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1 Introduction

This documents gives some instructions on how to create graphical represen-
tations of correlation matrices in the statistical environment R [R Core Team,
2022] using package Correlplot, using a variety of di�erent statistical methods.
We use principal component analysis (PCA), multidimensional scaling (MDS),
principal factor analysis (PFA), weighted alternating least squares (WALS), cor-
relograms (CRG) and corrgrams to produces displays of correlation structure.
The outline of this vignette is as follows. Section 2 explains how to install the
Correlplot package. Section 3 shows how to use the functions of the package for
creating all graphical representaions (biplots, correlograms, MDS maps, etc.)
for a given correlation matrix. The computation of goodness-of-�t statistics is
also addressed. All methods are illustrated on a single data set, the wheat kernel
data introduced below.

2 Installation

The package Correlplot can be installed in R by typing:

install.packages("Correlplot")

library("Correlplot")

This will download Correlplot from the CRAN server. This instruction will
make, among others, the functions correlogram, pfa, ipSymLS and rmse avail-
able. Some data sets and correlation matrices are included in the package,
and can be accessed with the data instruction. By typing the instruction
data(package="Correlplot") a list of all correlation and data matrices avail-
able in the package will appear. We will also make use of the packages calibrate,
corrgram and xtable, and �rst connect these:
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> #install.packages("calibrate")

> #install.packages("corrplot")

> #install.packages("xtable")

> library(calibrate)

> library(corrplot)

> library(xtable)

3 Graphical representations of a correlation ma-

trix

In this section we indicate how to create di�erent plots of a correlation matrix,
and how to obtain the goodness-of-�t of the displays. We will subsequently treat
the corrgram, the correlogram, the PCA-based correlation biplot, the PFA-based
correlation biplot, an MDS-based map of correlation structure and WALS-based
correlation biplots. Throughout this vignette, we will use a wheat kernel data
set taken from the UCI Machine Learning Repository (https://archive.ics.
uci.edu/ml/datasets/seeds) in order to illustrate the di�erent plots.
The wheat kernel data [Charytanowicz et al., 2010] consists of 210 wheat kernels,
of which the variables area (A), perimeter (P ), compactness (C = 4∗π ∗A/P 2),
length, width, asymmetry coe�cient and groove (length of kernel groove) were
registered. There are 70 kernels of each of the varieties Kama, Rosa and Cana-

dian; here we will only use the kernels of variety Kama. The data is made
available with:

> library(Correlplot)

> data("Kernels")

> X <- Kernels[Kernels$variety==1,]

> X <- X[,-8]

> head(X)

area perimeter compactness length width asymmetry groove

1 15.26 14.84 0.8710 5.763 3.312 2.221 5.220

2 14.88 14.57 0.8811 5.554 3.333 1.018 4.956

3 14.29 14.09 0.9050 5.291 3.337 2.699 4.825

4 13.84 13.94 0.8955 5.324 3.379 2.259 4.805

5 16.14 14.99 0.9034 5.658 3.562 1.355 5.175

6 14.38 14.21 0.8951 5.386 3.312 2.462 4.956

The correlation matrix of the variables is given by:

> R <- cor(X)

> xtable(R,digits=3)

The corrgram The corrgram ([Friendly, 2002]) is a tabular display of the
entries of a correlation matrix that uses colour and shading to represent corre-
lations. Corrgrams can be made with the fuction corrplot.
This shows most correlations are positive, and correlations with asymmetry are
weak.
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area perimeter compactness length width asymmetry groove
area 1.000 0.976 0.371 0.835 0.900 -0.050 0.721

perimeter 0.976 1.000 0.165 0.921 0.802 -0.054 0.794
compactness 0.371 0.165 1.000 -0.146 0.667 0.037 -0.131

length 0.835 0.921 -0.146 1.000 0.551 -0.037 0.866
width 0.900 0.802 0.667 0.551 1.000 -0.027 0.447

asymmetry -0.050 -0.054 0.037 -0.037 -0.027 1.000 -0.011
groove 0.721 0.794 -0.131 0.866 0.447 -0.011 1.000

> #install.packages("corrplot")

> library(corrplot)

> R <- cor(X)

> corrplot(R, method="circle",type="lower")
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The correlogram The correlogram ([Trosset, 2005]) represents correlations
by the cosines between vectors.

