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Abstract

This is a vignette for the R package CARBayesST version 2.1, which describes the
class of models that can be implemented by the package.
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1. Introduction

Areal unit data are a type of spatial data where the observations relate to a set of K contiguous
but non-overlapping areal units, such as electoral wards or census tracts. Each observation
relates to an entire areal unit, and thus is typically a summary measure such as an average,
proportion or total of the quantity being measured throughout the unit. This type of data can
be total yields in sectors in an agricultural field trial (Besag and Higdon 1999), the proportion
of people who are Catholic in lower super output areas in Northern Ireland (Lee et al. 2015),
the average score on SAT college entrance exams across US states (Wall 2004), or the total
number of cases of chronic obstructive pulmonary disease from populations living in counties
in Georgia, USA (Choi and Lawson 2011). Such data have become increasingly available
in recent times, due to the creation of databases such as Scottish Neighbourhood Statis-
tics (http://www.sns.gov.uk), Health and Social Care Information Centre Indicator Portal
(http://www.hscic.gov.uk/indicatorportal), and Surveillance Epidemiology and End Results
programme (http://seer.cancer.gov). These databases provide data on a set of K areal units
for T consecutive time periods, yielding a rectangular array of K×T spatio-temporal observa-
tions. The motivations for modelling these data are varied, and include estimating the effect
of a risk factor on a response (see Wakefield 2007 and Lee et al. 2009), identifying clusters
of contiguous areal units that exhibit an elevated risk of disease compared with neighbouring
areas (see Charras-Garrido et al. 2012 and Anderson et al. 2014), and quantifying the level
of segregation in a city between two or more different groups (see Lee et al. 2015).

The key statistical modelling challenge for these data is that of spatio-temporal autocorrela-
tion, namely that observations from geographically close areal units and time periods tend
to have more similar values than units and time periods that are further apart. Temporal
autocorrelation occurs because the data relate to the same set of individuals over consecu-
tive time periods, while the spatial autocorrelation can arise for a number of reasons. The
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first is unmeasured confounding, which occurs when a spatially patterned risk factor for the
response data being measured is not included in a regression model and hence its omission
induces unmeasured spatial structure into the response. Other causes of spatial autocorrela-
tion include neighbourhood effects, where the behaviours of individuals in an areal unit are
influenced by individuals in adjacent units, and grouping effects where groups of people with
similar behaviours choose to live together. A number of models have been developed to allow
for such spatio-temporal autocorrelation, the majority of which utilise a set of autocorrelated
random effects. Autoregressive (AR) priors are commonly used to represent temporal auto-
correlation in the random effects, while conditional autoregressive (CAR) priors (Besag et al.
1991) are most often utilised for modelling spatial autocorrelation. Both these models are
special cases of a Gaussian Markov Random Field (GMRF), and are typically implemented in
a Bayesian setting using either Markov chain Monte Carlo (McMC) simulation or Integrated
Nested Laplace Approximations (INLA).

An array of freely available software can now implement purely spatial areal unit models,
ranging from general purpose statistical modelling software such as BUGS (Lunn et al. 2009)
and R-INLA (Rue et al. 2009), to specialist spatial modelling packages in the statistical soft-
ware R (R Core Team 2013) such as CARBayes, spatcounts and spdep. However, due to the
flexibility of general purpose software, implementing spatial models, in say BUGS, requires
a degree of programming that is non-trivial for applied researchers. Specialist software for
spatio-temporal modelling is much less well developed, with examples for geostatistical data
including spTimer and spBayes. For areal unit data the surveillance package models epidemic
data, the plm and splm packages model panel data, while the nlme and lme4 packages have
functionality to model spatial and temporal random effects structures. However, software to
fit a range of spatio-temporal areal unit models with CAR type autocorrelation structures is
not avaiable, which has motivated us to develop the R package CARBayesST.

