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Abstract

This is a vignette for the R package CARBayes version 5.1.1, and is an updated ver-
sion of a paper in the Journal of Statistical Software in 2013 Volume 55 Issue 13 by the
same author. The package implements univariate and multivariate spatial generalised lin-
ear mixed models for areal unit data, with inference in a Bayesian setting using Markov
chain Monte Carlo (MCMC) simulation. The response variable can be binomial, Gaus-
sian, multinomial, Poisson or zero-inflated Poisson (ZIP), and spatial autocorrelation is
modelled by a set of random effects that are assigned a conditional autoregressive (CAR)
prior distribution. A number of different models are available for univariate spatial data,
including models with no random effects as well as random effects modelled by different
types of CAR prior. Additionally, a multivariate CAR (MCAR) model for multivariate
spatial data is available, as is a two-level hierarchical model for modelling data relating
to individuals within areas. The initial creation of this package was supported by the
Economic and Social Research Council (ESRC) grant RES-000-22-4256, and on-going de-
velopment has been supported by the Engineering and Physical Science Research Council
(EPSRC) grant EP/J017442/1, ESRC grant ES/K006460/1, Innovate UK / Natural En-
vironment Research Council (NERC) grant NE/N007352/1, and the TB Alliance. Version
5.1.1 has a number of changes to version 5.0, including:

1. Multinomial and ZIP data models with either no random effects or random effects
modelled by the Leroux CAR prior. For the multinomial model the latter is an
MCAR model.

2. A ZIP model with the BYM CAR prior.

3. An MCAR model for a Gaussian data likelihood.

4. The use of data augmentation to account for missing values in the respone variable.

5. An updated vignette using the leaflet package for mapping.

Keywords: Bayesian inference, conditional autoregressive priors, R package CARBayes.

1. Introduction

Data relating to a set of non-overlapping spatial areal units are prevalent in many fields, in-
cluding agriculture (Besag and Higdon (1999)), ecology (Brewer and Nolan (2007)), education
(Wall (2004)), epidemiology (Lee (2011)) and image analysis (Gavin and Jennison (1997)).
There are numerous motivations for modelling such data, including ecological regression (see
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Wakefield (2007) and Lee et al. (2009)), disease mapping (see Green and Richardson (2002)
and Lee (2011)) and Wombling (see Lu et al. (2007), Ma and Carlin (2007)). The set of
areal units on which data are recorded can form a regular lattice or differ largely in both
shape and size, with examples of the latter including the set of electoral wards or census
tracts corresponding to a city or country. In either case such data typically exhibit spatial
autocorrelation, with observations from areal units close together tending to have similar val-
ues. A proportion of this spatial autocorrelation may be modelled by known covariate risk
factors in a regression model, but it is common for spatial structure to remain in the resid-
uals after accounting for these covariate effects. This residual spatial autocorrelation can be
induced by a number of factors, and violates the assumption of independence that is common
in many regression models. One possible cause is unmeasured confounding, which occurs
when an important spatially autocorrelated covariate is either unmeasured or unknown. The
spatial structure in this covariate induces spatial autocorrelation into the response, which
hence cannot be accounted for in a regression model. Other possible causes of residual spa-
tial autocorrelation are neighbourhood effects, where subjects behaviour is influenced by that
of neighbouring subjects, and grouping effects, where subjects choose to be close to similar
subjects.

The most common remedy for this residual autocorrelation is to augment the linear
predictor with a set of spatially autocorrelated random effects, as part of a Bayesian hierarchi-
cal model. These random effects are typically represented with a conditional autoregressive
(CAR, Besag et al. (1991)) prior, which induces spatial autocorrelation through the adjacency
structure of the areal units. A number of CAR priors have been proposed in the literature,
including the intrinsic and Besag-York-Mollié (BYM) models (both Besag et al. (1991)), as
well as alternatives developed by Leroux et al. (2000) and Stern and Cressie (1999).

