
EloRating - a brief tutorial

Christof Neumann & Lars Kulik

March 20, 2014

1 Preliminary remarks

This tutorial describes the main functionalities of the EloRating package1.
Note that for the sake of this tutorial, we first present an example with the min-
imal amount of data required: a sequence of decided dominance interactions
along with the dates2 of these interactions. Even though the package is capable
of dealing with undecided interactions (in fact the example file contains this
information), we decided to omit this aspect for the sake of clarity in the first
part (section 3). In addition, this first example is not linked to ’presence’ data.
In other words, here we assume that all individuals that occur in the data set
were present over the entire study period. For the same example utilizing infor-
mation about presence/absence of individuals and undecided interactions/draws
see section 4.

The fictional data set presented here comprises 250 dominance interactions of
10 individuals.

2 Package installation and data preparation

Up to now, the EloRating package is not yet available from any online repos-
itory and therefore needs to be installed from a local file. This is possible with
the function install.packages(), for example:

> install.packages("EloRating_0.31.tar.gz", type = "source")

As soon as the package is accepted on CRAN, the following command should
be sufficient to install EloRating (given you have a working internet connection):

> install.packages("EloRating")

1Note that one additional package (zoo) has to be installed to make our package functional
(e.g. by install.packages("zoo"))

2Dealing with calendar dates in R is prone to unexpected behaviour. We decided to stick
to a specific format (”YYYY-MM-DD”) and the functions assume that dates appear in this
format in the objects from which the functions work.

1

If you know how to read data in R you may skip remainder of this section
and proceed directly to the next section. The same applies if you handle and
process your data in R anyway. Otherwise, we assume that you store your
data on dominance interactions in some sort of spreadsheet software. While
it is possible to read data directly from Excel files (.xls or .xlsx) or SPSS files
(.sav)3, we suggest that you store your data in simple (tab-separated) text files.
For example, from Excel this is possible via File>Save as... and then choosing
”tab-delimited text file” as file format4.

3 Using EloRating

Start by loading the package and reading the necessary data5.

> library(EloRating)

> xdata <- read.table("ex-sequence.txt",

+ header=T, sep="\t")

Keep in mind that as soon as you use your own data it might be nessary to
include absolute paths with the filename6. For example:

> xdata <- read.table("c:\\temp\\ex-sequence.txt", header = TRUE,

+ sep = "\t")

3.1 Data checks

We then go on and check whether the data meet the formatting requirements
for the remaining functions of the package to work. If there is something ap-
pearing not quite right with your data, this function will tell you. ”Warnings”
can usually be ignored (see below), whereas ”errors” need to be fixed before the
next step. More details on the possible warning and error messages can be found
in the help files (?seqcheck).

> seqcheck(winner=xdata$winner, loser=xdata$loser,

+ Date=xdata$Date)

no presence data supplied

Everything seems to be fine with the interaction sequence...OK

3.2 Elo rating calculations

This doesn’t give any error message, and so we can go on and calculate the
actual Elo ratings and store them in an object we name res. Note that in order
to ignore possible ”warnings” from seqcheck() the argument runcheck=FALSE

has to be set.
3see the R packages gdata and foreign
4you may also save your file as comma delimited or something similar, but note that you

then may need to modify the arguments to read.table() or use read.csv()
5The example files can be found in the package directory in the folder ”vignettes”
6see also ?setwd

2

> res <- elo.seq(winner=xdata$winner, loser=xdata$loser,

+ Date=xdata$Date, runcheck=TRUE)

> summary(res)

Elo ratings from 10 individuals

total (mean/median) number of interactions: 250 (50/49)

range of interactions: 19 - 75

date range: 2000-01-01 - 2000-09-06

startvalue: 1000

uppon arrival treatment: average

k: 100

proportion of draws in the data set: 0

3.3 Extract Elo ratings

The most obvious task perhaps is to obtain Elo ratings of specific individuals
on a specific date. This can be achieved by running the function extract.elo()

on the object res that was just created. In the output, individuals are ordered
by descending Elo ratings.

> extract.elo(res, "2000-05-28")

c d a f k s g n w z

1342 1214 1161 1133 1011 1000 958 844 799 538

> extract.elo(res, "2000-05-28", IDs=c("s", "a", "c", "k"))

c a k s

1342 1161 1011 1000

3.4 Plotting Elo ratings

eloplot() produces quick plots that visualize the development of Elo ratings
over time. Note that the example data set contains a rather modest number of
interactions and individuals. With larger data sets (both in terms of interac-
tions and individuals), such plots can become messy quickly. Even though it is
possible to restrict plotting to date ranges and subsets of individuals, we recom-
mend to create custom plots by directly accessing the res object. Specifically,
res$mat contains raw Elo ratings in a day-by-ID matrix, while the original dates
can be found in res$truedates.