The software can fit a number of different spatio-temporal models, which allow the user to
answer different questions about their data. These models include a spatially varying linear
time trends model similar to Bernardinelli et al. (1995), a spatial and temporal main effects
and an interaction model similar to that proposed by Knorr-Held (2000), the spatially auto-
correlated autoregressive time series model of Rushworth et al. (2014a), and a model with a
common temporal temporal trend but varying spatial surfaces. The software can also fit more
complex spatio-temporal structures, including the adaptive smoothing model of Rushworth
et al. (2014b) and a localised smoothing model which is a spatio-temporal extension of Lee
and Sarran (2015). The software has the same syntax as the R package CARBayes (Lee 2013)
for spatial areal unit modelling, and retains all of its easy-to-use features such as specifying
the spatial adjacency information via a single matrix (unlike BUGS that requires 3 separate
list objects), fitting models via a one-line function call, and compatibility with CARBayes
which allows it to share the latter’s model summary functionality for interpreting the results.
All models available in this software can be fitted to binomial, Gaussian or Poisson data, and
Section 2 in this vignette summarises the models that can be fitted. Finally, in Section 3 the
software and functionality are discussed.
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2. Spatio-temporal models for areal unit data

This section outlines the class of Bayesian hierarchial models that CARBayesST can fit, and
in all cases inference is based on McMC simulation.

2.1. Data structure and likelihood

The study region comprises a set of k = 1, . . . ,K non-overlapping areal units S = {S1, . . . ,SK},
and data are recorded for each unit for t = 1, . . . , T consecutive time periods. Thus data are
available for a K × T rectangular array with K rows (spatial units) and T columns (time
periods). The response data are denoted by Y = (Y1, . . . ,YT ), where Yt = (Y1t, . . . , YKt)
denotes the vector of observations for all K spatial units for time period t. Also available are
a vector of known offsets O = (O1, . . . ,OT ), where Ot = (O1t, . . . , OKt) denotes the vector
of offsets for time period t. Finally, xkt = (xkt1, . . . , xktp) is a vector of p known covariates for
areal unit k and time period t, and can include factors or continuous variables and a column of
ones for the intercept term. CARBayesST models these data with a generalised linear mixed
model, whose general form is:

Ykt|µkt ∼ f(ykt|µkt, ν2) for k = 1, . . . ,K, t = 1, . . . , T, (1)

g(µkt) = xT
ktβ +Ok +Mkt,

β ∼ N(µβ,Σβ).

The vector of regression parameters are denoted by β = (β1, . . . , βp), and non-linear covariate
effects can be incorporated into the above model by including natural cubic spline or poly-
nomial basis functions into the design matrix. A multivariate Gaussian prior is assumed for
β, and the mean µβ and diagonal variance matrix Σβ can be chosen by the user. The Mkt

term is a latent component for areal unit k and time period t that captures spatio-temporal
autocorrelation in these data, and CARBayesST can fit a number of different models for Mkt.
The package can fit 3 special cases of the above model, for binomial, Gaussian and Poisson
data, and their exact specifications are given below:

• Binomial - Ykt ∼ Binomial(nkt, θkt) and log(θkt/(1− θkt)) = xT
ktβ +Ok +Mkt.

• Gaussian - Ykt ∼ N(µkt, ν
2) and µkt = xT

ktβ +Ok +Mkt.

• Poisson - Ykt ∼ Poisson(µkt) and log(µkt) = xT
ktβ +Ok +Mkt.

2.2. Spatio-temporal models for Mkt

All the models in the package induce spatial autocorrelation into the response data Y via
the latent component Mkt, which is achieved by a K ×K neighbourhood matrix W = (wkj).
Typically, W contains binary elements, where wkj = 1 if areal units (Sk,Sj) share a common
border (i.e. are spatially close) and is zero otherwise. Additionally, wkk = 0. This means
that for spatially adjacent areal units (Sk,Sj) (Mkt,Mjt) are spatially autocorrelated, where
as values for non-neighbouring areal units are conditionally independent given the remaining
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{Mit} values. This binary specification of W based on sharing a common border is the most
commonly used for areal data, but the only requirement by CARBayesST is for W to be
symmetric and contain non-negative elements. Similarly the model ST.CARanova() uses a
binary T × T temporal neighbourhood matrix D = (dtj), where dtj = 1 if j = t− 1, t+ 1 and
dtj = 0 otherwise. CARBayesST can fit the following models:

• ST.CARlinear() - fits a model similar to the spatially varying linear time trends model
proposed by Bernardinelli et al. (1995).

• ST.CARanova() - fits a model similar to the spatial and temporal main effects and
space-time interaction model proposed by Knorr-Held (2000).

• ST.CARsepspatial() - extends ST.CARanova() by fitting an overall temporal trend and
separate spatial surfaces for each time period. Note, this model can only be applied to
binomial or Poisson data.

• ST.CARar() - fits the spatially autocorrelated autoregressive time series model of Rush-
worth et al. (2014a).

