Using parallel computing in GA package

Luca Scrucca
Universita degli Studi di Perugia, Italy
luca@stat.unipg.it

August 2013

1 Introduction

By default searches performed using the GA package occour sequentially. In some cases, particularly
when the evaluation of the fitness function is time consuming, parallelization of the search algorithm
may be able to speedup computing time. Starting with version 2.0, the GA package provides
facilities for implementing parallelization of genetic algorithms.

Parallel computing with GA requires the following packages to be installed: parallel (available
in base R), doParallel, foreach, and iterators.

2 Usage

To use parallel computing with the GA package is simple as manipulating the optional argument
parallel in the ga() function call.

The argument parallel can be a logical argument specifying if parallel computing should be
used (TRUE) or not (FALSE, default) for evaluating the fitness function. This argument could also
be used to specify the number of cores to employ; by default, this is taken from detectCores()
function in parallel package.

Two types of parallel functionality are implemented depending on system OS: on Windows only
snow type functionality is available, while on POSIX operating systems, such as Unix, GNU/Linux,
and Mac OSX, both snow and multicore (default) functionalities are available. In the latter case a
string can be used to specify which parallelization method should be used.

3 Example

Consider the following simple example where we artificially introduced a pause statement to simu-
late an expensive fitness function.

> Rastrigin <- function(xl, x2)
{
Sys.sleep(0.1)
20 + x172 + x272 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}
> system.time(GAl <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),



popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345))

user system elapsed
1.077 0.203 415.489

> system.time(GA2 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345, parallel = TRUE))
user system elapsed
6.155 5.230 124.345

> system.time(GA3 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345, parallel = 2))
user system elapsed
6.170 5.916 222.454

> system.time(GA4 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345, parallel = "snow"))
user system elapsed
5.412 0.418 143.913

The following table summarizes the results and show the improvement achieved by using par-
allelization in GAs:

Num. cores System time Gain
1 415.489 1.00
2 (multicore) 222.454 0.54
4 (multicore) 124.345 0.30
4 (snow) 143.913 0.35

The system times reported above refer to a MacBook Pro, Intel Core i5 at 2.3 GHz, with 4
cores and 4 GB RAM, running OSX 10.8.3.



