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Abstract

EnsemblePCReg is an R package for fully-automated, heterogeneous ensemble regres-
sion. The learning process of EnsemblePCReg consists of generation and integration
steps, both of which employ a rotating-partitions (RP) strategy to minimize ‘data con-
tamination’ while maximizing data utilization. For ensemble generation, a set of base
learners – each representing a specific class of learning algorithms – are trained over multi-
dimensional grids of tuning parameters. For ensemble integration, Principal Components
Regression (PCR) is applied to the output of the first step, and the optimal number of
principal components is chosen by minimizing the RP error of PCR prediction. The soft-
ware is composed from a set of atomic lego blocks, each implementing a ‘train-predict
interface’. The composable design patterns used in EnsemblePCReg go beyond the tradi-
tional pipeline model in data analytics to include more complex transformations needed
for implementing RP-related operations. The integration step eliminates the need for
selection and tuning of base learners, thereby reducing the risk of overfitting and expedit-
ing the model-building process. Furthermore, multi-core parallelization – with advanced
thread scheduling – significantly improves processing speed, while utility functions for
saving/loading trained models to/from disk reduce RAM usage. Thus, EnsemblePCReg
broadens the reach of ensemble learning, from model-building on personal computers to
cloud computing applications such as real-time prediction.

Keywords: heterogeneous ensemble learning, ensemble meta-learning, stacked generalization,
principal components regression.

1. Introduction

Motivation: Ensemble learners combine a diverse collection of predictions from individual
machine learning algorithms to produce a composite predictive model that is more accurate
and robust than its components. Advantages of ensemble learning have been well known
and documented (Krogh and Sollich 1997; Dietterich 2000; Zhang and Ma 2012), and while
ensemble learning of homogeneous base learners is widely used in algorithms such as random
forests (Breiman 2001) and gradient boosting machines (Friedman 2001), same is not true for
heterogeneous ensemble learning. For example, despite the popularity of techniques such as
stacked generalization (Wolpert 1992) in data science competitions (Bell and Koren 2007),
winning solutions have been difficult to implement for real-world problems (Holiday 2012). For
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a review of techniques and literature on ensemble learning, see Rokach (2010) (classification)
and Mendes-Moreira, Soares, Jorge, and Sousa (2012) (regression).

Heterogeneous ensemble learning – including base learners that can themselves be ensemble-
based – can be a particularly rewarding effort since different flavors of base learners tend to
be naturally diverse, each with their own strengths and weaknesses, thus satisfying a basic
requirement for effective ensemble learning, i.e., weak correlation among components (Webb
et al. 2004). Therefore, overcoming obstacles to their broader adoption for predictive-analytic
applications is an important objective. These obstacles can be classified into three categories:
1) Achieving the central goal of ensemble learning, i.e., improved generalization, requires max-
imizing the use of limited data while avoiding ‘data contamination’, i.e., using within-sample
predictions of a learning operation as input into the next operation. Striking this balance
leads to a significant methodological complexity. 2) A byproduct of this complexity is that
separating training and prediction steps becomes extremely difficult, posing a reproducibility
challenge and making it impossible to use ensemble learning for real-time prediction. 3) Total
training time, as well as size of trained objects, can grow rapidly for heterogeneous ensemble
learners, creating a significant computational burden. This happens especially if some base
learners are tree-based ensemble learners such as random forest.

Our contribution: EnsemblePCReg is an open-source R package for fully-automated en-
semble learning and reproducible prediction in regression problems. It enjoys the following
properties, which combine to provide a unique value proposition:

1. Simple-to-use API : Relying on carefully-selected default parameters to control the entire
process, users can train and predict ensemble models using the familiar one-line API
calls in R:

R> est <- epcreg(formula, data)

R> pred <- predict(est, newdata)

Overriding default parameters provides great flexibility to experienced users.

2. Good generalization: Using a two-stage cross-validation-based approach for ensemble
generation and integration, the ensemble meta-learner provided in EnsemblePCReg
efficiently uses the data set while minimizing the risk of overfitting.

3. Computationally efficient : Multicore parallelization using appropriate thread scheduling
policies during training and prediction, along with file methods for saving/loading base
learner training objects to/from disk allow users to efficiently build ensemble models on
personal computers.

4. Reproducible: Full separation of train and predict functions, combined with computa-
tional efficiencies of the software not only lead to reproducible software, but also allow
for ensemble models to be applied in emerging applications such as online/stream com-
puting.

