
EpiBayes 2-Level Models Vignette

Matt Branan

Updated: June 23, 2015

1 Setting up the Models in R

Run this code once to load the proper packages.

library(epiR) # For the BetaBuster function

library(compiler) # To compile the larger functions for computational speed

library(coda) # For processing Bayesian model output

library(shape) # For nice colorbar legends

library(scales) # For transparent colors

library(EpiBayes) # Load our package

Next, we will use the hierarchical Bayesian model to investigate a 2-level sampling design in
which we have one region with a single subzone of interest from which we sample a number of
clusters and, from those clusters, we sample a number of subjects of interest. We then investigate
the output of both the no storage model (EpiBayes ns) and the storage model (EpiBayes s) using
the appropriate methods for the objects output by those two functions that are included in the
EpiBayes.

We also preview ways in which the user may implement functions from the coda package
and post-process the output of these models by hand. Additionally, we preview the use of the
epi.betabuster function from the epiR package so that one may use expert opinion to elicit beta
prior distributions in the Bayesian model.

2 Examples

2.1 Example 1: Simulation-based Inference

Suppose that we have a situation much like that in our mollusk application with a few alterations.
We assume that we have 40 farms on which we have 100 mollusks sampled on 350 of them and 500
mollusks sampled on the remaining 5. Of these, we assume that the first ten farms were sampled
in summer, the next ten in fall, the next ten in winter, and the last ten (including the 5 farms with
500 mollusks from each) in spring. These seasons had the following modes of

• Summer: 0.50

• Fall: 0.50

• Winter: 0.02

• Spring: 0.02

The disease we are studying is moderately contagious and we expect about 50% of mollusks on
infected farms to have the disease with these prevalences on infected farms being relatively variable
(say, 20%-80% prevalence 95% of the time). We also assume that our sensitivity is around 10%
and the specificity is near 100%.

1

Our approach here is that we want to assume that the disease is present in the area and show
that we can actually detect the disease being above a threshold (design prevalence) of 2% with 95%
probability. This means that we will assume that the disease is truly in the region so we set the
corresponding variable gammat near 100%. We also want to let the data do most of the work so we
will assume a non-informative, uniform prior for the cluster - level prevalence (taumat).

In this first example, we will use the model as a simulation model and simulate data under the
prior parameters and a specified true cluster-level prevalence, run each simulated data set through
the Bayesian model, and find out how often we conclude we find the cluster-level prevalence above
2% with 95% probability (that is, we will pay attention to p4.tilde in the output).

Note that any prior distributions for beta random variables (seasonal subject-level prevalences,
gammat, taumat, mumat, etamat, thetamat) can be computed using BetaBuster like below. Since
we know that we want sensitivity (etamat) about 10%, we can use the code:

epi.betabuster(0.10, 0.95, FALSE, 0.15)

$shape1

[1] 15.412

##

$shape2

[1] 130.708

##

$mode

[1] 0.1

##

$mean

[1] 0.105475

##

$median

[1] 0.103675

##

$lower

[1] 0.06120444

##

$upper

[1] 0.1599439

##

$variance

[1] 0.0006413131

to get the parameters of a beta distribution with mode 10% and a 95th percentile of 15%. The first
two, shape1 and shape2, are just those two parameters that describe such a beta distribution.

Once the prior distributions have been decided upon, we may call the actual model – we’ll
be using the storage model in this case just so we can check some of the posterior distributions
if we would like to. The function call will look something like the following. We have included
annotations next to each argument so that it is clear what each argument is and why it had been
initialized as such.

2

set.seed(2015) # To ensure reproducible results

example1.run = EpiBayes_s(

H = 1, # 1 subzone

k = rep(40, 1), # 40 farms total

n = c(rep(100, 35), rep(500, 5)), #100

mollusks sampled in 35 farms and 500 sampled in the remaining 5 farms

seasons = rep(c(1, 2, 3, 4), each = 10),

Seasons corresponding to each cluster

(1 for summer, 2 for fall, 3 for winter, 4 for spring)

mumodes = matrix(c(

0.50, 0.70,

0.50, 0.70,

0.02, 0.50,

0.02, 0.50

), 4, 2, byrow = TRUE

), # Modes and 95th percentiles of

#subject - level prevalences for each season in order

reps = 10, # 10 replicated data sets in this simulation

MCMCreps = 100, # 100 MCMC iterations per replicated data set

(increasing this would be a good idea for real data but

slows things down a lot)

