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This vignette shows how functions in the Causata R package are used to
build a logistic regression model in R and deploy it to Causata.

1 A simple example

A very simple example is shown below, illustrating a complete model build
process from data extraction to model migration. Note that several of the steps
below require a Causata server. The Connect and GetData functions extract
data from a Causata server, and the UploadModel function migrates a model to
a Causata server.

The first step is to extract data using the Causata SQL interface. The focal
point is set at page view events, meaning that the variables are built with respect
to customers’ page views. The variables returned in the query are:

• mortgage application approved n30d is a Boolean variable indicating
if a mortgage application is approved in the 30 days after a page view.
This is used as the dependent variable.

• total assets AP is a numeric variable representing the total deposits for
a customer over all past.

• web has browsed on ipad l7d is a Boolean variable indicating if a cus-
tomer has visited the website with an iPad in the 7 days before the page
view.

library(Causata)

library(glmnet)

# Load data using the SQL interface.

# A page view event is selected as a focal point.

conn <- Connect(group='fsdemo')

query <- paste(

'SELECT mortgage_application_approved__n7d, total_assets__AP,',
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'web_has_browsed_on_ipad__l7d',

'FROM Scenarios S, page_view P',

'WHERE where S.profile_id = P.profile_id',

'AND S.focal_point = P.timestamp',

'LIMIT 20000')

df <- GetData(conn, query)

Next a formula is constructed, missing values in the data are replaced, and
a glmnet model is trained. The model predicts the probability of a mortgage
approval in the 30 days following a page view as a function of total assets and
whether a customer has used an iPad.

formula.str <- paste('mortgage_application_approved__n30d ~',

'total_assets__AP + web_has_browsed_on_ipad__AP')

# Create a CausataData object to track preprocessing steps.

causataData <- CausataData(df, 'mortgage_application_approved__n30d')

# Remove missing values.

causataData <- CleanNaFromContinuous(causataData)

causataData <- CleanNaFromFactor(causataData)

# build a model

modelmatrix <- model.matrix(formula(formula.str), data=causataData$df)

cv.glmnet.obj <- cv.glmnet(modelmatrix,

causataData$df$mortgage_application_approved__n30d,

alpha=0.0, family='binomial')

Last, the model is assigned a variable name and label, and the model is
uploaded to Causata.

# upload model

model.def <- ModelDefinition(

cv.glmnet.obj, causataData, formula(formula.str),

cv.glmnet.obj$lambda.min)

variable.def <- VariableDefinition(

name='score-mortgage-application',

display.name='Score: Mortgage Application',

description='Logistic regression model for demo.', author='Justin',

labels='Scores')

result <- UploadModel(CausataConfig(group='fsdemo'), model.def,

variable.def)

2 A longer example

The next example builds on the first one, adding several steps. The R code
shown below is all executable provided that the Causata R package is installed.
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2.1 Extract and load data

The first step in a model building process is to extract and load model training
data. In Causata the easiest way to extract data is to use the Causata-SQL
interface, which requires a connection to a Causata server. This section of the
vignette is intended to work without a connection, so an example data set from
the Causata package is used instead of the SQL interface. The example data
set includes records for individuals who were shown a mobile banner ad.

First packages are loaded, along with the example data. The data resides in
a data frame df.causata.

library(Causata)

library(glmnet)

library(pROC)

# Set a random seed so random numbers are repeated

set.seed(87352)

# Load example data from the Causata package

data(df.causata)

Next a dependent variable is selected. This example uses binary classifi-
cation, so the dependent variable has only two possible values indicating of a
customer has or has not clicked an ad for a mobile banking product.

# Set the dependent variable

dvname <- "has.responded.mobile.logoff_next.hour_466"

2.2 Preprocessing

Next the data set is divided into 75% training and 25% test.

# Create an index of training data.

idx.train <- sample.int(nrow(df.causata), round(nrow(df.causata)*0.75))

# Split data into training and testing data frames by row.

df.train <- df.causata[ idx.train, ]

df.test <- df.causata[-idx.train, ]

Some of the variables may not be valid predictors (all missing values, single
value, etc.), or may have very weak predictive power. The BinaryPredictor

function is used to quickly assess the univariate predictive power and robustness
for each variable.

# Run a univariate analysis for each variable in the data frame

binaryPredictorSummary <- BinaryPredictor(df.train, df.train[[dvname]],

min.robustness = 0.1)

# Generate summary information and store it in a data frame.

df.summary <- print(binaryPredictorSummary, silent=TRUE)
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Next a CausataData object is created, which tracks preprocessing steps
that will be repeated during model scoring. Only variables that pass the
BinaryPredictor screening are used.