The following plot produces Figure 1.

> eloplot(res)

3

600

800

1000

1200

1400

date

E
lo

−
ra

tin
g

2000−01−01 2000−06−01 2000−09−06
first day last day

a
c
d
f
g
k
n
s
w
z

Figure 1: Elo ratings of 10 individuals over the entire study period.

Restricting the date range and selecting only a subset of individuals results
in Figure 2.

> eloplot(res,ids=c("s", "a", "w", "k", "c"),

+ from="2000-06-05", to="2000-07-04")

4 Incorporating presence data and undecided in-
teractions

This section demonstrates how to incorporate presence data and undecided
interactions. We start by reading the additional ”presence matrix”, followed by
reformatting the date column in this object to a date format that R is capable
of dealing with.

> xpres <- read.table("ex-presence.txt", header = T, sep = "\t")

> xpres[, 1] <- as.Date(as.character(xpres[, 1]))

4

800

900

1000

1100

1200

1300

date

E
lo

−
ra

tin
g

2000−06−05 2000−07−04
first day last day

s
a
w
k
c

Figure 2: Elo ratings of 5 individuals over a month.

Next, we rerun seqcheck() and elo.seq() with the additional presence=
argument as well as incorporating the information about undecided interactions
draw= into the latter function.

> seqcheck(winner=xdata$winner, loser=xdata$loser,

+ Date=xdata$Date, presence=xpres)

presence data supplied, see below for details

Everything seems to be fine with the interaction sequence...OK

#####################################

presence data seems to be fine and matches interaction sequence...OK

#####################################

Extracting Elo ratings takes advantage of the presence data by either omitting
absent IDs from the output or returning them as NA. The differences in ratings
stem from incorporating undecided interactions.

5

600

800

1000

1200

date

E
lo

−
ra

tin
g

2000−01−01 2000−06−01 2000−09−06
first day last day

a
c
d
f
g
k
n
s
w
z

Figure 3: Elo ratings of 10 individuals over the entire study period. Note that
several individuals were absent during parts of the date range and are therefore
omitted from the plot (e.g. ”c” and ”f”). Compare to Figure 1

> extract.elo(res2, "2000-05-28")

c d f a k g n w z

1340 1211 1136 1092 962 960 873 860 566

> # note that "s" is absent and omitted

> extract.elo(res2, "2000-05-28", IDs=c("s", "a", "c", "k"))

c a k s

1340 1092 962 NA

> # note that "s" is absent and returned as NA

Likewise, eloplot() omits absent IDs from the resulting plots.

> eloplot(res2)

6

900

1000

1100

1200

date

E
lo

−
ra

tin
g

2000−06−05 2000−07−04
first day last day

s
a
w
k
c

Figure 4: Elo ratings of 5 individuals over a month. Note that individual ”c” is
not displayed in the plot, since it has not been present during the date range
supplied to eloplot(). Compare to Figure 2

> eloplot(res2, ids=c("s", "a", "w", "k", "c"),

+ from="2000-06-05", to="2000-07-04")

5 Further functions

In addition to calculate, extract and display/plot Elo ratings, our package
also provides some more functions that may be useful in some contexts.

5.1 stab.elo()

stab.elo() can be used to calculate an index of hierarchy stability (S, see
Neumann et al. 2011 and McDonald and Shizuka 2013).

> stab.elo(res2, from="2000-05-05", to="2000-06-05")

[1] 0.9674

7

5.2 traj.elo()

traj.elo() provides information about Elo rating trajectories over time.

> traj.elo(res2, ID=c("f", "n"),

+ from="2000-05-05", to="2000-06-05")

ID fromDate toDate slope Nobs

1 f 2000-05-05 2000-06-05 1.696998 6

2 n 2000-05-05 2000-06-05 3.904463 5

5.3 individuals()

individuals() provides information about which/how many individuals were
present on specific dates. When applied over a date range, the average number
of individuals can be returned as can the coefficient of variation of the number
of individuals present on each date. Note that this function has little relevance
when the calculation of Elo ratings (see above) is not supplemented by presence
data.

