaInit()). The manager allows the user to specify which class to instantiate via the property
ForeignConvertibleClassifierClass. It then attempts to create an instance of this by calling the constructor that takes
the evaluator as its only argument. If this fails, an instance ofBasicConvertibleClassifier is used.
The user can (dynamically) manage which classes are considered convertible. The manager provides convenience
methods for adding and removing classes from the list of types that are convertible. TheR function setConvert-
ible.java()takes the name of a class, a logical value and optionally an intege. This calls the corresponding method in
the interface manager which passes it on to theConvertibleClassifierInt.
(See the Javadoc comments for a more detailed description of what each argument does.) One must ensure that the C
routines registered (see below) to perform the conversions are added to the internal conversion list at the same time as a

July 24, 2000 6

class is registered as being convertible with theConvertibleClassifierInt object. One need not remove converters from
the internal C conversion list when a class is removed from the classifier. This is because it will never be utilized since
an object of that class will be converted to an anonymous reference before the classifier is asked about its conversion.
While the basic implementations of theConvertibleClassifierInt work on classes, more general versions can examine
the particular characteristics of an object (such as its length, etc.) rather than simply considering its type.
A list of all classes that are considered convertible by theConvertibleClassifierInt can be retrieved from interface
manager via the R functiongetConvertibleClasses()().
As objects are passed from an R function call to a Java method, they are converted into a form suitable for Java.
The examples above illustrate how primitive values can be transformed automatically. The primitives are vectors of
characters, logicals, integers, and numerics. These are mapped to the corresponding Java scalar if the R vector is of
length1, and to a Java array whose elements are the corresponding Java type forn > 1. Similarly, the return value of
Java methods are converted in the opposite direction, but symmetrically.
The transfer of non-primitive objects has always been the difficulty in inter-system interface design and implementa-
tion. We describe here a novel approach and illustrate its benefits. Consider the return value of a Java method which
is not a primitive.
The function.Java()calls theJavaTM methodgenericMethod() . This is done via the JNI in C code. The JNI
invocation of the Java method is returned aJavaTM object. At this point, it converts it to an R object. It is here that the
primitives are converted. However, if the object is not a primitive or a reference, a more generic mechanism is used.
Firstly, we look through a table of converters. This searches each of the keys in the table for a match with the class
of the object. (This is a little tricky and discussed below). The first of these that matches is then used to perform the
conversion to an R object.
The matching of a converter to an object is a little complicated. We have a general, if inefficient, method. The user
provides a routine which can test not only the type of the actual object to be converted but also its contents or values
to determine if the conversion routine associated with this converter element is appropriate.
One might imagine that we can simply look at the class of the object being converted and compare it to the class
expected by the converter. However, consider the issue of extended or derived classes. Suppose we have a class A and
a class B that is derived from A. If an object of class B is to be converted, the matching routine can determine whether
a match is appropriate in any of the following ways

[]
obj instanceof A
obj.getClass().equals(A)
A.isAssignableFrom(obj.getClass())

We provide C routines to implement each of these strategies. They areSimpleExactClassMatch() , In-
stanceOfFromClassMatch() andAssignableFromClassMatch() . To use these, one normally registers
a converter element usingaddFromJavaConverter() or addFromJavaConverterInfo() . We use the
userData field of the converter element to store a reference to the Java class we know how to convert from. Then,
we retrieve this and compare the class of the object being converted and the one we are capable of handling.
One can determine the number of converters registered for each direction of conversion using the functiongetNum-
Converters.java(). Additionally, one can retrieve a description for each of the converters. The description must be
specified when the converter is registered and is as good as the person specifying it. In other words, it is currently not
automated.
The structure below is what is used internally to store the converters.

[*]
typedef struct {

/* Determines whether this element is to be used for
converting the specified object. If this returns
false, it is skipped. Otherwise, it is used to
perform the conversion.

July 24, 2000 7

*/
boolean (*match)(jobject obj, JNIEnv *env, RStoJavaConverter *converter);

/* The method that performs the computation
to convert the Java object to an R/S object.

*/
USER_OBJECT_ (*convert)(jobject obj, JNIEnv *env, RStoJavaConverter *converter);

} RStoJavaConverter;

When a converter realizes it cannot actually convert a Java object, it can elect to do the default operation of returning
an anoymous reference object. This can be done in C code by calling the evaluation manager’s Java method. Then
the associated R object must be created from the return value of that call. This can be done in a single call to
anonymousAssign() .