• ST.CARadaptive() - fits the localised smoothing model of Rushworth et al. (2014b)
that is an extension of Rushworth et al. (2014a).

• ST.CARlocalised() - fits the localised smoothing and clustering model that is an ex-
tension of Rushworth et al. (2014a) and Lee and Sarran (2015). Note, this model can
only be applied to binomial or Poisson data.

Full details of each model are given below.

ST.CARlinear()

The model is a modification of that proposed by Bernardinelli et al. (1995) and is given by

Mkt = β1 + φk + (α+ δk)
(t− t̄)
T

, (2)

φk|φ−k,W ∼ N

(
ρφ
∑K

j=1wkjφj

ρφ
∑K

j=1wkj + 1− ρφ
,

τ2φ

ρφ
∑K

j=1wkj + 1− ρφ

)
,

δk|δ−k,W ∼ N

(
ρδ
∑K

j=1wkjδj

ρδ
∑K

j=1wkj + 1− ρδ
,

τ2δ
ρδ
∑K

j=1wkj + 1− ρδ

)
,

τ2φ , τ
2
δ ∼ Inverse-Gamma(a, b),

ρφ, ρδ ∼ Uniform(0, 1),

α ∼ N(µα, σ
2
α),

where t̄ = (1/T )
∑T

t=1 t and thus the modified linear temporal trend covariate is t∗ = (t− t̄)/T
and runs over a centered unit interval. Each areal unit k has its own linear time trend, with
a spatially varying intercept β1 + φk and a spatilly varying slope α + δk. Note, the β1 term
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comes from the covariate component xT
ktβ in (1). Each set of random effects φ = (φ1, . . . , φK)

and δ = (δ1, . . . , δK) are modelled as spatially autocorrelated by the CAR prior proposed by
Leroux et al. (1999), and are mean centered. Here (ρφ, ρδ) are spatial dependence parameters,
with values of one corresponding to strong spatial smoothness that is equivalent to the intrinsic
CAR prior proposed by Besag et al. (1991), while values of zero correspond to independence.
Flat uniform priors on the unit interval are specified for the spatial dependence parameters
(ρφ, ρδ), while conjugate inverse-gamma and Gaussian priors are specified for the random
effects variances (τ2φ , τ

2
δ ) and the overall slope parameter α respectively. The corresponding

hyperparameters (a, b, µα, σ
2
α) can be chosen by the user, and default values are (a = 0.001, b =

0.001, µα = 0, σ2α = 1000).

ST.CARanova()

The model is a modification of that proposed by Knorr-Held (2000), and is given by

Mkt = φk + δt + γkt,

φk|φ−k,W ∼ N

(
ρφ
∑K

j=1wkjφj

ρφ
∑K

j=1wkj + 1− ρφ
,

τ2φ

ρφ
∑K

j=1wkj + 1− ρφ

)
,

δt|δ−t,D ∼ N

(
ρδ
∑T

j=1 dtjδj

ρδ
∑T

j=1 dtj + 1− ρδ
,

τ2δ
ρδ
∑T

j=1 dtj + 1− ρδ

)
,

γkt ∼ N(0, τ2γ ),

τ2φ , τ
2
δ , τ

2
γ ∼ Inverse-Gamma(a, b),

ρφ, ρδ ∼ Uniform(0, 1).

Here the spatio-temporal autocorrelation is modelled by a common set of spatial random
effects φ = (φ1, . . . , φK) and a common set of temporal random effects δ = (δ1, . . . , δT ), and
both are modelled by the CAR prior proposed by Leroux et al. (1999). Additionally, the model
can incorporate an optional set of independent space-time interactions γ = (γ11, . . . , γKT ),
which can be specified by the argument interaction=TRUE (the default) in the function call.
All sets of random effects are mean centered. Fixed uniform (ρφ, ρδ) or flexible conjugate
(τ2φ , τ

2
δ , τ

2
γ ) priors are specified for the remaining paramters, and the default specifications for

the latter are (a = 0.001, b = 0.001).

ST.CARsepspatial()

The model is given by

Mkt = φkt + δt,

φkt|φ−k,t,W ∼ N

(
ρ
∑K

j=1wkjφjt

ρ
∑K

j=1wkj + 1− ρ
,

τ2tφ

ρ
∑K

j=1wkj + 1− ρ

)
,

δt|δt−1 ∼ N
(
δt−1, τ

2
δ

)
,
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τ2tφ , τ
2
δ , ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1).

