
Getting Started with the R-Java/Omegahat Interface

Duncan Temple Lang
John Chambers

July 26, 2000

Contents

1 Overview: The Penny Tour 2

2 Other Documents 3

3 Installation 4

4 Initializing the Java Virtual Machine 5

5 Executing Java Commands/Expressions 6

6 Calling Omegahat Evaluator Methods 7
6.1 Discovering Java Methods . 8

7 Basic Non-Primitive Conversion 9
7.1 Named Arguments . 11
7.2 Garbage Collection & Querying the Omegahat References . 11

8 Creating Java Objects 12

9 Creating Arrays 13

10 Advanced Converters 14

11 Foreign References 18
11.1 Default Handler . 20
11.2 Mutable State . 20
11.3 Dynamically Creating Interfaces . 21
11.4 Example . 21

11.4.1 What is the Class Compiler Doing? . 22
11.5 The.convert Argument andidentity Method . 23

12 Omegahat expressions 23
12.1 Debugging . 25

13 C-level Programming Access 25
13.1 Native Java Methods . 25
13.2 C routines in R . 25

1

July 26, 2000 2

14 Installation Details & Customization 25
14.1 Requirements . 26
14.2 Finding Java . 26
14.3 Compiling & Linking . 26

1. partially qualified class names.

2. .sigs argument

Abstract

This gives a brief outline of how one uses the.Java()interface from R/S to Java provided as part of the Omegahat
project. We start by providing a little of the philosophy of underlying the interface and how to think about it, specif-
ically comparing it to the.C() and.Call() functions. Then we illustrate the details. We start with the initialization of
the Java Virtual Machine (JVM). Then we move from static (class-specific) methods and how arguments are passed
from R to Java. Then we move to creating Java objects and invoking methods in these objects. We then discuss Java
arrays. At this point, we focus on how conversion of objects from R to Java and vice-versa is done and how it can be
controlled by the user.

This and the other documents discussing the R-Java interface are continually updated. Updates and additional in-
formation is available from the Omegahat Web-sitehttp://www.omegahat.org . You should checkhttp:
//www.omegahat.org/RSJava .

1 Overview: The Penny Tour

The R-Java interface is an inter-language communication mechanism and is similar to the ability to callC , C++ and
Fortran routines from R. One can interactively invoke Java methods from R and pass R objects to these methods.
When callingC and Fortran, one identifies the (global) routine by name and parameterizes the call by passing different
arguments. UnlikeC and Fortran, Java is an object oriented language. This means that methods are usually not global,
but are associated with an object – an instance of a particular class. Thus, one must identify not only the method
and its arguments, but also the Java object on which the method is to be invoked. For this R-Java interface to be
useful, therefore, we must be able to create Java objects from R and be able to refer to them from R and call their
methods from R and have these evaluated within Java. This is a major difference between the Java interface and
the correspondingC , C++and Fortran versions: the Java interface provides a mechanism for creating, managing and
identifying persistent objects in the foreign language (Java) from R. It does so by managing these objects in databases
similar to the elements of R’s variable search path. Theseforeign objectsare represented in R as references (also
known as pointers or handles).
Java objects are created from R via the.JavaConstructor()(and .JavaArrayConstructor()) function. The particular
constructor method of the Java class being instantiated is identified by the types of the R arguments. One can invoke
methods on a Java object via the.Java()function. This expects the reference to the Java object, the name of the method
and arguments to that method. Again, likeR but unlikeC , a Java class can have several different methods with the
same name. The types of the R arguments identify which Java method to invoke.
The .Java()function returns the value of the Java method call. If this is an object we understand how to convert to
an R object, we do so and the value of the object lives in R. Otherwise, it is a reference to a Java object managed
by the Omegahat interpreter and is available for future Java method calls either as the target or an argument. The
R-Java interface provides a basic set of facilities for converting Java objects to R objects. The obvious conversion of
primitives are available and are displayed in table 1. Java scalars are mapped to R vectors of length 1, and arrays of
Java primitives are mapped to the appropriate vector of lengthn, wheren is the length of the Java array.
One can use the $ operator to do the equivalent of a call to.Java(). Given an R object,jobj(), which is a reference
to a Java object, the expressionjobj$methodName(arg1, arg2,) is equivalent to.Java(jobj,
"methodName", arg1, arg2,)
The powerful addition the R-Java provides is the ability to add (and remove) converters for different Java classes. One
can register differentC (or C++) routines that each take a Java object of particular class associated with that converter
and return an R object. (In the next version, we will allow users to specify R functions to perform this conversion.)
The only aspect we are missing in this setup is how R objects are passed to Java. Well, primitive R objects (e.g. the
basic vector types: logical, numeric, integer, character) are converted according to table 1. In some circumstances,

http://www.omegahat.org
http://www.omegahat.org/RSJava
http://www.omegahat.org/RSJava

July 26, 2000 3

Java R
double numeric()
float numeric()
int integer()
String character()
char character()
byte character()
long integer()
boolean logical()

Table 1: Conversion of primitives between R to Java

we will have to specify which of several like-named methods that we wish to invoke due to the method overloading
supported by Java. For example, we might wish to call a method that expects an array ofboolean values rather than
one that expects a singleboolean value. The.Java()function allows one to specify target Java types for the different
arguments. The.sigsinfluences both how the R objects are converted to Java and also the method selection performed
by Omegahat.
Converting non-primitive objects pose a potential challenge. What Java class should be used to represent a list? a
data frame? a graphics device? The answer is that it depends on the context and the Java method or constructor being
invoked. In some cases, it is not desirable to transfer the contents of an R object to a Java. One such reason is that
there is no suitable Java class readily available. A second reason is that one wishes the R and Java engines to “share”
an object and thus we want to pass a reference to the R object.
In order to support this concept of passing R objects by reference, the R-Java interface provides a convenient mecha-
nism for mapping R objects to a Java class namedRForeignReference. This provides the basic mechanism by which
Java methods can be implemented by calling R functions on that object. These R functions can query and even change
the state of the R object (i.e. the objects have mutable state) and then return control to Java. The underlying Omegahat
classes even provide a dynamic mechanism for compiling and loading new Java classes that implement any collection
of Java interfaces by calling a corresponding R function. This allows an R user to rapidly program Java classes entirely
within their familiar R environment.
Finally, since the entire interface mechanism rests on the embedded Omegahat interpreter, one has access from R
to all the functionality with an interactive Omegahat session. This means that instead of invoking Java methods,
one can create more complex and compound Java expressions and pass these to the Omegahat evaluator via the
.OmegahatExpression()function. Additionally, this allows one to performsubstitute()-like tricks to parameterize an
expression with Omegahat variables, but from R. This string-based style of programming is convenient, and has proven
effective in a variety of settings. The R-Tcl/Tk package is such an example. However, it does complicate debugging
and restrict the types of computations that can be performed to those that are expressible via strings. In this way, it
does not produce ideal software engineering. Rather than using the.OmegahatExpression(), we encourage users to
employ the.Java()function and avoid static methods where possible. (This allows others to use the same R and Java
code but to use derived classes with slight changes in implementation, making use of the power of inheritance.)
The Omegahat interpreter does provide numerous methods which can be used to query the state of the Java environment
and the connection to R. For example, one can ask it for a list of all Java classes it considers are convertible to R. Also,
one can query the collection of references it currently manages. Like R’s and S’s capabilities for allowing the user to
query available functions and methods for different classes, the Omegahat interpreter provides thegetMethods()
method. This returns a list describing the different methods in a Java class. The R programmer can use this to discover
more about a particular object or class. The evaluator also maintains a list of all available classes and can resolve
partially qualified class names (seeexpandClassName()).

2 Other Documents

The installation of the R package includes this and other documents and of course, the online per-function documen-
tation.

July 26, 2000 4

Examples.pdf some examples of using the.Java()interface, including some of the more advanced topics
such as GUIs, callbacks to R functions, dynamic compilation, etc.

Features.pdf a description of some of the features of this interface and a comparative discussion of other
inter-system interface approaches such as CORBA, XML and other S-Java interfaces.

Internals.pdf an early document that provides some examples of how the interface is used and how the
internal mechanisms effect this interface.

Howto.pdf this document that attempts to give a brief tutorial to get people started and how they might
use the R-Java interface.

FAQ.html a collection of questions and answers that might arise when things haven’t been installed
correctly, won’t run, or give apparently odd answers.

README Short version of requirements, installation instructions, etc.
examples/ a collection of example R scripts that illustrate different aspects of the interface’s features.

See theREADME file in that directory for more information.