poi = "tau", # Want inference on cluster-level prevalence

y = NULL, # Leave this as NULL if we are doing simulation and not posterior

inference with a particular data set

pi.thresh = 0.10, # Have a 10% within-cluster design prevalence

tau.thresh = 0.02, # Have a 2% between-cluster design prevalence

gam.thresh = 0.10, # Doesn't matter since we have a 2-level model

tau.T = 0.20, # The "true cluster - level prevalence" that we simulate our data

with (this means about 20% of our clusters in each replicated data set

will be diseased and will have a truly positive subject -

level prevalence)

poi.lb = 0, # The lower bound for estimating the cluster - level

prevalence (not of interest here)

poi.ub = 1, # The upper bound for estimating the cluster - level

prevalence (not of interest here)

p1 = 0.95, # The probability (used like a confidence) that we must show our

cluster - level prevalence is above 2% in order to count that replicated

data set as one in which we detected the disease

psi = 4, # The variability of the prevalences among infected clusters

within the subzone

omegaparm = c(1000, 1), # Prior parameters for omegamat (the probability

of the disease being in the region)

gamparm = c(1000, 1), # Prior parameters for gammat (the subzone-level

prevalence)

tauparm = c(1, 1), # Prior parameters for taumat (the cluster - level

prevalence)

etaparm = c(15, 130), # Prior parameters for etamat (the diagnostic test

3

sensitivity)

thetaparm = c(1000, 1), # Prior parameters for thetamat (the diagnostic

test specificity)

burnin = 10 # The amount of MCMC iterations to "burn"

)

Once finished, we can look at summaries of the output. The summary method will return the
simulation output (p2.tilde, p4.tilde, and p6.tilde), followed by summary values and highest
posterior density (HPD) intervals for each of the parameters stored by the function. We can define
how many replicated data sets we actually report summary measures for with a specification of the
argument n.output (which defaults to 10 when reps is greater than 10). We can also use the plot

method to plot the posterior distributions for the parameter the user chose to be poi (either the
cluster-level or the subzone-level prevalence) for every replicated data set.

Summary

example1.sum = summary(example1.run, n.output = 5)

Simulation output for parameter of interest (poi)

*p2.tilde: Percentage of the time the disease is not detected above the disease threshold

*p4.tilde: Percentage of the time the disease is detected above the disease threshold

*p6.tilde: Percentage of the time the disease is detected between the user-supplied lower and upper bounds of interest

##

p2.tilde p4.tilde p6.tilde

0 1 1

##

gam: Probability of disease being in the region

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.9989854 0.0010186679 1.073770e-04 1.073770e-04 0.9967271

[2,] 0.9990614 0.0007905371 8.332992e-05 8.332992e-05 0.9973818

[3,] 0.9988807 0.0011317586 1.192978e-04 1.905485e-04 0.9965609

[4,] 0.9989096 0.0009028008 9.516356e-05 9.516356e-05 0.9965480

[5,] 0.9987604 0.0012712651 1.340031e-04 1.340031e-04 0.9956564

Upper HPD Limit

[1,] 0.9999944

[2,] 0.9999948

[3,] 0.9999971

[4,] 0.9999577

[5,] 0.9999933

##

tau 1: Cluster-level prevalence in subzone 1

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.9280318 0.04431050 0.004670737 0.006923991 0.8332107

[2,] 0.9025605 0.08463441 0.008921250 0.036217626 0.7408714

[3,] 0.9644011 0.03023153 0.003186683 0.003186683 0.9136501

[4,] 0.9334913 0.05894896 0.006213766 0.015804479 0.7874402

[5,] 0.8966697 0.07419434 0.007820770 0.039807720 0.7701314

4

Upper HPD Limit

[1,] 0.9906361

[2,] 0.9995856

[3,] 0.9998803

[4,] 0.9969126

[5,] 0.9969722

##

example1.sum

Simulation output for parameter of interest (poi)

*p2.tilde: Percentage of the time the disease is not detected above the disease threshold

*p4.tilde: Percentage of the time the disease is detected above the disease threshold

*p6.tilde: Percentage of the time the disease is detected between the user-supplied lower and upper bounds of interest

##

p2.tilde p4.tilde p6.tilde

0 1 1

##

gam: Probability of disease being in the region

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.9989854 0.0010186679 1.073770e-04 1.073770e-04 0.9967271

