
CNVRG vignette

Joshua Harrison

2020-09-08

‘CNVRG’ wraps functionality provided by ‘RStan’ and ‘Stan’ in a simple to use interface (Stan Development
Team 2018). Credit should be given to the ‘Stan’ team if ‘CNVRG’ is used. Additionally, please cite the
‘CNVRG’ package and associated Molecular Ecology Resources paper (Harrison et al. 2020a). Thanks!

‘CNVRG’ facilitates Dirichlet multinomial modelling of relative abundance data, such as those generated via
sequencing of microbiomes. We envision the software being of particular use for microbial and community
ecologists. The variational inference algorithm provided by ‘Stan’ extends the utility of the model to modern
datasets with many thousands of parameters to estimate.

In this vignette, we demonstrate how to use ‘CNVRG’ on a simple dataset. We urge new users to carefully
examine the files used. Data must be formatted properly for ‘CNVRG’ to work!

We also recommend that application of ‘CNVRG’ to larger data (e.g., a matrix of several thousand by several
hundred) be performed remotely as modelling can take some compute time. As a head’s up to new users, it
is worth subsetting one’s data and ensuring code correctness and model completion prior to analyzing a large
dataset.

Data to be processed by ‘CNVRG’ should look like the following matrix, with a treatment field followed by
fields containing count data. Note that count data must be integers and must be read by ‘R’ as such (not
factors or strings). The treatment field must be encoded as a factor or string. Use str() to determine the
format of your data. See ‘DataCamp’, ‘swirl’ or other ‘R’ tutorials if you do not know how to change the
encoded format for your data.
fungi[1:3,1:5]
treatment Otu4 Otu58 Otu77 Otu86
10 treated_neg 816 4 3 0
12 treated_neg 277 2 0 0
23 treated_neg 479 0 0 0

Before modelling it is important to ensure that the data are organized such that all replicates from a treatment
group are grouped together. For instance, all “treatment1” replicates should be followed by all “treatment2”
replicates in the matrix in row wise fashion. Replicates from different treatment groups should not be
interdigitated. This is because the hierarchical nature of the model shares information among replicates
within a treatment group. If replicates are jumbled up then information will not be shared properly and
model output will be incorrect.

For instance, consider:
fungi$treatment
[1] treated_neg treated_neg treated_neg treated_neg
[5] treated_neg treated_neg treated_neg treated_neg
[9] treated_neg treated_neg treated_neg treated_neg
[13] treated_neg treated_neg treated_neg treated_neg
[17] treated_neg treated_neg treated_neg treated_neg
[21] treated_neg treated_neg treated_neg treated_neg
[25] treated_neg treated_neg treated_neg treated_neg

1

[29] treated_neg treated_neg treated_neg treated_neg
[33] treated_neg treated_neg treated_neg treated_neg
[37] treated_neg treated_neg treated_plus treated_plus
[41] treated_plus treated_plus treated_plus treated_plus
[45] treated_plus treated_plus treated_plus treated_plus
[49] treated_plus treated_plus treated_plus treated_plus
[53] treated_plus treated_plus treated_plus treated_plus
[57] treated_plus treated_plus treated_plus treated_plus
[61] treated_plus treated_plus treated_plus treated_plus
[65] treated_plus treated_plus treated_plus treated_plus
[69] treated_plus treated_plus treated_plus treated_plus
[73] treated_plus treated_plus treated_plus untreated_neg
[77] untreated_neg untreated_neg untreated_neg untreated_neg
[81] untreated_neg untreated_neg untreated_neg untreated_neg
[85] untreated_neg untreated_neg untreated_neg untreated_neg
[89] untreated_neg untreated_neg untreated_neg untreated_neg
[93] untreated_neg untreated_neg untreated_neg untreated_neg
[97] untreated_neg untreated_neg untreated_neg untreated_neg
[101] untreated_neg untreated_neg untreated_neg untreated_neg
[105] untreated_neg untreated_neg untreated_neg untreated_neg
[109] untreated_neg untreated_neg untreated_neg untreated_neg
[113] untreated_plus untreated_plus untreated_plus untreated_plus
[117] untreated_plus untreated_plus untreated_plus untreated_plus
[121] untreated_plus untreated_plus untreated_plus untreated_plus
[125] untreated_plus untreated_plus untreated_plus untreated_plus
[129] untreated_plus untreated_plus untreated_plus untreated_plus
[133] untreated_plus untreated_plus untreated_plus untreated_plus
[137] untreated_plus untreated_plus untreated_plus untreated_plus
[141] untreated_plus untreated_plus untreated_plus untreated_plus
[145] untreated_plus untreated_plus untreated_plus untreated_plus
Levels: treated_neg treated_plus untreated_neg untreated_plus

All replicates for each of the four treatment groups in these example data are placed together in the matrix.
The first and last indices for replicates in each of these treatment groups are used to tell the function which
rows in the matrix correspond to a particular sampling group. See the vectors passed in as arguments for
‘starts’ and ‘ends’ in the example immediately below.