However, the CAR priors listed above force the random effects to exhibit a single
global level of spatial autocorrelation, ranging from independence through to strong spatial
smoothness. Such a uniform level of spatial autocorrelation for the entire region maybe
unrealistic for real data, which instead may exhibit sub-regions of spatial autocorrelation
separated by discontinuities. Such localised spatial autocorrelation may occur where rich
and poor communities live side-by-side, and in this context the response variable is likely to
evolve smoothly within each community with a sudden change in its value at the border where
the two communities meet. However, covariate data quantifying this localised structure may
not be available, meaning that it has to be modelled by the random effects. A number of
approaches have been proposed for extending the class of CAR priors to deal with localised
spatial smoothing amongst the random effects, including papers by Lawson and Clark (2002),
Brewer and Nolan (2007), Lu et al. (2007), Lee and Mitchell (2012), and Lee et al. (2014).

The models described above are typically implemented in a Bayesian setting, where
inference is based on Markov chain Monte Carlo (MCMC) simulation. The most commonly
used software to implement this class of models is the BUGS project (Lunn et al. (2009),
WinBUGS and OpenBUGS), which has in-built functions car.normal() and car.proper() to
implement the intrinsic, BYM and Stern and Cressie (1999) models. The intrinsic and BYM
models can also be implemented in BayesX (Belitz, C and Brezger, A and Kneib, T and Lang,
S (2009)), while the R software (R Core Team 2016) packages hSDM (Vieilledent et al. 2014),
spatcounts (Schabenberger 2009) and spdep (Bivand 2013) can implement a restricted set of
CAR models. CAR models can also be implemented in R using Integrated Nested Laplace
Approximations (INLA, http://www.r-inla.org/ ), using the package INLA (Rue et al. 2009).
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However, these software packages either only fit a limited set of CAR models or require
a degree of programming to implement them, which was the original motivation for creating
CARBayes (Lee 2013). Its main advantage is its ease of use because: (1) the spatial adjacency
information is easy to specify as a neighbourhood (adjacency) matrix; and (2) given the
neighbourhood matrix, models can be implemented by a single function call. CARBayes

can implement a much wider class of spatial areal unit models than is possible using the
R packages listed above, because the univariate or multivariate response data can follow
binomial, Gaussian, multinomial, Poisson or zero-inflated Poisson (ZIP) distributions, while
a range of CAR priors can be specified for the random effects. Additionally, a two-level
hierarchical model is available for modelling data relating to individuals within areas. Spatio-
temporal models for areal unit data using CAR type priors can be implemented using the
sister package CARBayesST (Lee et al. 2018).

The aim of this vignette is to present the software CARBayes, by outlining the class
of models that it can implement and illustrating its use by means of 3 worked examples. The
remainder of this vignette is organised as follows. Section two outlines the general Bayesian
hierarchical model that can be implemented in the CARBayes package, while Section three
gives details about the software. Sections four to six give three worked examples of using
the software, including how to create the neighbourhood matrix and produce spatial maps of
the results. Finally, Section 7 contains a concluding discussion, and outlines areas for future
development.

2. Spatial models for areal unit data

This section outlines the class of spatial generalised linear mixed models for areal unit data
that can be implemented in CARBayes. Inference for all models is set in a Bayesian frame-
work, and is based on MCMC simulation. The majority of the models in CARBayes relate to
univariate spatial data and are described in Section 2.1, whiel models for multivariate spatial
data and two-level data relating to individuals within areas are described in Sections 2.2 and
2.3.

2.1. Univariate spatial data models

The study region S is partitioned into K non-overlapping areal units S = {S1, . . . ,SK},
which are linked to a corresponding set of responses Y = (Y1, . . . , YK), and a vector of known
offsets O = (O1, . . . , OK). Missing, NA, values are allowed in the response Y except for
the S.CARlocalised() function, which does not allow them due to model complexity and
corresponding poor predictive performance. These missing values are treated as additional
unknown parameters, and are updated in the MCMC algorithm using a data augmentation
approach Tanner and Wong (1987). The spatial variation in the response is modelled by a
matrix of covariates X = (x1, . . . ,xK) and a spatial structure component ψ = (ψ1, . . . , ψK),
the latter of which is included to model any spatial autocorrelation that remains in the data
after the covariate effects have been accounted for. The vector of covariates for areal unit
Sk are denoted by xk = (1, xk1, . . . , xkp), the first of which corresponds to an intercept term.
The general spatial generalised linear mixed model is given by

