
A Guide to the FuzzyNumbers 0.3-1 Package for R

Marek Gagolewski1,2

1 Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland
2 Rexamine, Email: gagolews@rexamine.com

www.rexamine.com/resources/fuzzynumbers/

June 23, 2013

The package, as well as this tutorial, is still in its early days – any suggestions and

contributions are welcome!

Contents

1 Getting Started 2

2 How to Create Instances of Fuzzy Numbers 3

2.1 Arbitrary Fuzzy Numbers . 3

2.1.1 Definition by Side Functions . 3

2.1.2 Definition by α-cut Bounds . 5

2.1.3 Definition with Generating Functions Omitted: Shadowed Sets 6

2.2 Using Numeric Approximations of α-cut or Side Generators 7

2.3 Trapezoidal Fuzzy Numbers . 8

2.4 Piecewise Linear Fuzzy Numbers . 10

2.5 Fuzzy Numbers with Sides Given by Power Functions 14

3 Depicting Fuzzy Numbers 15

4 Basic Computations on and Characteristics of Fuzzy Numbers 19

4.1 Support and Core, and Other α-cuts . 19

4.2 Membership Function Evaluation . 20

4.3 “Typical” Value . 20

4.4 Measures of “Nonspecificity” . 21

5 Operations on Fuzzy Numbers 21

5.1 Arithmetic Operations . 21

5.2 Applying Functions . 23

6 Approximation of Fuzzy Numbers 23

6.1 Metrics in the Space of Fuzzy Numbers . 23

6.2 Approximation by Trapezoidal Fuzzy Numbers 24

6.2.1 Naïve Approximation . 24

6.2.2 L2-nearest Approximation . 24

6.2.3 Expected Interval Preserving Approximation 25

6.2.4 Approximation with Restrictions on Support and Core 26

6.3 Approximation by Piecewise Linear Fuzzy Numbers 27

6.3.1 Naïve Approximation . 27

6.3.2 L2-nearest Approximation . 28

1

http://www.rexamine.com/resources/fuzzynumbers/

7 NEWS/CHANGELOG 31

Bibliography 33

1 Getting Started

Fuzzy set theory lets us quite intuitively represent imprecise or vague information. Fuzzy num-

bers (FNs), introduced by Dubois and Prade in [8], form a particular subclass of fuzzy sets of the

real line. Formally, a fuzzy set A with membership function µA : R → [0, 1] is a fuzzy number,

if it possess at least the three following properties:

(i) it is a normalized fuzzy set, i.e. µA(x0) = 1 for some x0 ∈ R,

(ii) it is fuzzy convex, i.e. for any x1, x2 ∈ R and λ ∈ [0, 1] it holds µA(λx1 + (1 − λ)x2) ≥
µA(x1) ∧ µA(x2),

(iii) the support of A is bounded, where supp(A) = cl({x ∈ R : µA(x) > 0}).

Fuzzy numbers play a significant role in many practical applications (cf. [14]) since we often

describe our knowledge about objects through numbers, e.g. “I’m about 180 cm tall” or “The

rocket was launched between 2 and 3 p.m.”.

FuzzyNumbers is an Open Source (licensed under GNU LGPL 3) package for R – a free

software environment for statistical computing and graphics, which runs on all major operating

systems, i.e. Windows, Linux, and MacOS X1.

FuzzyNumbers has been created in order to deal with fuzzy numbers conveniently and effec-

tively. To install latest “official” release of the package available on CRAN we type:

install.packages('FuzzyNumbers')

Alternatively, we may fetch its current development snapshot from GitHub:

install.packages('devtools')

library('devtools')

install_github('FuzzyNumbers', 'Rexamine')

Each session with FuzzyNumbers should be preceded by a call to:

library('FuzzyNumbers') # Load the package

To view the main page of the manual we type:

library(help='FuzzyNumbers')

For more information please visit the package’s homepage [10]. In case of any problems, com-

ments, or suggestions feel free to contact the author. Good luck!

1Please visit R Project’s homepage at www.R-project.org for more details. Perhaps you may also wish to

install RStudio, a convenient development environment for R. It is available at www.rsudio.com/ide.

2

https://github.com/Rexamine/FuzzyNumbers
http://www.R-project.org
http://www.rstudio.com/ide/

2 How to Create Instances of Fuzzy Numbers

2.1 Arbitrary Fuzzy Numbers

A fuzzy number A may be defined by specifying its core, support, and either its left/right side

functions or lower/upper α-cut bounds. Please note that many algorithms that deal with FNs

assume we provide at least the latter, i.e. α-cuts.

2.1.1 Definition by Side Functions

A fuzzy number A specified by side functions2 has membership function of the form:

µA(x) =



































0 if x < a1,

left
(

x−a1
a2−a1

)

if a1 ≤ x < a2,

1 if a2 ≤ x ≤ a3,

right
(

x−a3
a4−a3

)

if a3 < x ≤ a4,

0 if a4 < x,

(1)

where a1, a2, a3, a4 ∈ R, a1 ≤ a2 ≤ a3 ≤ a4, left : [0, 1] → [0, 1] is a nondecreasing function

(called the left side generator of A), and right : [0, 1] → [0, 1] is a nonincreasing function (right

side generator of A). In our package, it is assumed that these functions fulfill the conditions

left(0) ≥ 0, left(1) ≤ 1, right(0) ≤ 1, and right(1) ≥ 0.

An example: a fuzzy number A1 with linear sides (a trapezoidal fuzzy number, see also

Sec. 2.3).

A1 <- FuzzyNumber(1, 2, 4, 7,

left=function(x) x,

right=function(x) 1-x

)

This object is an instance of the following R class:

class(A1)

[1] "FuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

We may print some basic information on A1 by calling print(A1) or simply by typing:

A1

Fuzzy number with:

support=[1,7],

core=[2,4].

To depict A1 we call:

plot(A1)

2Side functions are sometimes called branches or shape functions in the literature.

3

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

Remark. Please note that by using side generating functions defined on [0, 1] we really make

(in the author’s humble opinion) the process of generating examples for our publications much

easier. A similar concept was used e.g. in [15] (LR-fuzzy numbers).

Assume, however, that we are given two fancy side functions f : [a1, a2] = [−4, −2] → [0, 1],

and g : [a3, a4] = [−1, 10] → [1, 0], for example:

f <- splinefun(c(-4,-3.5,-3,-2.2,-2), c(0,0.4,0.7,0.9,1), method='monoH.FC')

g <- splinefun(c(-1,0,10), c(1,0.5,0), method='monoH.FC')

We should convert them to side generating functions, which shall be defined on the interval

[0, 1]. This may easily be done with the convertSide() function. It returns a new function

that calls the original one with linearly transformed input.

convertSide(f, -4, -2)(c(0,1))

[1] 0 1

convertSide(g, -1, 10)(c(0,1))

[1] 1 0

convertSide(g, 10, -1)(c(0,1)) # interesting!