[2,] 0.9990614 0.0007905371 8.332992e-05 8.332992e-05 0.9973818

[3,] 0.9988807 0.0011317586 1.192978e-04 1.905485e-04 0.9965609

[4,] 0.9989096 0.0009028008 9.516356e-05 9.516356e-05 0.9965480

[5,] 0.9987604 0.0012712651 1.340031e-04 1.340031e-04 0.9956564

Upper HPD Limit

[1,] 0.9999944

[2,] 0.9999948

[3,] 0.9999971

[4,] 0.9999577

[5,] 0.9999933

##

tau 1: Cluster-level prevalence in subzone 1

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.9280318 0.04431050 0.004670737 0.006923991 0.8332107

[2,] 0.9025605 0.08463441 0.008921250 0.036217626 0.7408714

[3,] 0.9644011 0.03023153 0.003186683 0.003186683 0.9136501

[4,] 0.9334913 0.05894896 0.006213766 0.015804479 0.7874402

[5,] 0.8966697 0.07419434 0.007820770 0.039807720 0.7701314

Upper HPD Limit

[1,] 0.9906361

[2,] 0.9995856

[3,] 0.9998803

[4,] 0.9969126

[5,] 0.9969722

5

##

Plot the posterior distributions of cluster-level prevalence

plot(example1.run)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Posterior Distributions for Cluster−level Prevalence
 for each Replicated Data Set

Cluster−level Prevalence

D
en

si
ty

We can also look at some trace plots, ignoring burnin, for some of the taumat and some of the
pimat chains.

Tau

Tau for first replicated data set

plot(example1.run$taumat[1, 1,], type = "l")

6

0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

1.
0

Index

ex
am

pl
e1

.r
un

$t
au

m
at

[1
, 1

,]

Tau for second replicated data set

plot(example1.run$taumat[2, 1,], type = "l")

7

0 20 40 60 80 100

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Index

ex
am

pl
e1

.r
un

$t
au

m
at

[2
, 1

,]

Tau for third replicated data set

plot(example1.run$taumat[3, 1,], type = "l")

8

0 20 40 60 80 100

0.
6

0.
7

0.
8

0.
9

1.
0

Index

ex
am

pl
e1

.r
un

$t
au

m
at

[3
, 1

,]

Tau for tenth replicated data set

plot(example1.run$taumat[10, 1,], type = "l")

9

0 20 40 60 80 100

0.
65

0.
75

0.
85

0.
95

Index

ex
am

pl
e1

.r
un

$t
au

m
at

[1
0,

 1
,]

Pi

Pi for the first farm (100 mollusks) in the first replicated data set

plot(example1.run$pimat[1, 1,], type = "l")

10

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

ex
am

pl
e1

.r
un

$p
im

at
[1

, 1
,]

Pi for the tenth farm (100 mollusks) in the first replicated data set

plot(example1.run$pimat[1, 10,], type = "l")

11

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

ex
am

pl
e1

.r
un

$p
im

at
[1

, 1
0,

]

Pi for the thirty-eighth farm (500 mollusks) in the first replicated data set

plot(example1.run$pimat[1, 38,], type = "l")

12

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

ex
am

pl
e1

.r
un

$p
im

at
[1

, 3
8,

]

Pi for the first farm (100 mollusks) in the tenth replicated data set

plot(example1.run$pimat[10, 1,], type = "l")

13

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

ex
am

pl
e1

.r
un

$p
im

at
[1

0,
 1

,]

Pi for the tenth farm (100 mollusks) in the tenth replicated data set

plot(example1.run$pimat[10, 10,], type = "l")

14

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

Index

ex
am

pl
e1

.r
un

$p
im

at
[1

0,
 1

0,
]

Let’s also look at some histograms of the same variables as above.

par(mfrow=c(2,2))

Tau

Tau for first replicated data set

hist(example1.run$taumat[1, 1,], col = "cyan");box("plot")

Tau for second replicated data set

hist(example1.run$taumat[2, 1,], col = "cyan");box("plot")

Tau for third replicated data set

hist(example1.run$taumat[3, 1,], col = "cyan");box("plot")

Tau for tenth replicated data set

hist(example1.run$taumat[10, 1,], col = "cyan");box("plot")

15

Histogram of example1.run$taumat[1, 1,]

example1.run$taumat[1, 1,]

F
re

qu
en

cy

0.0 0.4 0.8

0
20

60

Histogram of example1.run$taumat[2, 1,]

example1.run$taumat[2, 1,]