Yk|µk ∼ f(yk|µk, ν
2) for k = 1, . . . ,K (1)



4 CARBayes: Bayesian Conditional Autoregressive modelling

g(µk) = x⊤

k β +Ok + ψk

β ∼ N(µβ ,Σβ)

ν2 ∼ Inverse-Gamma(a, b).

The expected value of Yk is denoted by E(Yk) = µk, while ν
2 is an additional scale parameter

that is required if the Gaussian family is used. The latter is assigned a conjugate inverse-
gamma prior distribution, where the default specification is ν2 ∼ Inverse-Gamma(1, 0.01).
The vector of regression parameters are denoted by β = (β1, . . . , βp), and non-linear covariate
effects can be incorporated into the above model by including natural cubic spline or polyno-
mial basis functions of the covariates in X. A multivariate Gaussian prior is assumed for β,
and the mean µβ and diagonal variance matrix Σβ can be chosen by the user. Default values
specified by the software are a constant zero-mean vector and diagonal elements of Σβ equal
to 100,000. The expected values of the responses are related to the linear predictor via an
invertible link function g(.), and CARBayes can fit the following data likelihood models:

• Binomial - Yk ∼ Binomial(nk, θk) and ln(θk/(1− θk)) = x⊤

k β +Ok + ψk.

• Gaussian - Yk ∼ N(µk, ν
2) and µk = x⊤

k β +Ok + ψk.

• Poisson - Yk ∼ Poisson(µk) and ln(µk) = x⊤

k β +Ok + ψk.

• ZIP - Yk ∼ ZIP(µk, ωk). The zero-inflated Poisson model is used to represent data
containing an excess of zeros, and is a mixture of a point mass distribution based at
zero and a Poisson distribution with mean µk. The probability that observation Yk is in
the point mass distribution based at zero (called a structural zero) is ωk, and (µk, ωk)
are modelled by

ln(µk) = x⊤

k β +Ok + ψk ln

(

ωk

1− ωk

)

= v⊤

k δ +O
(2)
k .

Here (vk, O
(2)
k ) are respectively covariates and an offset term that determine the proba-

bility that observation Yk is in the point mass distribution, while δ are the corresponding
regression parameters. In implementing the model a binary random variable Zk is sam-
pled for each observation Yk, where Zk = 1 if Yk comes from the point mass distribution,
and Zk = 0 if Yk comes from the Poisson distribution. Further details about ZIP models
are given by Ugarte et al. (2004).

In the binomial model above nk is the number of trials in the kth area, while θk is the
probability of success in a single trial. CARBayes can implement a number of different
spatial random effects models for ψ, and they are summarised below.

• S.glm() - fits a model with no random effects and thus is a generalised linear model.
This model can be implemented with binomial, Gaussian, Poisson and ZIP data likeli-
hoods.

• S.CARbym() - fits the convolution or Besag-York-Mollie (BYM) CAR model outlined in
Besag et al. (1991). This model can be implemented with binomial, Poisson and zip
data likelihoods.
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• S.CARleroux() - fits the CAR model proposed by Leroux et al. (2000). This model can
also fit the intrinsic CAR model proposed by Besag et al. (1991), as well as a model with
independent random effects. This model can be implemented with binomial, Gaussian,
Poisson and ZIP data likelihoods.

• S.CARdissimilarity() - fits the localised spatial autocorrelation model proposed by
Lee and Mitchell (2012). This model can be implemented with binomial, Gaussian and
Poisson data likelihoods.

• S.CARlocalised() - fits the localised spatial autocorrelation model proposed by Lee
and Sarran (2015). This model can be implemented with binomial and Poisson data
likelihoods.