Note if zeros exist in the data, then a pseudocount should be added. A one is used in this case.
fungi[,2:length(fungi)] <- 1 + fungi[,2:length(fungi)]
modelOut <- varHMC(countData = fungi,

starts = c(1,39,76,113),
ends = c(38,75,112,148),
chains = 2,
burn = 500,
samples = 2000,
thinning_rate = 2,
cores = 1,
params_to_save = c("pi", "p"))

Incidentally, if desired, information can be shared among multiple treatment groups through rearranging the
data and specifying new start and end indices. For example, here we share information among replicates
within a treatment group. We specify the indices for the first replicate in each sampling group via the vector
provided as an argument to ‘starts’. Similarly, the indices for the last replicate in each treatment group are
fed in a as a vector to ‘ends’. We have four elements in each of these vectors because there are four treatment

2

groups. If instead, we wished to combine the first two treatment groups and share information accordingly,
then the start and end vectors could be modifed to be ‘starts = c(1,76,113)’ and ‘ends = c(75,112,148)’
respectively.

After running the model it is important to check convergence statistics. One way to do this is with summary
(from the RStan package).
head(summary(modelOut, pars = "pi", probs =c(0.025, 0.975))$summary)
mean se_mean sd 2.5% 97.5%
pi[1,1] 0.926310573 1.268586e-04 0.0034110463 0.919962382 0.933129071
pi[1,2] 0.007153096 2.633784e-05 0.0008501852 0.005581631 0.008779607
pi[1,3] 0.003731700 1.605914e-05 0.0005529292 0.002708087 0.004878408
pi[1,4] 0.002863655 1.378174e-05 0.0004666183 0.002015567 0.003839107
pi[1,5] 0.002717714 1.342067e-05 0.0004664906 0.001925412 0.003731347
pi[1,6] 0.002628350 1.286881e-05 0.0004375578 0.001857257 0.003574774
n_eff Rhat
pi[1,1] 722.9951 0.9988115
pi[1,2] 1041.9979 1.0005305
pi[1,3] 1185.4802 0.9992176
pi[1,4] 1146.3451 0.9997364
pi[1,5] 1208.1962 1.0021317
pi[1,6] 1156.0967 0.9991340

Rhat scores should be near 1. It is advisable to check other measures of model performance (number of
effective samples, Geweke’s statistic, trace plots) The ‘shinystan’ package also provides excellent visualizations
of model performance. The package can be called like this: ‘shinystan::launch_shinystan(modelOut)’. If you
are unfamiliar with convergence diagnostics then please see the ‘Stan’ documentation.

At the moment, diagnostic tools are not well developed for variational inference.

Using estimates of relative abundances

If model diagnostics seem sufficient then analyses can be performed using relative abundance estimates. Use
the ‘extract’ function from ‘RStan’ to assign samples for parameters of interest to an object. These samples
can then be passed to downstream analyses.

While we advocate using samples describing posterior distributions for parameters of interest whenever
possible, we acknowledge that sometimes it is convenient to obtain point estimates for those parameters. To
do so for pi parameters we can use the ‘CNVRG’ function ‘extract_point_estimate’ like so:
point_est <- extract_point_estimate(modelOut = modelOut, countData = fungi, treatments = 2)

Differential relative abundance testing

One common analysis is to compare relative abundances of features between treatment groups. This is
commonly referred to as ‘differential abundance testing’ in the microbial ecology and functional genomics
literatures. ‘CNVRG’ provides functions to ease this analysis. Simply pass in the extracted pi parameters
(the function does not work for other parameters) and specify the count data used. The count data must
follow the exact format as those modelled and be in the same order.
diff_abund_test <- diff_abund(model_output = modelOut, countData = fungi)

This function subtracts the posterior distribution of the pi paramater for each feature in one treatment group
from the pi parameter distribution in other treatment groups. The function outputs a matrix of proportions

