
Package ‘FKF.SP’
March 21, 2022

Title Fast Kalman Filtering Through Sequential Processing

Version 0.2.0

Description Fast and flexible Kalman filtering implementation utilizing sequential processing, de-
signed for efficient parameter estimation through maximum likelihood estimation. Sequen-
tial processing is a univariate treatment of a multivariate series of observations and can bene-
fit from computational efficiency over traditional Kalman filtering when independence is as-
sumed in the variance of the disturbances of the measurement equation. Sequential process-
ing is described in the textbook of Durbin and Koopman (2001, ISBN:978-0-19-964117-
8). 'FKF.SP' was built upon the existing 'FKF' package and is, in general, a faster Kalman filter.

License GPL-3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

RdMacros mathjaxr,
Rdpack

Imports mathjaxr,
Rdpack,
curl

Suggests knitr,
rmarkdown,
stats,
FKF,
NFCP

VignetteBuilder knitr

URL https://github.com/TomAspinall/FKF.SP

BugReports https://github.com/TomAspinall/FKF.SP/issues

R topics documented:

fkf.SP . 2

Index 9

1

https://github.com/TomAspinall/FKF.SP
https://github.com/TomAspinall/FKF.SP/issues

2 fkf.SP

fkf.SP Fast Kalman Filtering using Sequential Processing.

Description

The fkf.SP function performs fast and flexible Kalman filtering using sequential processing. It is
designed for efficient parameter estimation through maximum likelihood estimation. fkf.SP wraps
the C-function fkf_SP which relies upon the linear algebra subroutines of BLAS (Basic Linear Al-
gebra Subprograms). Sequential processing (SP) is a univariate treatment of a multivariate series of
observations that increases computational efficiency over traditional Kalman filtering in the general
case. SP takes the additional assumption that the variance of disturbances in the measurement equa-
tion are independent. fkf.SP is based from the fkf function of the FKF package but is, in general,
a faster Kalman filtering method. fkf and fkf.SP share identical arguments (except for the GGt
argument, see arguments). fkf.SP is compatible with missing observations (i.e. NA’s in argument
yt).

Usage

fkf.SP(a0, P0, dt, ct, Tt, Zt, HHt, GGt, yt, verbose = FALSE)

Arguments

a0 A vector giving the initial value/estimation of the state variable

P0 A matrix giving the variance of a0

dt A matrix giving the intercept of the transition equation

ct A matrix giving the intercept of the measurement equation

Tt An array giving factor of the transition equation

Zt An array giving the factor of the measurement equation

HHt An array giving the variance of the innovations of the transition equation

GGt A vector giving the diagonal elements of the matrix for the variance of dis-
turbances of the measurement equation. Covariance between disturbances is not
supported under the sequential processing method.

yt A matrix containing the observations. "NA"- values are allowed

verbose A logical. When verbose = TRUE, A list object is output, which provides the
filtered state variables and variances of the Kalman filter.

Details

Parameters:

The fkf.SP function builds upon the fkf function of the FKF package by adjusting the Kalman
filtering algorithm to utilize sequential processing. Sequential processing can result in significant
decreases in processing time over the traditional Kalman filter algorithm. The fkf.SP and fkf func-
tions feature highly similar arguments for compatibility purposes; only argument GGt has changed
from an array type object to a vector or matrix type object. The fkf.SP function takes the ad-
ditional assumption over the fkf function that the variance of the disturbances of the measurement
equation are independent; a requirement of SP (see below).

Parameters can either be constant or deterministic time-varying. Assume the number of discrete
time observations is n i.e. y = yt where t = 1, · · · , n. Let m be the dimension of the state variable

fkf.SP 3

and d the dimension of the observations. Then, the parameters admit the following classes and
dimensions:

4 fkf.SP

dt either a m× n (time-varying) or a m× 1 (constant) matrix.
Tt either a m×m× n or a m×m× 1 array.
HHt either a m×m× n or a m×m× 1 array.
ct either a d× n or a d× 1 matrix.
Zt either a d×m× n or a d×m× 1 array.
GGt either a d× n (time-varying) or a d× 1 matrix.
yt a d× n matrix.