The spatial structure component ψ includes a set of random effects φ = (φ1, . . . , φK),
which come from a conditional autoregressive model. These models are a special case of
a Gaussian Markov Random Field (GMRF), and can be written in the general form φ ∼
N(0, τ2Q(W, ρ)−1), where Q(W, ρ) is a precision matrix that may be singular (intrinsic
model). This matrix controls the spatial autocorrelation structure of the random effects, and
is based on a non-negative symmetric K ×K neighbourhood (or adjacency) matrix W, and
potentially a spatial dependence parameter ρ depending on the model chosen. The kjth ele-
ment of the neighbourhood matrix wkj represents the spatial closeness between areas (Sk,Sj),
with positive values denoting geographical closeness and zero values denoting non-closeness.
Additionally, diagonal elements wkk = 0.

A binary specification for W based on geographical contiguity is most commonly used,
where wkj = 1 if areal units (Sk,Sj) share a common border (denoted k ∼ j), and is zero
otherwise. This specification forces (φk, φj) relating to geographically adjacent areas (that is
where wkj = 1) to be autocorrelated, whereas random effects relating to non-contiguous areal
units are conditionally independent given the values of the remaining random effects. A binary
specification is not necessary in CARBayes except for the function S.CARdissimilarity(),
as the only requirement is that W is non-negative and symmetric. However, each area must
have at least one positive element {wkj}, meaning the row sums of W must be positive. CAR
priors are commonly specified as a set of K univariate full conditional distributions f(φk|φ−k)
for k = 1, . . . ,K (where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φK)), which is how they are presented
below. We now outline the five models that CARBayes can fit.

A model with no random effects

S.glm()

The simplest model that CARBayes can implement is a generalised linear model, which is
based on (1) with the simplification that ψk = 0 for all areas k.

Globally smooth CAR models

S.CARbym()

The convolution or Besag-York-Mollie (BYM) CAR model outlined in Besag et al. (1991)
contains spatially autocorrelated and independent random effects andis given by
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ψk = φk + θk (2)

φk|φ−k,W, τ2 ∼ N

(

∑K
i=1wkiφi
∑K

i=1wki

,
τ2

∑K
i=1wki

)

θk ∼ N(0, σ2)

τ2, σ2 ∼ Inverse-Gamma(a, b).

Here θ = (θ1, . . . , θK) are independent with zero mean and a constant variance, while spatial
autocorrelation is modelled via φ = (φ1, . . . , φK). For the latter the conditional expectation
is the average of the random effects in neighbouring areas, while the conditional variance
is inversely proportional to the number of neighbours. This is appropriate because if the
random effects are strongly spatially autocorrelated, then the more neighbours an area has
the more information there is from its neighbours about the value of its random effect, hence
the uncertainty reduces. In common with the other variance parameters the default prior
specification for (τ2, σ2) has (a = 1, b = 0.01). This model contains two random effects for
each data point, and as only their sum is identifiable from the data only ψk = φk + θk is
returned to the user.

S.CARleroux()

Leroux et al. (2000) proposed the following alternative CAR prior for modelling varying
strengths of spatial autocorrelation using only a single set of random effects.

ψk = φk (3)

φk|φ−k,W, τ2, ρ ∼ N

(

ρ
∑K

i=1wkiφi

ρ
∑K

i=1wki + 1− ρ
,

τ2

ρ
∑K

i=1wki + 1− ρ

)

τ2 ∼ Inverse-Gamma(a, b)

ρ ∼ Uniform(0, 1).

Here ρ is a spatial dependence parameter taking values in the unit interval, and can be fixed
(using the argument rho) if required. specifically, ρ = 1 corresponds to the intrinsic CAR
model, while ρ = 0 corresponds to independence.