F
re

qu
en

cy

0.4 0.6 0.8 1.0

0
20

40
60

Histogram of example1.run$taumat[3, 1,]

example1.run$taumat[3, 1,]

F
re

qu
en

cy

0.6 0.8 1.0

0
20

60

Histogram of example1.run$taumat[10, 1,]

example1.run$taumat[10, 1,]

F
re

qu
en

cy

0.65 0.75 0.85 0.95

0
20

60

Pi

Pi for the first farm (100 mollusks) in the first replicated data set

hist(example1.run$pimat[1, 1,], col = "cyan");box("plot")

Pi for the tenth farm (100 mollusks) in the first replicated data set

hist(example1.run$pimat[1, 10,], col = "cyan");box("plot")

Pi for the thirty-eighth farm (500 mollusks) in the first replicated data set

hist(example1.run$pimat[1, 38,], col = "cyan");box("plot")

Pi for the first farm (100 mollusks) in the tenth replicated data set

hist(example1.run$pimat[10, 1,], col = "cyan");box("plot")

16

Histogram of example1.run$pimat[1, 1,]

example1.run$pimat[1, 1,]

F
re

qu
en

cy

0.0 0.4 0.8

0
20

40

Histogram of example1.run$pimat[1, 10,]

example1.run$pimat[1, 10,]

F
re

qu
en

cy

0.0 0.4 0.8

0
10

20

Histogram of example1.run$pimat[1, 38,]

example1.run$pimat[1, 38,]

F
re

qu
en

cy

0.0 0.4 0.8

0
20

40

Histogram of example1.run$pimat[10, 1,]

example1.run$pimat[10, 1,]

F
re

qu
en

cy

0.0 0.4 0.8

0
5

10

Pi for the tenth farm (100 mollusks) in the tenth replicated data set

hist(example1.run$pimat[10, 10,], col = "cyan");box("plot")

17

Histogram of example1.run$pimat[10, 10,]

example1.run$pimat[10, 10,]

F
re

qu
en

cy

0.4 0.6 0.8 1.0

0
10

20
30

2.2 Example 2: Posterior Inference with All Zeros

Suppose that we have a the same situation as in Example 1 but now we have a different objective.
Instead of simulating the sample data, we will say that we have observed all zeroes in our sample
and will use that single set of sample data.

Not too much will change with our call to the model, but the big things are: (1) we will have
only 1 replication, (2) we can increase our MCMC iterations easily since we have only 1 replication,
and (3) our argument to our model y will be supplied by us and it must be a matrix with dimensions
(reps x k) - - from the description of the variables above the model code.

The code for calling the storage model under these specifications is below. We use the no storage
model, which is a bit faster than the storage model, but doesn’t store as much output that could
potentially be used to diagnose model fit or convergence issues. Highlight the following code and
run it.

set.seed(2015) # To ensure reproducible results

example2.run = EpiBayes_ns(

H = 1,

k = rep(40, 1),

n = c(rep(100, 35), rep(500, 5)),

seasons = rep(c(1, 2, 3, 4), each = 10),

18

mumodes = matrix(c(

0.50, 0.70,

0.50, 0.70,

0.02, 0.50,

0.02, 0.50

), 4, 2, byrow = TRUE

),

reps = 1, # Only 1 replication this time

MCMCreps = 1000, # 1000 MCMC iterations now that we have only 1 replication

poi = "tau", # Want inference on cluster-level prevalence

y = matrix(0, nrow = 1, ncol = 40), # Set so we have all negative diagnostic

test results

pi.thresh = 0.10, # Have a 10% within-cluster design prevalence

tau.thresh = 0.02, # Doesn't matter since we aren't simulating

gam.thresh = 0.10, # Doesn't matter since we aren't simulating

tau.T = 0.20, # Doesn't matter since we aren't simulating any data in this

case (we'll leave it the same here)

poi.lb = 0, # Doesn't matter since we aren't simulating

poi.ub = 1, # Doesn't matter since we aren't simulating

p1 = 0.95, # Doesn't matter since we aren't simulating

psi = 4,

omegaparm = c(1000, 1),

gamparm = c(1000, 1),

tauparm = c(1, 1),

etaparm = c(15, 130),

thetaparm = c(1000, 1),

burnin = 10

)

Again, we can look at some quick summary measures using the summary and plot methods.
Note that since we only have one replication here, the simulation statistics are not of much interest
to us and we only have one posterior distribution in the plot.