Here φ−k,t, denotes the set of all φ random effects at time t except the kth. This model fits
an overall temporal trend to the data δ = (δ1, . . . , δT ), and a separate (uncorrelated) spatial
surface φ = (φ1t, . . . , φKt) at each time period t. Each spatial surface is modelled by the
CAR prior proposed by Leroux et al. (1999), with a common spatial dependence parameter ρ
and a varying variance parameter τ2tφ . Thus the collection (τ21φ , . . . , τ

2
Tφ

) allows us to examine
the extent to which the magnitude of the spatial variation in the data has changed over time.
As with all other models the random effects are zero mean centered, while flat and conjugate
priors are specified for (ρ, τ2tφ) respectively with (a = 0.001, b = 0.001) being the default
values.

ST.CARar()

The model is that proposed by Rushworth et al. (2014a), and is given by

Mkt = φkt, (3)

φt|φt−1 ∼ N
(
γφt−1, τ

2Q(W, ρ)−1
)

t = 2, . . . , T,

φ1 ∼ N
(
0, τ2Q(W, ρ)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),

ρ, γ ∼ Uniform(0, 1).

In this model φt = (φ1t, . . . , φKt) is the vector of random effects for time period t, which evolve
over time via a multivariate first order autoregressive process with temporal autoregressive
parameter γ. The temporal autocorrelation is thus induced via the mean γφt−1, while spatial
autocorrelation is induced by the varince τ2Q(W, ρ)−1. This precision matrix corresponds to
the CAR prior proposed by Leroux et al. (1999) and is given by

Q(W, ρ) = ρ[diag(W1)−W] + (1− ρ)I,

where 1 is the K × 1 vector of ones while I is the K ×K identity matrix. As with all other
models the random effects are zero mean centered, while flat and conjugate priors are specified
for (ρ, γ, τ2) respectively with (a = 0.001, b = 0.001) being the default values.

ST.CARadaptive()

The model is that proposed by Rushworth et al. (2014b), and is an extension of ST.CARar()
proposed by Rushworth et al. (2014a). It has the same autoregressive random effects structure
as ST.CARar(), namely:

Mkt = φkt, (4)

φt|φt−1 ∼ N
(
γφt−1, τ

2Q(W, ρ)−1
)

t = 2, . . . , T,
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φ1 ∼ N
(
0, τ2Q(W, ρ)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),

ρ, γ ∼ Uniform(0, 1).

However, this random effects structure assumes there is a single level of spatial dependence
in the data, which is controlled by ρ. Thus all pairs of adjacent areal units will have strongly
autocorrelated random effets if ρ is close to one, while no such spatial dependence will exist
anywhere if ρ is close to zero. However, real data may exhibit spatially varying dependences,
as two adjacent areal units may exhibit similar values suggesting a value of ρ close to one,
while another pair may exhibit different values suggesting a value of ρ close to zero.

We allow for localised residual spatial autocorrelation by allowing spatially neighbouring ran-
dom effects to be correlated (inducing smoothness) or conditionally independent (no smooth-
ing), which is achieved by modelling the non-zero elements of the neighbourhood matrix W
as unknown parameters rather than fixed constants equal to one. These adjacency param-
eters are collectively denoted by w+ = {wkj |k ∼ j}, where k ∼ j means areas (k, j) share
a common border. Estimating wkj ∈ w+ as equal to zero means (φkt, φjt) are condition-
ally independent for all t given the remaining random effects, while estimating it close to
one means they are correlated. The adjacency parameters in w+ are each modelled on the
unit interval, by assuming a multivariate Gaussian prior distribution on the transformation
v+ = log (w+/(1−w+)). This prior is a shrinkage model with a constant mean µ and a
diagonal variance matrix with variance parameter ζ2, and is given by

f(v+|ζ2, µ) ∝ exp

− 1

2ζ2

 ∑
vik∈v+

(vik − µ)2

 , (5)

ζ2 ∼ Inverse-Gamma(a, b).

The prior distribution for v+ assumes that the degree of smoothing between pairs of adjacent
random effects is not spatially dependent, which results from the work of Rushworth et al.
(2014b) that shows poor estimation performance when v+ (and hence w+) is assumed to
be spatially autocorrelated. Under small values of ζ2 the elements of v+ are shrunk to µ,
and here we follow the work of Rushworth et al. (2014b) and fix µ = 15 because it avoids
numerical issues when transforming between v+ and w+ and implies a prior preference for
values of wkj close to 1. That is as ζ2 → 0 the prior becomes a global smoothing model
ST.CARar(). As with the other models the default values for the inverse-gamma prior for ζ2

are (a = 0.001, b = 0.001). For further details see Rushworth et al. (2014b).