Locally smooth CAR models

The CAR priors described above enforce a single global level of spatial smoothing for the set
of random effects, which for model (3) is controlled by ρ. This is illustrated by the partial
autocorrelation structure implied by that model, which for (φk, φj) is given by

COR(φk, φj |φ−kj ,W, ρ) =
ρwkj

√

(ρ
∑K

i=1wki + 1− ρ)(ρ
∑K

i=1wji + 1− ρ)
. (4)

For non-neighbouring areal units (where wkj = 0) the random effects are conditionally inde-
pendent, while for neighbouring areal units (where wkj = 1) their partial autocorrelation is
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controlled by ρ. This representation of spatial smoothness is likely to be overly simplistic in
practice, as the random effects surface is likely to include sub-regions of smooth evolution as
well as boundaries where abrupt step changes occur. Therefore CARBayes can implement
the localised spatial autocorrelation models proposed by Lee and Mitchell (2012) and Lee and
Sarran (2015).

S.CARdissimilarity()

Lee and Mitchell (2012) proposed a method for capturing localised spatial autocorrelation
and identifying boundaries in the random effects surface. The underlying idea is to model
the elements of W corresponding to geographically adjacent areal units as random quantities,
rather than assuming they are fixed at one. Conversely, if areal units (Sk,Sj) are not adjacent
as specified by W, then wkj is fixed at zero. From (4), it is straightforward to see that if wkj

is estimated as one then (φk, φj) are spatially autocorrelated and are smoothed over in the
modelling process, whereas if wkj is estimated as zero then no smoothing is imparted between
(φk, φj) as they are modelled as conditionally independent. In this case a boundary is said to
exist in the random effects surface between areal units (Sk,Sj). We note that for this model
W must be binary.

The model is based on (3) with ρ fixed at 0.99, which ensures that the random effects
exhibit strong spatial smoothing globally, which can be altered locally by estimating {wkj |k ∼
j}. They model each wkj as a function of the dissimilarity between areal units (Sk,Sj),
because large differences in the response are likely to occur where neighbouring populations
are very different. This dissimilarity is captured by q non-negative dissimilarity metrics zkj =
(zkj1, . . . , zkjq), which could include social or physical factors, such as the absolute difference
in smoking rates, or the proportion of the shared border that is blocked by a physical barrier
(such as a river or railway line) and cannot be crossed. Using these measures of dissimilarity
two distinct models are proposed for {wkj |k ∼ j}.

Binary model

wkj(α) =

{

1 if exp(−
∑q

i=1 zkjiαi) ≥ 0.5 and k ∼ j
0 otherwise

(5)

αi ∼ Uniform(0,Mi) for i = 1, . . . , q.

Non-binary model

wkj(α) = exp

(

−

q
∑

i=1

zkjiαi

)

(6)

αi ∼ Uniform(0, 50) for i = 1, . . . , q.

The q regression parameters α = (α1, . . . , αq) determine the effects of the dissimilarity met-
rics on {wkj |k ∼ j}, and for the binary model if αi < − ln(0.5)/max{zkji}, then the ith
dissimilarity metric has not solely identified any boundaries because exp(−αizkji) > 0.5 for
all k ∼ j. The upper limits Mi for the priors for αi in the binary model depend on the
distribution of zkji, and are chosen to be weakly informative and fixed in the software. Users
can choose between (5) and (6) by the logical argument W.binary, where TRUE corresponds
to (5), while FALSE corresponds to (6).
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S.CARlocalised()

An alternative to the above is to augment the set of spatially smooth random effects with a
piecewise constant intercept or cluster model, thus allowing large jumps in the mean surface
between adjacent areal units in different clusters. Lee and Sarran (2015) proposed a model
that partitions the K areal units into a maximum of G clusters each with their own intercept
term (λ1, . . . , λG). The model is given by

ψk = φk + λZk
(7)

φk|φ−k,W, τ2 ∼ N

(

∑K
i=1wkiφi
∑K

i=1wki

,
τ2

∑K
i=1wki

)

τ2 ∼ Inverse-Gamma(a, b)

λi ∼ Uniform(λi−1, λi+1) for i = 1, . . . , G

f(Zk) =
exp(−δ(Zk −G∗)2)

∑G
r=1 exp(−δ(r −G∗)2)

δ ∼ Uniform(1,M).