7 Reflectance

One of the convenient facilities in both R/S and Java is that we can use the reflectance provided by those languages
to examine elements of the language. For example, we can determine the number and types of arguments a Java
method expects. We can use this to perform automatic conversions of R arguments to Java methods. Additionally, we
can provide feedback to the user in the case of ambiguities due to polymorhpism. We can even automatically create
wrappers for Java methods, compare the number of arguments of R functions with those of the corresponding Java
methods, etc.
In order to facilitate this style of meta-programming, we provide special converters for certain Java classes and methods
within the interface manager for accessing the methods, constructors and fields of a class.
A Java method description in R has the following fields/slots.

name
Class
signature a vector of class names
modifier whether it is public, protected, private; static or not

We have added some high-level access methods to the Interface Manager class (OmegaInterfaceManager which allows
one to get the methods and constructors for a class. This can then be used to drill down recursively through a class
definition and determine sufficient information to check the number and potential type of arguments to a method,
constructor and so on.
The conversion is done directly in C code for efficiency and simplicity. See Conversion below.
These methods can be access as in the examples below.

[]
.Java(NULL, "getMethod", "util.Vector", "add")
.Java(NULL, "getMethods", "java.awt.event.ActionListener")

.Java(NULL, "getConstructors", "util.Vector")

8 The Omegahat Evaluator

The heart of the link between R and Java is the Omegahat evaluator. This brokers the method invocation requests from
Java, manages the Java objects that are exported to R as results from method invocations, and also performs many
tasks that greatly simplify the interaction with Java from R.

July 24, 2000 8

The evaluator is a Java object and one can invoke its methods quite simply. By specifying the valueNULL or the name
˙˙Evaluator()for the qualifier argument in the.Java()function, one identifies the evaluator (or an Omegahat function).
All the methods this object offers can then be invoked directly. For example, to get a list of the objects it currently has
in its default databases (the named references) we can issue the command

[*]
> .Java(NULL, "objects")
[1] "__Manager" "__Evaluator" "x"

Additionally, we can ask the evaluator to resolve a partially qualified class name for us.

[*]
> k <- .Java(NULL, "findClass", "JFrame")
> k
$key
[1] "1"

$className
[1] "java.lang.Class"

attr(,"class")
[1] "AnonymousOmegahatReference"
> .Java(k, "getName")
[1] "javax.swing.JFrame"

Or alternatively, we can inline the two calls as

[*]
> .Java(.Java(NULL, "findClass", "JFrame"),"getName")
[1] "javax.swing.JFrame"

As mentioned below, we can use the evaluator to query how things will happen and get meta-information about the
system. For example, we can ask it what Java classes are considered convertible to R.

[*]
> .Java(NULL, "getConvertibleClasses")
[1] "org.omegahat.Interfaces.NativeInterface.ForeignReferenceInt"
[2] "java.lang.reflect.Method"
[3] "java.lang.reflect.Constructor"
[4] "java.util.Properties"

We can compare the result against the classes for which the low-level R internals (the C code) has converters.

[*]
> getJavaConverterDescriptions(F)
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"

July 24, 2000 9

9 Where to Compute

One of the difficulties posed by interfaces between different languages is the question of where to implement code.
This is an embarassment of riches that we should be happy to have. Consider the case where we want to use Java to
read a file on the Web. We can use sockets in R to do this. Alternatively, we can use shell commands accessed from R.
For example,wget performs this task admirably. Alternatively, we can use Java’s network capabilities. TheΩ̂ class
StatDataURL provides a convenient class to use from R or S for this purpose. We instantiate an object of that class by
calling its constructor that expects the a URL as a string. Then we call thegetContents() method that returns an
array ofString objects. This is automatically converted from Java to an R character vector and we are done.

[*]
u <- .JavaConstructor("StatDataURL", "http://www.omegahat.org/index.html")
txt <- .Java(u, "getContents")

Finally, we should free the resources associated with

[]
.Java(NULL, "clearReference", u)

10 Bugs, Anomalies, and errors

Quitting the R session may not behave correctly. Sometimes one has to quit, interrupt and then quit again. We will
find out what is causing this and fix it. Most likely it is the presence of multiple threads in the JVM.