State Space Form
The following notation follows that of Koopman et al. (1999). The Kalman filter is characterized
by the transition and measurement equations:

αt+1 = dt + Tt · αt +Ht · ηt

yt = ct + Zt · αt +Gt · εt

where ηt and εt are i.i.d. N(0, Im) and i.i.d. N(0, Id), respectively, and αt denotes the state vector.
The parameters admit the following dimensions:

at ∈ Rm dt ∈ Rm ηt ∈ Rm

Tt ∈ Rm×m Ht ∈ Rm×m

yt ∈ Rd ct ∈ Rd εt ∈ Rd

Zt ∈ Rd×m Gt ∈ Rd×d

Note that fkf.SP takes as input HHt and GGt which corresponds to HtH
′
t and diag(Gt)

2 respec-
tively.

Sequential Processing Iteration:

Traditional Kalman filtering takes the entire observational vector yt as the items for analysis. SP is
an alternate approach that filters the elements of yt one at a time. Sequential processing is described
in the textbook of Durbin and Koopman (2001) and is described below.

Let p equal the number of observations at time t (i.e. when considering possible missing observa-
tions p ≤ d). The SP iteration involves treating the vector series: y1, · · · , yn instead as the scalar
series y1,1, · · · , y(1,p), y2,1, · · · , y(n,pn). This univariate treatment of the multivariate series has the
advantage that the function of the covariance matrix, Ft, becomes 1 × 1, avoiding the calculation
of both the inverse and determinant of a p × p matrix. This can increase computational efficiency
(especially under the case of many observations, i.e. p is large)

For any time point, the observation vector is given by:

y′t = (y(t,1), · · · , y(t,p))

The filtering equations are written as:

at,i+1 = at,i +Kt,ivt,i

Pt,i+1 = Pt,i −Kt,iFt,iK
′
t,i

Where:
ŷt,i = ct + Zt · at,i

vt,i = yt,i − ŷt,i

fkf.SP 5

Ft,i = Zt,iPt,iZ
′
t,i +GGtt,i

Kt,i = Pt,iZ
′
t,iF

−1
t,i

i = 1, · · · , p

Transition from time t to t+ 1 occurs through the standard transition equations.

αt+1,1 = dt + Tt · αt,p

Pt+1,1 = Tt · Pt,p · T ′t +HHt

The log-likelihood at time t is given by:

logLt = −
p

2
log(2π)− 1

2

p∑
i=1

(logFi +
v2i
Fi

)

Where the log-likelihood of observations is:

logL =

n∑
t

logLt

Value

A numeric value corresponding to the log-likelihood calculated by the Kalman filter. Ideal for
maximum likelihood estimation through optimization routines such as optim.

When verbose = TRUE, a list with the following elements is also returned, corresponding to the
filtered state variables and covariances of the Kalman filter algorithm:

att A m× n-matrix containing the filtered state variables, i.e. att[,t] = at|t.
at A m× (n+ 1)-matrix containing the predicted state variables, i.e. at[,t] = at.

Ptt A m×m× n-array containing the variance of att, i.e. Ptt[,,t] = Pt|t.
logLik The log-likelihood.

Log-Likelihood Values:

When there are no missing observations (i.e. "NA" values) in argument yt, the return of func-
tion fkf.SP and the logLik object returned within the list of function fkf are identical. When
NA’s are present, however, log-likelihood values returned by fkf.SP are always higher. The log-
likelihood value of the C code of FKF is instantiated through the calculation of the first term of the
log-likelihood function, −0.5 × n × d × log(2π), where n is the number of columns of argument
yt and d is the number of rows of argument yt. Under the assumption that there are missing ob-
servations, d would instead become dt, where dt ≤ d∀t. Whilst this doesn’t influence parameter
estimation, because observation matrix yt and thus the offset resulting from this is kept constant
during maximum likelihood estimation, this does result in low bias of the log-likelihood values
output by fkf.

References

Anderson, B. D. O. and Moore. J. B. (1979). Optimal Filtering Englewood Cliffs: Prentice-Hall.

6 fkf.SP

Fahrmeir, L. and tutz, G. (1994) Multivariate Statistical Modelling Based on Generalized Linear
Models. Berlin: Springer.

Koopman, S. J., Shephard, N., Doornik, J. A. (1999). Statistical algorithms for models in state space
using SsfPack 2.2. Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.

Durbin, James, and Siem Jan Koopman (2001). Time series analysis by state space methods. Oxford
university press.