Summary

example2.sum = summary(example2.run)

Simulation output for parameter of interest (poi)

*p2.tilde: Percentage of the time the disease is not detected above the disease threshold

*p4.tilde: Percentage of the time the disease is detected above the disease threshold

*p6.tilde: Percentage of the time the disease is detected between the user-supplied lower and upper bounds of interest

##

p2.tilde p4.tilde p6.tilde

0 1 1

##

gam: Probability of disease being in the region

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.9990176 0.0009982845 3.172756e-05 3.172756e-05 0.9970507

19

Upper HPD Limit

[1,] 0.9999999

##

tau 1: Cluster-level prevalence in subzone 1

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.7239777 0.1946877 0.006187581 0.1247744 0.3927977

Upper HPD Limit

[1,] 0.9999856

##

example2.sum

Simulation output for parameter of interest (poi)

*p2.tilde: Percentage of the time the disease is not detected above the disease threshold

*p4.tilde: Percentage of the time the disease is detected above the disease threshold

*p6.tilde: Percentage of the time the disease is detected between the user-supplied lower and upper bounds of interest

##

p2.tilde p4.tilde p6.tilde

0 1 1

##

gam: Probability of disease being in the region

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.9990176 0.0009982845 3.172756e-05 3.172756e-05 0.9970507

Upper HPD Limit

[1,] 0.9999999

##

tau 1: Cluster-level prevalence in subzone 1

Mean SD Naive SE Time-series SE Lower HPD Limit

[1,] 0.7239777 0.1946877 0.006187581 0.1247744 0.3927977

Upper HPD Limit

[1,] 0.9999856

##

Plot the posterior distributions of cluster-level prevalence

plot(example2.run)

20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Posterior Distributions for Cluster−level Prevalence
 for each Replicated Data Set

Cluster−level Prevalence

D
en

si
ty

Once finished, we can make posterior inference by using the coda package, which is an R
package that is designed to process output of Bayesian models. Of primary interest is the posterior
distribution of the cluster-level prevalence, though we could do the same with any of the posterior
distributions available to us.

Must transform the posterior distribution of tau into an mcmc

object for CODA to recognize it

example2.tauposterior = as.mcmc(example2.run$taumat[1, 1,])

Now we can use any function in the CODA package to analyze the posterior

Generic summary statistics

summary(example2.tauposterior)

##

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

##

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

21

##

Mean SD Naive SE Time-series SE

0.726487 0.195327 0.006177 0.126223

##

2. Quantiles for each variable:

##

2.5% 25% 50% 75% 97.5%

0.3553 0.5748 0.7449 0.9047 0.9952

95% HPD interval for the cluster - level prevalence

HPDinterval(example2.tauposterior, prob = 0.95)

lower upper

var1 0.3927977 0.9999856

attr(,"Probability")

[1] 0.95

Geweke convergence statistic

If it looks like the realization of a standard normal random variable

coda::geweke.diag(example2.tauposterior)

##

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

##

var1

10.4

Trace plot and density plot for tau minus burnin

plot(example2.tauposterior)

22

0 400 800

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

Trace of var1

0.0 0.4 0.8 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

Density of var1

N = 1000 Bandwidth = 0.05201

Autocorrelation plot for the chain minus burnin

autocorr.plot(example2.tauposterior)

23

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

2.3 Example 3: Sample Size Search

Again, suppose that our setup is the same as in Example 1, but we have yet another objective.
Instead of deriving the simulation output for the cluster-level prevalence using a particular set of
values for our sample sizes H, k, and n, we will derive the simulation output for all combinations
of user-supplied H, k, and n vectors.

We will make a call to the function EpiBayesSampleSize, which requests vectors of possible
numbers of subzones, numbers of clusters per subzone (same for all subzones), and numbers of
subjects per cluster per subzone (same for all clusters). Then, all combinations of the values of
these three vectors will be taken and EpiBayes ns will be run on each combination. The simulation
output (p2.tilde, p4.tilde, and p6.tilde) will be stored for each run and will be printed by the
print method.