[1] 0 1

These functions may be used to define a fuzzy number, now with arbitrary support and core.

B <- FuzzyNumber(10,20,20,30,

left=convertSide(f, -4, -2),

right=convertSide(g, -1, 10)

)

plot(B, xlab='x', ylab='$\\alpha$')

4

10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

2.1.2 Definition by α-cut Bounds

Alternatively, a fuzzy number A may be defined by specifying its α-cuts. We have (for α ∈ (0, 1)

and a1 ≤ a2 ≤ a3 ≤ a4):

Aα := [AL(α), AU (α)] (2)

=
[

a1 + (a2 − a1) · lower(α), a3 + (a4 − a3) · upper(α)
]

, (3)

where lower : [0, 1] → [0, 1] is a nondecreasing function (called lower α-cut bound generator

of A), and upper : [0, 1] → [0, 1] is a nonincreasing function (upper bound generator). In our

package, we assume that lower(0) = 0, lower(1) = 1, upper(0) = 1, and upper(1) = 0.

It is easily seen that for α ∈ (0, 1) we have the following relationship between generating

functions:

lower(α) = inf{x : left(x) ≥ α}, (4)

upper(α) = sup{x : right(x) ≥ α}. (5)

Moreover, if side generating functions are continuous and strictly monotonic, then α-cut bound

generators are their inverses.

An example:

A1 <- FuzzyNumber(1, 2, 4, 7,

left=function(x) x,

right=function(x) 1-x

)

A2 <- FuzzyNumber(1, 3, 4, 7,

lower=function(alpha) pbeta(alpha, 5, 9), # CDF of a beta distr.

upper=function(alpha) pexp(1/alpha-1) # transformed CDF of an exp. distr.

)

plot(A1, col='blue')

plot(A2, col='red', lty=2, add=TRUE)

legend('topright', c(expression(mu[A1]), expression(mu[A2])),

col=c('blue', 'red'), lty=c(1,2))

5

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

µA1

µA2

Remark. The convertAlpha() function works similarly to convertSide(). It scales the

output values of a given function, thus it may be used to create an α-cut generator conveniently.

2.1.3 Definition with Generating Functions Omitted: Shadowed Sets

In the above examples either side generating functions or α-cut generators were passed to the

FuzzyNumber() function. Let us note what will happen if we omit both of them.

A3 <- FuzzyNumber(1, 2, 4, 5)

A3

Fuzzy number with:

support=[1,5],

core=[2,4].

The object seems to be defined correctly: R does not make any complaints. However. . .

plot(A3)

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1
.0

x

α

It turns out that we have obtained a shadowed set! Indeed, this behavior is quite reasonable: we

have provided no information on the “partial knowledge” part of our fuzzy number. In fact, the

object has been initialized with generating functions always returning NA (Not-Available or any

value). Does it mean that when we define a FN solely by side generators, we cannot compute

its α-cuts? Indeed!

6

alphacut(A2, 0.5) # A2 has alpha-cut generators defined

L U

0.5 2.733154 5.896362

alphacut(A1, 0.5) # A1 hasn't got them

L U

0.5 NA NA

Another example: evaluation of the membership function.

evaluate(A1, 6.5) # A1 has side generators defined

6.5

0.1666667

evaluate(A2, 6.5) # A2 hasn't got them

6.5

NA

2.2 Using Numeric Approximations of α-cut or Side Generators

The reason for setting NAs3 as return values of omitted generators is simple. Finding a function

inverse numerically requires lengthy computations and is always done locally (for a given point,

not for “whole” the function at once). R is not a symbolic mathematical solver. If we had defined

such procedures (it is really easy to do by using the uniroot() function), then an inexperienced

user would have used it in his/her algorithms and wondered why everything runs so slow. To

get more insight, let us look at the internals of A2:

A2['lower']

function(alpha) pbeta(alpha, 5, 9)

A2['upper']

function(alpha) pexp(1/alpha-1)

A2['left']

function (x)

rep(NA_real_, length(x))

<environment: 0x2aa6250>

A2['right']

function (x)

rep(NA_real_, length(x))

<environment: 0x2aa6250>

Note that all generators are properly vectorized (for input vectors of length n they always give

output of the same length). Thus, general rules are as follows. If you want α-cuts (e.g. for

finding trapezoidal approximations of FNs), specify them. If you would like to calculate the

membership function (by the way, the plot() function automatically detects what kind of

knowledge we have), assure the side generators are provided.

However, we also provide a convenient short-cut method to interpolate generating functions of

one type to get some crude numeric approximations of their inverses: the approxInvert() func-

tion4, which may of course be applied on results returned by convertAlpha() and convertSide().

3To be precise, it’s NA_real_.
4The n argument, which sets the number of interpolation points, controls the trade-off between accuracy and

computation speed. Well, world’s not ideal, remember that “some” is better than “nothing” sometimes.

7

This is a simple wrapper to R’s approxfun() (piecewise linear interpolation, the ’linear’

method) and splinefun() (monotonic splines: methods ’hyman’ and ’monoH.FC’; the latter is

default and recommended).

l <- function(x) pbeta(x, 1, 2)

r <- function(x) 1-pbeta(x, 1, 0.1)

A4 <- FuzzyNumber(-2, 0, 0, 2,

left = l,

right = r,

lower = approxInvert(l),

upper = approxInvert(r)

)

x <- seq(0,1,length.out=1e5)

max(abs(qbeta(x, 1, 2) - A4['lower'](x))) # sup-error estimator

[1] 0.0001389811

max(abs(qbeta(1-x, 1, 0.1) - A4['upper'](x))) # sup-error estimator

[1] 0.0008607773

2.3 Trapezoidal Fuzzy Numbers

A trapezoidal fuzzy number (TFN) is a FN which has linear side generators and linear α-cut

bound generators. To create a trapezoidal fuzzy number T1 with, for example, core(T1) = [1.5, 4]

and supp(T1) = [1, 7] we call:

T1 <- TrapezoidalFuzzyNumber(1, 1.5, 4, 7)

Thus, we have:

µT1
(x) =































0 for x ∈ (−∞, 1),

(x − 1)/0.5 for x ∈ [1, 1.5),

1 for x ∈ [1.5, 4],

(7 − x)/3 for x ∈ (4, 7],

0 for x ∈ (7, +∞).