David Luethi, Philipp Erb and Simon Otziger (2018). FKF: Fast Kalman Filter. R package version
0.1.5. https://CRAN.R-project.org/package=FKF

Examples

<---
##Example 1 - Filter a state space model - Nile data
<---

Observations must be a matrix:
yt <- rbind(datasets::Nile)

Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- yt[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'
These can be estimated through MLE:
GGt <- matrix(15000)
HHt <- matrix(1300)

'verbose' returns the filtered values:
output <- fkf.SP(a0 = a0, P0 = P0, dt = dt, ct = ct,

Tt = Tt, Zt = Zt, HHt = HHt, GGt = GGt,
yt = yt, verbose = TRUE)

<---
##Example 2 - ARMA(2,1) model estimation.
<---

#Length of series
n <- 1000

#AR parameters
AR <- c(ar1 = 0.6, ar2 = 0.2, ma1 = -0.2, sigma = sqrt(0.2))

Sample from an ARMA(2, 1) process
a <- stats::arima.sim(model = list(ar = AR[c("ar1", "ar2")], ma = AR["ma1"]), n = n,
innov = rnorm(n) * AR["sigma"])

##State space representation of the four ARMA parameters
arma21ss <- function(ar1, ar2, ma1, sigma) {
Tt <- matrix(c(ar1, ar2, 1, 0), ncol = 2)
Zt <- matrix(c(1, 0), ncol = 2)
ct <- matrix(0)
dt <- matrix(0, nrow = 2)
GGt <- matrix(0)
H <- matrix(c(1, ma1), nrow = 2) * sigma

fkf.SP 7

HHt <- H %*% t(H)
a0 <- c(0, 0)
P0 <- matrix(1e6, nrow = 2, ncol = 2)
return(list(a0 = a0, P0 = P0, ct = ct, dt = dt, Zt = Zt, Tt = Tt, GGt = GGt,

HHt = HHt))
}

The objective function passed to 'optim'
objective <- function(theta, yt) {
sp <- arma21ss(theta["ar1"], theta["ar2"], theta["ma1"], theta["sigma"])
ans <- fkf.SP(a0 = sp$a0, P0 = sp$P0, dt = sp$dt, ct = sp$ct, Tt = sp$Tt,

Zt = sp$Zt, HHt = sp$HHt, GGt = sp$GGt, yt = yt)
return(-ans)

}

Parameter estimation - maximum likelihood estimation:
theta <- c(ar = c(0, 0), ma1 = 0, sigma = 1)
ARMA_MLE <- optim(theta, objective, yt = rbind(a), hessian = TRUE)

<---
#Example 3 - Nile Model Estimation:
<---

#Nile's annual flow:
yt <- rbind(Nile)

##Incomplete Nile Data - two NA's are present:
yt[c(3, 10)] <- NA

Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- yt[1] # Estimation of the first year flow
P0 <- matrix(100) # Variance of 'a0'

Parameter estimation - maximum likelihood estimation:
##Unknown parameters initial estimates:
GGt <- HHt <- var(c(yt), na.rm = TRUE) * .5
#Perform maximum likelihood estimation
Nile_MLE <- optim(c(HHt = HHt, GGt = GGt),

fn = function(par, ...)
-fkf.SP(HHt = matrix(par[1]), GGt = matrix(par[2]), ...),
yt = yt, a0 = a0, P0 = P0, dt = dt, ct = ct,
Zt = Zt, Tt = Tt)

<---
#Example 4 - Dimensionless Treering Example:
<---

tree-ring widths in dimensionless units
y <- treering

Set constant parameters:
dt <- ct <- matrix(0)
Zt <- Tt <- matrix(1)
a0 <- y[1] # Estimation of the first width

8 fkf.SP

P0 <- matrix(100) # Variance of 'a0'

Parameter estimation - maximum likelihood estimation:
Treering_MLE <- optim(c(HHt = var(y, na.rm = TRUE) * .5,

GGt = var(y, na.rm = TRUE) * .5),
fn = function(par, ...)

-fkf.SP(HHt = array(par[1],c(1,1,1)), GGt = matrix(par[2]), ...),
yt = rbind(y), a0 = a0, P0 = P0, dt = dt, ct = ct,
Zt = Zt, Tt = Tt)

Index

fkf.SP, 2

9

	fkf.SP
	Index

