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1 OVERVIEW

1 Overview

1.1 About Geneland

1.1.1 How to request help

If you are experiencing troubles with Geneland, before requesting help, please

• make sure you are using the latest versions of R and Geneland (version numbers appear at loading)

• read carefully the present documentation

• make sure you are able to describe and reproduce the problem you are experiencing

If you think you have identified a bug or feel the manual lacks information, you are welcome to report it, then

• make sure you are a registered Geneland user

• send enough data and information about what you did in R for us to reproduce the problem, namely

– on which operating system(s) did you experience trouble

– if your problem is related to the use of Geneland with the R command line, give the exact sequence of
commands that causes the problem

– if your problem appears with the GUI, please generate and send theExecLog file located in the output
directory (activate Create Log file option in top-left Menu panel.

– in any case, send a subset of your data that will allow us to reproduce the problem

Questions should be addressed to Gilles Guillot gigu[à]imm.dtu.dk.

1.1.2 History

The work around Geneland started in 2002-2003 at INRA in Avignon, France. This resulted in an algorithm to
perform clustering under a spatial as well as a non-spatial model for codominant markers [Guillot et al., 2005a].
This algorihtm has been made available as a regular R package released in 2005 [Guillot et al., 2005b]. People
who helped designing and improving this initial package include: Annie Bouvier, Aurélie Coulon, Jean-Francois
Cosson, Arnaud Estoup and Frédéric Mortier. Filipe Santos joined the project in 2007 and wrote the graphical
user interface in R-Tcl/Tk together with Arnaud Estoup.

Subsequent developments include a scheme accounting for the presence of null alleles [Guillot et al., 2008],
an improvement of the inference technique under the correlated frequency model [Guillot, 2008], a more efficient
MCMC post-processing scheme [Guillot, 2008], and a scheme to handle dominant markers [Guillot and Santos,
2010]. The GUI in R-Tcl/Tk is currently maintained by Filipe Santos and the R and Fortran codes are maintained
by Gilles Guillot.

The program and its manual benefitted from comments from users registered on the Geneland mailing list
and also from discussions with people who attended courses in populations genetics based on Geneland in Lisbon,
Liblice and Porto in 2008 and in Helsinki and Oulu in 2009. They are all warmly thanked.

1.1.3 Credit

The Geneland project received support from Institut National de le Recherche Agronomique, Bureau des Ressources
Génétiques, Agence Nationale de la Recherche in France, the Norwegian Research Council, the Centre for Ecologi-
cal and Evolutionnary Synthesis at the University of Oslo and the Technical University of Denmark in Copenhagen.

1.1.4 Contact, info, mailing list

Geneland is distributed through the Comprehensive R Archive Network (CRAN). It consists of a network of
mirroring sites throughout the world. This distribution method is very efficient but does not allow one to know
how many users have downloaded or used a specific package. In order for people developing Geneland to have an
idea about that and also for users to be informed of updates and related publications, a mailing list is operated.
Please register on http://www2.imm.dtu.dk/ gigu/Geneland/register.php.

Reports of bugs in Geneland and errors in the present manual are greatly appreciated.
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1.2 System and hardware requirements 1 OVERVIEW

1.1.5 Citation

Developing, improving and maintaining Geneland represents a tremendous amount of work. If you use it for your
own scientific work, please cite the related publications (Guillot et al. [2005a],Guillot et al. [2005b],Guillot et al.
[2008],Guillot [2008], Guillot and Santos [2010]) detailed in the reference list at the end of the present document.

1.2 System and hardware requirements

1.2.1 Operating system

Geneland is an add-on to the free statistical software R. To install and run Geneland, you need first to have R
installed on your computer. R is available for MS-Windows, Linux and Mac-OS.
See http://cran.r-project.org . It is becoming a standard in many research communities, in particular in
bioinformatics.
See http://en.wikipedia.org/wiki/R (programming language) for details.

1.2.2 Memory

Computations in Geneland are carried out through a so-called Markov Chain Monte-Carlo (MCMC) technique.
This implies that the overall computing task consists of a (very) long sequence of rather simple tasks. A small
set of variables is stored in RAM, updated sequentially and written to the disk from time to time. This requires a
few Mb of RAM. The exact amount varies with datasets and computing options but it is fulfilled by any current
computer.

1.2.3 Disk space

The amount of disk space required depends on which fraction of the computations are stored on the disk. This
amount can be fairly large from a few tens of Mega bytes to several Giga bytes (see section A.13 for details).

1.2.4 Computer speed

The model implemented in Geneland is fairly complex. A run of 100000 iterations for a dataset of 200 individuals
at 10 loci) takes typically 3-15 minutes with a computer equipped with a 2 GHz chipset. This time depends on
the model and storage options.

1.3 Installation

1.3.1 Installing R

Instructions for installation of R are continuously updated.
See http://cran.r-project.org/sources.html for details and update.

Typically, under Windows:

• Go to the Windows binary repository http://cran.r-project.org/bin/windows/base/

• Download the executable R-x.x.x-win32.exe

• Launch this executable.

Useful sources of information include the various R manuals 1 and [Paradis, 2005, 2006] among others.

1.3.2 Installing Geneland

Once R is installed,

• launch R

• type install.packages("Geneland").

1available from http://cran.r-project.org
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1.4 Tasks performed 1 OVERVIEW

• follow the instructions.

Geneland is based on the add-on packages field, RandomFields, maps,mapproj and snow. They have to
be also installed as they do not belong to the R base distribution. All packages can be installed at the same time
via the command-line by typing:
install.packages(c("Geneland","fields","RandomFields","maps","mapproj","snow")).

The use of the graphical interface for parallel computations with snow requires also packages Rmpi or rpvm

(to be installed too).

Under Mac-OS, make sure that X11 is installed and running when you install and use R. X11 can be found
on the Mac-OS installation DVD.

1.4 Tasks performed

1.4.1 Estimating the number of panmictic groups and locating their spatial boundaries

The main task of Geneland consists in clustering a sample of population genetics data into a certain number
of populations in such a way that each population is approximately at Hardy-Weinberg equilibrium with linkage
equilibrium between loci (HWLE). Different algorithms based on different models are implemented. The most
popular algorithm is based on a spatial model and makes use not only of genotypes but also of spatial coordinates
of sampled individuals (or populations).

1.4.2 Input files

The research project that lead to the development of Geneland was focused on the combined use of genetics and
geographic information to understand the factor affecting gene flow across space. Hence, a typical dataset treated
by Geneland consists of

• a file containing the genotypes of n haploid or diploid individuals at L co-dominant markers (micro-satellites,
SNPs);

• a file containing the spatial coordinates representative of each individual.

This second file is actually optional and Geneland can also be used without spatial information. See section 3 for
detail about data format.

1.4.3 Output files and graphics

The output of Geneland consists of

• an estimation of the number of HWLE populations,

• a map of the geographic spread of these various populations,

• a file giving the estimated population membership of each individual

• a file giving the estimated population membership of pixel of the study domain (the size of the pixel being
prescribed by the user).

Optional computing options allow to

• account for null alleles (diploid data only)

• account for spatial coordinates uncertainty

Additional outputs include

• computation of pairwise population FST

• computation of individual population FIS
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2 MODELS

2 Models

Three types of quantities are involved:

• the (usually unknown) number of populations K

• the parameters (or hidden variable) coding for population membership (of individuals and pixels)

• the parameters of the genetic model conditionally on the the number of populations and on population
memberships.