Existing open-source software: We have found three open-source software packages for
ensemble meta-learning: 1) the R package caretEnsemble (Mayer and Knowles 2015), based
on caret (Kuhn et al. 2015); 2) the R package subsemble (LeDell et al. 2014), based on
SuperLearner (Polley and van der Laan 2014), and 3) the C++ package Ensemble Learning
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Framework (ELF)(Jahrer 2010). caretEnsemble provides wrappers for training and combining
models wrapped in caret, using linear greedy optimization (via function caretEnsemble)
and a caret model (via function caretStack). The caret training function automatically
performs a grid search to tune the parameters of the base learners. Afterwards, a final
set of base learners are trained on the entire data set, and passed to the ensemble learner.
subsemble trains an underlying algorithm on different subsets of data, and combines them
using a so-called ‘V-fold cross-validation’ approach (Sapp, van der Laan, and Canny 2014).
ELF provides ensemble meta-learning through stacking (Wolpert 1992), cascade learning [ref],
and residual learning (Friedman 2001). Similar to caretEnsemble, base learners in ELF are
tuned via cross-validated selection. For a detailed discussion and comparison of these package
vs. EnsemblePCReg, see Section 5.

Paper structure: The rest of this paper is organized as follows. In Section 2 we describe
the main steps involved in ensemble PCR. In Section 3 we outline the major design objectives
of EnsemblePCReg, and discuss key features that achieve these design goals. In Section 4 we
provide several examples to illustrate the usage and features of EnsemblePCReg. Finally, in
Section 5 we provide a summary of our work, discuss it in the context of existing ensemble
learning software, and offer pointers for potential future work.

2. Methodology

Ensemble learning consists of three stages: generation, pruning and integration (Mendes-
Moreira et al. 2012). In the generation step, many base learners are trained against the same
data set. In pruning, a subset of these base learners are discarded. In integration, the selected
models are combined to form a single, composite model. EnsemblePCReg absorbs pruning
into integration to form a two-stage process. Below we describe each one.

2.1. Ensemble generation

Here the ideal outcome is a collection of diverse – i.e., uncorrelated – and accurate mod-
els (Brown and other 2005). EnsemblePCReg relies on three sources of diversity: 1) different
base learners, 2) different sets of tuning parameters – i.e., configurations – for each base
learner, and 3) different subsets of data to train each base learner configuration.

Base learners: EnsemblePCReg imports base learners from the EnsembleBase package (Ma-
hani and Sharabiani 2015) (co-developed by the authors). Currently, seven base learners are
available in EnsembleBase, each based on an existing implementation in R (Table 1) and thinly
wrapped in a uniform interface: 1) random forests (RF) (Breiman 2001), 2) gradient boosting
machines (GBM) (Friedman 2001), 3) feedforward neural networks (NNET) (Hornik et al.
1989), 4) support vector regression machines (SVM) (Smola and Vapnik 1997), 5) K-nearest
neighbors (KNN) (Samworth et al. 2012), 6) penalized (L1/L2) regression (PENREG) (Tib-
shirani 1996), and 7) Bayesian additive regression trees (BART) (Chipman, George, and
McCulloch 2010).

Tuning parameters: A subset of the tuning parameters for each base learner are deemed
‘configurable’ and exposed to the user (Table 1). Various combinations of values for these
tuning parameters can be formed to create a configuration set, i.e., a multi-dimensional col-
lection of tuning-parameter combinations used for training each base learner. By default, a
grid of 16 points is created for each base learner. Definition of these default configuration
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Algorithm R package Configuration parameters

Neural Network nnet (Venables and Ripley 2002) weight decay
hidden-layer size
maximum iterations

Support Vector Machine e1071 (Meyer et al. 2015) cost of constraints violation
epsilon in insensitive-loss function
kernel type

K-Nearest Neighbors kknn (Hechenbichler 2015) number of neighbors
kernel type

Random Forest randomForest (Liaw and Wiener 2002) number of trees
multiplier of mtry
minimum size of terminal nodes

Gradient Boosting Machine gbm (Ridgeway 2015) number of trees
maximum interaction depth
shrinkage
bagging fraction

Penalized Regression glmnet (Friedman, Hastie, and Tibshirani 2010) Relative weight of L1 vs. L2 loss
shrinkage parameter

Bayesian Additive Regressio Trees bartMachine (Kapelner and Bleich 2014) param1
param2
param3
param4