11 Callbacks

While it is convenient to be able to call Java methods from R, copying data to Java quickly becomes an expensive
operation. Instead, we want to use a reference approach in which an R object is passed to Java by reference rather than
copying all its contents. The benefits of this are quite extensive. It allows one to defer computation until needed. An
object is not “evaluated” until necessary.
The following is an example of how we use an R function (actually a closure) to implement a Javainterface. Consider
the case where we want to associate an R function with a Java method so that when the Java method is called, it invokes
the R function. A simple example is an event handler for clicking on a button. Suppose we create a SwingJButton .
When the user clicks on it, we want to print out the total number of times this button has been clicked. (This is just an
example, and more interesting scenarios are discussed below!). We use an R closure to store the count of the number
of clicks and also provide functions to both increment and query that value. Thehandler()below is such a closure
generator. We invoke it to get a function with an environment that contains an instance ofn().
The function (actionPerformed()) also prints out its only argument.

[*]
handler <- function() {

n <- 0
actionPerformed <- function(event) {

n
<<- n + 1

print(event)
print(n)

}
return(list(actionPerformed=actionPerformed))

}

July 24, 2000 10

handler()

As described, this has nothing to do with Java. However, we will use an object generated by a call to this function to
respond to a user clicking on a button.
We first create the button, and put it into a window. (We use a convenience class provided by Omegahat for creating
the window.)

[]
b <- .JavaConstructor("javax.swing.JButton","Click me")
win <- .JavaConstructor("GenericFrame", b, T)

Now, we want to register this function as a listener for events on the button.

[]
.Java(b, "addActionListener", handler())

A little thought about how the appropriate Java method within the class ofb() illustrates a potential problem. There
is only one methodaddActionListener() in the classJButton . It takes one argument and this is of type
java.awt.event.ActionListener . Clearly, there is no connection between anActionListener and an
R closure/function.
We solve this difficulty by using a symmetric approach to the concept of remote or foreign references from Omegahat.
Firstly, keep the function in R and pass a reference identify the R object to Omegahat. The reference can be used to
access the R object when it is needed. In this case, that is when theactionPerformed() method of the argument
to addActionListener() is invoked. We will discuss how the reference system works later. We can assume that
the reference is converted to a Java object and that there is a mechanism to invert this procedure.
Now, a more compelling aspect is how we create an object which implements theActionListener() and calls the
R function with the event object. We will see that this can be done automatically by Omegahat. However, it is useful
to consider how we might do this. (The mechanism is almost identical to the mechanism we use to implement the
embedded CORBA in R and S, functions in Omegahat as Java interfaces, and several other places we have inter-system
callbacks).
Firstly, we need to create a new class, sayRFunctionActionListeners which implementsActionListener . Since
this interface contains just one method, we only have to implement it. The body of the method must call C code which
invokes the associated R function. For this, we can use anative Java method.

[]
native void actionPerformed(ActionEvent ev);

Now, we must implement this in C. The C routine receives a reference tothis, the Java object whose native method is
being called. Also, it receives a reference to the single argument, the event. (Also, it receives a reference to the JNI
environment.) It must convert the event argument to an R object of the suitable type. This, by default, would be an
anonymous reference. Then, it must retrieve the reference to the R object and resolve it. The reference needs to be
stored in thethis object being invoked. Thus, the Java class must store this when it is created and provide a constructor
which can supply the reference.

[]
{

jobject jref, eventRef;
USER_OBJECT_ rref, e;

jref = getJavaReference(This, env)
rref = getRReference(jref, env);

PROTECT(eventRef = anonymousAssign(env, ev, NULL_JAVA_OBJECT));

July 24, 2000 11

e = allocVector(LANGSXP, 4);
PROTECT(e);
CAR(e) = rref;
CAR(CDR(e)) = eventRef;

eval(e);