They are modelled separately. K is assumed to follow a uniform distribution between 0 and an upper bound
Kmax prescribed by the user. The genetic and the spatial model are specified conditionally on K. This is described
below.

2.1 Genetic models

2.1.1 Diploid data: looking for within group Hardy-Weinberg and linkage equilibrium

It is assumed that the overall dataset consists of individuals belonging to K populations, each of these populations
being at Hardy-Weinberg equilibrium with linkage equilibrium between loci. For n individuals genotyped at L loci,
denoting by fklj the frequency of allele j of locus l in population k, by pi population membership of individual i
(pi ∈ {1, ...,K}) and by zil = (αil, βil) the genotype of individual i at loci l, HWLE writes:

π(z) = π((zil)il) =

n∏
i=1

L∏
l=1

fpilαi
fpilβi

(2− δβi
αi

) (1)

where δβi
αi

= 1 if αi = βi and 0 otherwise.

2.1.2 Haploid data: multinomial distribution and linkage equilibrium

For haploid data, the model assumes a multinomial distribution of genotypes conditionally on allele frequencies
and population memmberships and linkage equilibirum is also assumed.

2.1.3 The uncorrelated frequency model

Allele frequencies in the various sought populations are unknown and although they are not of direct interest, it is
convenient to introduce them in the statistical computations. Indeed, once they are introduced and although they
are unknown, Equation (1) allows to compute the likelihood. Plugging this equation in an iterative scheme known
as Metropolis-Hastings algorithm allows to start from arbitrary values for all unknown parameters and to modify
them in such a way that after many iterations, these values are close to the true values. The trick consisting in
including extra unknown parameters in the inference not of direct interest but for computational purpose is known
as data augmentation in statistics.

Once we have introduced the allele frequencies in the various sought populations, we need to place a prior
distribution on them in view of Bayesian inference (see section B).

For each population and each locus, the entries of the vector fkl1, ..., fklJl sum up to one. The simplest
probability distribution fulfilling this condition is the Dirichlet distribution 2. Beyond this algebraic property, it
also has the interest to comply with a Wright-Fisher island model, the asymptotic distribution of allele frequency
being Dirichlet under this model.

This distribution depends on a single vector parameter which might vary across populations and loci. Assuming
that this parameter αkl is not common across populations and loci, assuming Dirichlet a priori distribution for
fklj writes:

π(fklj) = Γ(Jl) (2)

This probability does not depend on the actual values taken by fklj and this model turns out to give the same
a priori probability to any allele frequencies. The key assumption consists now in assuming that the vectors fkl.
are mutually independent across populations. Independence of the vectors fkl. is of course assumed across loci.

2See en.wikipedia.org/wiki/Dirichlet distribution.
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2.1.4 The correlated frequency model

The previous model is somehow over simplistic in the sense that most often, allele frequencies tend to be similar
in different populations, (e.g. rare alleles in a certain populations are also rare in other populations). From a
statistical point of view, this property can be viewed as a correlation of fklj and fk′lj for some populations k and
k′. This correlation can be viewed as a simple but useful summary of the common recent (micro-)evolutionary
history of populations k and k′.

The correlated frequencies model has been introduced previously (see e.g. [Balding, 2003],[Nicholson et al.,
2002]) to account exactly for this property.

In this model, one introduces the frequencies of an ancestral population denoted by fAlj also assumed to
be independently Dirichlet distributed and a vector of population specific drift parameters (d1, ..., dK) so that
fkl.|fA, d has a Dirichlet distribution

D (fAl1(1− dk)/dk, ..., fAlJl(1− dk)/dk) (3)

In this model and conditionally on fA and d, the frequencies are independent across populations, but marginally
(integrating out fA and d) elementary computations (see [Guillot, 2008]) show that the correlation of allele
frequencies across population is:

Cor(fklj , fk′lj) = 1

/[
1 + E[dk]

E[fAlj ]− E[f2Alj ]

E[f2Alj ]− E[fAlj ]2

]
(4)

In the most general case, the distribution of the fkljs in the uncorrelated model may depend on population-, locus-
and allele-specific parameters αklj . In practice, the αklj are always assumed to be common across populations,
locus and alleles, and most often set to one. Similarly, in the correlated model, the fAlj might have locus- and
allele-specific parameters but I do not consider this case here. I set it to one as it is most often done in practice,
although the effect of this assumption has not been yet thoroughly assessed in the context of clustering (but see
[Foll et al., 2008] in another context). Independence is always assumed across loci.

Specifying fully the model also requires to place a prior on the drift parameters dk. As this parameter has
to lie in [0, 1], it is natural to consider a Beta prior, with independence across populations. A Beta distribution
depends on two parameters.

The correlated model can be viewed as a Bayesian and biologically grounded way to make inference under the
uncorrelated model with population-, locus- and allele-specific parameters.

It has been observed that using the correlated frequency model could be more powerful at detecting subtle
differentiations. On the other hand, this model seems to be more prone to algorithm instabilities and more sensitive
to departure from model assumptions (e.g. presence of isolation-by-distance). It is recommended to start data
analysis with the uncorrelated frequency model and then to check how these initial results are modified by the use
of the correlated frequency model. It is also important to check ex-post that the inferred groups are significantly
differentiated and at HWLE.
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2.2 Models underlying population membership

2.2.1 The non-spatial model

I denote by p a vector parameterising the population memberships. In case population membership is modeled
at the individual level, this vector can be simply p = (c1, ..., cn) where ci ∈ {1, ...,K}; In this case, the simplest
form of prior that can be placed on it is an i.i.d prior π(p|K) = 1/Kn.

Spatial representation for six simulations from this prior model are given on figure 1.
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Figure 1: Six examples of 100 individuals belonging to two populations spread totally at random across space.

The previous model is numerically convenient but it is biologically questionable in the sense that one may
wonder how differentiation might have occurred between populations in case of such spatial overlap between them.

2.2.2 The spatial model

This model consists in assuming that spatial domain of each population can be approximated by the union of a
few polygonal domains, see figure 2 for examples.

This model corresponds to the spatial patterns that can be expected when differentiation occurs by limited
gene flow induced by the presence of physical barriers such as road, rivers, mountain ranges, human activity.

Formally, the colored Poisson-Voronoi tessellation model consists in assuming that there is an unknown number
of polygons m that approximate the true pattern of population spread across space. These polygons are ”centred”
(this term is actually a bit inaccurate mathematically, but see below) around spatial points u1, ..., um and each
polygon belongs to one of the K population which is coded by an integer (or color for graphical representation)
denoted by c1, ..., cm. Examples are given on figure 4.

The exact mathematical definition of the colored Poisson-Voronoi tessellation model is as follows:

• the number of polygons follows a Poisson distribution with parameter λ: m ∼ Poisson(λ)

10



2.3 Additional modelling options 2 MODELS

● ●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

● ●

● ●●

●

●

●

●

●

●

●●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.4 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●
●

●

●
●●

●

●
●

●

● ●

●

●

●

0.2 0.6 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

● ●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Six examples of 100 individuals belonging to two populations where the spatial domain of each population
can be approximated by the union of a few polygonal domains.