T1α = [1 + 0.5 α, 7 − 3 α].

Note that the above equations have been automatically generated by knitr and LATEX by calling

cat(as.character(T1, toLaTeX=TRUE, varnameLaTeX=’T_1’)), see Sec. 3.

The T1 object is an instance of the following R class:

class(T1)

[1] "TrapezoidalFuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

To depict T1 we call:

plot(T1)

8

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

T1 is (roughly) equivalent to the trapezoidal fuzzy number A1 defined in the previous subsec-

tion. The TrapezoidalFuzzyNumber class inherits all the goodies from the FuzzyNumber class,

but is more specific (guarantees faster computations, contains more detailed information, etc.).

Of course, in this case the generating functions are known a priori (A1 had no α-cut generators)

so there is no need to provide them manually (what is more, this has been disallowed for safety

reasons). Thus, is we wanted to define a trapezoidal FN next time, we would do it not like with

A1 but rather as with T1.

T1['lower']

function (alpha)

alpha

<bytecode: 0x4b950a8>

<environment: namespace:FuzzyNumbers>

T1['upper']

function (alpha)

1 - alpha

<bytecode: 0x4b95188>

<environment: namespace:FuzzyNumbers>

T1['left']

function (x)

x

<bytecode: 0x4b94e40>

<environment: namespace:FuzzyNumbers>

T1['right']

function (x)

1 - x

<bytecode: 0x4b94f20>

<environment: namespace:FuzzyNumbers>

Trapezoidal fuzzy numbers are among the simplest FNs. Despite their simplicity, however,

they include triangular FNs, “crisp” real intervals, and “crisp” reals. Please note that currently

no separate classes for these particular TFNs types are implemented in the package.

9

TrapezoidalFuzzyNumber(1,2,2,3) # triangular FN

Trapezoidal fuzzy number with:

support=[1,3],

core=[2,2].

TriangularFuzzyNumber(1,2,3) # the same

Trapezoidal fuzzy number with:

support=[1,3],

core=[2,2].

TrapezoidalFuzzyNumber(2,2,3,3) # `crisp' interval

Trapezoidal fuzzy number with:

support=[2,3],

core=[2,3].

as.TrapezoidalFuzzyNumber(c(2,3)) # the same

Trapezoidal fuzzy number with:

support=[2,3],

core=[2,3].

TrapezoidalFuzzyNumber(5,5,5,5) # `crisp' real

Trapezoidal fuzzy number with:

support=[5,5],

core=[5,5].

as.TrapezoidalFuzzyNumber(5) # the same

Trapezoidal fuzzy number with:

support=[5,5],

core=[5,5].

2.4 Piecewise Linear Fuzzy Numbers

Trapezoidal fuzzy numbers are generalized by piecewise linear FNs (PLFNs), i.e. fuzzy numbers

which side generating functions and α-cut generators are piecewise linear functions. Each PLFN

is given by:

• four coefficients a1 ≤ a2 ≤ a3 ≤ a4 defining its support and core,

• the number of “knots”, knot.n≥ 0,

• a vector of α-cut coordinates, knot.alpha, consisting of knot.n elements ∈ [0, 1],

• a nondecreasingly sorted vector knot.left consisting of knot.n elements ∈ [a1, a2], defin-

ing interpolation points for the left side function, and

• a nondecreasingly sorted vector knot.right consisting of knot.n elements ∈ [a2, a3],

defining interpolation points for the right side function.

If knot.n≥ 1, then the membership function of a piecewise linear fuzzy number P is defined

as:

10

µP (x) =























































0 if x < a1,

αi + (αi+1 − αi)
(

x−li
li+1−li

)

if li ≤ x < li+1

for some i ∈ {1, . . . , n + 1},

1 if a2 ≤ x ≤ a3,

αn−i+2 + (αn−i+3 − αn−i+2)
(

1 − x−ri

ri+1−ri

)

if ri < x ≤ ri+1

for some i ∈ {1, . . . , n + 1},

0 if a4 < x,

(6)

and its α-cuts for α ∈ [αi, αi+1] (for some i ∈ {1, . . . , n + 1}) are given by:

PL(α) = li + (li+1 − li)

(

α − αi

αi+1 − αi

)

, (7)

PU , (α) = rn−i+2 + (rn−i+3 − rn−i+2)

(

1 − α − αi

αi+1 − αi

)

, (8)

where n = knot.n, (l1, . . . , ln+2) = (a1, knot.left, a2), (r1, . . . , rn+2) = (a3, knot.right, a4),

and (α1, . . . , αn+2) = (0, knot.alpha, 1).

PLFNs in our package are represented by the PiecewiseLinearFuzzyNumber class.

P1 <- PiecewiseLinearFuzzyNumber(1, 2, 3, 4,

knot.n=1, knot.alpha=0.25, knot.left=1.5, knot.right=3.25)

class(P1)

[1] "PiecewiseLinearFuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

P1

Piecewise linear fuzzy number with 1 knot(s),

support=[1,4],

core=[2,3].

P2 <- PiecewiseLinearFuzzyNumber(1, 2, 3, 4,

knot.n=2, knot.alpha=c(0.25,0.6),

knot.left=c(1.5,1.8), knot.right=c(3.25, 3.5))

P2

Piecewise linear fuzzy number with 2 knot(s),

support=[1,4],

core=[2,3].

plot(P1, type='b', from=0, to=5, xlim=c(0.5,4.5))

plot(P2, type='b', col=2, lty=2, pch=2, add=TRUE, from=0, to=5)

11

1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

The following operators return matrices with all knots of a PLFN. Each matrix has three

columns: α-cuts, left side coordinates, and right side coordinates.

P1['knots']

alpha L U

knot_1 0.25 1.5 3.25

P1['allknots'] # including a1,a2,a3,a4

alpha L U

supp 0.00 1.0 4.00

knot_1 0.25 1.5 3.25

core 1.00 2.0 3.00

We have, for example:

µP1
(x) =



















































0 for x ∈ (−∞, 1),

0 + 0.25 (x + 1)/0.5 for x ∈ [1, 1.5),

0.25 + 0.75 (x + 1.5)/0.5 for x ∈ [1.5, 2),

1 for x ∈ [2, 3],

0.25 + 0.75 (3.25 − x)/0.25 for x ∈ [3, 3.25),

0 + 0.25 (4 − x)/0.75 for x ∈ [3.25, 4),

0 for x ∈ (4, +∞).