> theta.cos <- correlogram(R,main="Correlogram wheat kernels",

+ xlim=c(-1.3,1.3),ylim=c(-1.3,1.3))

Correlogram wheat kernels
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The approximation this gives to the correlation matrix calculated by

> Rhat.cor <- angleToR(theta.cos)

and the root mean squared error (RMSE) of the approximation, is calculated as

> rmse.crg <- rmse(R,Rhat.cor,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.2632838

which shows this representation has a large amount of error. The correlogram
can be modi�ed by using a linear interpretation rule, rendering correlations
linear in the angle [Gra�elman, 2013]. This representation is obtained by:
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> theta.lin <- correlogram(R,ifun="lincos",labs=colnames(R),

+ main="Linear Correlogram",

+ xlim=c(-1.3,1.3),ylim=c(-1.3,1.3))

Linear Correlogram
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The approximation to the correlation matrix by using this linear interpretation
function is calculated by

> Rhat.corlin <- angleToR(theta.lin,ifun="lincos")

> rmse.lin <- rmse(R,Rhat.corlin,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.1801166

The linear representation is seen to improve the approximation.

The PCA biplot of the correlation matrix We create a PCA biplot of the
correlation matrix, doing the calcutions for a PCA by hand, using the singular
value decomposition of the (scaled) standardized data. Alternatively, standard
R function princomp may be used to obtain the coordinates needed for the
correlation biplot. We use function bplot from package calibrate to make the
biplot:
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> n <- nrow(X)

> Xt <- scale(X)/sqrt(n)

> res.svd <- svd(Xt)

> Fs <- sqrt(n)*res.svd$u

> Gp <- res.svd$v%*%diag(res.svd$d)

> bplot(Fs,Gp,colch=NA,collab=colnames(X),

+ xlab = "First principal component",

+ ylab="Second principal component")
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The joint representation of kernels and variables emphasizes this is a biplot of
the (standardized) data matrix. However, this plot is a double biplot because
scalar products between variable vectors approximate the correlation matrix.
We stress this by plotting the variable vectors only, and adding a unit circle:

> bplot(Gp,Gp,colch=NA,rowch=NA,collab=colnames(X),

+ xl=c(-1,1),yl=c(-1,1))

> circle()
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The PCA biplot of the correlation matrix can be obtained from a correlation-
based PCA or also directly from the spectral decomposition of the correlation
matrix. The rank two approximation, by scalar products between vectors, and
the RMSE are calculated by:

> Rhat.pca <- Gp[,1:2]%*%t(Gp[,1:2])

> rmse.pca <- rmse(R,Rhat.pca,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.02642067

which is a considerable improvement over the previous correlograms.
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The MDS map of a correlation matrix We transform correlations to
distances with the

�

2(1− r) transformation, and use the cmdscale function
from the stats package to perform metric multidimensional scaling. We mark
negative correlations with a dashed red line.

> Di <- sqrt(2*(1-R))

> out.mds <- cmdscale(Di,eig = TRUE)

> Fp <- out.mds$points

> plot(Fp[,1],Fp[,2],asp=1,xlab="First principal axis",

+ ylab="Second principal axis")

> textxy(Fp[,1],Fp[,2],colnames(R),cex=0.75)

> ii <- which(R < 0,arr.ind = TRUE)

> for(i in 1:nrow(ii)) {

+ segments(Fp[ii[i,1],1],Fp[ii[i,1],2],

+ Fp[ii[i,2],1],Fp[ii[i,2],2],col="red",lty="dashed")

+ }
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We calculate distances in the map, convert back to correlations, and compute
the RMSE.

> Dest <- as.matrix(dist(Fp[,1:2]))

> Rhat.mds <- 1-0.5*Dest*Dest

> rmse.mds <- rmse(R,Rhat.mds,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.07385311
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The approximation by distance worsens with respect to the representation by
scalar products in PCA.

The PFA biplot of a correlation matrix Principal factor analysis can be
performed by the function pfa of package Correlplot.