• conditionally on m, there are m mutually independent points u1, ..., um with uniform distribution over the

study domain D: (u1, ..., um)|m i.i.d∼ Uniform(D)

• each points ui defines a set Vi of points in D that are closer to ui than to any other points in (u1, ..., um).
This set Vi is the i-th cell of the so-called Voronoi tessellation induced by (u1, ..., um).

• the points (u1, ..., um) (or now equivalently the sets V1, ..., Vm) receive a mark with value in {1, ...,K} coding
for population membership and displayed as different colors. These colors a assumed to be sampled from a
probability distribution, which in Geneland (but this is not a requirement) is assumed to be an independent,

identically distributed and uniform distribution on {1, ...,K}: (c1, ..., cm)|m i.i.d∼ Uniform({1, ...,K})

2.3 Additional modelling options

2.3.1 Null alleles

A well known source of potential problems is the presence of null alleles arising from variation in the nucleotide
sequences of flanking regions that prevent the primer annealing to template DNA during PCR amplification of
the microsatellite locus [Dakin and Avise, 2004, Pompanon et al., 2005]. The presence of null alleles results in
an excess of homozygous genotypes within a population as compared to the expected proportion under Hardy
Weinberg Equilibrium (HWE) and Linkage Equilibrium (LE) [Callen et al., 1993, Paetkau et al., 1995] while the
model in Geneland is based on HWE and LE within the sought clusters.

In Geneland, the putative presence of null allele(s) can be explicitly taken into account for diploid data through
an optional computing step. When this option is used, genotype ambiguity (homozigotes) is accounted for and
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Figure 3: Example of colored Poisson-Voronoi tessellation. Left panel: location of cell ”centre” and Voronoi cells
induced. Right panel: a example of colored tessellation obtained after coloring at random each cell as red or white.
In this example, the number of population K = 2 and the number of polygons m = 5. There is no attempt to
represent the location of any sampled individual.

null alleles frequencies is estimated along the clustering algorithm. With the option filter.NA=TRUE in function
MCMC, null allele frequencies at each locus are estimated. They can be viewed with function EstimateFreqNA.
This is also available through the GUI.

Note that if this option is used in the default setting, all double missing genotypes will be interpreted as double
null alleles. This can induce an over-estimation of null allele frequencies if some of the missing data are not null
alleles (i.e. not due to amplification problems in the PCR), for example if some loci are missing for all individuals
of certain sampling units. In order to minimize this kind of problems, an optional argument to function MCMC

named miss.loc can be passed. The variable passed must be an n× L matrix (nb indiv. × nb loci). The entry
of this matrix for line i and column l must be set to 1 if there was no attempt to record the genotype of indiv.
i at locus l (”genuine missing locus”) and to 0 otherwise (if data are available or are missing because the PCR
failed). If no variable is passed to miss.loc, a matrix with only 0s is passed by default and all double missing
values will be treated as null alleles.

2.3.2 Coordinates uncertainty

You may want to treat the spatial coordinates as uncertain for any or a combination of the following reasons:

1. The individuals under study are non mobile (plants, animals species with very limited vagility as compared
to the scale of the study domain) but the coordinates have been recorded with an error or they have been
recorded with a limited precision only (e.g. each individual has been affected to a small administrative unit).

2. The individuals under study are normally non mobile but a displacement might have been induced by the
observation (e.g. hounding by hunters).

3. The individuals under study are mobile and they have a home range whose characteristic scale is non
negligible as compared to the size of the study domain.

4. Even if none of the previous conditions holds, but if your dataset has samples sharing the same coordinates,
then allowing some uncertainty in the coordinates will allow to have samples with the same coordinates to
be assigned to different populations. It can be useful to detect migrants.

Under conditions (1) and (2), the notion of ”true” coordinates makes sense and refers to the location where
each individual normally lives, but these locations have not been observed. Under condition (3), there is no
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Figure 4: An example of 100 individuals belonging to two populations where the spatial domain of each popu-
lation can be approximated by the union of a few polygonal domains. Left: spatial spread of individuals, right:
corresponding polygons. In this example, n = 100, K = 2 and the number of polygons m = 10. The points
ui are depicted as tiny black dots on the left hand side panel. They are not depicted on the right hand side for
clarity.

”true coordinates”, i.e. there is no particular location where each individual could be considered to live with
certainty. In any of the previous conditions, the use of the recorded coordinates as locations where the individuals
live is inaccurate and can be misleading in the inferences. It is recommended in this case to treat the observed
coordinates as uncertain. The way Geneland does it is to consider that the observed coordinate of each individual
is the sum of the true coordinate and of a random noise of small magnitude. This random noise can be interpreted
as the movement induced by capture in case of hounding (condition b), in the other cases it says that an individual
has been observed somewhere but that it could have been observed anywhere around as well.

There is a parameter prescribing the amount of uncertainty attached to spatial coordinates (parameter
delta.coord in function MCMC).

If this parameter is set to 0, spatial coordinates are considered as true coordinates, if this parameter is set to a
value delta.coord>0, it is assumed that observed coordinates are true coordinates blurred by an additive noise
uniform on a square of side delta.coord centered on 0. It is assumed that this parameter is given in the same
units as the spatial coordinates. See also section A.21.

3 Data format

3.1 Genotypes file

Assuming that you have data for n individuals genotyped at L loci, the data must be arranged in

• a plain ascii file

• without any extra invisible characters (like in MS-Word .doc files)

• with one line per individual

• each allele must be coded by an integer
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• the number of digits of each field is arbitrary and can vary across loci

• extra header lines are not allowed with data are loaded via the GUI. Headers lines are allowed via the R
function read.table. The way these lines are handled when the data are loaded is prescribed through the
arguments of .

• missing data are allowed. Users of the GUI have to specify the character string coding missing value in the
missing data symbol sub-menu of the main menu. For users of the R command-line interface loading
their data with the R function read.table, missing values can be coded in the raw text data file by any
arbitrary character string, (e.g. 000, 00, NA or -999). The character string used to encode missing data
must be specified through the argument na.strings of function read.table. By default, when data are
loaded through read.table, it is assumed that missing data are coded as NA.

• for haploid organisms with L loci, the genotype file must have L columns.

3.1.1 Diploid codominant data file

This applies to microsatellites or SNPs data for diploid organisms. The file should have one line and 2×L columns
per individual For L = 10, the two first lines of the genotype file should look like:

198 000 358 362 141 141 179 000 208 224 243 243 278 284 86 88 120 124 238 244

200 202 000 358 141 141 183 183 218 224 237 243 276 278 88 88 120 124 240 244

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

In the example above, missing values are coded as 000. In the command line version, this file corresponds to
argument geno.dip.codom of function MCMC.

3.1.2 Diploid dominant data file

This applies to AFLP data for diploid organisms.
The file should have one line and L columns per individual. Absence or presence of the dominant allele should

be coded as 0/1/ For L = 10, the two first lines of the genotype file should look like:

0 1 1 1 0 1 0 0 0

1 0 0 1 1 0 0 1 000

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

In the example above, missing values are coded as 000. In the command line version, this file corresponds to
argument geno.dip.dom of function MCMC.

Diploid codominant data and diploid dominant data can be analyzed jointly. Diploid dominant data and
haploid data can not be analyzed jointly.