UNPROTECT(2);
/* Ignore the return value of R. */

}

An alternative to passing the event to the R function is to decompose it and pass the relevant information it contains.
This information includes the source of the event (theJButton) and the action string contained in the event.
The reader might well consider this to be an excessive amount of work. Not only is it a complex task, but it must be
done before the R session is started so that we can create the C code and load it into R. (Of course, we could develop it
while the session is running, but the point is that it must be done externally.) But the good news is that there is a better
way.
Omegahat can automatically compile a class which performs the necessary calls to invoke an R function with the Java
arguments converted to R objects. This can be done for any interface and can be performed at any point during the
session or outside of the session ahead of time. Specifically, it can be done on demand when a new class is needed by
Omegahat to satisfy the constraints on an parameter type.
The code is generated via theForeignReferenceClassGenerator. This creates code for each of the methods in the
interfaces passed to it which packages the arguments into aList and calls theeval() method inherited by the base
class each of the newly generated classes extends. Thiseval() is also given information about the theJavaTM

method that is calling it. This information consists of the name of the method, the return type and the class type of
each of the arguments. All of these are provided as strings, and the parameter information is given as an array of
strings.
Theeval() method simply passes on the information provided to it in addition to the name/identifier of the reference
to another form of theeval() . This latter method is a native routine implemented inC. This converts the auxilary
information describing the real Java method being invoked, i.e. the one that initiated the call toeval() into R
character vectors and adds them to a an R list. Then the actual arguments are converted to R objects. This uses the
basic conversion mechanism, looking for converter elements that match.
At this point, we are ready to call the appropriate R function. We still have yet to determine which this is. The default
strategy is to call the registered Java handler. This is a function within a closure that has access to the reference objects.
This function resolves the specified reference. It then looks at this value and determines how to dispatch the call. If it
is a simple function, then we call it. If it is a list, we look for an element whose name matches the method name. If
this is a function, we call it passing the converted Java arguments. Finally, if this is a list, then we have polymorphic
function, and we search for a match. It is at this point that we try to use the Java parameter types to identify which of
the functions to invoke. How this can be done simply and effectively remains to be seen.
One might think that all the layers of indirection will cause severe performance difficulties. Indeed, this may well
be true. However, the generailty of the setup allows one to override this at numerous different points in the process.
At worst, one can use a specialized C routine (like we did in the example above using theactionPerformed()
method). To do this, one can create a new class using theForeignReferenceClassGenerator, but specifying a different
base or super class.

[]
gen = new ForeignReferenceClassGenerator("java.awt.event.ActionListener","RActionListener", false)
gen.superClassName("SpecializedRForeignReference");
gen.make();

Then one provides a different implementation of the nativeeval() method. All the routines we use to convert the
arguments, resolve references, etc. are available to this routine. Additionally, the standard Java utilities (via JNI) can

July 24, 2000 12

be used, as can all the facilities.
A more reasonable approach is to specify a different central dispatch function. This is the function that is called with
the reference name, method name, arguments and signature elements. One can provide a different function that takes
advantage of a specialized context and implements the dispatching more efficiently. To set a new dispatch handler, one
can use thegetJavaHandler()andsetJavaHandler(). These retrieve and set the current setting of the handler. These
ensure that the C routines can see the object and protect it from being deleted by the memory manager. When replacing
the handler, one can use thejavaHandlerGenerator()to create a new instance. One should also copy the references in
the existing handler to the new one.

[*]
old <- getJavaHandler()
old$handler <- function(...) {

do things differently
}

setJavaHandler(old)

[*]
old <- getJavaHandler()
newHandler <-
for(i in old$references()) {

newHandler$addReference(i)
}

This approach can be complicated by the presence of multiple references that can be called asynchronously from Java.
If these need different dispatching handlers, one cannot replace the default handler without providing a general version
that handlesall references.
We can support a more generic approach by having classes or attributes for references and handlers. A handler (the
dispatch function and the reference table) can be given an attribute to identify it as being of a particulr type. This
can be understood by the C code that implements theJavaTM eval() method. For example, we might check for the
existence of a “NoSignature” attribute on the reference value, or check if the reference is of class “DirectReference”.
Then we can dispatch differently according the presence or absence of this type of attribute.
Note that it is reasonably straightforward to experiment with different native routines that call R references to imple-
mentJavaTM methods. TheC routinesgetJavaReference() , getRReference() , anonymousAssign()
allow one to manipulate the references in the two languages. Creating and evaluating a call to an R function call is
relatively simple to copy from our examples (seecreateCall()).