> out.pfa <- pfa(X)

Initial communalities

[1] 0.99889901 0.99874292 0.97714079 0.95523330 0.95143278 0.07280894 0.77171779

Final communalities

[1] 1.000000000 0.988505336 0.841902892 0.992114945 0.977490455 0.002200171

[7] 0.741231621

27 iterations till convergence

Specific variances:

[1] 0.000000000 0.011494664 0.158097108 0.007885055 0.022509545 0.997799829

[7] 0.258768379

Variance explained by each factor

[1] 4.154912 1.390012

Loadings:

[,1] [,2]

[1,] -0.9932963 0.12182699

[2,] -0.9897642 -0.09419243

[3,] -0.2611277 0.87961082

[4,] -0.8973292 -0.43233698

[5,] -0.8499806 0.50499849

[6,] 0.0380343 0.02745110

[7,] -0.7689868 -0.38715752

> L <- out.pfa$La

The biplot of the correlation matrix obtained by PFA is in fact the same as
what is known as a factor loading plot in factor analysis, to which a unit circle
can be added. The approximation to the correlation matrix and its RMSE are
calculated as:

> Rhat.pfa <- L[,1:2]%*%t(L[,1:2])

> rmse.pfa <- rmse(R,Rhat.pfa,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.01119688

To make the factor loading plot, aka PFA biplot of the correlation matrix:
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> opar <- par(bty="n",xaxt="n",yaxt="n")

> plot(L[,1],L[,2],pch=NA,asp=1,xlim=c(-1,1),ylim=c(-1,1),

+ xl="Factor 1",yl="Factor 2")

> origin()

> arrows(0,0,L[,1],L[,2],angle=10,length=0.1,col="blue")

> textxy(L[,1],L[,2],colnames(X),cex=1)

> circle()

> par(opar)
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The RMSE of the plot obtained by PFA is lower than the RMSE obtained by
PCA. Note that variable Area reaches the unit circle for having a communality
of 1.

The WALS biplot of a correlation matrix The correlation matrix can
also be factored using weighted alternating least squares, avoiding the �t of the
ones on the diagonal of the correlation matrix by assigning them weight 0, using
function ipSymLS [De Leeuw, 2006].

> W <- matrix(1,nrow(R),nrow(R))

> diag(W) <- 0

> Fp.als <- ipSymLS(R,w=W,eps=1e-15)

> bplot(Fp.als,Fp.als,rowch=NA,colch=NA,collab=colnames(R),

+ xl=c(-1.2,1.2),yl=c(-1.2,1.2),main="WALS")

> circle()
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Weighted alternating least squares has, in contrast to PFA, no restriction on
the vector length, and variable Top is seen to move out of the unit circle.

> Rhat.wals <- Fp.als%*%t(Fp.als)

> rmse.als <- rmse(R,Rhat.wals,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.01118619

This is only slightly below the RMSE of PFA.
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The WALS biplot of an adjusted correlation matrix The adjusted cor-
relation matrix is calculated as Ra = R − δJ. By exploring the RMSE over a
grid of values for δ, as shown in the �gure below, δ = 0.07 is found to be the
optimum value.
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Function ipSymLS is applied to the adjusted correlation by subtracting δ. When
calculating the �tted correlation matrix, δ is added back.

> delta <- 0.07

> W <- matrix(1,nrow(R),nrow(R))

> diag(W) <- 0

> Fp.adj <- ipSymLS(R-delta,w=W,verbose=FALSE,eps=1e-10,itmax=1000)

The �tted correlation matrix and its RMSE are now calculated as:

> Rhat.adj <- Fp.adj%*%t(Fp.adj) + delta

> rmse.adj <- rmse(R,Rhat.adj,verbose=TRUE)

7 variables

rmse (off-diagonal) = 0.005564538

This comes closer to the sample correlation matrix than WALS without adjust-
ment.
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> bplot(Fp.adj,Fp.adj,rowch=NA,colch=NA,collab=colnames(R),

+ xl=c(-1.3,1.3),yl=c(-1.3,1.3),main="WALS adjusted")

> circle()
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We summarize the values of the RMSE of all methods in a table below:

> rmsevector <- c(rmse.crg,rmse.lin,rmse.pca,rmse.mds,rmse.pfa,rmse.als,rmse.adj)

> methods <- c("Correlogram (cosine)","Correlogram (linear)","PCA","MDS",

+ "PFA","WALS R","WALS Radj")

> xtable(data.frame(methods,rmsevector),digits=c(0,0,4))

methods rmsevector
1 Correlogram (cosine) 0.2633
2 Correlogram (linear) 0.1801
3 PCA 0.0264
4 MDS 0.0739
5 PFA 0.0112
6 WALS R 0.0112
7 WALS Radj 0.0056
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