Table 2: R-Java Documents

You can find where these documents are located via the R expression

[R]
system.file("Docs", pkg="Java")

This R-Java interface has been in existence for almost 2 years. Obviously it has evolved since its earliest implementa-
tion and the addition of converters, references, dynamic compilation, and other features have been added incrementally.
A result of this history is the presence of many different documents that provide some insight into the philosophy and
the generality of the the interface.

3 Installation

One installs the R package via the shell command

[Install]
R INSTALL -c Java_1.0.tar.gz

Note that the-c argument is needed since it creates some extra files (a symbolic link, specifically) after the standard
R installation is performed. See theFAQ.html file in theDocs/directory for more information. Also, details about
customizing the installation are given in Section 14 below and in theREADME file in the package’s tar file.
The configuration script relies on a recent addition to the RINSTALL script. The changes makes the location into
which the package is being installed available to the configuration script and make procedures. If you have a very
recent copy of R (the development version 1.2.0 or higher) the changes will be available and all will work as indicated
above. If you are using an older version, you should set the shell variableR_PACKAGE_DIRbefore invoking theR
INSTALL . The value of this variable should be either

• the value specified via the-l argument with/Java appended, or

• if the -l is omitted,$R_HOME/library/Java

So for example, if you would have issued the command

[]
R INSTALL -c -l ${HOME}/Rpackages Java_1.0.tar.gz

July 26, 2000 5

then set the value ofR_PACKAGE_DIRto $HOME/Rpackages/Java .
Given that the package has been installed, one can make the functions available to the R session via a call to the
function library().

[Library]
library(Java)

4 Initializing the Java Virtual Machine

In order to execute Java commands, one must first create a Java Virtual Machine in which these commands are inter-
preted. This is done via the.JavaInit()function. This not only initializes the JVM, but also the necessary support for
executing Java expressions from R/S. This is done by creating an embedded Omegahat interpreter.
In many cases, no arguments need be supplied to.JavaInit(). A simple invocation such as

[]
.JavaInit()

is sufficient to gain access to all of the core Java and Omegahat classes.
Just as when running the regularjava command, we can specify arguments that customize the specific instance of
the JVM. These include the classpath and system properties (usually passed as-Dname=value). The .JavaInit()
allows the caller to specify a list of JVM parameters via itsconfigargument. The default version of this list is stored in
the R object.javaConfig(). The list is expected to have any or all of the elements namedclassPath , properties
andlibraryPath . (The library path is for use when loading JNI code from Java classes via theloadLibrary()
method of theSystem class. The default will suffice unless you are using JNI and if that is the case, you know what
this means!) Unless one specifies a second argument (default), the values specified in theconfiglist are prefixed to the
defaults in.javaConfig().
The classpath element in theconfigargument should be a character vector in which each element identifies a
directory, a jar file or a URL. In other words, it isnot a colon separated string that one usually provides to Java via the
-classpath argument or theCLASSPATHvariable.

[]
.JavaInit(list(classPath=c("/home/duncan/MyJavaClasses",

"/home/duncan/Java/colt.jar")))

If no classPath entry is passed to.JavaInit(), we use the value in theCLASSPATHenvironment variable and split
it into the individual components.
The default values in.javaConfig()are computed and fixed when the R library is installed These contain the entries
of the default classpath necessary to locate the classes used to run the embedded Omegahat interpreter and also the
system properties that control how that interpreter is created and behaves (e.g. class names for components, etc.).
One can specify additional system properties using this mechanism. The properties are given via named character
vectors.

[]
.JavaInit(list(properties=c(RVersion=paste(version$major, version$minor,sep="."),

myProperty="understood by some class")))

One can control how the Omegahat interpreter behaves by specifying values for properties it uses. For example, the
interpreter looks for Omegahat scripts by searching in elements of a path given by the propertyOmegahatScript-
SearchPath . One can specify this as a colon-separated (actually this is platform dependent) list of directories, jar
files, URLs, etc.

July 26, 2000 6

[]
.JavaInit(list(properties=

c(OmegahatScriptSearchPath="/home/duncan:/tmp/scripts.jar")))

Properties that are understood by the JVM’s initialization can also be supplied.

[]
.JavaInit(list(properties=c("JAVA_COMPILER"="NONE")))

Note that to satisfy R/S, we must quote the name of the property in this example to “escape” the underscore in the
property name.
Obviously, we can specify both properties and classPath elements simultaneously, e.g.

[]
.JavaInit(list(properties=c("JAVA_COMPILER"="NONE"),

classPath="/home/duncan/Java/colt.jar"))

5 Executing Java Commands/Expressions

Now that the JVM is running and the Omegahat interpreter is available, we can invoke Java commands. We start with
simple ones and gradually increase the utility and complexity, illustrating the different aspects of the interface.
First, we’ll invoke a static method. The Java classSystem provides a methodgetProperty() . This provides
access to a collection of global name-value pairs. Both the names and the corresponding values are strings. These
properties provide information about the classpath in effect, the version of the JVM, Java language, the directory
separator, the current directory, and so on.
To call this method, we use the.Java()function. This expects an object on which to invoke a method and the name of
the method. In this case, the object is the classSystem . Because of the way the Omegahat interpreter works, we can
specify just the name of the class.
The name of the method is"getProperty" .
The next arguments are the ones that are to be passed to the Java method. In this case, it is a single string naming the
property to be retrieved. Let’s get the value of thejava.class.path property.
At this point, we have all the necessary components of the call and issue it with the following R expression:

[]
.Java("System", "getProperty", "java.class.path")

The result is an R character vector of length 1 - a string. It will probably be something like (but with different
directories!)

[]
[1] "/home/duncan/bode/Rpackages/Java/org/omegahat/Jars/Environment.jar:
/home/duncan/bode/Rpackages/Java/org/..:
/home/duncan/bod\e/Rpackages/Java/org/omegahat/Jars/antlr.jar:
/home/duncan/bode/Rpackages/Java/org/omegahat/Jars/jas.jar:
/home/duncan/bode/Rpackages/Java/org/omegahat/Jars/jhall.jar"

How does this command work? Well, the first argument is the object on which to invoke the method. In this case,
it is a static method and so we pass the name of the class. The full name of the class isjava.lang.System , but
we can specify a partially qualified class name thanks to the Omegahat interpreter. (More on partial class names in a
moment.) The second argument is the name of the method to be invoked. And finally, we give a list of arguments via

July 26, 2000 7

the · · · argument to.Java(). In this example, there is only one argument – the name of the property whose value we
want.
The Omegahat interpreter resolves the object whose method is to be invoked, in this case the classSystem() . Not
finding an object/variable in its databases (like the R/S search path) namedSystem(), it looks for a class with that name
and findsjava.lang.System .
When the arguments are passed to Java from R via the internal C code, they are converted to Java objects. Table 1 shows
how the basic types are converted from R to Java values. In this example, the character vector ("java.class.path")
is converted to a JavaString .
At this point, Omegahat has control and performs the complex task of finding the most appropriate method named
getProperty() in the classSystem that takes a single argument of classString . There are in fact only two
getProperty() methods in this class

[]
public static java.lang.String java.lang.System.getProperty(java.lang.String)
public static java.lang.String java.lang.System.getProperty(java.lang.String,

java.lang.String)

and only one takes a single argument. Hence, the match is done relatively easily.
Finally, Omegahat decides how to return the value of this method to the R engine. Again, in this case, it is simple since
the object is aString and is converted to an R character vector of length1.
The first time you call the.Java()function, you may notice that things are very slow. This is because the Omegahat
has to typically resolve a class (e.g.System in our example) and to do this correctly it must construct a list of all
possible classes. On subsequent calls this list has already been computed and these will execute quickly.
You can avoid the construction of these class lists (and the delay) by giving the fully qualified class name (java.lang.System).
To illustrate using different types, but still in the context of static methods, we can use the Java’s random number. The
classMath provides a methodrandom() . We call it with no arguments and it returns a numeric vector of length1
corresponding to thedouble return type of that method.

[]
.Java("Math", "random")
[1] 0.1194042

While we have concentrated on invoking methods, we can also access fields in a Java class (or object). The Omegahat
interpreter determines whether the name given in the second argument of the.Java()function call identifies a method
or a field. In the case of a field, the Omegahat interpreter returns its value. (It checks whether the fields is publically
accessible.)
The following example illustrates how we can access the (static) fieldPI in the classMath . (Of course, we could
have asked R, but where would the fun be in that!)