Table 1: List of base learners wrapped in EnsembleBase and imported by EnsemblePCReg,
along with their R implementation, and the subset of tuning parameters that are configurable.
For definition of parameters and other details, see documentation for EnsembleBase and base
learner packages.

grids can be seen by typing ?make.configs in an R console (after loading EnsembleBase).
The configurable subset of tuning parameters as well as the default grid for ech base learner
are chosen so as to 1) cover the likely optimal combination in most problems, and 2) induce
diversity across different configurations. Experienced users can override the default settings
to define their own grids, and select a subset of available base learners. By default, 6 of the
seven base learner are included (bart not included due to its generally-long training time),
and each one is assigned a 16-point grid, bringing the total number of models generated during
the first step to 6 x 16 = 96.

Cross-validated training of base learners: Each of these 112 models is embedded in a
rotating-partition (RP) pattern: Assuming 5-fold partitions (default), each model is trained
5 fives, each time on 4/5 of data. The predict method for this composite learner behaves
differently for training data vs. new data: For training data, prediction is a concatenation of
predictions of 5 underlying models, each one produced only for the 1/5 of data not seen by
that model during training. For new data, prediction is the average of individual predictions
from constituent models. The RP pattern ensures full data utilization while avoiding con-
tamination, e.g., by passing within-sample predictions from base learners to the integration
stage.

EnsemblePCReg provides the option of training base learners on more than one partitioning
of data (via the npart argument in epcreg function). This parameter multiplies the number
of base learners produced, which can improve the robustness of integration step, but at the
expense of increased training time. See Example 4.2.

2.2. Ensemble integration
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EnsemblePCReg uses Principal Components Regression (Jolliffe 1982) [better ref?], embedded
in a cross-valdiation-based data splitting strategy – similar to that of the ensemble generation
phase – for ensemble integration. It can be decomposed into the following sub-steps:

1. Within each of the K subsets of the data – consisting of (K-1)/K fraction of the entire
data across (K-1) CV folds – PCR is applied to the predictions of base learners from
the ensemble generation phase. This produces not a single predictor, but a collection
of predictors, one for each value of the free parameter of the PCR operation, i.e., the
number of principal components used in the regression step of PCR. As such, this step
is referred to as a ‘sweep’ operation.

2. Predictions of each of the above K sweeps are assembled together for the training set,
and averaged for the prediction set, similar to what was during ensemble generation for
base learners.

3. Finally, RMSE error of concatenated prediction sweeps are calculated (for training set),
and the number of principal components with minimum CV error is selected. This
serves as the final ensemble model.

Motivation for using a CV strategy is similar to the ensemble generation step: If we use the
entire training set to select the optimal number of PC’s in the PCR step, we will always select
the maximum possible number, i.e, the number of base learners instances. In other words,
embedding PCR in cross-validation helps overcome the wll-known multi-collinearity problem
of stacked generalization [ref].

EnsemblePCReg follows a modular and extensible approach to implementing the PCR in-
tegration software, as elaborated in Section 3.2. This allows for efficient implementation of
other integrators such as one using L1/L2 penalized regression [ref] (instead of PCR) – im-
plemented by co-authors in EnsemblePenReg (Sharabiani and Mahani 2014) – and the more
traditional approach of selecting the base learner with the smallest cross-validation error –
also implemented by co-authors in EnsembleCV (Sharabiani and Mahani 2015). A detailed
discussion of various ensemble integration options can be found in Section 5.

3. Software features

As mentioned in Section 1, EnsemblePCReg pursues four design attributes: ease of use,
minimize overfitting, computational efficiency, and reproducible predictions. In this section,
we discuss the salient features of our software that support these objectives. These features
fall under three broad categories: API design, performance optimization, and implementation.

3.1. User-friendly API

An ambitious goal for the API was to make ensemble learning and prediction look and feel as
easy to use as any other machine learning algorithm in R. The end-result in EnsemblePCReg is
that training, diagnostics, visualization, and prediction are as simple as the following familiar
commands:

R> fit <- epcreg(formula, data)

R> summary(fit)



6 Ensemble meta-learning using EnsemblePCReg

R> plot(fit)

R> pred <- predict(fit, newdata)

Several points are worth mentioning with regards to the API:

1. Supported by carefully-selected default values for parameters such as choice of base
learners, configuration sets for each base learner, and integration controls, the software
frees the users from spending time and energy selecting these values through a lengthy
trial-and-error process. This makes ensemble modeling process much more efficient than
ever before.