3.1.3 Haploid data file

This applies to microsatellites or SNPs data for haploid organisms or to mitochondrial DNA data.
The file should have one line and L columns per individual For L = 10, the two first lines of the genotype file

should look like:

198 000 358 362 141 141 179 000 208 224

200 202 000 358 141 141 183 183 218 224

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

In the example above, missing values are coded as 000. In the command line version, this file corresponds to
argument geno.hap of function MCMC.

Diploid codominant data and haploid data can be analyzed jointly. Diploid dominant data and haploid data
can not be analyzed jointly.
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3.2 Coordinates file

3.2.1 File format

If you want to use the spatial model, you should have a file containing spatial coordinates of the individuals
sampled. The coordinate file must be such that

• there is one line per individual and two columns (x-axis and y-axis coordinate),

• the units do not matter

• it is assumed that the coordinates are planar coordinates such as Lambert coordinates 3

• whether your coordinates are genuine planar coordinates or spherical coordinates does not appear in the
file format so that you can actually also input coordinates given as spherical coordinates. They will be
interpreted as planar coordinates by the Geneland functions. The quality of this approximation varies from
very good (small domain, close to the equator) to very bad (large domain, close to a pole). Spherical
coordinates (lon, lat) can be converted into planar coordinates using R function mapproject of package
mapproj.

• extra header lines are allowed, the way these lines are handled when the data are loaded is prescribed through
the arguments of the R function read.table.

• missing data are not allowed in this file.

• if some coordinates are missing, you can either substitute an estimated value or do the analysis with Geneland
without spatial coordinates at all using the non spatial model.

The two first lines of a coordinate file should look like:
25.6 745.2

54.1 827.8

. .

. .

. .

. .

3.2.2 Pre-processing a coordinate file to convert spherical coordinates into planar projection coordi-
nates

This can be done by the following steps:

## load packages

require(mapproj)

require(maps)

## read raw data

coord.lonlat <- read.table("pathtomydata/coord_lonlat.txt")

## check

plot(coord.lonlat,type="n",xlab="Lon",ylab="Lat",asp=1)

points(coord.lonlat,col=2)

map(resol=0,add=TRUE)

## convert (Lon,Lat) coordinates into Lambert

mapproj.res <- mapproject(x=coord.lonlat[,1],

y=coord.lonlat[,2],

projection="lambert",

param=c(min(coord.lonlat[,2]),max(coord.lonlat[,2])))

3See en.wikipedia.org/wiki/Lambert azimuthal equal-area projection
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## save planar coordinates as a two-column matrix

coord.lamb <- cbind(mapproj.res$x,mapproj.res$y)

## save as a suitable ascii input file under the Geneland GUI

write.table(coord.lamb,file="pathtomydata/coord_lamb.txt")
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4 Examples of data analysis using the graphical user interface (GUI)

4.1 Launching the GUI

• launch R

• load Geneland by typing library(Geneland) in the R prompt

• launch the Geneland GUI by typing Geneland.GUI() in the R prompt.

This will open open a window as below:
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4.2 Selecting input and output files

Select the fields separator in your data files:

Select your data files and the directory containing your output files

Important note: the path can not be longer than 255 characters. You can avoid using long paths by selecting
the working directory (under Windows) or by launching R in a shell from a particular directory (under Linux).

18



4.3 Inference 4 EXAMPLES WITH THE GUI

4.3 Inference

We now carry out an analysis to infer the number of populations and their spatial boundaries for this dataset.
This can be performed by selecting MCMC simulation parameters as follows:

In the above example we select

• diploid organism

• no uncertainty attached to spatial coordinates

• the number of HWLE populations is unknown and hence treated as simulated variable along the MCMC
simulations allowed to vary between 1 and 10

• the number of MCMC iterations will be 100000 (nit=100000)

• and only each 100th iteration will be saved on the disk (in total, 1000 iterations will be saved)

• combined with the correlated frequency model (freq.model="Correlated").

• using the spatial model (spatial TRUE),

• in the current working directory (path.mcmc="./").
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4.4 Post-processing MCMC outputs

The call to function MCMC generates different files in the directory specified by the argument path.mcmc. Infor-
mation is extracted from this file through a call to function Post.Process.Chain as follows:

This will extract information from MCMC simulation with

• an horizontal discretization of the study domain in 100 pixels (nxdom=100)

• a vertical discretization of the study domain in 100 pixels (nydom=100)

• a burn-in of 200 saved iterations, i.e. discarding the 200 first saved iterations (burnin=200)

The parameters nxdom and nydom are only graphical parameters to set the resolution of the final maps.
Here are some recomandations to set them.

• Set nxdom and nydom so as to avoid having two sampling sites in the same pixel.

• Set nxdom and nydom so as to have the same resolution on both axis. For example, if you have a study
domain of 300 km × 200 km, make sure that nxdom / nydom ≈ 3/2.

• Avoid large values (larger than say 500). It would increase the resolution of the map in a way that is not
visually detectable and it might saturate the virtual memory of your computer.

• The post-processing step is independent of the Markov chain computations and you can do as many tries
as you want..

• Why not having included the post-processing step as an automatic step of function MCMC? Because one
may want to play with the burn-in and the resolution without re-launching the whole MCMC computations.
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4.5 Generating graphical and numerical outputs

Clik on menu output:
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4.5 Generating graphical and numerical outputs 4 EXAMPLES WITH THE GUI

4.5.1 Estimated number of HWLE populations

The number of population simulated from the posterior distribution can be visualised by clicking on Number of

populations

This produces a plot like:
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This run displays a clear mode at K = 2 which is hence the maximum a posteriori estimate of K.
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4.5.2 Map of estimated population membership

A map of estimated population membership (by posterior mode) can be obtained by clicking Map of population

membership

This produces a plot like:
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Posterior mode of population membership

4.5.3 F statistics

F statistics Weir and Cockerham [1984] relative to estimated clusters are obtained through

Fstat.output(genotypes=geno,path.mcmc="./")

which returns:

$Fis

[1] 0.1427044 0.1512689

$Fst

[,1] [,2]

[1,] 0.00000000 0.03562966

[2,] 0.03562966 0.00000000

namely, individual FIS and pairwise FST for estimated clusters.
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4.6 Launching several independent runs

Inference is based on a stochastic method, i.e. for a given dataset, the values of estimated parameters are
random and depend on what happened during the run. In theory, different runs should give approximately the
same estimates provided they are long enough. A good way to check that a run was long enough is to launch
different runs and check that they provide approximately the same parameter estimates (K, individual population
membership, maps).

This can be done automatically by clicking on the Multiple independent runs options:
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4.7 Parallel computations 4 EXAMPLES WITH THE GUI

Runs are launched sequentially and computations are monitored in a new window:

Here, the results of computations are consistent across runs in terms of estimated number of populations K.
If different runs give different results, it is recommended to base conclusion on the run giving the highest average
posterior probability (run # 2 above).

The MCMC output of these run is saved in the output directory. The output of each run is saved in a separate
directory (named 1,2,...,). The global ranking of the runs can also be saved in a file.

4.7 Parallel computations

It is possible to take advantage of clusters and multi-core computers when running several independent runs. The
supported parallelisation systems are MPI (Message Passing Interface) and PVM (Parallel Virtual Machine).

In order to use this feature you need to install the R packages snow and Rmpi or rpvm. This can be done for
example via the R command line by typing: install.packages("snow") and install.packages("Rmpi") or
install.packages("rpvm").