[]
.Java("Math", "PI") [1]
3.141593

6 Calling Omegahat Evaluator Methods

Before we turn our attention to creating new Java objects and invoking their methods, we can discuss invoking non-
static methods without having to create new objects. In calling.JavaInit(), one causes the Omegahat interpreter
to be instantiated. The evaluator can be referenced in a call to.JavaInit()by the string"__Evaluator" (with two
underscores). The evaluator itself provides many utilities and is a specialized version of the basic interactive Omegahat
evaluator tailored for this inter-system communication. It has many methods/functions that make managing the session
easy as well as being useful in their own right. We do not want to change the focus of this document to explain the
Omegahat interpreter. Instead, see the different online tutorials, API documents, etc. athttp://www.omegahat.

http://www.omegahat.org

July 26, 2000 8

org . Additionally, it is convenient to experiment either in an interactive Omegahat session or from R. (These are
almost the same.) One can inquire what methods a class has by using the evaluator’s owngetMethods() method.
This takes the name of a class and returns a list containing a description of the different method supported by that
class.
How do we invoke a method on the evaluator itself? We use the.Java()function and specify the string"__Evalua-
tor" (or alternativelyNULL)
We can ask the evaluator to return the fully qualified name of a class that we specify by name. The methodexpand-
ClassName() provided by the evaluator does this. Again, it is a simple method invocation. We pass it a string
identifying the class of interest.

[]
.Java("__Evaluator","expandClassName", "JFrame")
[1] "javax.swing.JFrame"

6.1 Discovering Java Methods

We can also ask what methods a class has. The evaluator’sgetMethods() method returns a list of each of whose
elements contain a description of a Java method, providing its name, the number and type of its arguments and its
return type. (We will talk more about reflectance later. See Section??.)

[*]
m <- .Java("__Evaluator","getMethods", "OmegaInterfaceManager")

We can find the names of the different methods by extracting thename element within each element of the list.

[*]
nms <- sapply(m, function(x) x$name)
nms

Let’s look at the method we just called. We extract all the elements whosename element is"getMethods" . This
returns a list of length two corresponding to the overloaded methods with the same name in the evaluator’s class. Note
that we called the second one (in the output below). We know this by looking at theParameters element of each
and noting that the first expects aClass object, while the second expects aString .

[]
m[nms == "getMethods"]

[[1]]
[[1]]$name
[1] "getMethods"

[[1]]$"Declaring class"
[1] "org.omegahat.Interfaces.NativeInterface.OmegaInterfaceManager"

[[1]]$Parameters
[1] "java.lang.Class"

[[1]]$Modifiers
public

1

http://www.omegahat.org
http://www.omegahat.org

July 26, 2000 9

[[1]]$Exceptions
character(0)

[[1]]$"Return type"
[1] "[Ljava.lang.reflect.Method;"

[[2]]
[[2]]$name
[1] "getMethods"

[[2]]$"Declaring class"
[1] "org.omegahat.Interfaces.NativeInterface.OmegaInterfaceManager"

[[2]]$Parameters
[1] "java.lang.String"

[[2]]$Modifiers
public

1

[[2]]$Exceptions
[1] "java.lang.ClassNotFoundException"

[[2]]$"Return type"
[1] "[Ljava.lang.reflect.Method;"

7 Basic Non-Primitive Conversion

As a last detoure before we turn to creating Java objects, we discuss how non-primitive objects are returned to R.
The Omegahat evaluator offers a mechanism for finding files by searching different directories and append different
extensions. (This is implemented in theFileLocator class.) This method isfindFile() and it is a reasonably
intelligent facility that can look inside jar files as well as directories. We will ask it to find the file OmegaInit in the
Environment.jar file and assign the result to an R variable,f().

[]
f <- .Java("__Evaluator", "findFile", "OmegaInit")

What should the contents off() be? A file name? the jar file name and the expanded name of the entry within the jar
file? If it is either of these, how can we use this, e.g to read the contents of the file, find its date, etc. without being
forced to re-locate it? There is no clear answer to these questions, but a general mechanism allows us to give a clear
and unambiguous approach.
The object returned by this particular method call is a Java object of classorg.omegahat.Environment.IO.ArchiveEntry .
Since there is no clear way to convert it to an R object, the Omegahat interpreter stores the value in one of its databases.
It then creates a proxy object that contains sufficient information to identify the real object now stored away and returns
that proxy. The low-level C code that implements the R-Java bridge knows how to convert these special Java proxy
objects and create R objects from them.
So now we know what the R objectf() should look like. It is a reference to a Java object and looks like the following.

[]
f

July 26, 2000 10

$key
[1] "2"

$className
[1] "org.omegahat.Environment.IO.ArchiveEntry"

attr(,"class")
[1] "AnonymousOmegahatReference"

It contains information about the class of the Java object to which it refers. This is in theclassName field. It also
contains the key or name by which Omegahat knows it. This is the name used to store the real object to which this
proxy refers (e.g. theArchiveEntry from the earlierfind() method call).
The class of this variable isAnonymousOmegahatReference . This indicates that not only is it a reference to an
object managed by Omegahat, but also that it was not given a name by the R call that created it. Instead, Omegahat
has generated a unique name and stored it in a special database – the anonymous database.
We could have forced Omegahat to use a particular name for the result of an object. We do this by providing a value for
the argument.name. In this case, Omegahat stores the resulting object in its default database using the name specified
by the R call and returns an object of classNamedOmegahatReference .

[*]
f <- .Java("__Evaluator", "findFile", "OmegaInit", .name="myFile")

Is there an advantage to using named references rather than anonymous ones? There is little or no difference in speed.
One benefit is that you can then use the name directly as the first argument in a call to.Java(), such as

[]
.Java("myFile", "size")

[1] 369

Additionally, when using.OmegahatExpression()which allows one to evaluate an Omegahat or Java expression one
can refer to the variable by name rather than having to substitute it on the R side. (See Section 12 for more details.)
Perhaps the most important use of named references is that by specifying a name, Omegahat will not attempt to
convert the resulting object. This is useful when we want to avoid the conversion of an object that we will use in a
subsequent Java call. For example, we may want to display the names of all the objects stored in the default Omegahat
database (the named objects themselves) in a SwingJList . The array of names is retrieved by calling the evaluator’s
objects() method. Then pass this to theJList constructor. We can avoid the conversion from Java to R and
then again from R to Java by specifying any name as the value of the.nameargument when calling theobjects()
method.

[]
x <- .Java("__Evaluator", "objects", .name="anyName")
.JavaConstructor("JList", x)

To make certain you understand the conversion mechanism, take a moment to consider what the same code would do
if the .nameargument was not specified.
We should note that one can obtain the same effect using the.convertargument without specifying a unique name that
doesn’t conflict with an existing entry. See Section 11.5.
Another important use of the.nameargument is when we must guarantee that we are using the same Java object in
different calls, rather than two different Java objects that have the same values. For example, suppose we wish to
create two new Java objects and have them share a single array ofString objects. If we convert the same R object
on two occasions, we will not obtain thesameJava object, but just a duplicate. In this way, we will not be (easily) able

July 26, 2000 11

to pass the same Java object to the two new objects. Storing an object in the Omegahat database and referring to it in
subsequent calls will guarantee that it is the same object.
Perhaps one of the major disadvantages of using the.nameargument is the potential to conflict with another name. For
example, suppose you use a function which decides to store a Java object using the name"x" and then call another
function that also uses this name. In this case, the second assignment will overwrite the earlier one and the Omegahat
database will contain the second object. The first will have disappeared. This is very similar to the problems that are
encountered inS when people use frame1 to store objects created in one function call that are needed in other function
calls (e.g. the model and trellis code).
In summary, use the.convertargument to suppress Omegahat’s conversion to an R object unless you are using the
.OmegahatExpression()and need to refer to the object as an Omegahat variable in a string version of the Omegahat
expression. Even in this case, you can use thesubstitute()-like functionality of .OmegahatExpression(). Basically,
don’t use the.name()argument from within a function. Use it only as part of a user-level interactive command where
the user is responsible for the entire management and selection of Omegahat names.

7.1 Named Arguments

As we have seen, we can avoid unnecessary conversion of by explicitly storing the return value in the named Omegahat
database. This also allows the use of unique Java references within Omega where necessary. The same logic applies to
arguments passed from R to Java methods and constructors via the.Java()and.JavaConstructor()functions. Again,
suppose we want to create two separate lists but with the sameString array as the argument for both. We could
transfer the object from R to Java in one step and the call.JavaConstructor()to create the two lists and refer to the
previously createdString array in both. However, the R-Java interface provides a simpler mechanism. One can
optionally provide names for the arguments given in the· · · argument of.Java()(and.JavaConstructor()). For each of
these named arguments, the Omegahat assigns the resulting Java object to the named database and makes it available
in exactly the same way as it does named return values.
In our example, we could then achieve the same result with just two inter-system calls. Suppose thatx() is the
character vector that we want to convert to a JavaString array and share between both lists. Then we pass this as the
argument to the first constructor of theJList and give it a name –myName. Then, entirely within R, we create an
object representing a named Omegahat reference withmyNameas the key. We use the functionomegahatReference()
to create this locally generated version of the reference. Then, we pass this reference as the argument to the second
constructor.