2. By encouraging the users towards high-level API calls, the software reserves the flexi-
bility to change implementation details over time, e.g. for refactoring purposes, without
breaking backward compatibility or forcing users to learn and adopt a new API.

3. In automating away such steps as selecting the tuning parameters of base learners,
the software minimizes the need by practitioners to fiddle with data and create overfit
models that suffer from poor generalization.

4. Despite using a sophisticated, two-stage CV-based methodology for improving its gen-
eralization performance, EnsemblePCReg fully separates train and predict functional-
ities. This has two important consequences: 1) trained objects can be stored, loaded
and reused for new predictions, and thus saving on an unnecessary model training time,
and 2) predictions can always be traced back to the model that produced them, which
leads to reproducibility of results for both applied and research purposes.

Software implementation and architecture play an important role in making a simple API
feasible depsite methodological complexities, as described next.

3.2. Composable architecture

A key architectural decision in EnsemblePCReg (and other members of the Ensemble software
collection) is to decompose complex, multi-step operations into smaller lego blocks, all of
which comply with a common interface that embodies the train-predict (TP) design pattern.
According to this pattern, every operation must implement three methods: 1) fit, 2) predict
for same data used in fit, and 3) predict for new data. Using a lego blocks of operations
that conform to this interface, composite operations can be constructed, using a variety of
compositional patterns. Each compositional pattern defines the recipes for how the three
methods of the composite class can be constructed from the constituent class methods.

The most elementary example of a compositional pattern is ‘chaining’ of operations, which
forms a pipeline. Figure 1 shows the pseudo-code for chaining two operations. Ensem-
blePCReg utilizes several, more complex compositional patterns such as ‘batching’, ‘cross-
validation’, ‘sweep’, and ‘select’. Figure 2 shows the call stack for the main function in the
package, epcreg, illustrating how a complex ensemble learner can be composed from elemen-
tary operations through 1) strict enforcement of the train-predict interface, and 2) application
of sophisticated compositional patterns.

The modular and composable architecture of Ensemble packages not only reduces complexity
by breaking it down to manageable pieces, but also facilitates the process of innovating and
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class A (or B) {

// fields

...

// methods

void fit(Data data) {...}

Data predict() {...}

Data predict(Data newdata) {...}

}

class A_then_B() {

A a;

B b;

void fit(Data data) {

a.fit(data);

b.fit(data + a.predict());

}

Data predict() {return b.predict();}

Data predict(Data newdata) {

return b.predict(newdata + a.predict(newdata));

}

}

Figure 1: C++ pseudo-code for applying the ‘chaining’ compositional pattern to operations
A and B, producing the composite operator A_then_B.

testing new integrators, whether vastly different from existing ones, or small variations of
them. For example, consider the ‘select’ operation in Figure 2. This step is responsible for
selecting the optimal number of principal components during ensemble integration. Some re-
searchers have suggested a more conservative approach to selecting similar tuning parameters
that control overfitting, e.g., by choosing a smaller number of principal components than the
one that minimizes CV error (Friedman, Hastie, and Tibshirani 2001). In our framework, this
can be done by implementing Select.Fit (and its prediction counterpart) for a type other
than MinErr. The rest of the call stack remains unchanged.

To support our modular and extensible architecture, we have separated the core functionalities
needed by all integrators – including base learner facilities – into EnsembleBase, which acts
as the recipient of ongoing code refactoring work. Furthermore, we have made heavy use of
S4 generics in R, in addition to S3 generics for functions such as predict, summary and plot.

3.3. Performance optimization

EsnemblePCReg uses a set of performance optimization strategies to reduce the processing
time and memory consumed during ensemble learning and prediction. These strategies include
1) multicore parallelization with suitable thread scheduling policies for training and prediction
functions, and 2) option to save/load base learner trained objects to/from disk – as temporary
files during program execution, or permanent files in-between sessions – to reduce total size of
ensemble trained object in RAM during training and prediction. We discuss the key concepts
behind these features here, and illustrate how they can be used in Section 4.
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epcreg

CV.Batch.Fit Integrator.Fit [PCR.SelMin]

CV.Fit Sweep.CV.Fit Select.Fit [MinErr]

Sweep.Fit [PCR]BaseLearner.Fit

BaseLearner.Fit [NNET] BaseLearner.Fit [GBM] ...

