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1 Setting up the Models in R

Run this code once to load the proper packages.

library(epiR) # For the BetaBuster function

library(compiler) # To compile the larger functions for computational speed

library(coda) # For processing Bayesian model output

library(shape) # For nice colorbar legends

library(scales) # For transparent colors

library(EpiBayes) # Load our package

Next, we will use the hierarchical Bayesian model to investigate a 3-level sampling design in
which we have one region with three subzones of interest. Two subzones have ten farms sampled and
we sample 100 cows a piece and the third subzone has fifty clusters sampled with 100 cows sampled
a piece. We implement the storage model, EpiBayes s, to investigate the posterior distributions
of the cluster-level prevalences after one year of sampling in which we see only the third subzone
infected in which we see ten farms with ten infected cows and fifteen farms with fifteen cows infected.

We also use the EpiBayesHistorical function and its methods to investigate the ways we may
combine several years’ information into one statement about the cluster-level prevalence of the
disease under investigation.

2 Examples

2.1 Example 1: 3-Level Posterior Inference

Consider visiting a region in which there are three subzones (could be states) of interest. Two of
the subzones have ten farms sampled, and we sample 100 cows per farm. The third subzone has
fifty sampled farms with 100 cows sampled on each. All of the sampling during this year was done
in the Fall. During this season, the average subject-level prevalence of the disease is about 10%. We
specify that the disease is somewhere in the region and that we expect about 40% of the subzones
to be infected and the sensitivity and specificity of the diagnostic test used is around 90%.

When we go out and sample our cows, we find the first two subzones to have no animals infected
by our diagnostic testing procedure, but find ten farms with ten infected cows and fifteen farms
with fifteen infected cows in the third subzone.

First, we construct a matrix with a single row that demonstrates the outcomes of our observa-
tions. Once the prior distributions have been decided upon, we may call the actual model – we’ll
be using the storage model in this case just so we can check some of the posterior distributions
if we would like to. The function call will look something like the following. We have included
annotations next to each argument so that it is clear what each argument is and why it had been
initialized as such.
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obs.y = matrix(c(

rep(0, 10), # Subzone 1

rep(0, 10), # Subzone 2

rep(10, 10), rep(15, 15), rep(0, 25) # Subzone 3

),

nrow = 1

)

set.seed(2015) # To ensure reproducible results

example1.run = EpiBayes_s(

H = 3, # 3 subzones

k = c(rep(10, 2), rep(50, 1)), # 10 farms in two subzones, 50 in

# the third subzone

n = rep(100, 70), #100 cows sampled in each of the 70 clusters

seasons = rep(2, 70), # Seasons corresponding to each cluster

# (1 for summer, 2 for fall, 3 for winter, 4 for spring)

mumodes = matrix(c(

0.10, 0.50,

0.10, 0.50,

0.10, 0.50,

0.10, 0.50

), 4, 2, byrow = TRUE

), # Modes and 95th percentiles of

# subject - level prevalences for each season in order

reps = 1, # 1 replicated data set in this simulation

MCMCreps = 100, # 100 MCMC iterations per replicated data

# set (increasing this would be a good idea for real data but slows

# things down a lot)

poi = "tau", # Want inference on cluster-level prevalence

y = obs.y, # Specify the number of positive test results we saw for each farm

pi.thresh = 0.05, # The 5% threshold (design prevalence) for the

# cluster - level prevalence

tau.thresh = 0.02, # The 2% threshold (design prevalence) for the

# cluster - level prevalence

gam.thresh = 0.01, # The 1% threshold (design prevalence) for the

# cluster - level prevalence

tau.T = 0.20, # The "true cluster - level prevalence" that we simulate our

# data with (this means about 20% of our clusters in each replicated

# data set will be diseased and will have a truly positive

# subject - level prevalence)

poi.lb = 0, # The lower bound for estimating the cluster - level

# prevalence (not of interest here)

poi.ub = 1, # The upper bound for estimating the cluster - level

# prevalence (not of interest here)

p1 = 0.95, # The probability (used like a confidence) that we must show

# our cluster - level prevalence is above 2% in order to count that

# replicated data set as one in which we detected the disease
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psi = 4, # The variability of the prevalences among infected clusters within