[]
x <- letters
list1 <- .JavaConstructor("JList", myName = x)
r <- omegahatReference("myName")
list2 <- .JavaConstructor("JList", r)

Currently, there is no direct way in R to effect the other approach whereby we convert the object, get a reference
to it and then create twoJList objects. Instead, we use the.Java()method and explicitly assign the object to the
Omegahat database. This can be done with the following command:

[]
ref <- .Java("__Evaluator", "identity", x, .name="myName")

Then we can use this reference as the argument to each of the constructor methods.

7.2 Garbage Collection & Querying the Omegahat References

We know about the way Omegahat stores objects in its local databases and the resulting named and anonymous
references in R. One difficulty with this reference approach is that Omegahat cannot determine when the R session has
no use for an object. (There are some exceptions, but this is true in general.) As a result, the R user is responsible for
releasing the objects he or she no longer needs. This is similar to R objects that are assigned and no longer used.

July 26, 2000 12

The Omegahat evaluator allows one to obtain the names of the different references it is managing. One of theob-
jects() methods takes a single boolean argument which indicates that it should return the names from the anony-
mous reference database (false) or the regular named database (true).

[*]
the anonymous reference database

.Java("__Evaluator", "objects", T)

the named reference database
.Java("__Evaluator", "objects", F)

Additionally, one can obtain a complete listing of the references in each of these two databases. These listings include
the class of the object to help one identify it. The evaluator method that gives these listings isgetReferences() .
Again, it expects a boolean value as its only argument -true for named references andfalse for anonymous
references.

[*]
.Java("__Evaluator", "objects", F)

8 Creating Java Objects

At this point, we have discussed how to invoke methods and access fields. We have even had a brief example of how
to find out about the available methods. But now we turn our attention to the power of the R-Java interface and the
ability to create instances of arbitrary Java classes. We first focus on Java classes and then discuss Java arrays. The
two functions of interest are.JavaConstructor()and.JavaArrayConstructor().
The.JavaConstructor()takes a class identifier and a collection arguments that are passed to an appropriate constructor
of that class. This is very similar to the.Java()function except that there is no need to specify the method name. This
is because the constructors have an implied name. The class identifier given as the first argument to.JavaConstructor()
can be either of the following:

• a string giving the (potentially partially qualified) name of a class. The class names is resolved and expanded by
the Omegahat evaluator.

• a Java object returned from a previous call to.Java()that returned aClass object.

The arguments passed via the· · · argument of the.JavaConstructor()are handled exactly as they are in the.Java()
function. They are converted to Java objects and the passed to the Omegahat interpreter along with the class identifier.
The appropriate constructor is identified and the newly created object returned. If no converter is found to convert this
new object to anR object, an reference to Java objects is returned to the R engine. As with the.Java()function, if a
value is passed for the.nameargument, a named reference is returned and one can refer to that object in subsequent
.Java()and.JavaConstructor()calls with that same string. If no.nameargument is specified, an anonymous reference
is returned and one should use the resulting R object to identify the object in future calls.
The following commands illustrate many of the different aspects of using.JavaConstructor(). We start by creating a
Swing button (JButton). We invoke that class’ constructor that expects a string giving the text to display within in
the button. The result is an object that cannot be meaningfully converted by the Omegahat evaluator to an R object.
Accordingly, it is returned as a reference. Since there is no.nameargument, we get a anonymous reference to a Java
object and assign that reference to the R variableb().
Next, we want to display that button in a window. We can use the Omegahat convenience classGenericFrame. We
create an instance of this class and give it a reference to the button and a logical value (F) that indicates that we do
not want the window to be immediately displayed when it is created. These are the arguments to the constructor. The
.namemeans that the Omegahat evaluator assigns the resultingGenericFrame instance to its regular/default database
and returns a reference to it.

July 26, 2000 13

Note how the R variableb() is passed from R to Omegahat in this second constructor. Omegahat resolves this reference
using the name and database identifies stored in it.
The second pair of expressions access the newly created object. The first invokes a method in the button, changing its
background color. (Note how we access the static field in the classColor .) The second expression illustrates how we
can use the name"myWindow" to refer to an object create previously with the.nameargument.

[*]
b <- .JavaConstructor("JButton", "A button")
.JavaConstructor("GenericFrame", b, F, .name="myWindow")

.Java(b, "setBackground", .Java("Color", "red"))
.Java("myWindow", "setVisible", T)

9 Creating Arrays

One can create arrays of objects, including arrays of arrays or multi-dimensional arrays. We currently use a different
function – .JavaArrayConstructor()– for this purpose. This takes the name of the class of the element type for the
array and the length of each dimension. For example, we can create an array ofString objects with length3 as
follows.

[]
.JavaArrayConstructor("String", 3)

We can create a two-dimensional array consisting of 4 arrays, each of length 3 to containClass objects.

[]
.JavaArrayConstructor("Class", c(4, 3))

Ragged arrays and arrays all of whose dimensions are not known at creation time can be created by specifying the
length of a particular dimension as0. (Unfortunately, omitting a value as inc(4,) does not work due to the definition
of thec() function.) So the following commands create an array of String arrays in which the first element has3 entries
and the second has length4.

[]
r <- .JavaArrayConstructor("String", dim=c(2,0))
.JavaSetArrayElement(r, .JavaArrayConstructor("String", dim=3),1)
.JavaSetArrayElement(r, .JavaArrayConstructor("String", dim=4),2)

Unfortunately, in this release, there is no simple way to initialize the contents of a nested array. This is because of the
ambiguity of conversion.
We can access the elements of the two-way array above using.JavaSetArrayElement()and.JavaGetArrayElement().
First we set the second value of the first array (i.e. 1,2). Then we retrieve the value of that same element. And then
we get the top-level elements of the two-dimensional array. Each of these are arrays themselves and automatically
converted to character vectors.

[]
.JavaSetArrayElement(r, "A test", 1,2)
.JavaGetArrayElement(r, 1, 2)
.JavaGetArrayElement(r, 1)
.JavaGetArrayElement(r, 2)

July 26, 2000 14

10 Advanced Converters

The R-Java/Omegahat interface understands how to convert certain basic R types to Java values and vice-versa. Table
1 shows the relationships between the different R and Java types. But we have also seen an example of how we
converted JavaMethod information to R when we invoked thegetMethods() method of the evaluator (see 6.1).
How does R know how to convert JavaMethod objects? The answer is, of course, we told it? Specifically, we wrote
a C routine that takes a JavaMethod() object and converts generates an appropriate R object. The R-Java interface
allows the R user to manage the list of such converters. The functiongetJavaConverterDescriptions()allows the user
to see both how many converters are currently registered and also obtain a description of each of these.
There are two sets of converters: from Java to R and from R to Java. ThegetJavaConverterDescriptions()by default
returns descriptions of both sets of converters. The default set of converters is given below.

[]
getJavaConverterDescriptions()
$fromJava
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"

$toJava
[1] "RFunctionListener"

The descriptions attempt to indicate on what type of object they operate. Consider thefromJava list. The first
entry indicates that the associated converter will handle an object that is derived from the Omegahat reference class
InterfaceReference. This uses the equivalent of theisAssignableFrom() method in Java to determine whether
an object can be assigned to a variable of a particular class - in this caseInterfaceReference.
The next two descriptions indicate that they are prepared process objects that are of classMethod andConstruc-
tor , respectively. They will not process objects of classes derived from these classes. (This is not an issue since these
arefinal classes and so cannot be extended.)
The final description indicates that the converter will process any object for which the Java expression

[]
obj instanceof Properties

returns true. For the classProperties , this is the same as theisAssignableFrom() comparison. However, if
the class were an interface rather thanProperties , it would match any class that implemented that interface.
These descriptions indicate that there are two aspects to conversion. First, a converter must determine whether it is
capable of processing a particular object. If it is, then it must perform the actual conversion. We separate these two
actions into different routines: the matching routine and the conversion routine. Additionally, we provide implemen-
tations of the3 basic types of conversion: instance of, assignable from an class equality.
When an object is being returned from Omegahat, that system determines whether the object is convertible or not. and
passes it the internal routines to convert. It then iterates over the list of converters until the matching routine of one
of them indicates that the associated converter will perform the conversion. Then the basic converter engine calls that
converter and the result is an appropriate R object.
Conversion involves both sides of the interface knowing about a class. Obviously, the R engine must know how to
convert a class before it can be converted. But equally importantly, the Omegahat engine must be told that a class is
considered convertible and whether derived classes or a class implementing an interface that is considered convertible.
This is achieved by Omegahat having a reference toConvertiblClassifierInt object. An object that implements this
interface (seeBasicConvertibleClassifer) maintains a table of classes that it knows about and how matching should
be done for that class. The default implementation of this interface is a hash-table that stores the classes that are
considered convertible and an integer indicating which type of matching to perform when an object is being compared
to that class entry. This classifier works recursively when given an array. It looks at the type of element in the array
and determines whether that is convertible or not. (Note that nested arrays are not currently considered convertible.)