Before starting the multiple runs go to the menu Tools and select the parallel processing. You should see a
window like this:

Here you choose the number of nodes (> 1) and the parallelisation system (MPI or PVM). Then click start,
when the message sets to ON then you can start your multiple run. Note that since inference is based on MCMC
a single run can not be run on several processors.
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5 EXAMPLES WITH THE COMMAND-LINE

5 Example of data analysis using the R command-line

5.1 Preliminary steps

5.1.1 Organising your session

If you plan to work through the R command-line, do not type directly the command in the prompt. Type them
first in a data editor (the built-in command line editor under Windows or emacs under Linux). This allows you to
keep a trace of your work not only as numerical output but also as something looking like a computer program
that you can re-use, correct, modify, share later. In addition, storing R code often takes far less disk space than
storing the numerical output.

5.1.2 Launching Geneland

Assuming R and Geneland are installed,

• launch R

• you can launch the on-line help by typing help.start() in the R prompt (optional but very useful)

• load Geneland by typing library(Geneland) in the R prompt

• under Mac-OS, make sure that X11 is launched (see section 1.3.2).

5.1.3 Loading the data

Let us assume that the data file(s) are named genotypes.txt and coordinates.txt and stored in a directory
called data. Then type in the R prompt:

geno <- read.table("../data/genotypes.txt")

... the genotypes are loaded and stored in an R object called geno.

Then type again in the R prompt:

coord <- read.table("../data/coordinates.txt")

... the coordinates are loaded and stored in an R object called coord.

Generally you can replace ../data by any string path to my data giving the path to the data relatively to
the working directory. Under Windows this working directory is specified through the menu file and sub-menu
preferences. Under Linux, the R working directory is the Linux working directory of the terminal from which R
was launched.

5.1.4 Checking the data

You can control that you have correctly loaded your data by typing the names in the prompt, e.g. :

> coord[1:10,]

will print the ten first lines of the coordinates.
The objects are a bit too large to be visualised in the R shell, it is more convenient to watch them through

the built-in data editor:

fix(coord)

or

fix(geno)

you can check the dimension of the object:

dim(coord)
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5.2 Inference 5 EXAMPLES WITH THE COMMAND-LINE

...we have indeed one line per individual and two columns, and...

nrow(geno)

...one line per individual and ...

we have indeed one line per individual and two columns, and...

ncol(geno)

two columns per locus for dipoloid data.

You can also plot the coordinates by

plot(coord,xlab="Eastings",ylab="Northings",asp=1)

...which opens a new window with the desired plot.

5.2 Inference

We now carry out an analysis to infer the number of populations and their spatial boundaries for this dataset.
This is done with the main Geneland function named MCMC. A possible call of this function is as follows:

MCMC(coordinates=coord,

geno.dip.codom=geno,

varnpop=TRUE,

npopmax=10,

spatial=TRUE,

freq.model="Correlated",

nit=100000,

thinning=100,

path.mcmc="./")

This will perform parameter inference by MCMC simulation assuming that

• the number of HWLE populations is unknown and hence treated as simulated variable along the MCMC
simulations (varnpop=TRUE)

• but smaller than 10 (npopmax=10),

• using the spatial model (spatial=TRUE),

• combined with the correlated frequency model (freq.model="Correlated").

• the number of MCMC iterations will be 100000 (nit=100000)

• and only each 100th iteration will be saved on the disk (in total, 1000 iterations will be saved)

• in the current working directory (path.mcmc="./").

This function takes many more arguments, most of them being optionals (i.e. with default values). An on-line
help for function MCMC is given by typing ? MCMC. See section 7.

5.3 Post-processing MCMC outputs

The call to function MCMC generates different files in the directory specified by the argument path.mcmc. Infor-
mation is extracted from these files through a call to function Post.Process.Chain as follows:

PostProcessChain(coordinates=coord,

geno.dip.codom=geno,

path.mcmc="./",

nxdom=100,

nydom=100,

burnin=200)
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5.4 Generating graphical and numerical outputs 5 EXAMPLES WITH THE COMMAND-LINE

This will create additional files required to get final estimates and maps. In the example above, we have:

• an horizontal discretization of the study domain in 100 pixels (nxdom=100)

• a vertical discretization of the study domain in 100 pixels (nydom=100)

• a burn-in of 200 saved iterations, i.e. discarding the 200 first saved iterations (burnin=200)

5.4 Generating graphical and numerical outputs

5.4.1 Estimated number of HWLE populations

The number of population simulated from the posterior distribution can be visualised by:

Plotnpop(path.mcmc="./",

burnin=200)

This produces a plot like
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this run displays a clear mode at K = 2 and a relatively good mixing around this value.

5.4.2 Saving graphics

Geneland functions for graphics contain arguments that allows users to send save graphics as pdf or postscript
files. Here is an example:

Plotnpop(path.mcmc="./,burnin=200,printit=TRUE,file="Number_of_Clusters.pdf",format="pdf")
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5.4.3 Map of posterior probability of population membership

A call to function PosterioMode like:

PosteriorMode(coordinates=coord,

path.mcmc="./",

file="map.pdf")

will produce a plot like:
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Posterior mode of population membership

5.4.4 F statistics

F statistics relative to estimated clusters are obtained through

Fstat.output(genotypes=geno,path.mcmc="./")

which returns:

$Fis

[1] 0.1427044 0.1512689

$Fst

[,1] [,2]

[1,] 0.00000000 0.03562966

[2,] 0.03562966 0.00000000

namely, individual FIS and pairwise FST for estimated clusters.
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5.5 MCMC convergence assessment

5.5.1 Checking MCMC convergence, what does that mean?

When it comes to Markov chains, convergence means that after enough iterations, the simulated vector is sampled
from the desired target distribution. Since this target distribution is highly multi-dimensional and not much is
known about it, checking convergence is not something easy to do and is actually most often impossible. The best
that can be done is to check that there are no obvious clues indicating a lack of convergence. MCMC behaviours
indicating a lack of convergence include:

• a single chain displaying a transient behaviour, for example a clear decreasing or increasing trend from its
initial value

• multiple chains leading to different estimations (number of population K, population memberships)

• a single chain stuck at a particular value or in a particular interval. Note however that in the case of a
single integer parameters (for instance, the number of populations), a chain stuck at a particular value can
be either a genuine feature of the posterior distribution or convergence flaw.

See also an interesting page by Charlie Geyer advocating the use of a few long runs against many short runs:
http://www.stat.umn.edu/~charlie/mcmc/one.html.

5.5.2 Factors affecting MCMC convergence

We have observed that mixing properties and hence convergence are affected by

• the number of individuals n, with poorer mixing properties as n increases

• the number of loci L, with poorer mixing properties as L increases

• departure from model assumptions. In case the dataset does not consist of genuine HWLE groups, it seems
that the posterior distributions often exhibits complex patterns of local modes in which MCMC simulations
get more easily trapped.

5.5.3 Example of R code as an aid to convergence diagnostic

As explained above about the multiple runs option in the GUI, MCMC convergence should be checked by comparing
the output of several independent runs.