# the subzone

omegaparm = c(1000, 1), # Prior parameters for omegamat (the probability

# of the disease being in the region)

gamparm = c(20, 30), # Prior parameters for gammat (the subzone-level

# prevalence)

tauparm = c(1, 1), # Prior parameters for taumat (the cluster - level

# prevalence)

etaparm = c(10, 1), # Prior parameters for etamat (the diagnostic

# test sensitivity)

thetaparm = c(10, 1), # Prior parameters for thetamat (the diagnostic

# test specificity)

burnin = 10 # The amount of MCMC iterations to "burn"

)

We can investigate the output using the summary and plot methods for the output object type
just like we had in the 2-level vignette examples. The only difference here is that we have more
parameters to investigate (specifically, more subject-level and cluster-level prevalences and a new
subzone-level prevalence to observe). Here, since we have only one replication (the supplied observed
data in the obs.y matrix) then we don’t really need to concern ourselves with the simulation output
values from the summary output.

## Summary

example1.sum = summary(example1.run)

## Simulation output for parameter of interest (poi)

## *p2.tilde: Percentage of the time the disease is not detected above the disease threshold

## *p4.tilde: Percentage of the time the disease is detected above the disease threshold

## *p6.tilde: Percentage of the time the disease is detected between the user-supplied lower and upper bounds of interest

##

## p2.tilde p4.tilde p6.tilde

## 0 0.3333333 1

##

## -----------------------------------------------------------------------------

## gam: Subzone-level prevalence

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.4093176 0.06443988 0.00679256 0.004670392 0.2918837

## Upper HPD Limit

## [1,] 0.5132293

##

## -----------------------------------------------------------------------------

## tau 1: Cluster-level prevalence in subzone 1

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.01267463 0.02252947 0.002374815 0.003387934 9.415726e-05

## Upper HPD Limit

## [1,] 0.05600567

##

## -----------------------------------------------------------------------------
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## tau 2: Cluster-level prevalence in subzone 2

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.01847827 0.03815366 0.004021749 0.004733938 8.162337e-06

## Upper HPD Limit

## [1,] 0.06306321

##

## -----------------------------------------------------------------------------

## tau 3: Cluster-level prevalence in subzone 3

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.5025969 0.05950448 0.006272323 0.006272323 0.3772608

## Upper HPD Limit

## [1,] 0.6160542

##

## -----------------------------------------------------------------------------

example1.sum

## Simulation output for parameter of interest (poi)

## *p2.tilde: Percentage of the time the disease is not detected above the disease threshold

## *p4.tilde: Percentage of the time the disease is detected above the disease threshold

## *p6.tilde: Percentage of the time the disease is detected between the user-supplied lower and upper bounds of interest

##

## p2.tilde p4.tilde p6.tilde

## 0 0.3333333 1

##

## -----------------------------------------------------------------------------

## gam: Subzone-level prevalence

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.4093176 0.06443988 0.00679256 0.004670392 0.2918837

## Upper HPD Limit

## [1,] 0.5132293

##

## -----------------------------------------------------------------------------

## tau 1: Cluster-level prevalence in subzone 1

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.01267463 0.02252947 0.002374815 0.003387934 9.415726e-05

## Upper HPD Limit

## [1,] 0.05600567

##

## -----------------------------------------------------------------------------

## tau 2: Cluster-level prevalence in subzone 2

## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.01847827 0.03815366 0.004021749 0.004733938 8.162337e-06

## Upper HPD Limit

## [1,] 0.06306321

##

## -----------------------------------------------------------------------------

## tau 3: Cluster-level prevalence in subzone 3
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## Mean SD Naive SE Time-series SE Lower HPD Limit

## [1,] 0.5025969 0.05950448 0.006272323 0.006272323 0.3772608

## Upper HPD Limit

## [1,] 0.6160542

##

## -----------------------------------------------------------------------------

## Plot the posterior distributions of cluster-level prevalence

plot(example1.run)
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We can also look at some trace plots and posterior distribution density estimates for some of
the taumat and some of the pimat chains. Notice that we have eliminated the burnin iterations
that we had defined in the EpiBayes s function call.