July 26, 2000 15

The key point is that when we add a C-level routine to convert a Java object to an R object, we must also inform the
OmegahatConvertibleClassifierInt that this class is considered convertible and how (i.e. the appropriate matching
operation).
The4 default converters registered when the JVM is initialized include a converter for theProperties . This means
that when the result of a Java method returns aProperties object, the appropriate converter C routine will be
called and create an R object. In this case, it creates a named character vector: the names are the keys in the properties
table and the values are the corresponding entries. This means that we can retrieve anyProperties table from Java
including theSystem properties.

[]
jprops <- .Java("System","getProperties")
jprops[["user.home"]]

[1] "/home/duncan"

To register a converter in C code, one specifies the routine that does the conversion; a routine that indicates whether it
is prepared to process a given object; some user defined data object that is stored with the converter and passed to it
and the matching routine each time they are called (e.g. a class type against which to compare the class of the object
being converted) ; a description which is used to describe the current converters as ingetJavaConverterDescriptions().
Finally, the call to register a converter can indicate whether the basic conversion mechanism should process arrays by
calling this for each element or not. (Needs more explanation!)
While conversion routines can be registered in C, they can also be specified in R via thesetJavaConverter(). This
expects the same set of arguments as the C registration, but rather than receiving function pointers, it expects the
names of C routines for the conversion and matching routines. An example of such a call is shown below and
can be executed. (The function.RSJava.symbol()merely converts its argument to match the C routine name -
RS_JAVA_RealVariableConverter() in this case.) Thematcherargument identifies one of the built-in class
comparators rather than the name of a C routine that performs the comparison of the object’s class and target class
of the converter. TheuserObjectis used to parameterize that matching function. It specifies the name of a Java class
which is expanded automatically to, in this case,org.omegahat.DataStructures.Data.RealVariable. This is then stored
with the matching routine and is used by it to determine if the object being converted is assignable to an object of that
class. This particular converter translates the basic OmegahatRealVariable data structure to a numeric vector in R.

[*]
val <- setJavaConverter(.RSJava.symbol("RealVariableConverter"),

matcher="AssignableFrom",
autoArray=T,
description="Omegahat RealVariable to numeric vector",
userObject="RealVariable"

)

The final argument of thesetJavaConverter()function is register. This is expected to be a logical value indicating
whether this function call should also notify the OmegahatConvertibleClassifierInt that the class for which the R
converter is being registered should also be considered convertible by Omegahat. This is a necessary step if Omegahat
is to ever allow objects of this type to be passed to the low-level conversion mechanism. If it does not know that the
class is considered convertible, it will simply return a reference to the object.
The default for theregisterargument is currentlyT. If the particular call tosetJavaConverter()does not specify the
appropriate information for Omegahat to digest, one can register that the class is convertible in a separate expression
via the functionsetJavaConvertible(). This is a direct way to add the class to Omegahat’s list of convertible classes.
The arguments this expects are the name of the class and how classes related to it are to be treated. This is the
equivalent to the specification of the class matching for the converter itself: instance of, assignable from, or direct
equality of class.
The setJavaConvertible()function also allows one to remove a class from the list of classes considered convertible.
This allows one to instruct Omegahat not to attempt to convert a type of object. In this way, we need not remove

July 26, 2000 16

a converter from the C-level converter tables, but need only avoid attempting the conversion. The following causes
Omegahat to treat thejavax.swing.JButton class as non-convertible and will return a reference to any such
object.

[]
setJavaConvertible("JButton", F)

Just as we can discover what converters are registered in the C code to convert between R and Java objects, we can
also query what Java classes Omegahat considers as convertible. We can ask the Omegahat evaluator to give us this
information using itsgetConvertibleClasses() methods.

[]
.Java("__Evaluator", "getConvertibleClasses")

This returns a character vector listing the Java classes that the Omegahat interpreter will attempt to convert. We must
also query how it performs the matching so as to determine how derived classes and those that implement interfaces
listed in this group are handled. This information is available from the evaluator’sConvertibleClassifierInt object
which can be retrieved via the methodgetConvertibleClassifier() . The matching mechanism for each of
the classes in this list is available via methods in that class.
Writing a C-level converter relies on low-level JNI code. It is not very complicated, but requires some experience
and familiarity. It is similar to programming routines to be called from R or S via the.C() and .Call() functions.
However, there are at least 2 books to help in the endeavor and clarify issues. Also, there are several different examples
in the code. Additionally, one can call the converters for the basic types that the R-Omegahat interface already
performs. In this way, a converter need only access the appropriate fields and call the necessary methods in the
object being converted to get the primitive types and pass these to existing code to create R objects. See the files
ConverterExamples.candConverters.c in the distribution. Also, see Section?? for more information about the
different C routines to access the Java environment from within C code loaded by R.
In spite of the fact that the converters are not hard to write, we understand that most people will not relish the idea
of compiling, linking, loading and debugging C code that connects two systems which the may not understand that
well. (Why ever not? It sounds ideal:-)) As a result, we have added the capability of specifying functions for both the
converter and the matching mechanism. At present, you must use functions for both. Youcannotuse the built-in C
routines to do the matching and an R function to perform the actual conversion. (This will be changed in the future
so that one can mix types). There is an example (reproduced here) in thefunctionConverters.R file in theexamples/
directory that is installed with the package code.
One uses thesetJavaFunctionConverter()to register the pair of converter and matching functions. Each of these
functions expects two arguments. The first is the object to be converted. This comes as an anonymous reference and
one can use the.Java()to query its contents and perform other operations necessary to fulfill the task of the function.
The second argument is a string which gives the name of the class of the object to be converted. This is the full class
name.
The first example below shows how we might provide a silly conversion of a Swing button object. The matching
function compares the class name given to it with the string"javax.swing.JButton" , the full class name of the
type we are prepared to convert with the other object. The converter function uses the.Java()function to retrieve the
text displayed on the button object and also its action command (the value passed to an event). It returns these as the
result of the conversion in the form of a character vector.

[]
setJavaFunctionConverter(function(x, className) {

print("This is a silly converter for a JButton")
val <- .Java(x,"getText")
val <- c(val,.Java(x,"getActionCommand"))
print(val)
return(val)

}, function(obj, className){
ok <- className == "javax.swing.JButton"

July 26, 2000 17

cat("In match:",ok,"\n")
return(ok)

})

setJavaConvertible("JButton")
.JavaConstructor("JButton", "testing")

A second example provides mutable state for the converter pair using a closure. We will use this to provide a converter
for the Omegahat classRealVariable. You can compare this with the native C-level converter mentioned earlier. We
create a closure definition which has an instance-specific variablen() that counts the number of times its been called.
This closure generator is namedrealVariableConverterHandler(). We create an instance of it by calling the function
and assigning it torvCvt().

[]
realVariableConverterHandler <-

function() {
n <- 0
cvt <- function(obj, className) {

n
<<- n + 1

.Java(obj, "getValues")
}
matcher <- function(obj, className) {

return(className == "org.omegahat.DataStructures.Data.RealVariable")
}
return(list(converter=cvt, matcher=matcher, count = function(){ n }))

}

rvCvt <- realVariableConverterHandler()

At this point, we can callsetJavaFunctionConverter(). It expects2 two functions as separate arguments. Thus, we
extract each of the functions from thervCvt(). This still allows them to share the closure’s environment and hence
accessn().

[]
setJavaFunctionConverter(rvCvt$converter, rvCvt$matcher)
setJavaConvertible("RealVariable")

And we can check how it works by creating an instance of theRealVariable class.