P1α = [P1L(α), P1U (α)],

where

P1L(α) =

{

1 + 0.5 (α − 0)/0.25 for α ∈ [0, 0.25],

1.5 + 0.5 (α − 0.25)/0.75 for α ∈ [0.25, 1],

P1U (α) =

{

3.25 + 0.75 (0.25 − α)/0.25 for α ∈ [0, 0.25],

3 + 0.25 (1 − α)/0.75 for α ∈ [0.25, 1].

If you want to obtain a PLFN with equally distributed knots, then you may use the more

convenient version of the PiecewiseLinearFuzzyNumber() function.

PiecewiseLinearFuzzyNumber(knot.left=c(0,0.5,0.7,1),

knot.right=c(2,2.2,2.4,3))['allknots']

12

alpha L U

supp 0.0000000 0.0 3.0

knot_1 0.3333333 0.5 2.4

knot_2 0.6666667 0.7 2.2

core 1.0000000 1.0 2.0

Note that if a1, . . . , a4 are omitted, then they are taken from knot.left and knot.right (their

lengths should then be equal to knot.n+2).

If knot.n is equal to 0 or all left and right knots lie on common lines, then a PLFN reduces

to a TFN. Please note that, however, the TrapezoidalFuzzyNumber class does not inherit from

PiecewiseLinearFuzzyNumber for efficiency reasons. If, however, we wanted to convert an

object of the first mentioned class to the other, we would do that by calling:

alpha <- c(0.3, 0.5, 0.7)

P3 <- as.PiecewiseLinearFuzzyNumber(

TrapezoidalFuzzyNumber(1,2.5,4,7),

knot.n=3, knot.alpha=alpha

)

P3

Piecewise linear fuzzy number with 3 knot(s),

support=[1,7],

core=[2.5,4].

plot(P3, type='b', from=-1, to=9, xlim=c(0,8))

abline(h=alpha, col='gray', lty=2)

abline(v=P3['knot.left'], col='gray', lty=3)

abline(v=P3['knot.right'], col='gray', lty=3)

text(7.5, alpha, sprintf('a=%g', alpha), pos=3)

0 2 4 6 8

0.
0

0
.2

0.
4

0.
6

0.
8

1.
0

x

α

α = 0.3

α = 0.5

α = 0.7

More generally, each PLFN or TFN may be converted to a direct FuzzyNumber class instance if

needed (hope we will never not).

(as.FuzzyNumber(P3))

Fuzzy number with:

support=[1,7],

core=[2.5,4].

On the other hand, to “convert” (with possible information loss) more general FNs to TFNs

or PLFNs, we may use the approximation procedures described in Sec. 6.

13

2.5 Fuzzy Numbers with Sides Given by Power Functions

Fuzzy numbers which sides are given by power functions are defined using four coefficients

a1 ≤ a2 ≤ a3 ≤ a4, and parameters p.left, p.right > 0 which determine exponents for the

side functions:

left(x) = xp.left, (9)

right(x) = (1 − x)p.right. (10)

We also have:

lower(α) = p.left
√

α, (11)

upper(α) = 1 − p.right
√

α. (12)

These fuzzy numbers are another natural generalization of trapezoidal FNs.
An example:

X <- PowerFuzzyNumber(-3, -1, 1, 3, p.left=2, p.right=0.1)

class(X)

[1] "PowerFuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

X

Fuzzy number given by power functions, and:

support=[-3,3],

core=[-1,1].

plot(X)

-3 -2 -1 0 1 2 3

0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

We have:

µX(x) =































0 for x ∈ (−∞, −3),

((x + 3)/2)2 for x ∈ [−3, −1),

1 for x ∈ [−1, 1],

((3 − x)/2)0.1 for x ∈ (1, 3],

0 for x ∈ (3, +∞),

Xα = [−3 + 2 α0.5, 1 + 2 (1 − α10)].

14

3 Depicting Fuzzy Numbers

To draw FNs we call the plot() method, which uses similar parameters as the R-built-in curve()

function / plot.default() method. If you are new to R, you may wish to read the manual

on the most popular graphical routines by calling ?plot, ?plot.default, ?curve, ?abline,

?par, ?lines, ?points, ?legend, ?text (some of these functions have already been called in

this tutorial).

Let us consider the following FN:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

plot(A)

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

Plotting issues: discretization. Side functions or α-cut bounds of objects of the FuzzyNumber

class (not including its derivatives) when plotted are naïvely approximated by piecewise linear

functions with equidistant knots at one of the axes. Therefore, if we probe them at too few

points, we may obtain very rough graphical representations. To control the number of points at

which the interpolation takes place, we use the n argument (which defaults to 101, i.e. “quite

accurate”).

All three calls to the plot() method below depict the membership function of the same

fuzzy number, but with different accuracy.

plot(A, n=3, type='b')

plot(A, n=6, add=TRUE, lty=2, col=2, type='b', pch=2)

plot(A, n=101, add=TRUE, lty=4, col=4) # default n

15

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

Making use of different generating functions’ types. Please note (if you have not al-

ready) that to draw the membership function we do not need to provide necessarily the FN with

side generators: the α-cuts will also suffice. The function is smart enough to detect the internal

representation of the FN and use the kind representation it has. It both types of generators are

given, then side functions are used. If we want, for some reasons, to use α-cuts, then we may

do as follows:

plot(A, n=3, at.alpha=numeric(0), type='b') # use alpha-cuts

plot(A, n=3, type='b', col=2, lty=2, pch=2, add=TRUE) # use sides

-5 0 5 10 15 20

0
.0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

We may also illustrate an α-cut representation of a fuzzy number:

plot(A, draw.alphacuts=TRUE)

16

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5
1
0

1
5

2
0

α

x

Exporting figures. If we would like to generate figures for our publications, then we will

surely be interested in storing them e.g. as PDF files. This may be done by calling:

pdf('figure1.pdf', width=8, height=5) # create file

plot(A)

dev.off() # close graphical device and save the file

Postscript (PS) files are generated by substituting the call to pdf() for the call to the

postcript() function.

Conversion to LATEX. Another way to depict a FN is to. . . give a mathematical expression

which defines it.

cat(as.character(A, toLaTeX=TRUE, varnameLaTeX='A'))

This gives the following LATEX code. . .

\[

\mu_{A}(x) = \left\{

\begin{array}{lll}

0 & \text{for} & x\in(-\infty,-5), \\

l_{A}(x) & \text{for} & x\in[-5,3), \\

1 & \text{for} & x\in[3,6], \\

r_{A}(x) & \text{for} & x\in(6,20], \\

0 & \text{for} & x\in(20,+\infty), \\

\end{array}

\right.