## Trace plots

## Tau

# Tau for the first subzone

plot(example1.run$taumat[1, 1, -c(1:10)], type = "l")
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# Tau for the second subzone

plot(example1.run$taumat[1, 2, -c(1:10)], type = "l")
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# Tau for the third subzone

plot(example1.run$taumat[1, 3, -c(1:10)], type = "l")
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## Pi

# Pi for the first farm in the first subzone

plot(example1.run$pimat[1, 1, -c(1:10)], type = "l")
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# Pi for the tenth farm in the first subzone

plot(example1.run$pimat[1, 10, -c(1:10)], type = "l")
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# Pi for the first farm in the second subzone

plot(example1.run$pimat[1, 11, -c(1:10)], type = "l")
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# Pi for the first farm in the third subzone

plot(example1.run$pimat[1, 21, -c(1:10)], type = "l")
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# Pi for the fiftieth farm in the third subzone

plot(example1.run$pimat[1, 70, -c(1:10)], type = "l")
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## Histograms

## Tau

# Tau for the first subzone

plot(density(example1.run$taumat[1, 1, c(1:10)], from = 0, to = 1))
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## Pi

# Pi for the first farm in the first subzone

plot(density(example1.run$pimat[1, 1, c(1:10)], from = 0, to = 1))
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2.2 Example 2: Historical Updating

Suppose that we have a the same situation as in Example 1 but now we have a different objective.
Instead of making posterior inference about the disease prevalences at various levels in the hier-
archical sampling procedure, we would like to determine how one may aggregate data across time
periods. For example, we could have performed the sampling mentioned in Example 1 in 2010,
but we also have sampling data from 2011-2014 as well. Ignoring introduction risk, and using the
posterior distribution for the cluster-level prevalence for the prior for the same parameter in the
next year and carrying this forward for all of the years of data we have, we can combine our yearly
data into an overall statement about the cluster-level prevalence at the end of 2014.

First, we must construct our matrix of observed data. We need to construct a matrix such
that every row denotes a cluster and we have columns: Year (or, equivalently, period of collection),
Subzone, Cluster size, Season (1-4), and Y (the number of positive diagnostic test results in that
cluster).

We already have the 2010 data so we’ll just need to ’observe’ four more years of data.

year = rep(c(2010:2014), each = 70)

subz = rep(rep(c("First", "Second", "Third"), c(10, 10, 50)), 5)

size = rep(100, 70*5)

season = rep(2, 70*5)
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y = matrix(c(

rep(0, 10), #Year 2010: Subzone 1

rep(0, 10), #Year 2010: Subzone 2

rep(10, 10), rep(15, 15), rep(0, 25), #Year 2010: Subzone 3

rep(2, 10), #Year 2011: Subzone 1

rep(0, 10), #Year 2011: Subzone 2

rep(5, 10), rep(10, 15), rep(0, 25), #Year 2011: Subzone 3

rep(0, 10), #Year 2012: Subzone 1

rep(4, 10), #Year 2012: Subzone 2

rep(0, 10), rep(5, 15), rep(0, 25), #Year 2012: Subzone 3

rep(8, 10), #Year 2013: Subzone 1

rep(0, 10), #Year 2013: Subzone 2

rep(0, 10), rep(0, 15), rep(0, 25), #Year 2013: Subzone 3

rep(4, 10), #Year 2014: Subzone 1

rep(0, 10), #Year 2014: Subzone 2

rep(0, 10), rep(0, 15), rep(0, 25) #Year 2014: Subzone 3

),

ncol = 1

)

example2.inputdf = data.frame(year, subz, size, season, y)

set.seed(2015)