[]
.JavaConstructor("RealVariable", rnorm(10))

One result of this setup is that one can cache converted values for use in future conversion calls and also ensure that
one returns objects that are identical in reference and not just value. The converter closure can return references to the
same R object ensuring that modifications to it are visible to all that have access to it. (Of course, those objects must
be closures themselves.)
At present, the support for functions is new and so the error handling is not in place. These functions should not
generate an error. (You have been warned!!!!)
If we can register converters, we must also be able to remove them. This allows us to temporarily change how
conversion is done by inserting a new converter, using it and then removing it and restoring the previous one. The

July 26, 2000 18

removeJavaConverter()allows one to remove an entry from the an internal list of converters, either the “from Java to
R” or “from R to Java” lists. Thiscurrentlytakes the index of the particular converter in the list to be removed.

[]
> getJavaConverterDescriptions(F)
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"
> removeJavaConverter(3)
class == java.lang.reflect.Constructor

2
> getJavaConverterDescriptions(F)
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "instanceof java.util.Properties"

One can also pass the description of the converter to identify it. This has the advantage that subsequent identifiers
don’t change when we remove an entry. (This happens for example if we wanted to remove converters indexed 2 and
3. Having removed 2, the element 3 becomes 2 and we would remove 2 again.)

[]
> getJavaConverterDescriptions(F)
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "class == java.lang.reflect.Constructor"
[4] "instanceof java.util.Properties"
> removeJavaConverter(getJavaConverterDescriptions(F)[[1]][3])
[[1]]
[1] "Converts any Java InterfaceReference"
[2] "class == java.lang.reflect.Method"
[3] "instanceof java.util.Properties"

11 Foreign References

A significantly more complete example of this is given in theExamples.pdf and Overview.pdf files in the same
directory as this one. Please read these.
We have discussed R objects that are references to Java objects. We now turn our attention to the flips-side of this
communication mechanism: Java objects that are references to R objects. Just as there is no obvious way to represent
an arbitrary Java object as an R object, there is a similar disparity in converting non-primitive R objects to Java objects.
On some occasions, there is no available Java class to which we can convert the R object. On other occasions, we
simply do not want to convert the object but have the same unique reference to be shared by both R and Java. In the
same way as we store Java objects locally in Omegahat and export a reference to these to R, the R-Omegahat interface
has a mechanism by which we export R objects to Java by storing them within R and exporting a reference to them.
We export an object to the Java/Omegahat system in two steps. The first step is to register it with a foreign refer-
ence manager. This is done via the functionforeignReference(). Effectively, we are checking in our object and being
given a receipt for it. The receipt can be copied, but always identifies the same object. The second step is to pass the

July 26, 2000 19

reference (or receipt) as an argument in one of the R-Java interface functions (i.e..Java(), .JavaConstructor(), .JavaAr-
rayConstructor(), etc.) The conversion mechanism recognizes the R object (by its class) and creates an appropriate
representation on the Java/Omegahat side that still points to the R object.
Java is not quite as liberal as R is regarding what values can be passed to functions as arguments. Java is a strongly-
typed language meaning that the types of a methods arguments are specified at compile time. To call a method, we
must have an object of the appropriate class (or actually type to include primitives). Simply passing a generic R foreign
reference to a Java method will not work. Instead, we must convert it to a Java object which is both a reference to an
R object and also an object of the appropriate Java class to satisfy the strong typing.
An example may help. We return to the editing of an R data frame via a Java GUI. To pass the data frame to the
DataFrameViewer, we must create a Java object that implements the interfaceDataFrameInt. This object must also
maintain a reference to the R object by storing the name by which the foreign reference manager knows it. What we
need to have happen is that this Java object should implement the methods require by the interfaceDataFrameInt by
calling the corresponding function in R which has access to the data frame (either as part of a closure or passing the
data frame as an explicit argument).
There is nothing magical about a Java method calling an R function. Again, it is part of the low-level communication
mechanism that bridges the R-Java systems. The Omegahat classRForeignReference is an abstract class that anyone
can inherit from and which provides a method which uses native code to call an R function. One gives this method the
collection of arguments and the name of the function. This calls the R function and returns the result of the call to Java.
Additional methods in this class help in converting the Java arguments to R objects and equivalently, converting the
return value to Java. One can write new Java classes by extending this one and implementing different Java interfaces.
Then, one can create instances of these classes using an R foreign reference as an argument to the main constructor,
arming that object with knowledge of which R object on which to call the function.
Again, we return to the example of the data frame. Suppose we create a new Java class which extendsRForeignRefer-
ence and also implements the methods in the interfaceDataFrameInt. Each of these methods collects their arguments
and calls the inheritedeval() method with its own method name and these arguments. The native methods calls the
appropriate R function. It does this by passing the request to a central R broker. This resolves the R reference passed
to it by the RForeignReference. Then it looks to see if this is a list containing functions. If so, it looks for the function
there by comparing the name of the method passed to it from the Java method call. If it finds one, it calls that function,
passing it the arguments given it to it from the Java method.
This object that is a list a functions is usually the value exported as an R foreign reference. It is typically created as
a closure with its own data instances. This is how we setup the data frame that we exported in this running example.
We create a closure that has access to the data frame and has a function for each of the different methods in the Java
interfaceDataFrameInt. When the Java methods is called, the corresponding R function is invoked and this has access
to the closure’s instance of the data frame. The R code for creating the closure looks something like the following:

[]
dataFrameClosure <- function(data) {

following are methods specified in
the DataFrameInt interface (inherited
from BasicDataFrameInt

getVariableNames <- function() {
colnames(data)

}
numObservations <- function() {

dim(data)[1]
}

return(list(numObservations=numObservations, getVariableNames=getVariableNames))
}

July 26, 2000 20

11.1 Default Handler

The R object that manages the exported references and brokers the incoming function call requests from the Java
method calls can be found by calling the R functiongetJavaHandler(). This is also a closure and maintains a list
containing the different objects that are exported. It also has several functions which allow one to manipulate that list:
creating, adding and removing objects, resolving references and dispatching function calls to the appropriate function
and object.

11.2 Mutable State

By passing an R object that is a closure instance, subsequent calls from Java (and also R) to the functions within that
closure can cause its contents to be changed. These changes are visible to all other functions and methods that call the
closure’s functions in the future. This means that we can use themutable stateof an R object in much the same way
as a Java object.
An example of where this mutability is useful is when we export a data frame from R to Java. Within the Java
framework, we display the contents of the data frame in a data-grid or spreadsheet-like editor. The user can edit
individual cells. The Java editor assigns such modifications by invoking a method in the Java data frame representation.
Since this calls the corresponding R function which has access to the original data frame on the R side, the changes
are made to that one instance of the data values. In this way, we can edit the data in one system and have the changes
available to us as they occur in the other system
An example of how all of this R foreign reference material can be used is below. Here, we create a Java GUI consisting
of a button in a window. We arrange that when the user clicks on the button, an R function is called. This function
counts the number of times the button was clicked. It does this by having a count value associated with, created as part
of a closure. This is thehandler()function below andcb() is the instance of this closure.
We connect this closure instance with the button and the user action callback by creating an instance of the Omegahat
class RManualFunctionActionListener. This takes a reference to the R object as the only argument to its constructor.
This allows it to identify that R object when calling theactionPerformed() function in R. The Java object’s
own actionPerformed() method is called when the button is clicked on by the user. This connection is estab-
lished when we register theRManualFunctionActionListener as a listener for this button’s events via the the call to
addActionListener() . And that is all there is.

[Button Callback]
handler <- function() {

n <- 0
actionPerformed <- function(event) {

n
<<- n + 1

print(event)
print(n)

}
return(actionPerformed)

}

cb <- handler()
ref <- foreignReference(cb,"btnCB")

l <- .JavaConstructor("org.omegahat.R.Java.RManualFunctionActionListener", ref)

b <- .JavaConstructor("javax.swing.JButton","Click me")
f <- .JavaConstructor("GenericFrame",b,T)

.Java(b,"addActionListener", l)

July 26, 2000 21

11.3 Dynamically Creating Interfaces

Even though it is relatively simple given the template above, it is tedious to have to manually generate Java classes
to act as proxies for R objects or functions. Given the template above, one would think that we could automate the
task, and indeed we can. Omegahat provides a class –ForeignReferenceClassGenerator – that provides this dynamic,
automated compilation. One supplies it with

1. one or more interfaces to be implemented (either as strings orClass objects),

2. the name of the class to create, and

3. optionally, the name of the class from which the new class will inherit methods. By default, this isRForeign-
Reference.