> individuals(res2, from="2000-05-05", to="2000-05-05", outp="N")

[1] 8

> individuals(res2, from="2000-05-05", to="2000-06-05", outp="N")

[1] 8.3125

> individuals(res2, from="2000-05-05", to="2000-06-05", outp="CV")

[1] 0.07125283

> individuals(res2, from="2000-05-05", to="2000-06-05", outp="IDs")

[1] "d" "k" "n" "w" "z" "c" "g" "f" "a" "s"

5.4 winprob()

winprob() simply returns the expected probablity of an individual winning
given its own Elo rating and that of its opponent.

> winprob(1000,1200)

[1] 0.2397501

> winprob(1200,1000)

[1] 0.7602499

> winprob(1200,1200)

[1] 0.5

8

5.5 creatematrix()

creatematrix() returns a square matrix which can be used with other,
matrix-based algorithms to calculate dominance scores or ranks (e.g. I&SI or
David’s score). If undecided interactions are present in the data, the user can
decide on how to treat them (either 0.5 or 1 for both individuals, or they are
omitted (default)). Individuals that were absent during the specified date range
are excluded from the matrix by default. In addition, the matrix can be re-
stricted to individuals that had interactions (i.e. observed interactions) in the
date range.

> creatematrix(res2)

a c d f g k n s w z

a 0 5 5 2 9 4 2 1 10 6

c 0 0 4 7 3 4 1 1 5 2

d 2 0 0 2 5 5 4 0 8 10

f 0 2 0 0 2 6 4 0 6 5

g 0 0 0 0 0 4 3 0 6 2

k 1 0 3 0 0 0 2 0 2 6

n 0 0 0 0 2 0 0 0 2 3

s 3 0 2 1 3 0 0 0 2 2

w 2 0 0 0 0 1 1 0 0 11

z 0 0 0 2 1 1 0 0 0 0

> sum(creatematrix(res2))

[1] 200

> creatematrix(res2, drawmethod="0.5")

a c d f g k n s w z

a 0.0 6.0 6.0 2.5 10.0 4.0 2.0 1.0 13.0 6.5

c 1.0 0.0 4.0 7.5 3.0 4.0 1.0 1.5 6.0 2.5

d 3.0 0.0 0.0 3.5 5.0 5.5 4.0 0.5 8.0 12.0

f 0.5 2.5 1.5 0.0 2.5 6.5 5.0 0.5 6.5 5.0

g 1.0 0.0 0.0 0.5 0.0 4.0 3.0 0.0 8.0 2.5

k 1.0 0.0 3.5 0.5 0.0 0.0 2.5 0.0 3.0 7.0

n 0.0 0.0 0.0 1.0 2.0 0.5 0.0 0.0 2.5 4.0

s 3.0 0.5 2.5 1.5 3.0 0.0 0.0 0.0 2.5 2.0

w 5.0 1.0 0.0 0.5 2.0 2.0 1.5 0.5 0.0 12.0

z 0.5 0.5 2.0 2.0 1.5 2.0 1.0 0.0 1.0 0.0

> sum(creatematrix(res2, drawmethod="0.5"))

[1] 250

> # "c" and "n" are omitted

> creatematrix(res2, "2000-06-10", "2000-06-16")

9

a d f g k s w z

a 0 0 0 1 0 0 0 0

d 0 0 0 0 0 0 0 0

f 0 0 0 0 1 0 0 1

g 0 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0 0

s 0 0 0 0 0 0 0 0

w 0 0 0 0 0 0 0 0

z 0 0 0 0 0 0 0 0

> creatematrix(res2, "2000-06-10", "2000-06-16",

+ onlyinteracting=TRUE)

a f g k z

a 0 0 1 0 0

f 0 0 0 1 1

g 0 0 0 0 0

k 0 0 0 0 0

z 0 0 0 0 0

5.6 randomsequence()

Finally, randomsequence() creates random data sets, which can be used for
simulations for example. It returns a list with two data.frames (named ”se-
qdat” and ”pres” for the actual sequence and presence data, respectively). By
default, it creates a sequence of 100 interactions between 10 individuals. All
IDs are present the entire time and there are no undecided interactions. Also
by default, IDs are simply single letters and in order to produce realistic data,
IDs that appear earlier in alphabetic order are more likely to win interaction
(alphabet=TRUE). The proportion of reversals (against that order) is by default
set to reversals=0.1.

> rdata <- randomsequence()

> xres <- elo.seq(rdata$seqdat$winner, rdata$seqdat$loser,

+ rdata$seqdat$Date, presence=rdata$pres)

> summary(xres)

Elo ratings from 10 individuals

total (mean/median) number of interactions: 100 (20/19)

range of interactions: 15 - 26

date range: 2000-01-01 - 2000-04-09

startvalue: 1000

uppon arrival treatment: average

k: 100

proportion of draws in the data set: 0

10