ST.CARlocalised()

The model extends ST.CARar() proposed by Rushworth et al. (2014a) and the localised
smoothing and clustering model of Lee and Sarran (2015). In common with ST.CARadaptive()

this model allows for localised spatio-temporal autocorrelation, in that some pairs of obser-
vations from spatially or temporal adjacent areal units will have similar values (correlation)
while others will have large differences between their values (step-changes, no correlation).
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This model captures these step-changes via the mean function, where as ST.CARadaptive()

captured then via the correlation structure (via W). Model ST.CARlocalised() is given by

Mkt = λZkt + φkt, (6)

φt|φt−1 ∼ N
(
γφt−1, τ

2Q(W, ρ)−1
)

t = 2, . . . , T,

φ1 ∼ N
(
0, τ2Q(W, ρ)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),

ρ, γ ∼ Uniform(0, 1),

where the random effects φ = (φ1, . . . ,φT ) are as specified in ST.CARar() and capture spatio-
temporal autocorrelation in the data. The other component in the model is a piecewise
constant clustering or intercept component λZkt . Thus spatially and temporally adjacent data
points (Ykt, Yjs) will be similar (autocorrelated) if they are in the same cluster or intercept,
that is if λZkt = λZjs , but exhibit a step-change if they are estimated to be in different clusters,
that is if λZkt 6= λZjs . The piecewise constant intercept or clustering component comprises at
most G distinct levels, making this component a piecewise constant intercept term. The G
levels are ordered via the prior specification:

λj ∼ Uniform(λj−1, λj+1) for j = 1, . . . , G, (7)

where λ0 = −∞ and λG+1 = ∞. Here Zkt ∈ {1, . . . , G} and controls the assignment of the
(k, t)th data point to one of the G intercept levels. A penalty based approach is used to model
Zkt, where G is chosen larger than necessary and a penalty prior is used to shrink it to the
middle intercept level. This middle level is G∗ = (G+ 1)/2 if G is odd and G∗ = G/2 if G is
even, and this penalty ensures that Zkt is only in risk class 1 or G if supported by the data.
The allocation prior is independent across areal units but correlated in time, and is given by:

f(Zkt|Zk,t−1) =
exp(−δ[(Zkt − Zk,t−1)2 + (Zkt −G∗)2])∑G
r=1 exp(−δ[(r − Zk,t−1)2 + (r −G∗)2])

for t = 2, . . . , T,

f(Zk1) =
exp(−δ(Zk1 −G∗)2)∑G
r=1 exp(−δ(r −G∗)2)

,

δ ∼ Uniform(1,M = 100). (8)

Temporal autocorrelation is induced by the (Zkt − Zk,t−1)2 component of the penalty, while
the (Zkt − G∗)2 component penalises class indicators Zkt towards the middle risk class G∗.
The size of this penalty and hence the amount of smoothing that is imparted on Z is controlled
by δ, which is assigned a uniform prior on a large range.

2.3. Inference

All models in this package are fitted in a Bayesian setting using Markov chain Monte Carlo
(MCMC) simulation. A combination of Gibbs sampling (when the appropriate full conditional
distributions are standard statistical distributions) and Metropolis / Metropolis-Hastings
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steps are used, and the majority of the latter use simple random walk proposals. The overall
functions that implement the MCMC algorithms are written in R, while the computation-
ally intensive updating steps are written in computationally efficient C++ routines using the
R package Rcpp (?). Additionally, the sparsity of the neighbourhood matrices W and D
is utilised via their triplet form within the MCMC algorithms, to make the software more
computationally efficient.

3. Obtaining and using the software

3.1. Obtaining the software

CARBayesST is a package for the R statistical software, and can be downloaded from CRAN
(http://cran.r-project.org/ ) for Windows, Linux and Apple platforms. The package requires R
(≥ 3.0.0) and depends on packages MASS, and Rcpp (≥ 0.11.5). It also imports functionality
from the coda, spam and truncdist packages. Once installed it can be loaded using the
command

> library(CARBayesST)

The packages listed above are automatically loaded by the above call, but a complete spatial
analysis beginning with reading in and formatting shapefiles and data, creating the neigh-
bourhood matrix W, and plotting the results requires a number of other packages. Thus you
may also find the following packages useful: CARBayes, maptools,shapefiles, sp, spdep.