Figure 2: Call stack for epcreg function in EnsemblePCReg package, illustrating the modular
and extensible design of the software. Square brackets indicate specialization of a S4 generic
class. White boxes indicate functions implemented in EnembleBase. For brevity, Regression
and Config have been dropped from function and class names. See source code for full
names. A similar diagram can be created for predict.epcreg, following the train-predict
duality discussed in Section 3.2.
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Multicore parallelization: During training, many base-learner instances must be trained.
These training tasks are completely independent, and can be parallelized. Similarly, during
prediction, the predictions of these base learners must first be collected before combining them
in ensemble integration stage. Using the ncores parameter, users can control the number of
parallel threads to use in training (epcreg) and prediction (predict.epcreg). Parallelizing
prediction may appear unnecessary in many applications – especially in batch processing –
since it takes only a fraction of training time. However, in many applications such as online
prediction services where a pre-trained model is exposed to users for obtaining predictions for
their data points, fast response times can be critical.

Thread scheduling policy: In assigning tasks to parallel threads, we seek the dual objec-
tives of load balancing and parallel overhead minimization (Chandra 2001). Load balancing
seeks to distribute tasks across threads such that total task durations are as even as possible.
Otherwise, a weak link – i.e., with long total execution time – will become the bottleneck and
reduce parallelization speedup. At the same time, we would like to minimize the need for
threads to synchronize their actions since this also imposes a performance hit.

There are two general categories of thread scheduling policies: static (or pre-scheduled) and
dynamic. In static scheduling, tasks are assigned to threads before entering the parallel
region, while in dynamic scheduling tasks are put in a queue and grabbed by threads as they
finish previous tasks. Compared to dynamic policies, static scheduling imposes lower thread
synchronization costs since threads do not need to coordinate their action. However, if static
task assigment is uneven, it can lead to load imbalance. Static vs. dynamic scheduling can be
controlled via the preschedule flag in epcreg function. EnsemblePCReg offers three flavors
of scheduling – accessed via the schedule.method argument – within each of these two broad
categories: 1) as.is: In dynamic scheduling, this option leaves the job queue unchanged.
In static scheduling, jobs are assigned to threads in a round-robin fashion; 2) random: This
can be considered similar to as.is, but jobs are first shuffled randomly; 3) task.length: In
dynamic scheduling, jobs are first sorted in decreasing order of expected duration (using the
task.length argument), while in static scheduling, a simple but effective algorithm is used
to assign jobs to threads, also based on expected durations, to achieve good load balance.
[describe more, or refer to source code]

Figure 3 compared the performance of various combinations of preschedule and schedule.method

flags in parallel training of base learners for the servo data set (available in EnsembleBase),
using 10 partitions of data for ensemble generation (npart = 10). We see that all three dy-
namic methods scale poorly as we increase the number of cores. This is a reflection of the
small data size (167 observations), leading to small job durations, which in turn makes thread
synchronization overhead quite comparable to them. Performance of as.is method in static
scheduling is quite erratic, depending on the specific assignment of long tasks across threads.
The random method performs better, only surpassed by the task.length method. We expect
that, as the number of base learner instances is increased (e.g. by increasing npart or number
of configurations per base learner), the performance of random method will approach that of
task.length. Based on the above results, we have selected static scheduling with random

method as default for both train and predict stages. In Section xx, we offer examples of
how to toggle between scheduling modes, including how to generate and use task lengths for
effective parallelization.

File method: Some base learners produce large training objects, especially ensemble tree-
based algorithms such as RF and GBM. Multiplied by (number of configurations per partition
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x number of partitions x number of folds per partition) used in EnsemblePCReg (default: 16
x 1 x 5 = 80), this can lead to very large training objects produced by epcreg. For example,
for a data set of xx observations and yy features (dataset zz), using npart=10 with default
base learners and configurations produces a xx GB object, exceeding the total RAM available
on most personal computers.

To overcome this RAM bottleneck, we have provided facilities for saving/loading epcreg

objects to/from disk, during model training and prediction. This feature is activated by the
file.method flag. Behind the scene, the software saves each base learner training object to a
temporary file (after training for that instance is finished), removes the object from memory,
and calls R’s garbage collector to reclaim that space. During prediction, training objects are
loaded from the temporary files as needed to produce base learner predictions. Also, special
epcreg.save and epcreg.load methods are provided to save/load epcreg objects to/from
permanent files for intersession continuity.

It must be noted that, executing training and prediction in parallel mode partially negates
the memory savings offered by the file method, since as many base learner objects could be
loaded into RAM at any given time as the number of parallel threads.