\]

where $l_{A}=\mathtt{left}_A((x+5)/8)$,

$r_{A}=\mathtt{right}_A((x-6)/14)$.

\[

{A}_\alpha = [{A}_L(\alpha), {A}_U(\alpha)],

\]

where ${A}_L(\alpha)=-5+8\,\mathtt{lower}_{A}(\alpha)$,

${A}_U(\alpha)=6+14\,\mathtt{upper}_{A}(\alpha)$.

. . . and, after compiling:

17

µA(x) =































0 for x ∈ (−∞, −5),

lA(x) for x ∈ [−5, 3),

1 for x ∈ [3, 6],

rA(x) for x ∈ (6, 20],

0 for x ∈ (20, +∞),

where lA = leftA((x + 5)/8), rA = rightA((x − 6)/14).

Aα = [AL(α), AU (α)],

where AL(α) = −5 + 8 lowerA(α), AU (α) = 6 + 14 upperA(α).

The code may of course be modified manually to suit your needs.

Tuning your figures. Finally, we leave you with a quite more complex graphical example

from one of our papers:

X <- PiecewiseLinearFuzzyNumber(0, 1, 2, 5, knot.n=1,

knot.alpha=0.6, knot.left=0.3, knot.right=4)

plot.default(NA, xlab='x', ylab='$\\mu_S(x)$',

xlim=c(-0.3,5.3), ylim=c(0,1)) # empty window

xpos <- c(X['a1'], X['knot.left'], X['a2'],

X['a3'], X['knot.right'], X['a4'])

xlab <- c('s_1', 's_2', 's_3',

's_4', 's_5', 's_6')

abline(v=xpos, col='gray', lty=3)

text(xpos, 1.05, xlab, pos=3, xpd=TRUE)

abline(h=c(0, X['knot.alpha'], 1), col='gray', lty=2)

text(5.55, X['knot.alpha'], sprintf('$\\alpha_0$'), pos=4, xpd=TRUE)

plot(X, add=TRUE, type='l', from=-1, to=6)

plot(X, add=TRUE, type='p', from=-1, to=6)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1
.0

x

µ
S
(x

)

s1 s2 s3 s4 s5 s6

α0

Please note that we use TEX commands in plot labels. They are interpreted by the tikzDe-

vice package for R to generate beautiful figures, but setting this all up requires higher level of

skills. . . and patience.

18

4 Basic Computations on and Characteristics of Fuzzy Numbers

In this section we consider the following FN:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

4.1 Support and Core, and Other α-cuts

The support of A, i.e. supp(A) = [a1, a4], may be obtained by calling:

supp(A)

[1] -5 20

We get the core of A, i.e. core(A) = [a2, a3], with:

core(A)

[1] 3 6

To compute arbitrary α-cuts we use:

alphacut(A, 0) # same as supp(A) (if alpha-cut generators are defined)

L U

0 -5 20

alphacut(A, 1) # same as core(A)

L U

1 3 6

(a <- alphacut(A, c(0, 0.5, 1)))

L U

0.0 -5.000000 20.000

0.5 -4.583591 6.875

1.0 3.000000 6.000

a[1,]

L U

-5 20

a[2, 2]

[1] 6.875

a[, "L"]

0.0 0.5 1.0

-5.000000 -4.583591 3.000000

Note that alphacut() always outputs a matrix with two columns. The matrix has named

dimensions (names stand for only auxiliary information). The alphacut() method may only

be used when α-cut generators are provided by the user during the declaration of A, even for

α = 0 or α = 1.

19

4.2 Membership Function Evaluation

If side generators are defined, we may calculate the values of the membership function at different

points by calling:

evaluate(A, 1)

1

0.9960291

evaluate(A, c(-3,0,3))

-3 0 3

0.8371139 0.9855322 1.0000000

evaluate(A, seq(-1, 2, by=0.5))

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.9624800 0.9760168 0.9855322 0.9919531 0.9960291 0.9983815 0.9995357

4.3 “Typical” Value

Let us first introduce the notion of the expected interval of A [9].

EI(A) := [EIL(A), EIU (A)] (13)

=

[
∫ 1

0
AL(α) dα,

∫ 1

0
AU (α) dα

]

. (14)

To compute the expected interval of A we call:

expectedInterval(A)

[1] -4.058824 8.800000

In case of objects of the FuzzyNumber class, the expected interval is approximated by numerical

integration. This method calls the integrate() function and its accuracy (quite fine by default)

may be controlled by the subdivisions, rel.tol, and abs.tol parameters (call ?integrate

for more details). On the other hand, for e.g. TFNs and PLFs this method returns exact results.

The midpoint of the expected interval is called the expected value of a fuzzy number. It is

given by:

EV(A) :=
EIL(A) + EIU (A)

2
. (15)

Let us calculate EV(A).

expectedValue(A)

[1] 2.370588

Note that this method uses a call to expectedInterval(A), thus in case of FuzzyNumber class

instances it also uses numerical approximation.

Sometimes a generalization of the expected value, called weighted expected value, is useful.

For given w ∈ [0, 1] it is defined as:

EVw(A) := (1 − w)EIL(A) + wEIU (A). (16)

It is easily seen that EV0.5(A) = EV(A).

Some examples:

20

weightedExpectedValue(A, 0.5) # equivalent to expectedValue(A)

[1] 2.370588

weightedExpectedValue(A, 0.25)

[1] -0.8441176

The value of A [6] is defined by:

val(A) :=

∫ 1

0
α (AL(α) + AU (α)) dα. (17)

It may be calculated by calling:

value(A)

[1] 1.736177

Please note that the expected value or value may be used for example to “defuzzify” A.

4.4 Measures of “Nonspecificity”

The width of A [3] is defined as:

width(A) := EIU (A) − EIL(A). (18)

An example:

width(A)

[1] 12.85882

The ambiguity of A [6] is defined as:

amb(A) :=

∫ 1

0
α (AU (α) − AL(α)) dα. (19)

ambiguity(A)

[1] 5.197157

Additionally, to express “nonspecificity” of a fuzzy number we may use e.g. the width of its

support:

diff(supp(A))

[1] 25

5 Operations on Fuzzy Numbers

5.1 Arithmetic Operations

The basic binary arithmetic operations for FNs are often defined by means of the so-called

extension principle (see [14]) and interval arithmetic. For each α ∈ [0, 1]:

(A ⊛ B)α = Aα ⊛ Bα,

where ⊛ = +, −, ∗ or /, and A, B are arbitrary FNs.