3.2. Using the software

The software can fit six main models: ST.CARlinear(), ST.CARanova(), ST.CARsepspatial(),
ST.CARar() , ST.CARadaptive() ST.CARlocalised(), and full details of the arguments re-
quired for each function are given in the helpfiles. However, the main arguments needed are
as follows.

• formula - A formula for the covariate part of the model using the syntax of the lm()

function. Offsets can be included here using the offset() function. The response and
each covariate should be vectors of length KT × 1, where each vector is ordered so that
the first K data points are the set of all K spatial locations at time 1, the next K are
the set of spatial points for time 2 and so on.

• family - The likelihood model which must be one of ‘binomial’, ‘Gaussian’ or
‘Poisson’.

• trials - A vector the same length as the response containing the total number of trials
for each area and time period. Only used if family=‘binomial’.

• W - A K ×K neighbourhood matrix, which must be symmetric and non-negative. Typ-
ically a binary specification is used, where the kjth element equals one if areas (Sj ,Sk)
are spatially close (e.g. share a common border) and is zero otherwise. This matrix can
be created from a shapefile and data frame using the functionality from the CARBayes
and spdep packages, see Lee (2013) for details.
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• burnin - The number of McMC samples to discard as the burnin period.

• n.sample - The number of McMC samples to generate.

When a model has run (see the helpfiles for how to run a model), CARBayesST has a
print() function that will print a model summary to the screen. The CARBayes func-
tion summarise.samples can also be applied to the models in CARBayesST to summarise
the results. Each model in this package returns a list object with the following components.

• summary.results - A summary table of selected parameters that is presented in the
print function. This table includes the posterior median (Median) and 95% uncertainty
interval (2.5%, 97.5%), the number of samples generated (n.sample), the acceptance
rate for the Markov chain (% accept), the effective number of independent samples
using the function effectiveSize() from the coda package (n.effective), and the
convergence Z-score diagnostic (convergence is suggested by the statistic being within
the range (-1.96, 1.96)) proposed by Geweke (1992) and implemented in the coda package
(Geweke.diag).

• samples - A list containing the McMC samples from the model. Each element in the
list is a matrix, where each column is the set of samples for a single parameter. The
names of the elements in the list correspond to the parameter names in this vignette.
For ST.CARlinear the (tau2, rho) elements of the list have columns ordered as (τ2φ , τ

2
δ )

and (ρ2φ, ρ
2
δ) respectively. For ST.CARanova the (tau2, rho) elements of the list have

columns ordered as (τ2φ , τ
2
δ , τ

2
γ ) (the latter only if interaction=TRUE) and (ρ2φ, ρ

2
δ) re-

spectively. Finally, each model returns samples from the posterior distribution of the
fitted values for each data point (fitted).

• fitted.values - A vector of fitted values for each area and time period in the same
order as the data Y.

• residuals - A vector of residuals for each area and time period in the same order as
the data Y.

• modelfit - Model fit criteria including the Deviance Information Criterion (DIC, Spiegel-
halter et al. (2002)), the effective number of parameters in the model (p.d), and the Log
Marginal Predictive Likelihood (LMPL, Congdon (2005)).

• accept The acceptance probabilities for the parameters.

• localised.structure - This element is NULL except for the models ST.CARadaptive()
and ST.CARlocalised(). For ST.CARadaptive() this element is a list with 2 K ×K
matrices, Wmn and W99 summarising the estimated adjacency relationships. Wmn contains
the posterior median for each wkj element estimated in the model for adjacent areal
units, while W99 contains P(wjk < 0.5|Y). For both matrices, elements corresponding
to non-adjacent pairs of areas have NA values. For ST.CARlocalised() this element is
a vector of length KT , and gives the posterior median class (Zkt value) that each data
point is assigned to. This vector is in the same order as the data Y.

• formula - The formula (as a text string) for the covariate and offset part of the model.
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• model- A text string describing the model that has been fitted.

• X - The design matrix of covariates inherited from the formula argument.

This vignette is for version 2.1 of CARBayesST, and future version of the software (and
hence the vignette) will come out in due course. These future versions will contain a larger
suit of spatio-temporal areal unit models, a more comprehensive vignette with fully worked
examples, and more functionality for summarising the results.
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