4. Using EnsemblePCReg

4.1. Example 1: Training and prediction for ensemble models

First, we load the library and a sample data set, and split it randomly into training and
prediction sets.

R> library("EnsemblePCReg")

R> my.seed <- 0

R> set.seed(my.seed)

R> data(servo)

R> myformula <- class ~ motor + screw + pgain + vgain

R> perc.train <- 0.7

R> index.train <- sample(1:nrow(servo), size = round(perc.train*nrow(servo)))

R> data.train <- servo[index.train,]

R> data.predict <- servo[-index.train,]

Training the esnemble regression model is as simple as a one-line call to epcreg function:

R> est <- epcreg(myformula, data.train, print.level = 0)

Performance of base learners, as well as ensemble integrator step can be easily plotted (Fig-
ure 4):

R> plot(est)

The horizontal dotted line in the left panel indicates the final ensemble error, and corresponds
to the bottom of the curve in the right panel. A few observations are worth mentioning:
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using two-step 5-fold cross-validation as described in Section ??.
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1. As a whole, among the 5 base learners used, the two ensemble methods, i.e., random
forest (RF) and gradient boosting machines (GBM), have the best cross-validated per-
formance, compared to the 3 non-ensemble techniques, i.e., neural networks (NNET),
support vector machines (SVM) and k-nearest neighbors (KNN). This confirms our
premise that ensemble methods are generally superior in terms of prediction accuracy.

2. Within each base learner, CV performance of different sets of tuning parameters have
significant spreads. This is especially true for NNET.

3. The PCR integrator (ensemble) outperforms all individual base learners – including
ensemble base learners, RF and GBM – by a significant margin. However, looking at
the plot of CV error vs. number of PC components (right panel), there could be cause
for concern due to the sharp drop in error around the point of minimum error; this
could indicate a small-sample fluke.

We can use the 30% hold-out sample to validate whether the superior performance of the
ensemble method carries to data sets unseen by the algorithm. As shown in Figure 5, this
is indeed the case. Overall, we see good correlation between CV and validation errors across
base learners, although for instances with smaller errors, the correlation weakens.

The ensemble model, est, can be easily used for prediction on new data sets, using the usual
R syntax:

R> newpred <- predict(est, data.predict)

R> cat("first 5 predictions:", head(newpred, 5), "\n")

first 5 predictions: 5.800048 0.675943 3.605809 0.7802629 0.6644396

The ability to re-use a trained ensemble model for new predictions, rather than requiring the
prediction set to be available during training, allows for ensemble models to be trained, stored,
and applied on demand, e.g., in response to streaming data, and without the significant delay
imposed by the training process.

Overall, we see that EnsemblePCReg has successfully encapsulated and hidden all the com-
lexities involved in training and prediction for ensemble models, exposing a familiar and
easy-to-use API for practitioners.

4.2. Example 2: Changing default settings

In the first example, we saw that building an ensemble model using the default settings of the
epcreg function, is extremely easy. Users can exert more control over these settings, including
selection of base learners and their configuration grids, number of partitions, and number of
folds per partition. These can be done via the utility function epcreg.baselearner.control,
as illustrated next.

Looking at Fig. 4, it might be tempting to exclude NNET from the ensemble, since its 16
instances have generally high CV errors. To test this hypothesis, we perform a comparison
of ensemble performance, with and without NNET. We begin by creating two base learner
control arguments, taking care to move NNET to end of pack so as to generate identical
models for other base learners by fixing the random seed before each run:
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base learners as well as ensemble model trained on servo data set.
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R> baselearners.1 <- c("rf", "svm", "gbm", "knn", "nnet")

R> control.1 <- epcreg.baselearner.control(baselearners = baselearners.1)

R> baselearners.2 <- c("rf", "svm", "gbm", "knn")

R> control.2 <- epcreg.baselearner.control(baselearners = baselearners.2)

Next, we train ensemble models under both settings:

R> set.seed(my.seed)

R> est.1 <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.1)

R> set.seed(my.seed)

R> est.2 <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.2)

and summarize them:

R> summary(est.1)

R> summary(est.2)

number of base learner instances: 96

maximum number of PC's considered: 84

optimal number of PC's: 11

minimum error: 0.6543877

number of base learner instances: 80

maximum number of PC's considered: 72

optimal number of PC's: 49

minimum error: 0.6325347

We see that the CV error is slightly lower after removing NNET. Validation errors reveal an
even more pronounced error improvement:

R> pcr.newerror.1 <- rmse.error(predict(est.1, data.predict), data.predict$class)

R> pcr.newerror.2 <- rmse.error(predict(est.2, data.predict), data.predict$class)

R> cat("validation error - all learners:", pcr.newerror.1, "\n")

validation error - all learners: 0.6150482

R> cat("validation error - all learners minus nnet:", pcr.newerror.2, "\n")

validation error - all learners minus nnet: 0.4776699

[mention that this could be due to random fluctuations in a small data set, and we need more
systematic analysis, both within this data set and also using other data sets.]