21

For example, we define the sum A + B for every α ∈ [0, 1] as:

(A + B)α = Aα + Bα = [AL (α) + BL (α) , AU (α) + BU (α)] ,

see [8, 7]. Moreover, for λ ∈ R, the scalar multiplication is given by:

(λ · A)α = λAα =

{

[λAL (α) , λAU (α)] , if λ ≥ 0,

[λAU (α) , λAL (α)] , if λ < 0,

for each α ∈ [0, 1].

In the FuzzyNumbers package we have defined the +, -, * and / operators, which implements

the basic arithmetic operations as defined in [14].

A <- TrapezoidalFuzzyNumber(0, 1, 1, 2)

B <- TrapezoidalFuzzyNumber(1, 2, 2, 3)

plot(A, xlim=c(0,6))

plot(B, add=TRUE, col=2, lty=2)

plot(A+B, add=TRUE, col=4, lty=4)

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

A

B

A + B

Currently all the operations are available for piecewise linear FNs only, and addition and

scalar multiplication is also implemented for trapezoidal FNs. Note that the computer arithmetic

has anyway a discrete nature, and a PLFN with large number of knots often approximates

(cf. Sec. 6) an arbitrary FN sufficiently well. The computations are always exact (well, up to

the computer floating-point arithmetic errors) at knots.

In theory the class of PLFNs is not closed under the operations * and /. However, if you

operate on a large number of knots, the results should be satisfactory.

A <- piecewiseLinearApproximation(PowerFuzzyNumber(1,2,3,4,p.left=2,p.right=0.5),

method="Naive", knot.n=20)

B <- piecewiseLinearApproximation(PowerFuzzyNumber(2,3,4,5,p.left=0.1,p.right=3),

method="Naive", knot.n=40)

A+A # the same as 2*A

Piecewise linear fuzzy number with 20 knot(s),

support=[2,8],

core=[4,6].

A+B # note the number of knots has increased

Piecewise linear fuzzy number with 60 knot(s),

support=[3,9],

core=[5,7].

22

5.2 Applying Functions

To apply a monotonic transformation on a piecewise linear fuzzy number (using the extension

principle) we call fapply().

A <- as.PiecewiseLinearFuzzyNumber(TrapezoidalFuzzyNumber(0,1,2,3), knot.n=100)

plot(fapply(A, function(x) log(x+1)^0.5))

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

x

α

√

log(A + 1)

The operation being applied should be a properly vectorized R function object.

6 Approximation of Fuzzy Numbers

Complicated membership functions are often very inconvenient for processing imprecise informa-

tion modeled by fuzzy numbers. Moreover, handling too complex membership functions entails

difficulties in interpretation of the results too. This is the reason why a suitable approximation

of fuzzy numbers is so important. We would like to deal with functions that are simpler or more

regular and hence more convenient for computing.

6.1 Metrics in the Space of Fuzzy Numbers

It seems that the most suitable metric for approximation problems is an extension of the Eu-

clidean (L2) distance (cf. [11]), d, defined by the equation:

d2
E(A, B) =

∫ 1

0
(AL(α) − BL(α))2 dα +

∫ 1

0
(AU (α) − BU (α))2 dα. (20)

The following metric types are currently available in the distance() method: "Euclidean"

(default), "EuclideanSquared".

T1 <- TrapezoidalFuzzyNumber(-5, 3, 6, 20)

T2 <- TrapezoidalFuzzyNumber(-4, 4, 7, 21)

distance(T1, T2, type='Euclidean') # L2 distance /default/

[1] 1.414214

distance(T1, T2, type='EuclideanSquared') # Squared L2 distance

[1] 2

23

6.2 Approximation by Trapezoidal Fuzzy Numbers

Our main task in this section is to, given a fuzzy number A, seek for a trapezoidal fuzzy

number T (A) that fulfills some desired properties. We will use the following FN for the sake of

illustration:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

The approximation procedure has been implemented in trapezoidalApproximation(). The

method argument selects the algorithm used to project A into the space of TFNs.

6.2.1 Naïve Approximation

The "Naive" method just generates a trapezoidal FN with the same core and support as A.

(T1 <- trapezoidalApproximation(A, method='Naive'))

Trapezoidal fuzzy number with:

support=[-5,20],

core=[3,6].

distance(A, T1)

[1] 5.761482

-5 0 5 10 15 20

0.
0

0
.2

0.
4

0.
6

0.
8

1.
0

x

α

A

Naïve approx.

It is easily seen that the naïve approximator may not represent A well. Thus, we will often

need some more reasonable approach.

6.2.2 L2-nearest Approximation

The "NearestEuclidean" method gives the nearest L2-approximation of A [2, Corollary 8], i.e. a

trapezoidal fuzzy number T (A) such that

T (A) = min
T ∈TFN

dE(A, T).

It may be shown that the solution to this problem always exists and is unique.

24

(T2 <- trapezoidalApproximation(A, method='NearestEuclidean'))

Trapezoidal fuzzy number with:

support=[-5.85235,14.4],

core=[-2.26529,3.2].

distance(A, T2)

[1] 1.98043

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

x

α

A

L2-nearest approx.

Note that the implementation relies on numeric integration.

6.2.3 Expected Interval Preserving Approximation

The "ExpectedIntervalPreserving" method gives the nearest L2-approximation of A preserv-

ing the expected interval [1, 12, 16], i.e. we get T (A) such that EI(A) = EI(T (A)).

First of all, it may be shown that if amb(A) ≥ width(A)/3, then we obtain the same result

as in the "NearestEuclidean" method.

ambiguity(A)

[1] 5.197157

width(A)/3

[1] 4.286275

(T3 <- trapezoidalApproximation(A, method='ExpectedIntervalPreserving'))

Trapezoidal fuzzy number with:

support=[-5.85235,14.4],

core=[-2.26529,3.2].

distance(A, T3)

[1] 1.98043

expectedInterval(A)

[1] -4.058824 8.800000

expectedInterval(T3)

[1] -4.058824 8.800000

On the other hand, for highly skewed membership functions this method (as well as the

previous one) sometimes reveals quite unfavorable behavior. E.g. if B is a FN such that val(B) <

EV1/3(B) or val(B) > EV2/3(B), then it may happen that the cores of the output and of the

original fuzzy number B are disjoint, cf. [13].

25

(B <- FuzzyNumber(1, 2, 3, 45,

lower=function(x) sqrt(x),

upper=function(x) 1-sqrt(x)))

Fuzzy number with:

support=[1,45],

core=[2,3].

(TB1 <- trapezoidalApproximation(B, 'NearestEuclidean'))

Trapezoidal fuzzy number with:

support=[1.37333,33.2133],

core=[1.37333,1.37333].