This can be done manually through a loop as follows:

## Loop for multiple runs

nrun <- 10

burnin <- 200

for(irun in 1:nrun)

{

## define path to MCMC directory

path.mcmc <- paste("./",irun,"/",sep="")

system(paste("mkdir ",path.mcmc))

MCMC(coordinates=coord,

geno.dip.codom=geno,

varnpop=TRUE,

npopmax=10,

spatial=TRUE,

freq.model="Correlated",

nit=100000,

thinning=100,

path.mcmc=path.mcmc)
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## MCMC postprocessing

PostProcessChain(coordinates=coord,

path.mcmc=path.mcmc,

nxdom=200,

nydom=200,

burnin=burnin)

}

## Computing average posterior probability

## with a burnin of 200 (* 100) iterations

lpd <- rep(NA,nrun)

for(irun in 1:nrun)

{

path.mcmc <- paste("./",irun,"/",sep="")

path.lpd <- paste(path.mcmc,"log.posterior.density.txt",sep="")

lpd[irun] <- mean(scan(path.lpd)[-(1:burnin)])

}

## Runs sorted by decreasing average posterior probability:

order(lpd,decreasing=TRUE)
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6 INFLUENCE OF MODEL ASSUMPTIONS

6 Assessing influence of modelling assumptions

6.1 Choosing a model to perform MCMC simulations

Computations are obtained under specific assumptions regarding allele frequencies (correlated/ non correlated)
and population membership (spatial / non spatial). First you have to chose which combination of models is the
most suitable for your data. Roughly, if you expect differentiation due to the presence of simple shaped landscape
features, the spatial model is presumably well suited. And if you are looking for low differentiation due to recent
ecological events, the correlated allele frequencies model is more suitable.

6.2 Comparing outputs from MCMC runs under different models

The estimates under your preferred model should be compared to estimates under other models. Note that
even if a model is more realistic than others from the biological point of view, the results of analysis under this
”best” model can be tricked by poor MCMC mixing. This can be observed on large datasets (> 1000 individuals,
> 100loci) and/or due to departure from modelling assumptions.

The most comfortable situation is when different models give similar answer. In this case, there is presumably
a strong signal in the data and the inferred pattern does not depend on the particular way information is extracted
(model+algorithm).
In case results differ across models, our recommendations are as follows:

• check convergence under the different models

• give preference to models that fits better with the organism under study

– a priori: in the sense of prior knowledge about dispersal, potential barriers to gene flow...

– a posteriori: in the sense where estimated K and maps complies best with what is known about the
organism

• do not attempt to compare different models on the basis of the average posterior probability. Indeed, they
are defined on different parameter spaces and such a comparison do not make sense mathematically.

6.3 Objective criterions to perform model selection [TODO]
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7 More examples using the R command-line

7.1 Estimating frequency of null alleles

If the option for filtering null alleles is chosen for simulation with function MCMC, the estimated frequency of null
alleles at each locus can be obtained through function EstimateFreqNA as follows:

EstimateFreqNA(genotypes=geno,path.mcmc="./")

which returns a vector of length nloc (the number of loci) whose entries are estimated frequencies of null
alleles.

7.2 Analysing Geo-referenced data with a non-spatial prior

A dataset consisting of Geo-referenced genetic data can be analysed with a non-spatial prior for population
membership. The coordinates are not used in the inference algorithm, they are just used for the graphical
representations.

Similarly to the example of R code given in section 5.2, this can be done by:

MCMC(coordinates=coord,

geno.dip.codom=geno,

varnpop=TRUE,

npopmax=10,

spatial=FALSE, ## the argument spatial is now set to FALSE

freq.model="Correlated"

nit=100000,

thinning=100,

path.mcmc="./")

7.3 Analysing non spatial data

It is also possible to analyse datasets consisting only of genotypes (no spatial coordinates). This can be done by
a call of function MCMC as:

MCMC(geno.dip.codom=geno,

varnpop=TRUE,

npopmax=10,

spatial=FALSE, ## the argument spatial set to FALSE

freq.model="Correlated"

nit=100000,

thinning=100,

path.mcmc="./")

This allows to estimate the number HWLE populations and population memberships of individuals. Spatial
graphical displays do not make sense in this context.

7.4 Getting improved graphics

You may find that the graphical features available through the GUI and the Geneland graphical functions are too
limited. The possibilities to improve graphics by working directly though the command-line are almost unlimited.

7.4.1 Superimposing countries boundaries and coast lines on a Geneland map

Let us assume that you have a map giving population memberships or posterior probabilities of population
memberships over a given domain. You can superimpose countries boundaries and coast line by typing:

map(resolution=0,add=TRUE)

This will add the desired lines to the active graphic window (by default the last window opened). The active
graphic window can be redefined by e.g. dev.set(3) (this will set window # 3 as active window). See on-line
help of function map for details (? map).
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7.5 Exploring MCMC outputs to better check convergence [TODO]

7.6 Interpretation of posterior probabilities of population memberships [TODO]
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8 SIMULATION OF DATA UNDER THE SPATIALLY ORGANISED HWLE POPULATIONS MODEL

8 Simulation of data under the spatially organised HWLE populations
model

Datasets can be simulated under the statistical models described in section 2. This can be done via the R shell
by calling function simFmodel as follows:

simdata <- simFmodel(nindiv=100,

coord.lim=c(0,1,0,1), ## simulations on the unit square

number.nuclei=15, ## tessellation driven by 15 polygons

nall=rep(10,20), ## 20 loci with 10 alleles each

npop=3, ## 3 populations

freq.model="Correlated", ## Correlated frequency model

drift=rep(0.04,3), ## drift (or Fst) parameters

dominance="Codominant" ## codominant-like genotypes

) ## (two columns per locus)

Some of the arguments are optional. See on-line help (? simFmodel) for details.
The R object simdata is a list whose components can be checked by summary(simdata). The genotypes are

stored as simdata$genotypes and the coordinates as simdata$coordinates and are suitable for simulations
studies, e.g. to assess the effect of number of loci, number of individuals, allele diversity ... on accuracy of
inferences.
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9 SPATIALLY CORRELATED FREQUENCIES

9 Simulation of data with spatially auto-correlated allele frequencies

There is a function for simulation of data under the model described in [Guillot and Santos, 2009]. This function is
called simdata and is an extension of function simFmodel described in the previous section. It allows to simulate
genotypes for individuals that are structured by isolation-by-distance and barriers to gene flow. The function takes
many arguments, most of them being optionnal. See on-line help (? simdata) for detail about these arguments.

Here is an example for simulation of genotypes of 100 individuals at 3 loci with 5 alleles at each locus (values
artificially small to limit the number of graphics generated in the next step).

dataset <- simdata(nindiv=100,

number.nuclei=10,

allele.numbers=rep(5,3),

model="stable",

IBD=TRUE,

alpha=1,

beta=1,

gamma=1,

npop=3,

give.tess.grid=TRUE,

give.freq.grid=TRUE,

npix=c(100,100),

comp.Fst=TRUE,

comp.Dsigma2=TRUE,

comp.diff=TRUE,

width=0.1,

plot.pairs.borders=FALSE)

The function returns a list stored in the R object dataset . Information about the object can be obtained
by the function summary as:

summary(dataset)

The coordinates of individuals can be referred to by

dataset$coord.indiv

The genotypes of individuals can be referred to by

dataset$genotypes

The cluster membership of the individuals can be referred to by

dataset$color.nuclei[dataset$nearest.nucleus.indiv]

The simulated dataset can be visualised by function show.simdata e.g. by

show.simdata(dataset,

plot.coord = TRUE,

plot.tess = TRUE,

plot.freq.grid = TRUE,

loc.grid = 1,

zlim.freq=c(0,1))

This will produce a plot of the coordinates of individuals, a map of the tessellation induced by the barriers simulated
and maps of allele frequencies for alleles at the first locus (loc.grid=1). See on-line help (? show.simdata)
for details.
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10 Using other softwares to analyse Geneland outputs

10.1 Population genetics softwares

10.1.1 Genepop

There is a Geneland function called gl2gp that writes coordinates and genotypes into an ascii file suitable for
analysis with the Genepop program [Rousset, 2007]. See on-line help (? gl2gp) for details. The genotype file
produced might require some extra hand editing.