3

that describes the proportion of the distribution of differences that is greater than zero, for each comparison.
In this example, the comparison between treatment 1 and treatment 3 provided the following results.
diff_abund_test[3,]
comparison Otu4 Otu58 Otu77 Otu86 Otu9
3 treatment_1_vs_treatment_3 0.998 0.2906667 0.3206667 0.168 0.156
Otu11 Otu10 Otu54 Otu42 Otu40 Otu74 Otu12 Otu72
3 0.1433333 0.172 0.1486667 0.14 0.1526667 0.1353333 0.1226667 0.1533333
Otu79 Otu96 Otu94 Otu6 Otu92 Otu70 Otu71 Otu97
3 0.1433333 0.1606667 0.144 0.3306667 0.1266667 0.2606667 0.1466667 0.15
Otu62 Otu7 Otu99 Otu76 Otu100
3 0.1493333 0.156 0.1526667 0.1526667 0.1253333

This means that for Otu 4 nearly 100% of the samples obtained after subtracting the pi distributions for that
Otu from treatment 1 and treatment 3 were greater than zero. This means that the there is high certainty
that the pi value for Otu 4 in treatment 1 was greater than in treatment 3. Stated another way, this means
that the relative abundance of Otu 4 was greater in treatment 1 than in treatment 3.

However, only approximately a third of samples for the distribution of differences for Otu 58 were above zero.
So we have much less certainty that this Otu differed in relative abundance between treatment group 1 and
treatment group 3.

Because the ‘diff_abund’ function provides insight into the proportion of samples ABOVE zero, values that
are very large and very small (e.g., >0.95 or <0.05) denote a high certainty of an effect of treatment group.

Diversity calculation

Often some measure of the information content of data is desirable. This can be calculated using diversity
entropies, such as the Shannon index. Ecologists use these metrics all the time, though they can be useful
in many other fields as well. ‘CNVRG’ allows propagation of uncertainty in relative abundance estimates
through diversity entropy calculations.

To calculate diversity entropies use the ‘diversity_calc’ function:
entropies <- diversity_calc(model_output = modelOut, countData = fungi,

entropy_measure = 'shannon',equivalents = T)

We do not provide explicit plotting functions for entropy posteriors as we suspect users will have formatting
desires that preclude the use of canned functions. However, a simple way to plot entropy posteriors is via
density plots using base ‘R’. For example:
plot(density(entropies[[1]][[1]]),

xlab = "Entropy",
ylab = "Density",
main = "")

4

1.55 1.60 1.65 1.70 1.75

0
2

4
6

8
10

12

Entropy

D
en

si
ty

Transforming relative abundance data to absolute abundance estimates

If an internal standard (ISD) has been used, then it is a simple matter to transform samples of posterior
distributions so that relative abundance estimates are provided as ratios with the internal standard’s relative
abundance as the denominator. This transforms the data so that each field is represented in relation to
the internal standard. Since the standard should represent the same starting absolute abundance, this
transformation accounts for the problems of compositionality inherent to relative abundance data, to some
extent at least. There are many situations where the standard may fail and we direct users to Harrison et
al. 2020b for a description of these situations. Still, we suggest that an internal standard provides important
benefits for many studies.

We have provided a simple function in ‘CNVRG’ called ‘isd_transform’ that facilitates the aforementioned
transformation. Users must specify which field corresponds to the ISD. For the sake of example, let’s say that
the second index corresponds with the ISD.
transformed_data <- isd_transform(model_output = modelOut, countData = fungi, isd_index = 2)

It is worth checking that the correct index for the ISD was provided. Examine the output and make sure
that the field for the index is filled with ones and that field is indeed the ISD. Remember when determining
the appropriate index to account for the fact that the original data had sample names in field one (this
field should not be counted when determining an appropriate index). Transformed data can be used in the
‘diversity_calc’, ‘diff_abund’, and ‘extract_point_estimates’ functions.

Literature cited

Harrison, J. G., Calder, W. J., Shastry, V., & Buerkle, C. A. (2020a). Dirichlet multinomial modelling
outperforms alternatives for analysis of microbiome and other ecological count data. Molecular Ecology
Resources, 20(2)

Harrison, J., Calder, W. J., Shuman, B. N., & Buerkle, C. A. (2020b). The quest for absolute abundance:
the use of internal standards for DNA based community ecology. Molecular Ecology Resources (Accepted as
of Aug. 2020)

5

Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.18.2.

6

	Using estimates of relative abundances
	Differential relative abundance testing
	Diversity calculation
	Transforming relative abundance data to absolute abundance estimates
	Literature cited