Notice that we need to supply those three vectors of sample sizes, a season, and the rest of
the inputs from the EpiBayes ns function. Also notice that we have simplified the flexibility of
EpiBayes ns a bit by forcing all subzones to have the same number of clusters and all clusters to
have the same number of subjects and all sampling occasions must occur in the same season for each
combination of one value from H, k, and n. This simplifies input by the user, though if very precise
estimates are required for a particular set of H, k, and n, we recommend running EpiBayes ns or
EpiBayes s on that particular set so that the results may be more fully explored. This function
effectively serves as a screening for ’good’ values of the sample sizes under specific conditions.

24

Here, we would like to determine the probability of detection (p4.tilde) and the probability
that the prevalence falls within 0.0 and 0.1 (p6.tilde) amongst our replicated data sets for each
combination of subzones (1 or 2 subzones), clusters (10, 20, or 30 clusters in each subzone), and
numbers of subjects (100, 300, or 500 subjects in each cluster).

example3.run = EpiBayesSampleSize(

H = c(1, 2), # Allow 1 and 2 subzones

k = c(10, 20, 30), # Allow 10, 20, and 30 clusters per subzone

n = c(100, 300, 500), # Allow 100, 300, and 500 subjects per

cluster per subzone

season = 3, # Force all sampling to be done in Winter

reps = 2,

MCMCreps = 2,

tau.T = 0,

y = NULL,

poi = "tau",

mumodes = matrix(c(

0.50, 0.70,

0.50, 0.70,

0.02, 0.50,

0.02, 0.50

), 4, 2, byrow = TRUE

),

pi.thresh = 0.10,

tau.thresh = 0.02,

gam.thresh = 0.10,

poi.lb = 0,

poi.ub = 0.1,

p1 = 0.95,

psi = 4,

tauparm = c(1, 1),

omegaparm = c(1000, 1),

gamparm = c(1000, 1),

etaparm = c(15, 130),

thetaparm = c(100, 6),

burnin = 1

)

By default, the print method will return all three simulation output values. We can specifically
request only the one or two in which we are interested.

example3.run # Prints all three simulation statistics

Estimated probabilities of not detecting cluster-level prevalence above for given H, k, and n.

##

, , H = 1

##

n

25

k 100 300 500

10 0.0 0.0 0

20 0.5 0.0 0

30 0.0 0.5 0

##

, , H = 2

##

n

k 100 300 500

10 0 0 0

20 0 0 0

30 0 0 0

##

Estimated probabilities of detecting cluster-level prevalence above for given H, k, and n.

##

, , H = 1

##

n

k 100 300 500

10 1.0 1.0 1

20 0.5 1.0 1

30 1.0 0.5 1

##

, , H = 2

##

n

k 100 300 500

10 1 1 1

20 1 1 1

30 1 1 1

##

Estimated probabilities of detecting cluster-level prevalence in the interval (0, 0.1) for given H, k, and n.

##

, , H = 1

##

n

k 100 300 500

10 0.0 0.0 0

20 0.5 0.0 0

30 0.5 0.5 0

##

, , H = 2

##

n

k 100 300 500

10 0 0 0

20 0 0 0

26

30 0 0 0

Prints only those two requested

print(example3.run, out.ptilde = c("p4.tilde", "p6.tilde"))

Estimated probabilities of not detecting cluster-level prevalence above for given H, k, and n.

##

, , H = 1

##

n

k 100 300 500

10 0.0 0.0 0

20 0.5 0.0 0

30 0.0 0.5 0

##

, , H = 2

##

n

k 100 300 500

10 0 0 0

20 0 0 0

30 0 0 0

##

Estimated probabilities of detecting cluster-level prevalence above for given H, k, and n.

##

, , H = 1

##

n

k 100 300 500

10 1.0 1.0 1

20 0.5 1.0 1

30 1.0 0.5 1

##

, , H = 2

##

n

k 100 300 500

10 1 1 1

20 1 1 1

30 1 1 1

##

Estimated probabilities of detecting cluster-level prevalence in the interval (0, 0.1) for given H, k, and n.

##

, , H = 1

##

n

k 100 300 500

10 0.0 0.0 0

27

20 0.5 0.0 0

30 0.5 0.5 0

##

, , H = 2

##

n

k 100 300 500

10 0 0 0

20 0 0 0

30 0 0 0

Note: The above examples are not meant to reflect reality. Notice that the MCMCreps in both
examples are set very low. This would have been bad if executed in practice, but was set so in
order to ensure quick build times for this vignette.

28

	Setting up the Models in R
	Examples
	Example 1: Simulation-based Inference
	Example 2: Posterior Inference with All Zeros
	Example 3: Sample Size Search