(TB2 <- trapezoidalApproximation(B, 'ExpectedIntervalPreserving'))

Trapezoidal fuzzy number with:

support=[1.66667,32.3333],

core=[1.66667,1.66667].

distance(B, TB1)

[1] 2.098994

distance(B, TB2)

[1] 2.166239

1 2 5 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

µB

µT B1

µT B2

6.2.4 Approximation with Restrictions on Support and Core

The "SupportCoreRestricted" method was proposed in [13]. It gives the L2-nearest trape-

zoidal approximation T (A) with constraints: core(A) ⊆ core(T (A)) and supp(T (A)) ⊆ supp(A),

i.e. for which each point that surely belongs to A also belongs to T (A), and each point that

surely does not belong to A also does not belong to T (A).

(T4 <- trapezoidalApproximation(A, method='SupportCoreRestricted'))

Trapezoidal fuzzy number with:

support=[-5,11.6],

core=[-3.11765,6].

distance(A, T4)

[1] 2.603383

26

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

A

Supp&core restr.
approximation

6.3 Approximation by Piecewise Linear Fuzzy Numbers

When approximating arbitrary fuzzy numbers by trapezoidal ones we generally take care for the

core and support of a fuzzy number (i.e. for values that surely belong or do not belong at all to

the set under study), while the sides of a fuzzy number corresponding to all intermediate degrees

of membership are linearized. This approach may not be suitable if we are also interested in

focusing on some other degrees of uncertainty except for 0 or 1.

Thus, given a fuzzy number A and a fixed knot.alpha=α vector, we are interested in finding

a piecewise linear fuzzy number P(A) that has some desirable properties.

In this subsection we will use the following fuzzy number A for the sake of illustration:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

The approximation procedure has been implemented in piecewiseLinearApproximation().

The method argument selects the algorithm used to project A into the space of PLFNs (for given

knot.alpha).

6.3.1 Naïve Approximation

The "Naive" method generates a PLFN with the same core and support as A and with sides

interpolating the membership function of A at given α-cuts.

P1 <- piecewiseLinearApproximation(A, method='Naive',

knot.n=1, knot.alpha=0.5)

P1['allknots']

alpha L U

supp 0.0 -5.000000 20.000

knot_1 0.5 -4.583591 6.875

core 1.0 3.000000 6.000

print(distance(A, P1), 8)

[1] 2.4753305

27

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

A

Naïve approx.

The approximation error may be quite high. However, it may be shown that e.g. for equidistant

knots if knot.n → ∞, then it approaches 0.

6.3.2 L2-nearest Approximation

Similarly to the L2-nearest TFN case, here we are looking for

P(A) = min
T ∈PLFN(α)

dE(A, T).

It may be shown that the solution to this problem always exists and is unique, see [4] and [5].

The "NearestEuclidean" method uses the algorithm described in [4] and [5]. This imple-

mentation relies on numeric integration, so for large knot.n may be slow.

P2 <- piecewiseLinearApproximation(A,

method='NearestEuclidean', knot.n=3, knot.alpha=c(0.25,0.5,0.75))

print(P2['allknots'], 6)

alpha L U

supp 0.00 -5.003841 19.22964

knot_1 0.25 -4.966165 9.91416

knot_2 0.50 -4.578596 6.66686

knot_3 0.75 -3.941608 6.00278

core 1.00 -0.494012 6.00278

print(distance(A, P2), 12)

[1] 0.288979921028

28

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

A

L2-nearest approx.

Example: Convergence. As the naïve approximator’s error approaches 0 as knot.n → ∞
for equidistant knots, so does the error of the nearest L2 approximator. Let us study the

convergence behavior for our exemplary A.

n <- 1:25

d <- matrix(NA, ncol=2, nrow=length(n))

d[,1] - Naive approximator's error for given knot.n

d[,2] - Best L2 approximator's error

for (i in seq_along(n))

{

P1 <- piecewiseLinearApproximation(A, method='Naive',

knot.n=n[i]) # equidistant knots

P2 <- piecewiseLinearApproximation(A, method='NearestEuclidean',

knot.n=n[i]) # equidistant knots

d[i,1] <- distance(A, P1)

d[i,2] <- distance(A, P2)

}

matplot(n, d, type='l')

5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

n

d
E

(A
,·)

dE(A, P1)

dE(A, P2)

Example: Finding best knot.alpha for knot.n = 1 numerically. The approximation

problem is stated using a fixed knit.alpha. However, we may e.g. depict the “best” L2 distance

as a function of α, i.e. the DA(α) function.

29

a <- seq(1e-9, 1-1e-9, length.out=100) # many alphas from (0,1)

d <- numeric(length(a)) # distances /to be calculated/

for (i in seq_along(a))

{

P1 <- piecewiseLinearApproximation(A, method='NearestEuclidean',

knot.n=1, knot.alpha=a[i])

d[i] <- distance(A, P1)

}

plot(a, d, type='l', xlab=expression(alpha), ylab=expression(D[A](alpha)))

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

1.
0

1.
4

1
.8

α

D
A

(α
)

For knot.n = 1 we may find best knot.alpha using numerical optimization. It may be

shown, see [4], that the distance function DA(α) is continuous, but in general the minimum is

not necessarily unique.

for (i in 1:5) # 5 iterations

{

a0 <- runif(1,0,1) # random starting point

optim(a0,

function(a)

{

P1 <- piecewiseLinearApproximation(A, method='NearestEuclidean',

knot.n=1, knot.alpha=a)

distance(A, P1)

}, method='L-BFGS-B', lower=1e-9, upper=1-1e-9) -> res

cat(sprintf('%.9f %6g *%.9f* %.9f\n', a0, res$counts[1], res$par, res$value))

}

0.368743926 22 *0.364111851* 0.650407610

0.763222162 21 *0.364024618* 0.650407862

0.871707857 16 *0.364061039* 0.650407691

0.336327323 32 *0.364274024* 0.650406777

0.079032007 17 *0.364072875* 0.650407653

30

7 NEWS/CHANGELOG

** FuzzyNumbers Package NEWS **

0.3-1 /2013-06-23/

* piecewiseLinearApproximation() - general case (any knot.n)

for method="NearestEuclidean" now available.

Thus, method="ApproximateNearestEuclidean" is now deprecated.

* New binary arithmetic operators, especially

for PiecewiseLinearFuzzyNumbers: +, -, *, /

* New method: fapply() - applies a function on a PLFN

using the extension principle

* New methods: as.character(); also used by show().

This function also allows to generate LaTeX code defining the FN

(toLaTeX arg thanks to Jan Caha).