10.2 MCMC post-processing softwares

10.2.1 Partitionview

TODO

10.2.2 Distruct

Distruct can be used to visualise the distribution of individual population membership. The information re-
quired as input for this program is in the file proba.pop.membership.indiv.txt stored in the Geneland output
directory. See section C.2.3. The information displayed is somehow similar to what is obtained with the Geneland
function PlotTessellation though disregarding the spatial aspect of the dataset.

10.3 Geographical information systems (GIS)

Output of Geneland can be combined with high quality maps obtained with the Geographic Resources Analysis
Support System, commonly referred to as GRASS. See http://grass.osgeo.org and
http://grass.osgeo.org/wiki/Main Page. Some of the tasks can be performed directly under R through the
R package spgrass6.
See cran.r-project.org/web/packages/spgrass6.

10.3.1 RgoogleMaps

Output of Geneland can be easily combined with google maps. You have to have the R package RgoogleMaps

installed. See the documentation of this package for instructions in particular for package dependencies.
TODO: examples of R commands

11 Using Geneland to analyse other software outputs [TODO]
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A Frequently asked questions

A.1 Can I use population data?

It is possible to analyse datasets where different individuals share the same spatial location. If such data are treated
without uncertainty on coordinate in the GUI or delta.coord is set to 0 in function MCMC then individuals sharing
the same coordinates will be assigned to the same inferred group.

A.2 Can I use SNPs?

It is possible to run Geneland with SNPs. The bases have to be recoded as {1, 2, 3, 4}. Fixed alleles are not
allowed. Loci carrying such alleles have to be removed from the dataset first.

A.3 How to deal with datasets containing a large number of loci?

A.3.1 Running Geneland on a random subsets of loci

You can run Geneland for various random subsets of loci with e.g. 500-1000 loci and check that the different
subsets give you the same answer. If this happens, you can confidently infer that runs with a larger number of
SNPs would also give you the same answer. If different subsets give different answers, it can be due either to
convergence issues (the genuine pattern contained in the various subsets is the same but Geneland failed to detect
it because of numerical difficulties) or to an excess of sampling variance in the selection of loci at random. There
is no obvious way to decipher the relative importance of those two factors.

A.3.2 Managing output files

By default, the Markov chain of all parameters are saved on the disk. The biggest files are usually those containing
estimated allele frequencies (frequencies.txt and ancestral.frequencies.txt) and coordinates of nuclei
of the Voronoi Tessellation (coord.nuclei.txt). It is recommended to compress or erase them after relevant
information has been extracted from the corresponding runs. This requires to write a bit of R code (see e.g. ?

file.remove or ? file).
Multiples runs via the GUI should be avoided as it will quickly generate huge files.

A.4 Can I use sequence data?

It is possible to run Geneland with sequence data. The bases have to be recoded as {1, 2, 3, 4}. See also section
A.2.

A.5 Can I use haploid data?

Yes. Specific computing options are implemented in Geneland for haploid data.

A.6 Can I study organisms with ploidy other than haploid or diploid?

No. The only ploidy handled as of today are haploid and diploid.

A.7 Can I use dominant markers?

Yes.

A.8 Is there any way to account for the presence of special landscape features?

We have been often asked how to include information about the presence of ”an urban area not suitable for
my organisms” or ”a land mass in the middle of sea water obviously not suitable for fish”. There is currently
no obvious way to do that with Geneland. We recommend to analyse your data ignoring the presence of such
landscape feature and to try to take it into account at the post-processing stage.
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A.9 Linear habitat A FREQUENTLY ASKED QUESTIONS

A.9 Can I study an organism leaving in a linear habitat?

Yes. The neat way to do that in Geneland is to convert 2-dimensional coordinates into 1-dimensional curvilinear
coordinates measuring distance of each individuals to an arbitrary origin in this habitat.

A.10 MCMC, burn-in, thinning... What does that mean?

MCMC stands for Markov chain Monte Carlo. It is a technique to simulate random things in a probabilistic model.
It appeared in statistical physics in the 50’s and in statistics in the 70’s and was popularised at the end of the 80’s
in particular to make inference in complex Bayesian models. The key idea is that you have made assumptions
about data and parameters summarised as probility distributions π(parameters), π(data | parameters). These
two probability distributions can be combined to get the posterior distribution π(parameters | data) via Baye’s
theorem. See Beaumont and Balding [2004] for a recent review.

Although the previous distribution is known, it is most often impossible to compute directly the parameter
value that makes it maximal (the so-called maximum a posteriori estimate of this parameter). The reason is that
this parameter lies in a very high-dimensionnal space. For example in Geneland, the vector of parameters include
allele frequencies, hence hundreds of unknown numerical values. The strategy to deal with such high-dimensionnal
models consists in drawing at random values of the parameter from the posterior distribution and then extract
the desired information from this sample.

Again, this task is not straighforward and the approach taken is an approximation. It consists in starting from
an arbitrary value that is iteratively modified in such a way that after many iterations, the distribution of the
simuated parameter is close to the posterior distribution. One has to run this iterative scheme long enough to be
sure that the simulated distribution is close enough to the posterior distribution (and in particular that the result
is not affected by the choice of this initial value). One usually discards the first iterations that correspond to the
so-called burn-in period. The simulation process is iterative and a value at iteration t+1 is obtained by modifying
a value at time t. This results usually in a high auto-correlation of the simulated values. Consecutive simulated
values are usually redundant. To save time and disk space, one usually thin the chain, i.e save only a fraction of
simulated values.

A.11 How should I choose Kmax?

Take it a bit larger that the largest value that you can reasonably expect for your dataset. You can diagnose that
the value set for Kmax was too small if the chain simulating the values of K (as displayed by function Plotnpop)
get stuck at this maximum value. In such a case, it is recomended to re-run MCMC computations with a larger
value for Kmax. Conversely, a value Kmax taken much larger than the true K (if any) does not bring any problem
but it can slow down un-necessarily computations.

A.12 Which value should I choose for the number of MCMC iterations?

There is no obvious answer to that. The value should be large enough to avoid any of the symptoms of lack
of convergence described in section 5.5.2. A rough order of magnitude would be nit = 100000 for a dataset of
n = 100− 300 individuals at L = 10− 30 loci.

A.13 Which value should I choose for the thinning?

The thinning is defined as the proportion of MCMC iterations saved on the disk. This computing option has a
limited effect on the accuracy of inferences. It is more a matter of how many disk space is available. For a run
of nit = 100000 iterations, we typically save 1000 iterations and set the thinning to 100.

A.14 I have launched 50 runs of 5000000 iterations with a thinning of 1 and my disk
is full!!