The resulting byte-code that defines the new class can be written to a file for use in future sessions and/or loaded into
the running Omegahat session. Writing to a file (or stream) is done via thewrite() method of theForeignRefer-
enceClassGenerator object. The dynamic loading of the class is performed by passing theForeignReferenceClass-
Generator instance to the Omegahat evaluator’s dynamic class loader. The Omegahat command

[]
evaluator().dynamicClassLoader().defineClass(gen)

illustrates how this is done.
The OmegahatForeignReferenceClassGenerator class is a specialization of a general dynamic compilation mecha-
nism. Seehttp://www.omegahat.org/DynamicCompilation .

11.4 Example

An example of how we can use this should help in understanding the power of this automation technique. Suppose we
wish to receive events from a collection of SwingJCheckBox objects when the user selects any of them. (Seehttp:
//java.sun.com/docs/books/tutorial/uiswing/components/example-swing/index.htmlCheckBoxDemo .)
We define an R function that responds to such event notifications. This function sets the value of a variable within a
closure to the action command (getActionCommand()) of the button which generated the event.

[Checkbox Event]
checkbox <- function() {

the variable that holds the current setting.
Initial value is unset.

value <- NULL

itemStateChanged <- function(ev) {
btn <- .Java(ev,"getItem")
value

<<- .Java(btn,"getActionCommand")
}

return(list(itemStateChanged=itemStateChanged, value = function() value))
}

Given this function, we now have to have a Java class which is both anRForeignReference (for theeval() method
that calls an R function) and a Javajava.awt.event.ItemListener . We can now create an instance ofFor-
eignReferenceClassGenerator to define the new class. We use the.JavaConstructor()to create the compiler-instance,
and give it the name of the interface to implement (java.awt.event.ItemListener) and the name of the class
to create. Since we are inheriting from the default base classRForeignReference we need not specify any additional
arguments. We store a reference to the compiler object via theR variablecompiler()

http://www.omegahat.org/DynamicCompilation
http://java.sun.com/docs/books/tutorial/uiswing/components/example-swing/index.html CheckBoxDemo
http://java.sun.com/docs/books/tutorial/uiswing/components/example-swing/index.html CheckBoxDemo

July 26, 2000 22

[ItemListener]
compiler <- .JavaConstructor("ForeignReferenceClassGenerator",

"java.awt.event.ItemListener",
"RItemListener")

When this returns (without error!), the class has been compiled. We might write it to the file/tmp/RItemListener.class
via theR command

[*]
.Java(compiler, "write", .JavaConstructor("File","/tmp/RItemListener.class"))

We can make it available to the Omegahat session for immediate use. This is what we need in this situation.

[*]
dyn <- .Java("__Evaluator","dynamicClassLoader")
.Java(dyn,"defineClass", compiler)

At this point, we have the necessary class and can create an R/Java listener using an closure instance created from
calling thecheckbox()function and the newly createdRItemListener class.

[*]
ref <- foreignReference(checkbox())
listener <- .JavaConstructor("RItemListener",ref)
.Java(jcheck, "addItemListener",listener)

In summary, all we had to do to create a suitable Java class to implement a Java interface with an R closure instance
was

1. create aForeignReferenceClassGenerator,

2. pass this to the evaluator’s dynamic class loader,

In future versions, we can automate this. When one creates the Foreign Reference inR (via theforeignReference())
function, one can specify the interfaces that one wishes to implement. These are given via thetargetClassesargument
and stored in the reference. When theRForeignReference is created, it receives this information. When attempting
to locate an appropriate method, the Omegahat mechanism has licence to match a parameter type that is in the list of
potential target classes. It is at this stage that it defines an appropriate class that implements that Java interface or class
and creates a new instance of it.
This functionality is not in this release as it does interfere with the generality of the method dispatching. As more
feedback is received about how people are using the interface, we will hopefully understand more about the appropriate
default, implicit conversion.

11.4.1 What is the Class Compiler Doing?

What is that we really do manually? We start by defining a new class that extendsRForeignReference. Then, we
“copy” the constructors fromRForeignReference, modifying them to use the name of the new class and to pass the
arguments to the base class’ constructors. Then, we iterate over the methods in the interface being implemented and
define a corresponding method for each. The body of each of these methods simply packages the arguments into an
OmegahatList class and calls the inheritedeval() method with this argument collection, the name of the method,
the signature of the method and the type of the expected return value.
Because of reflectance, we can iterate over the methods of the interface being implemented programmatically. Each
Method definition (obtained via thegetMethods() method) provides us with information about its name, the
number and types of its argument, return type (and what exceptions it throws). This is all we need to know to create

July 26, 2000 23

the instructions that collect the arguments into aList, compute the signature and provide the method name and return
type. The Jas classes then allow us to specify the instructions and generate the Java byte-code.
The constructors are handled in a very similar fashion. We use reflectance to query the constructors in the base class
(e.g. RForeignReference by default). Again, we iterate over these and generate the appropriate call tosuper()
which passes the arguments to the inherited constructor.

11.5 The.convert Argument and identity Method

A slightly different use of the.convertis when we want to use a constructor for its computational side-effect rather
than creating a Java object for use in future Java method calls. For example, suppose we have a converter from Java
to an R representation for the classStatDataURL. When we create aStatDataURL, on some occasions we just
want the contents of the URL and on other occasions we want the Java object. We use the.convertargument of the
.JavaConstructor()to differentiate between these two circumstances. In the first of these case, we give the valueTRUE
(the default) so that the default conversion is applied. When we wish to prohibit this conversion, we specify the value
FALSEfor this argument and have the Omegahat evaluator return an anonymous reference to the resulting object.

[]
setJavaConverter(function(x) {.Java(x,"getValues")},

match="Equals",userObject="StatDataURL")
contents <- .JavaConstructor("StatDataURL",

"http://www.omegahat.org", .convert=TRUE)
reference <- .JavaConstructor("StatDataURL",

"http://www.omegahat.org", .convert=FALSE)

The following creates an array and leaves it in the Omegahat database. Then we insert values into the array’s elements
by operating on the array with other Java methods. And finally we retrieve the elements of the array as a character
vector by using theidentity() method of the Omegahat evaluator.

[]
r <- .JavaArrayConstructor("String", dim=c(3))

populate the first r.length elements with the
names of the states.

.Java("States","fillIn", r)

.Java("__Evaluator", "identity", r)

12 Omegahat expressions

It can be tedious to have to constantly type.Java and.JavaConstructor . It would be more convenient to have
a syntax that was more Java-like of the form

[]
obj.method(arg1, arg2, arg3)

Well, obviously we cannot use the dot (.) notation since this is a legitimate character in R. We can borrow the idea we
use in S version 4 which is to think of the $ operator as being the field or method accessor of a Java object.

[]
obj$methodName(arg1, arg2, arg3)

July 26, 2000 24

Java fields can be accessed in a similar manner.

[]
col <- .Java("__Evaluator", "findClass", "Color")
col$red()
col$blue()

This syntax is in the spirit of both Java objects and also of accessing data and methods within a closure instance.
Another syntax is that of Omegahat. The interactive Omegahat language is similar to both Java and R and allows one
to invoke Java commands dynamically, i.e. without compiling them first. The R-Java interface provides access to the
Omegahat evaluator and hence we can send it a string which contain valid Omegahat expressions to evaluate. All of
the functionality available via the.Java()is available within such expressions, but some would argue more directly.
We can invoke an Omegahat expression using the.OmegahatExpression(). The first argument is a the Omegahat
expression as a string.

[]
.OmegahatExpression("System.getProperty(\"java.class.path\")")

While the input to evaluating an Omegahat expression is a string, the result is a real object in exactly the same manner
as the.Java()function returns its value. The usual conversions are performed. The result of the example above is a
character vector containing the class path. Other types of objects are converted appropriately.
One of the difficulties with using string expressions to execute commands is that one has to construct the string. This
is easy in interactive use, but for programmatically generated commands can be trickier. There is of course just the
difficulty of pasting the appropriate elements together. This is rarely complex, just tedious. The more challenging
issue is how we reference local variables in such an expression so that they will make sense in the foreign system –
Omegahat. Fortunately, we are familiar with such a mechanism -substitute(). One can reference local R variables in
an Omegahat expression by listing them in the· · · argument. One gives each of these arguments a name by which it
can be referenced in the expression string. For example,

[]
.OmegahatExpression("new DataFrame(data)", data=mtcars)

This call creates the association between the Omegahat variabledata used in the string expression and the R variable
mtcars(). When evaluating the Omegahat expression, the evaluator will attempt to locate the value of the variable
data . This will be available in a special frame or database that is created for the duration of the expression evaluation.
The contents of this Omegahat database consist of the objects passed via the· · · argument of.OmegahatExpression().
The names are those used in that function call for the corresponding argument. In other words, in a call such as

[]
dyn <- .Java("__Evaluator", "dynamicClassLoader")
.OmegahatExpression("x = new Object[]{a, b, c}", a= 1:10, b=mtcars, c=dyn)

Omegahat creates a new frame with entriesa, b andc . These contain the Java objects created by converting the R
objects.
Unfortunately, the example above will not work as is. We somehow have to tell the R-Omegahat bridge how to convert
the R objectmtcars to a Java object. We can use the dynamic compilation mechanism above, but we must instruct
it as to what type of interface we wish to implement in a new car. We use the.sigsfor this purpose. This not only
instructs how to convert the object, but also which constructor the Omegahat expression is actually invoking. The
following illustrates the basic idea.