* as.FuzzyNumber(), as.TriangularFuzzyNumber(), as.PowerFuzzyNumber(), and

as.PiecewiseLinearFuzzyNumber() are now S4 methods,

and can be called on objects of type numeric, as well as on

various FNs

* piecewiseLinearApproximation() and as.PiecewiseLinearFuzzyNumber()

argument `knot.alpha` now defaults to equally distributed knots

(via given `knot.n`). If `knot.n` is missing, then it is guessed

from `knot.alpha`.

* PiecewiseLinearFuzzyNumber() now accepts missing `a1`, `a2`, `a3`, `a4`,

and `knot.left`, `knot.right` of length `knot.n`+2. Moreover, if `knot.n`

is not given, then it is guessed from length(knot.left).

If `knot.alpha` is missing, then the knots will be equally distributed

on the interval [0,1].

* alphacut() now always returns a named two-column matrix.

evaluate() returns a named vector.

* New function: TriangularFuzzyNumber - returns a TrapezoidalFuzzyNumber.

* Function renamed: convert.side to convertSide, convert.alpha

to convertAlpha, approx.invert to approxInvert

* Added a call to setGeneric("plot", function(x, y, ...) ...

to avoid a warning on install

* The FuzzyNumbers Tutorial has been properly included

as the package's vignette

* DiscontinuousFuzzyNumber class has been marked as **EXPERIMENTAL**

31

in the manual

* Man pages extensively updated

* FuzzyNumbers devel repo moved to GitHub

0.2-1 /2012-12-27/

* approx.invert(): a new function to find the numerical

inverse of a given side/alpha-cut generating function

(by default via Hermite monotonic spline interpolation)

* convert.side(), convert.alpha():

new functions to convert sides and alpha cuts

to side generating funs and alpha cut generators

* FuzzyNumber class validity check for lower, upper, left, right:

* checks whether each function is properly vectorized

and gives numeric results

* does not check for the number of formal arguments,

but just uses the first from the list

* Suggests `testthat`

* Each object has been documented

* First CRAN release

0.1-1 /2012-07-01/

* Initial release

Acknowledgments. This document has been generated with LATEX, knitr and the tikzDevice

package for R. Their authors’ wonderful work is fully appreciated. Many thanks to Jan Caha

for contributions to the package’s source code, and also to Przemysław Grzegorzewski, Lucian

Coroianu and Pablo Villacorta Iglesias for stimulating discussion.

The contribution of Marek Gagolewski was partially supported by the European Union from

resources of the European Social Fund, Project PO KL “Information technologies: Research and

their interdisciplinary applications”, agreement UDA-POKL.04.01.01-00-051/10-00 (March-June

2013), and by FNP START Scholarship from the Foundation for Polish Science (2013).

32

Bibliography

[1] Ban, A. Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the

expected interval. Fuzzy Sets and Systems 159 (2008), 1327–1344.

[2] Ban, A. On the nearest parametric approximation of a fuzzy number – revisited. Fuzzy

Sets and Systems 160 (2009), 3027–3047.

[3] Chanas, S. On the interval approximation of a fuzzy number. Fuzzy Sets and Systems

122 (2001), 353–356.

[4] Coroianu, L., Gagolewski, M., and Grzegorzewski, P. Nearest piece-

wise linear approximation of fuzzy numbers. Fuzzy Sets and Systems (2013).

doi:10.1016/j.fss.2013.02.005.

[5] Coroianu, L., Gagolewski, M., and Grzegorzewski, P. Nearest piecewise linear

approximation of fuzzy numbers – general case, 2013. in preparation.

[6] Delgado, M., Vila, M., and Voxman, W. On a canonical representation of a fuzzy

number. Fuzzy Sets and Systems 93 (1998), 125–135.

[7] Diamond, P., and Kloeden, P. Metric Spaces of Fuzzy Sets. Theory and Applications.

World Scientific, Singapore, 1994.

[8] Dubois, D., and Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978),

613–626.

[9] Dubois, D., and Prade, H. The mean value of a fuzzy number. Fuzzy Sets and Systems

24 (1987), 279–300.

[10] Gagolewski, M. FuzzyNumbers: Tools to deal with fuzzy numbers in R, 2013.

www.rexamine.com/resources/fuzzynumbers/.

[11] Grzegorzewski, P. Metrics and orders in space of fuzzy numbers. Fuzzy Sets and Systems

97 (1998), 83–94.

[12] Grzegorzewski, P. Algorithms for trapezoidal approximations of fuzzy numbers preserv-

ing the expected interval. In Foundations of Reasoning Under Uncertainty (2010), B.-M. B.

et al, Ed., Springer, pp. 85–98.

[13] Grzegorzewski, P., and Pasternak-Winiarska, K. Trapezoidal approximations of

fuzzy numbers with restrictions on the support and core. In Proc. EUSFLAT/LFA 2011

(2011), Atlantic Press, pp. 749–756.

[14] Klir, G., and Yuan, B. Fuzzy sets and fuzzy logic. Theory and applications. Prentice

Hall, New Jersey, 1995.

[15] Stefanini, L., and Sorini, L. Fuzzy arithmetic with parametric lr fuzzy numbers. In

Proc. IFSA/EUSFLAT 2009 (2009), pp. 600–605.

[16] Yeh, C.-T. Trapezoidal and triangular approximations preserving the expected interval.

Fuzzy Sets and Systems 159 (2008), 1345–1353.

33

http://www.rexamine.com/resources/fuzzynumbers/

	Getting Started
	How to Create Instances of Fuzzy Numbers
	Arbitrary Fuzzy Numbers
	Definition by Side Functions
	Definition by -cut Bounds
	Definition with Generating Functions Omitted: Shadowed Sets

	Using Numeric Approximations of -cut or Side Generators
	Trapezoidal Fuzzy Numbers
	Piecewise Linear Fuzzy Numbers
	Fuzzy Numbers with Sides Given by Power Functions

	Depicting Fuzzy Numbers
	Basic Computations on and Characteristics of Fuzzy Numbers
	Support and Core, and Other -cuts
	Membership Function Evaluation
	``Typical'' Value
	Measures of ``Nonspecificity''

	Operations on Fuzzy Numbers
	Arithmetic Operations
	Applying Functions

	Approximation of Fuzzy Numbers
	Metrics in the Space of Fuzzy Numbers
	Approximation by Trapezoidal Fuzzy Numbers
	Naïve Approximation
	L2-nearest Approximation
	Expected Interval Preserving Approximation
	Approximation with Restrictions on Support and Core

	Approximation by Piecewise Linear Fuzzy Numbers
	Naïve Approximation
	L2-nearest Approximation

	NEWS/CHANGELOG
	Bibliography