Configuration grids for base learners can also be adjusted by overriding the default baselearner.configs
argument passed to epcreg.baselearner.control. The make.configs collection of utility
functions can be used for this purpose. For example, to change the n.trees parameter values
in GBM (from their default value of 1000,2000) to 500, 750, we do:
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R> my.configs.gbm <- make.configs(baselearner = "gbm"

+ , config.df = expand.grid(

+ n.trees=c(500, 750)

+ , interaction.depth=c(3,4)

+ , shrinkage=c(0.001,0.01,0.1,0.5)

+ , bag.fraction=0.5))

R> my.configs <- c(make.configs(baselearner = c("nnet", "rf", "svm", "knn")),

+ my.configs.gbm)

R> my.control <- epcreg.baselearner.control(baselearner.configs = my.configs)

Unless users have a solid reason to change default configuration grids, we recommend against
doing so, as these default values have been created based on empirical results and literature
review.

Perhaps a more rewarding override of default settings is to increase the number of partitions
for base learners (npart argument passed to function epcreg.baselearner.control), from
the default value of 1. This can even out random effects, especially in small data sets, and
result in smoother, more reliable, PCR curves to be used in the integration step. This larger
ensemble model can be easily estimated and visualized as follows:

R> control.npart <- epcreg.baselearner.control(npart = 10)

R> set.seed(my.seed)

R> est.npart <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.npart)

R> plot(est.npart)

As we see in Figure 6, integrator curve is somewhat smoother. It also appears that cross-
validation best selection of a single base learner instance achieves lower error than the en-
semble. However, validation set errors indciate that the ensemble model has superior perfor-
mance, compared to the individual base learner that would have been selected by minimizing
cross-validation error (see Figure 7).

4.3. Example 3: Multicore parallelization

On our machine [describe specs here or elsewhere], for npart=10, training time was approxi-
mately 6 minutes, depsite the fact that servo is a very small data set (117 observations and
4 variables in training set). Indpendence of base learners offers an obvious parallelization
opportunity, which can be exploited via the ncores argument of epcreg function:

R> est.npart.par <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.npart, ncores = 4)

This reduced training time to 140sec, representing a nearly 2.6x [?] speedup, which is reason-
able for 4 cores [no it’s not that great; explain why]. It must be noted that some base learners
such as RF offer their own parallelization opportunities (e.g. due to complete independence
of tree-building process in a random forest), but the outer parallelization is more general,
and also likely to be more efficient since it is at a coarser level, i.e. each parallel job lasts
long enough to amortize parallelization overhead. The parallelization functionality is made
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Figure 6: Base learner and integrator performance for servo data set, using 10 partitions
instead of the default value of npart=1.
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available via the EnsembleBase package, and is based on the multi-threading implementation
of the R package doParallel (Analytics and Weston 2015).

For ensemble models, prediction can also be time-consuming:

R> t.pred.npart <- proc.time()[3]

R> pred.npart <- predict(est.npart, newdata = data.predict)

R> t.pred.npart <- proc.time()[3] - t.pred.npart

R> cat("t.pred.npart:", t.pred.npart, "\n")

prediction time - serial: 13.579 sec

While in some use-cases 14sec may not be a long time, in other cases such as online prediction
services, or real-time and/or stream processing, sub-second response times may be desirable or
even required. Similar to training, prediction can also benefit from multicore parallelization:

R> t.pred.npart.par <- proc.time()[3]

R> pred.npart.par <- predict(est.npart, newdata = data.predict, ncores = 4)

R> t.pred.npart.par <- proc.time()[3] - t.pred.npart.par

R> cat("t.pred.npart.par:", t.pred.npart.par, "sec\n")

prediction time - parallel: 4.204

Speedup (using 4 cores) is reasonable:

R> cat("parallelization speedup - predict:",

+ t.pred.npart / t.pred.npart.par, "\n")

parallelization speedup - predict: 3.230019

An important parameter in configuring the multicore parallelization for training and pre-
diction of ensemble models is the scheduling policy, namely whether it should be static or
dynamic. Static scheduling means jobs are pre-allocated to threads before entering the paral-
lel region, while in dynamic scheduling, each thread grab the next job from a queue once
each time it is finished with the previous job. (For a more detailed explanation of dif-
ferent scheduling policies in multi-threading and their impact on application performance,
see Chandra (2001).) Static scheduling incurs a smaller thread synchronization overhead;
however, if job durations are non-uniform and unpredictable, it can lead to load imbalance
and suboptimal parallelization speedup. In ensemble models, the training jobs are often more
time-consuming and non-uniform and therefore better suited for dynamic scheduling. On the
other hand, prediction jobs are faster and more honogeneous, and therefore static scheduling
is more appropriate for them. Default scheduling policies in EnsembleBase reflect this anal-
ysis, which is backed by empirical results [maybe expand]. This topic is further discussed in
Section 5. [move this paragraph to Section ??.]

4.4. Example 4: Using file methods
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Ensemble models are not only time-consuming, but also memory-consuming. This is due to
two reasons: 1) The training object for some base learners, especially ensemble base learners
such as random forest, are large objects, sometimes much larger than the raw data. In
EnsemblePCReg, we build 16 base learners of each kind, for a total of 80 models. If we
inrease the number of partitions, as we did in Example 3, the tally further rises. In that
example, when we used 10 partitions, even for a small data set of 117 observations (training
set), the resulting ensemble trained object reaches about 250MB. For a data set of 10,000
observations, this number would become 25GB, exceeding the memory (RAM) capacity of
most personal computers, and even some servers.

EnsembleBase provides a functionality for relieving this RAM pressure by saving base learner
estimation objects to temporary files, using R’s tmpfile() service. This functionality can
be activated by setting the argument filemethod to TRUE. In this case, the trained objects
contain the temporary file information containing the trained object (on disk). Upon calling
predict against the trained object, the core estimation object is loaded from disk, used
for prediction, and discarded afterwards [implement this]. As usual, using this feature is
extremely easy:

R> est.filemethod <- epcreg(myformula, data.train, print.level = 0,

+ , filemethod = TRUE)

[continue example with load and save methods.]

[discuss memory savings in serial and parallel modes.]

5. Discussion

5.1. Summary

In this paper, we presented EnsemblePCReg, an R package for fully-automated ensemble
meta-learning of regression models. Using a two-stage, cross-validation-based approach for
ensemble generation and integration, the software combines multiple base learners, each with
multiple sets of values for their tuning parameters into a composite model that is often more
accurate and reliable than a standard cross-validated selection strategy. Combined with good
default values and simple-to-use API, the fully-automated process of EnsemblePCReg mini-
mizes the risk of overfitting the model to training data, while achieving high efficiency in data
utilization. Separation of training and prediction functionalities allows for reusable models
and reprducible results. Performance optimization techniques such as multicore parallelization
and file methods for saving and loading base learner trained models, allow EnsemblePCReg
to be a practical tool for ensemble meta-learning on personal computers, and for emerging
data-analytic applications such as stream processing and online prediction services.

A. Setup

R> sessionInfo()
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R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=en_US.UTF-8

[9] LC_ADDRESS=en_US.UTF-8 LC_TELEPHONE=en_US.UTF-8

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] EnsemblePCReg_1.0.0 EnsembleBase_1.0.1 kknn_1.3.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.1 igraph_1.0.1 magrittr_1.5

[4] itertools_0.1-3 splines_3.2.2 MASS_7.3-44

[7] missForest_1.4 doParallel_1.0.10 gbm_2.1.1

[10] lattice_0.20-33 foreach_1.4.3 minqa_1.2.4

[13] car_2.1-1 tools_3.2.2 nnet_7.3-8

[16] parallel_3.2.2 pbkrtest_0.4-4 grid_3.2.2

[19] glmnet_2.0-2 nlme_3.1-122 mgcv_1.8-7

[22] quantreg_5.19 e1071_1.6-7 MatrixModels_0.4-1

[25] iterators_1.0.8 class_7.3-14 survival_2.38-3

[28] lme4_1.1-10 randomForest_4.6-12 bartMachine_1.2.0

[31] Matrix_1.2-2 rJava_0.9-7 nloptr_1.0.4

[34] codetools_0.2-14 SparseM_1.7
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