[]
.OmegahatExpression("new DataFrame(data)", data=mtcars, .sigs="DataFrameInt")

July 26, 2000 25

12.1 Debugging

There is not much explicit support for debugging Java calls from R and the R function callbacks. The architecture
does provide many facilities that one can use to monitor certain computations. This will be outlined and enhanced in
future releases.

13 C-level Programming Access

This R-Java interface is implemented using the Java Native Interface (JNI) that is part of the Java programming
environment. This is more frequently used to use code from Java via native methods. We use it in this way to
implement the callbacks to R functions inRForeignReference (one of itseval() method). However, we use the JNI
primarily in the other direction – to access Java from C. Since the Java VM is embedded and initialized as part of this
interface, R programmers can integrate otherC -level code in either way – as part of Java or part of R – that uses the
JVM.

13.1 Native Java Methods

Using Java classes with native methods is no different than using them within a regular stand-alone Java application.
The user must callSystem.loadLibrary() to load the shared library containing the C routine(s) (even if R
has already loaded that same library). These C routines are passed a reference to the Java environment (similar to
thread-specific information) and with that can access all of the facilities in Java.

13.2 C routines in R

??R users can use C routines that also manipulate the Java environment using the.C() and.Call() functions. Develop-
ers may wish to write such routines for a couple of reasons. Firstly, while the.Java()and.JavaConstructor()functions
are very general and provide complete access to the Java facilities, it is interpreted on both sides of the connection: R
and Omegahat.

speed Implementing calls to Java methods and constructors in C makes this faster for important data types. This is an
issue when converting data types between R and Java as discussed in Section 10.

Existing C Code One can use code in otherC libraries and connect it to the Java facilities directly withinC . This
avoids the indirect approach of writing an interface from R to this other library and then connecting the R-level
access to Java.

TheC code that implements the R-Java interface c ontains both access to the basic internal Java variables needed by
any code communicating with Java and also many utility routines that make it easier to implement JNI. These routines
are in no way fixed and do not define an API that will necessarily be supported in the future. However, others can
use them to implement C code that access the JVM. They are unlikely to change considerably and any changes will
typically involve adding extra arguments to routines.
The best source of documentation for the C routines is the code itself. We have written the C-level code using noweb,
a literate programming tool that promotes writing code to be read easily by humans (and not specifically in a format
that the compute expects.) From this, one can generate output in Postscript, PDF, HTML, etc. You can retrieve the
code from the Omegahat CVS repository (http://www.omegahat.org/Howto/CVSInstall.html). (You
will need (some of) the noweb tools. If you are having difficulties, let us know and we can make them available.)
A table of C routines and macros provided by the library is given inCRoutines.nw. Note that the R library is actually
linked against an intermediate Omegahat library which provides the basic embedded Omegahat & Java facilities. This
library can be used by any C level application, independently of R.

14 Installation Details & Customization

There are several variables and arguments that one can supply to customize the installation of the library. The
README file in the tar file (Java˙1.0.tar.gz) provides the details in short form. In this section, we discuss them
in more detail.

http://www.omegahat.org/Howto/CVSInstall.html

July 26, 2000 26

14.1 Requirements

Firstly, one requires a Java run-time environment that is at least version 1.2 or 1.3 of Java. We have successfully tested
this on Solaris (SunOS 5.6 and 5.7) and Linux (2.2.14-5). For Solaris, we have used the beta JDK1.3 from Sun (http:
//www.javasoft.com). For Linux, we have used IBM’s JDK1.3 (http://www.ibm.com/java/jdk) and
also the JDK1.2 from Blackdown (http://www.blackdown.org). The IBM version is preferrable for Linux as
we have experienced some some difficulties with running GUIs in the Blackdown version.
Other JVMs such as japhar have not been tested. Kaffe is supports Java 1.1 and so cannot be used without (minor)
modifications to the code. (Feel free to make them and let us know.)

14.2 Finding Java

The first thing the installation does is to look for an implementation of the Java runtime environment. This is usually
an executable application namedjava . The configuration finds the first such entry in the callers path and from this,
determines the location of the JDK installation. This is termedJAVA_HOMEand is used to find the different shared
libraries and header files needed to compile and link the R code that implements the interface.
Some people tend to have an old or inappropriate version ofjava in their path and use a more modern version. For
the configuration to succeed, one can alter one’s path and prepend the location of the directory containing the desired
java version. Alternatively, one can define the value of the environment variableJAVA_HOMEbefore invoking the
R INSTALL script. The value should be the top-level directory of the JDK installation. This directory will typically
contain the directoriesinclude/, bin/, jre/ among others and is usually the directory in which the JDK was un-tar’ed.
The configuration script tests the version of Java and complains if it is not at least Java 1.2 capable.

14.3 Compiling & Linking

The configuration script then attempts to find the location of the necessary JNI header files and shared libraries. It does
this by examining the creator or vendor of the JVM being used and the operating system on which we are located. The
directories containing the include files and libraries are computed via the Java classjniBashParamters. The vendor of
the JVM and from this the names of the actual JVM libraries against which we link are computed via the Java class
vendor.
One can enable the debugging support in the C code that implements the R-Java interface by specifying the--
enable-debug argument to the configure script. When used withR INSTALL, this is done via the command

[]
R INSTALL --configure-args="--enable-debug" -c Java_1.0.tar.gz

One really does not want to do this. It generates an enormous amount of output. We will at some point implement a
debug level, so that one can control what types of messages are output based on an integer value ofdegree.
The remainder of the configuration script computes derived flags and variables from the information previously com-
puted earlier. Along with creating the necessary makefiles for the sub-library (libRSNativeJava.soin thesrc/RSJava/),
it also configures the R code to get the
The conclusion of the configuration file compiles thelibRSNativeJava.so and installs it in theinst/libs// directory.
Additionally, it creates the JNI header files from the two Java classesRForeignReference and RManualFunctionAc-
tionListener.
The configuration script also produces a cleanup script that will be run ifR INSTALL is invoked with the-c flag.
This creates a symbolic link from the shared libraryJava.so that R will attempt to load in the calllibrary(Java)
and the librarylibJava.so that Java will attempt to load when the classRForeignReference is needed.
If one omits the-c flag when callingR INSTALL, one can invoke thecleanup script from the shell. It is installed
in the Java package directory asscripts/cleanup. This is shell script.
In addition to the cleanup script, the package installs two other shell scripts in thescripts/ directory. These are named
RJava.cshandRJava.bshand are for users of csh/tcsh and Bourne (bash, sh) shells, respectively. These modify the
value of theLD_LIBRARY_PATHshell variable by appending the directories containing the JDK shared libraries.
This is necessary so that the (implicit) call to the R functiondyn.load()succeeds. The user must source one of these
scriptsbeforestarting the R session. This is done via one of the following commands (Bourne and C shell respectively):

http://www.javasoft.com
http://www.javasoft.com
http://www.ibm.com/java/jdk
http://www.blackdown.org

July 26, 2000 27

[]
. RJava.bsh
source RJava.csh

In the future, we will add facilities to the configuration script that add these directories to the run-time load path
contained with the shared libraries we build. It currently does try, but cannot handle the secondary dependencies.

	Overview: The Penny Tour
	Other Documents
	Installation
	Initializing the Java Virtual Machine
	Executing Java Commands/Expressions
	Calling Omegahat Evaluator Methods
	Discovering Java Methods

	Basic Non-Primitive Conversion
	Named Arguments
	Garbage Collection & Querying the Omegahat References

	Creating Java Objects
	Creating Arrays
	Advanced Converters
	Foreign References
	Default Handler
	Mutable State
	Dynamically Creating Interfaces
	Example
	What is the Class Compiler Doing?

	The .convert Argument and identity Method

	Omegahat expressions
	Debugging

	C-level Programming Access
	Native Java Methods
	C routines in R

	Installation Details & Customization
	Requirements
	Finding Java
	Compiling & Linking