12 Generating Interface methods in R

We can use Java’s reflectance to create a skeleton or collection of stubs for an R closure that implements the Java
interface. For example, consider the idea of implementing aDataFrameInt with an data.frame. We must create a
closure with the appropriate methods. We can discover the methods that aDataFrameInt must provide using the
command

[]
.Java(NULL,"getMethods","DataFrameInt")

Having got this information in R, we can then generate a closure with template implementations of these methods.
The functioninterfaceGenerator()performs this functionality.

[]

July 24, 2000 13

When we transfer a non-primitive object from R to Java, there is a potential one-to-many mapping to the Java type.
Primitives als have a one-to-many mapping, but the set of possible target types is small. However, for non-primitives,
the number of target types is essentially the set of all known classes. We can get information from the Java method to
be invoked. However, at present, the caller in R must specify the target type.
In our example, rather than simply print the number of times the handler has been invoked, we can use it to hide the
window. We can either store a reference to the window in the closure, or compute it within theactionPerformed()
function. The former can be done as follows. (We inline the definition within the call to the closure generator.)

[*]
win <- .JavaConstructor("GenericFrame", b, T)
(function(window)
{

actionPerformed <- function(ev) {
.Java(window,"setVisible", F)

}
return(actionPerformed)

})(win)

The second approach involves performing additional computations in theactionPerformed(). In Java, we would use
the information in the event to get the source of the event. This is the button. Then we would ask for its parent (taking
advantange of the fact that we know the window is the parent container of the button). Then we can simply hide that
parent window. In R/S, this involves two calls to the.Java()function.
Note that we do not need a closure here as there is no call-specific data to be stored with the function’s environment.

[]
actionPerformed <- function(ev) {

src <- .Java(ev, "getSource")
window <- .Java(src, "getParent")

.Java(window,"setVisible", F)
}

Note that this does simplify the memory management as there is no longer a reference to the window in the Omegahat
databases. As a result, the window object can be released. Otherwise we would have to explicitly release the R
reference (via the Omegahat database) to the window. That can be done passively by registering a listener for the
destruction of the window. (This is now what is intended here as the window is simply being hidden and not destroyed
and we can display it again (assuming we have a reference to it) without recreating it.
We can use our example above to show how to mix a command line and event driven programming model. When we
click on the button, the window is hidden as a result of the callback. However, we still have a reference to the window
object. We can call the JavasetVisible() method for the window and cause it to be displayed.

[]
.Java(win, "setVisible", T)

Synchronization is of course an issue here. However, this illustrates an important advantage of systems such as R and
S, Omegahat, Matlab, XLisp, and so on. The presence of a interactive, command line, interpreted language underlying
a graphical interface provides significantly greater flexibility than the GUI by itself. Additionally, all GUIs should be
designed and implemented so that the individual actions accessible from the GUI can be performed programmatically
from within code, be it compiled or interactive as in R. This essentially means that the event handlers should call
routines which perform the desired action. These routines should update the state of the GUI display (e.g. checkboxes,
radio buttons, selected elements with a list or text widget) rather than assuming this has been done as an integral part
of the event.

July 24, 2000 14

What if you forget to store a reference to a foreign object? For example, suppose we create the button and window as
in the example above but omit to save a reference to the window.

[]
b <- .JavaConstructor("javax.swing.JButton","Click me")

.JavaConstructor("GenericFrame", b, T)

Now, suppose we want to hide the window. (Of course, we can “compute” a reference to the window from the object
b().) Well, the reference is still available from the Omegahat manager. We can ask it to give us a list of all the references
it is managing and this can be done for either or both of the named and anonymous databases. The R function
getForeignReferences.java(). (This is similar togetNumConverters.java()andgetConverterDescriptions.java().) It
takes a vector of logical values indicating which type of references in which we are interested. This defaults to both
named and anonymous.

13 Errors in R functions

When there is an error in the function being invoked, a RuntimeException is thrown by the C code and encountered
when the Java code is handed control. (Needs to be implemented.)

14 Debugging

Debugging the R.so and associated code is difficult using gdb. The support for threading in gdb is limited, although
there is a patch.

15 JNI and Java Classes

	Other sections to be added
	The R-Java Interface
	Initialization Errors
	Accessing Java Classes
	Creating Arrays
	Data Conversion
	Reflectance
	The Omegahat Evaluator
	Where to Compute
	Bugs, Anomalies, and errors
	Callbacks
	Generating Interface methods in R
	Errors in R functions
	Debugging
	JNI and Java Classes