You don’t need to save each single iteration. MCMC produce correlated samples. Saving one iteration out of 100
(thinning=100) is usually enough. The thinning can be increased even more as long as the number of iterations
saved (nit/thinning) remains large (100 − 1000). Remember that the amount of disk space required to store
results of MCMC iterations increases approximately linearly with the number iterations.
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A.15 Null alleles A FREQUENTLY ASKED QUESTIONS

A.15 How does Geneland treat a double missing genotypes under the ”filter null
alleles” scheme?

By default as a genuine null allele. See section ?? on how a distinction between null alleles and missing data can
be made via argument miss.loc of function MCMC.

A.16 What is the difference between running the model with coordinates under the
non-spatial model and without coordinates at all, and how can I implement
these computing options?

If you have continuous spatial sampling (one individual only per site) then the spatial=FALSE option will give
the same result with and without coordinates. In that case, you can use directly the GUI with coordinates. If
you have “clumpped” spatial sampling (or population data, i.e. several individuals sharing the same coordinates)
inputing the coordinates under the spatial=FALSE will return clusterings where all individuals at the same site
belong to the same cluster. This is equivalent to the USEPOPINFO option of the Structure program. If you
want to disregard completely any spatial information, then you can skip the coordinates argument in function
MCMC and set spatial =FALSE. To implement the same computing option in the GUI, you have to input a file of
dummy coordinates with no individuals sharing common coordinates , e.g. as

nindiv <- nrow(genotypes)

n.int <- ceiling(sqrt(nindiv))

x <- rep(seq(from = 0, to = 1, length = n.int), n.int)

y <- rep(seq(from = 0, to = 1, length = n.int), n.int)

y <- as.vector(t(matrix(nr = n.int, nc = n.int, y,byrow = FALSE)))

coordinates <- cbind(x, y)[1:nindiv, ]

write this R object as a text file and use t under the non-spatial option of the GUI.

A.17 What about the two-step procedure described by Guillot et al. [2005a]?

Guillot et al. [2005a] recommended to perform inferences in two steps: a first run with K treated as unknown and
variable to estimate it and a second run with K fixed at the value estimated in the first run to estimate individual
cluster memberships.

Since version 2.0, the algorithm has been modifed and inferences should be done in a single step [Guillot,
2008]. This makes inferences simpler, faster and it avoids the issue of ”ghost populations” reported by Guillot
et al. [2005a]. One should still keep in mind potential MCMC convergence issues and check that parameters
inferred are consistent across several such single-step runs.

A.18 How to select a run among several runs performed under the same model
options?

To compare outputs of several runs under the same model options, use the mean posterior density. Note that the
posterior density of the inferred K (given as a percentage in the output under the GUI) should not be used as a
measure of goodness of fit.

A.19 How to select a run among several runs performed under different model op-
tions?

Comparing outputs of different models is a difficult issue in statistics and there is no satisfactory solution for
clustering models in populations genetics as of today. The best you can do is to check that the pattern(s)
you get under the different models pop up consistently over several runs. If this holds, check that the inferred
clusters comply with model assumptions. In Geneland, this amounts to check that inferred clusters do not depart
significantly from HWLE and that inferred clusters are significantly differentiated (e.g. with Genepop). This
step can be time-consuming. If an inferred pattern passes this check, there is good chance that this pattern is
real (and not a model/algorithm artefact). If several patterns passe this check, they should look alike. If not,
this might be indicative of the violation of some of the modelling assumptions. See also Guillot et al. [2009] for
further discussion.
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A.20 Coordinates uncertainty and population data A FREQUENTLY ASKED QUESTIONS

A.20 I only have one set of coordinates per sampled population, not individual. Can
I set some uncertainty on the coordinates?

Without uncertainty on the coordinates, all individuals sampled at the same site will be assigned to the same
cluster. Setting a non zero value for the uncertainty on coordinates has the feature (among others) to allow
Geneland to assign individuals sampled at the same site to different clusters. In case of good compliance of the
data to the model (well differentiated HWLE clusters), this feature might help to detect a few migrants that
might remain undetected otherwise. See also section 2.3.2.

A.21 Is there any recommendations as to the value(s) to use for uncertainty on the
coordinates?

The idea behind the uncertain coordinates is that the observed coordinates are equal to some true coordinates
plus a random error following a uniform distribution. The value of the parameter passed to Geneland is the length
of edge of the square of this uniform distribution. The most relevant value for this parameter depends on the
actual uncertainty on coordinates and on the species and the size of the sampling area. There is no absolute
recommendation as to the value of this paremeter. See also section 2.3.2.
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C DESCRIPTION OF MCMC OUTPUT FILES

B Algorithm

B.1 Simulation based inference [TODO]

B.1.1 Special aspects

Kinit set to Kmax during the first iterations

B.2 Post-processing MCMC outputs [TODO]

B.2.1 Estimating K

B.2.2 Dealing with label switching

B.2.3 Computing posterior probability of population memberships

B.3 F statistics [TODO]

• Estimation according to Weir and Cockerham [1984]

• Missing data allowed. Induce a small bias in the estimation of FST and a somehow larger bias in the
estimation of FIS .

• Not implemented for haploid data

C Description of MCMC output files

C.1 Files produced by MCMC simulations

Note that some of those files are not created by default. See on-line help for detail.

C.1.1 parameters.txt

List of characteristics of the dataset and all arguments passed to function MCMC (via the GUI or directly).

C.1.2 populations.numbers.txt

Simulated values of number of populations K.

C.1.3 nuclei.numbers.txt

Simulated values of number of Voronoi cell m coding for population membership. (Set to n under the non-spatial
option).

C.1.4 coord.nuclei.txt

Simulated coordinates of the nuclei of Voronoi cells in the tessellation uses to parameterise population membership.
(Set to the coordinates of sampled individuals under the non-spatial option).

C.1.5 color.nuclei.txt

Simulated population membership of Voronoi cells. It is coded as an integer and displayed as a color.

C.1.6 ancestral.frequencies.txt

Simulated allele frequencies of ancestral population in the correlated allele frequencies model.

C.1.7 drifts.txt

Simulated drift parameter (or FST) in the correlated allele frequencies model.
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C.2 Files produced when post-processing MCMC simulations C DESCRIPTION OF MCMC OUTPUT FILES

C.1.8 frequencies.txt

Simulated allele frequencies of present time populations in the correlated allele frequencies model.

C.1.9 hidden.coord.txt

Estimated ”true coordinates” if some uncertainty on coordinates is assumed.

C.1.10 log.likelihood.txt

Log-likelihood along MCMC simulation.

C.1.11 log.posterior.density.txt

Log of posterior density of simulated parameters along MCMC simulation.

C.2 Files produced when post-processing MCMC simulations

C.2.1 postprocess.parameters.txt

List of all arguments passed to function PostProcessChain (via the GUI or directly).

C.2.2 proba.pop.membership.txt

Posterior probability of population membership for pixels of a discretization of the domain.

C.2.3 proba.pop.membership.indiv.txt

Posterior probability of population membership for sampled individuals.

C.2.4 modal.pop.txt

Estimated population membership for pixels of a discretization of the domain.

C.2.5 modal.pop.indiv.txt

Estimated population membership for sampled individuals.

C.2.6 perm.txt

Permutation of population labels allowing to get rid of the label switching issue.
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