# Create a CausataData object with training data.

causataData <- CausataData(df.train[, df.summary$keep], dvname)

2.2.1 Linearization and outliers

Model accuracy may be improved by linearizing variables with a transformation
such as the Weight of Evidence (WOE). Causata supports the discretization
of continuous variables into bins. Here the continuous data is discretized and
mapped to WOE values, which linearizes the response.

# Loop for each variable, apply discretization to nonlinear variables

for (varname in names(causataData$df)){
if (varname %in% c(dvname)){next} # skip the dependent variable

# Get summary information for this variable

idx <- which(varname == df.summary$name)

# Discretize nonlinear variables where the predictive power is > 0.3

# and the linearity is < 0.9

if (df.summary$class[idx] %in% c('integer','numeric') &

df.summary$predictivePower[idx] > 0.03 &

abs(df.summary$linearity[idx]) < 0.9){
# Set outlier limits before discretizing

causataData <- ReplaceOutliers(causataData, varname,

lowerLimit=min(causataData$df[[varname]], na.rm=TRUE),

upperLimit=max(causataData$df[[varname]], na.rm=TRUE))

# Find breakpoints

bclist <- BinaryCut(causataData$df[[varname]],

causataData$df[[dvname]], minBin=0, bins=TRUE)

# Compute weight of evidence

woe <- Woe(bclist$fiv, causataData$df[[dvname]])

# Discretize

causataData <- Discretize(causataData, varname, bclist$breaks,

woe$woe.levels)

}
}

This step increases the model predictive power by approximately 3%. The
benefit will be proportional to the amount of nonlinearity in the training data.

Note that outlier limits are set using the ReplaceOutliers function. This
step is required before running Discretize. If new data has values outside the
min / max of the training data, then this step will replace the outliers with the
min / max values of the training data.
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2.2.2 Missing values

Two functions from the Causata R package are used to replace missing values in
factors (categorical variables) and in numeric variables. The replacement values
are stored in causataData.

# Replace missing values

causataData <- CleanNaFromContinuous(causataData)

causataData <- CleanNaFromFactor(causataData)

2.2.3 Categorical variables

Categorical variables with many levels will generate many dummy variables,
which can be problematic during model training. One way to mitigate this
problem is to merge smaller levels into an ”Other” level. In the example below,
the number of levels is capped at 10, and the mapping of original levels to the
new levels is stored in causataData.

# Merge levels in factors with # levels exceeding a threshold

causataData <- MergeLevels(causataData, max.levels=10)

2.2.4 Other preprocessing steps

Other preprocessing steps may include:

• Removing colinear variables: Highly correlated variables can make
model interpretation and variable importance calculations more difficult.
If multiple variables are correlated then selecting only one for the model
may be beneficial.

• Interaction terms: Interaction terms are supported during scoring.
They can be added to the model formula in R and will automatically
be translated into the Causata model.

2.3 Train a glmnet model

Next the model.matrix function will be used to convert the data frame into a
design matrix where factors are encoded as dummy variables. This step requires
a model formula, which is simply the addition of all independent variables in
the data frame.

# Extract a set of independent variable names, exclude the dependent

# variable.

indep.vars <- colnames(causataData$df)

indep.vars <- indep.vars[!(indep.vars == dvname) ]

# Build a formula string

formula.string <- paste(dvname, "~", paste(indep.vars, collapse=" + "))
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formula.object <- formula(formula.string)

# Build a model matrix

x.matrix.train <- model.matrix(formula.object, data=causataData$df)

# Set the dependent variable

y.train <- causataData$df[[dvname]]

y.test <- df.test[[dvname]]

The preprocessing steps applied to the training data must be re-applied to
the testing data. The GetTransforms function makes this process easy.

# Get a function that applies transformations to a data frame.

Transformer <- GetTransforms(causataData)

# Apply the transformations to the test data.

df.test.transformed <- Transformer(df.test)

Next the training data is supplied to cv.glmnet (from the glmnet pack-
age), which builds multiple models while varying the regularization parameter
Lambda. The plot command generates a diagnostic plot of the model error
(deviance) with respect to Lambda. The error bars indicate the standard error
across the ten-fold cross validation, which appears to be high with respect to
the overall change in the mean deviance. The standard error could be reduced
by using a larger data set or reducing multicolinearity in the training data.

# Build model, select alpha value near 1

# since we expect most coefficients to be zero

cv.glmnet.obj <- cv.glmnet(x.matrix.train, y.train, alpha=0.8,

family=c("binomial"))

plot(cv.glmnet.obj)
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Now the model is applied to the training and test data. Predicted values are
calculated for each data set.