example2.run = EpiBayesHistorical(

input.df = example2.inputdf, # Our input matrix

orig.tauparm = c(1, 1), # tau prior parameters in the first year

burnin = 1, # Number of MCMC iterations to burn

MCMCreps = 10, # Number of MCMC iterations

tau.T = 0.2, # Doesn't matter since reps = 1

poi = "tau", # Leave parameter of interest as cluster-level prevalence

mumodes = matrix(c(

0.10, 0.50,

0.10, 0.50,

0.10, 0.50,

0.10, 0.50

), 4, 2, byrow = TRUE

),# Season-specific average subject-level

# prevalences in infected clusters

pi.thresh = 0.05, # The 5% threshold (design prevalence) for the

# cluster - level prevalence

tau.thresh = 0.02, # Doesn't matter since reps = 1

gam.thresh = 0.01, # Doesn't matter since reps = 1

poi.lb = 0, # Doesn't matter since reps = 1

poi.ub = 1, # Doesn't matter since reps = 1

p1 = 0.95, # Doesn't matter since reps = 1

psi = 4, # (related to) variability of subject-level prevalences in
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# infected clusters

omegaparm = c(1000, 1), # Prior parameters for the probability of the

# disease being in the region (almost always 1)

gamparm = c(20, 30), # Prior parameters for the subzone-level prevalence

# (mean of about 0.4)

etaparm = c(10, 1), # Prior parameters for diagnostic test sensitivity

# (mean of about 0.9)

thetaparm = c(10, 1) # Prior parameters for diagnostic test specificity

# (mean of about 0.9)

)

We may observe the behavior of the posterior cluster-level prevalence distributions across years
and for each subzone (each subzone gets its own plotting window) using the plot method for the
historical function output.

## Plot the posterior distributions of cluster-level prevalence with

# one plotting window for each subzone and colors ranging

# across years

plot(example2.run)

We can also summarize the historical posterior distributions by observing the posterior means,
quantiles, or variances for each subzone and track those summary statistics throughout the years.
We can take those summaries and plot them as well.

## Summaries

# By mean

example2.meansum = summary(example2.run, sumstat = "mean",

time.labels = 2010:2014)

## Matrix of posterior means of cluster-level prevalence across 5 time periods

##

## 2010 2011 2012 2013 2014

## First 0.012865964 0.02093056 0.0144963 0.24695356 0.14846791

## Second 0.007249445 0.02720466 0.2069557 0.03057850 0.03612942

## Third 0.265926862 0.18996917 0.1798568 0.08220457 0.07282204

example2.meansum

## Matrix of posterior means of cluster-level prevalence across 5 time periods

##

## 2010 2011 2012 2013 2014

## First 0.012865964 0.02093056 0.0144963 0.24695356 0.14846791

## Second 0.007249445 0.02720466 0.2069557 0.03057850 0.03612942

## Third 0.265926862 0.18996917 0.1798568 0.08220457 0.07282204

# By 95th percentiles

## Summaries

example2.95persum = summary(example2.run, sumstat = "quantile",

prob = 0.95, time.labels = 2010:2014)
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## Matrix of posterior quantiles of cluster-level prevalence across 5 time periods

##

## 2010 2011 2012 2013 2014

## First 0.03045150 0.0716979 0.05492878 0.40380106 0.3264984

## Second 0.01885031 0.1056588 0.42883067 0.09313852 0.1020940

## Third 0.46333213 0.3660815 0.47370083 0.26115530 0.3669097

example2.95persum

## Matrix of posterior quantiles of cluster-level prevalence across 5 time periods

##

## 2010 2011 2012 2013 2014

## First 0.03045150 0.0716979 0.05492878 0.40380106 0.3264984

## Second 0.01885031 0.1056588 0.42883067 0.09313852 0.1020940

## Third 0.46333213 0.3660815 0.47370083 0.26115530 0.3669097

## Plotting the summaries across time

# Plot means

plot(example2.meansum)

# Can add a line to compare to a certain design prevalence

abline(h = 0.05, lty = 2, col = "black", lwd = 2)

# Plot 95th percentiles

plot(example2.95persum)

# Can add a line to compare to a certain design prevalence

abline(h = 0.05, lty = 2, col = "black", lwd = 2)

Note: The above examples are not meant to reflect reality. Notice that the MCMCreps in both
examples are set very low. This would have been bad if executed in practice, but was set so in
order to ensure quick build times for this vignette.
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