# Use the model to predict responses for training data

predicted.train <- predict(cv.glmnet.obj, newx=x.matrix.train,

type="response", s="lambda.min")

# Compute predictions for test data.

model.def <- ModelDefinition(cv.glmnet.obj, causataData,

formula.object, cv.glmnet.obj$lambda.min )

predict.result <- predict(model.def, df.test.transformed)

predicted.test <- predict.result$predicted

The next step is to assess the model accuracy using the area under the ROC
curve. A value of 0.72 for the test data is considered fair, though not strong.
Ideally the area under the ROC curve will be very close for the train / test data
sets, which indicates a robust model that is not over fit. In this example the
areas are within 1%.

# Compute area under the ROC curve using the pROC package

roc.train <- roc(y.train, predicted.train)

## Warning in roc.default(y.train, predicted.train): Deprecated use a matrix

as predictor. Unexpected results may be produced, please pass a numeric vector.

roc.test <- roc(y.test, predicted.test )

cat("Training / testing area under ROC curve: ",

roc.train$auc, ", ", roc.test$auc, "\n")
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## Training / testing area under ROC curve: 0.7277744 , 0.7243998

plot(roc.test,

main=sprintf("ROC plot for glmnet model test data. AUC=%6.4f",

roc.test$auc))

ROC plot for glmnet model test data.  AUC=0.7244
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##

## Call:

## roc.default(response = y.test, predictor = predicted.test)

##

## Data: predicted.test in 4029 controls (y.test false) < 197 cases (y.test true).

## Area under the curve: 0.7244

In the final steps the model name and description are set, and the Causata
server parameters are provided so that the model can be uploaded.

# Prepare to import the model into Causata

variable.def <- VariableDefinition(

name = "score-test-model",

display.name = "Score: Test Model",

description = "A logistic regression model.",

author = "Test User" )

# Generate a string of PMML representing the model and

# preprocessing transformations.

# This step is not required to upload a model,

# it's shown for illustration purposes only
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pmml.string <- ToPmml(model.def, variable.def)

# Upload model to Causata.

# The parameters below are for illustration only.

causata.config <- CausataConfig(

config.server.host = "123.456.789.10",

config.server.port = 8002,

config.username = "testuser",

config.password = "1234abcd")

The final command UploadModel requires a live connection to a Causata
server. The command creates a new variable in Causata that calculates the
model score.

result <- UploadModel(causata.config, model.def, variable.def)

The model coefficients exported to Causata will match the set obtained from
the cv.glmnet object. This code extracts the nonzero coefficients.

# extract nonzero coefficients

coefs.all <- as.matrix(coef(cv.glmnet.obj, s="lambda.min"))

idx <- as.vector(abs(coefs.all) > 0)

coefs.nonzero <- as.matrix(coefs.all[idx])

rownames(coefs.nonzero) <- rownames(coefs.all)[idx]

The model coefficients are printed below.

print(coefs.nonzero)

## [,1]

## (Intercept) 2.4483420610

## decisions.number.of.decisions_all.past_2 0.5098600804

## has.decision.logout.prompt_all.past_349true -0.0585343920

## has.decision.logout.prompt_last.30.days_349true -0.3659227222

## has.responded.mobile.logoff_all.past_466true 1.0768969209

## has.responded.mobile.logoff_last.30.days_466true 1.0101260963

## ib.has.enrollment.event_all.past_145true -0.5889689673

## ib.has.forgotten.password_last.30.days_417true 0.7293430759

## ib.has.forgotten.password_last.7.days_417true -0.0211965283

## impression.count.credit.cards.logoff_all.past_355 0.0600554752

## impression.count.mobile.logoff_last.30.days_361 0.1881350211

## impression.count.mobile.logoff_last.7.days_361 -0.0006321068

## mobile.has.any.mobile.app.activity_all.past_324true -0.3504908227

## mobile.has.used.sms_last.30.days_43true 0.4002729734

## online.average.authentications.per.month_all.past_406 -0.0015968151

## online.average.authentications.per.month_last.30.days_406 -0.0712628090

## online.has.online.activity_last.7.days_49true 2.5331785781

## online.has.used.mobile.device_all.past_418true 0.4222523359

## online.has.used.mobile.device_last.7.days_418true 0.6282495349

## online.number.of.page.views_all.past_3 0.5834574367

## online.number.of.page.views_last.30.days_3 -0.2232070140

## online.number.of.page.views_last.7.days_3 0.4031460330

## online.product.category.view.count.credit.lending_last.7.days_446 -0.6019162922

## online.product.category.view.count.mobile.banking_last.30.days_447 0.0843627369

## online.time.since.last.authentication_focal.point_408 0.2256956795

## os.os.disclosure.accepted_last.30.days_388true 1.2560973910

## time.since.last.authentication_focal.point_472 0.2181061121

## time.since.last.session_focal.point_404 0.4721834215
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