The cluster means (λ1, . . . , λG) are ordered so that λ1 < λ2 < . . . < λG, which prevents the
label switching problem common in mixture models, and λ0 = −∞ and λG+1 = ∞. Area k
is assigned to one of the G intercepts by Zk ∈ {1, . . . , G}, and G is the maximum number
of different intercept terms. Here we penalise Zk towards the middle intercept value, so that
the extreme intercept classes (e.g. 1 or G) may be empty. This is achieved by the penalty
term δ(Zk −G∗)2 in the prior for Zk, where G

∗ = (G+1)/2 if G is odd and G∗ = G/2 if G is
even, and is the middle group. A weakly informative uniform prior is specified for the penalty
parameter δ ∼ Uniform(1,M) (by default M = 10), so that the data play the dominant role
in estimating its value. Note, a Gaussian likelihood is not allowed with this model because
of a lack of identifiability among the parameters, and missing values are not allowed in the
response for the same reasons.

2.2. Multivariate spatial data models

The study region S is again partitioned into K non-overlapping areal units S = {S1, . . . ,SK},
and each unit contain J responses Yk = (Yk1, . . . , YkJ) and J offsets Ok = (Ok1, . . . , OkJ).
The model therefore has to represent both spatial autocorrelation and between variable cor-
relation, and the general multivariate spatial mixed model is given by

Ykj |µkj ∼ f(ykj |µkj , ν
2) for k = 1, . . . ,K, j = 1, . . . , J (8)

g(µkj) = x⊤

k βj +Okj + φkj

βj ∼ N(µβ ,Σβ).

In common with the univariate models x⊤

k is a vector of p covariates, and the same covariates
are used for each of the J categories of response variable. The regression coefficients βj vary
by category j allowing for category specific effects, and Gaussian priors are assumed for the
regression parameters βj as before. The following data likelihood models are allowed:



Duncan Lee 9

• Binomial - Ykj ∼ Binomial(nkj , θkj) and ln(θkj/(1− θkj)) = x⊤

k βj +Okj + φkj .

• Gaussian - Ykj ∼ N(µkj , ν
2) and µkj = x⊤

k βj +Okj + φkj .

The scale parameter ν2 for the Gaussian likelihood is assigned a conjugate inverse-
gamma prior distribution, where the default specification is ν2 ∼ Inverse-Gamma(1, 0.01).

• Multinomial - Yk ∼ Multinomial(nk, θk1, . . . , θkJ) and ln(θkj/θk1) = x⊤

k βj+Okj+

φkj , where nk =
∑J

j=1 Ykj .

The above holds for categories j = 2, . . . , J , and thus category j = 1 is a baseline
and has no regression parameters or random effects or offset terms (they are all zero).
Here θkj is the probability of a single outcome in area k being in category j, and hence
∑J

j=1 θkj = 1.

• Poisson - Ykj ∼ Poisson(µkj) and ln(µkj) = x⊤

k βj +Okj + φkj .

When fitting this model the response variable and offset should be K×J matrices, while each
covariate should be a K × 1 vector. As the multinomial model models the first category as
a baseline there will be J − 1 different regression parameter sets and random effect surfaces,
where as for the other data likelihood models there will be J regression parameter sets and
random effect surfaces. The set of random effects are denoted by φ = (φ1, . . . ,φK), where
φk = (φk1, . . . , φkJ) are the set of J values (J − 1 for the multinomial model where φk1 = 0)
for area k. The random effects need to model both spatial autocorrelation and between vari-
able correlation, and this is achieved using a multivariate conditional autoregressive (MCAR)
model, for details see Gelfand and Vounatsou (2003). CARBayes can fit the following multi-
variate data models.

S.glm()

The S.glm() function discussed earlier can also be applied to multinomial data, where in the
above equation φkj = 0 for all (k, j).

MVS.CARleroux()

This model can be implemented with binomial, Gaussian, multinomial and Poisson data
likelihoods.The random effects φ are modelled using the approach outlined in Kavanagh et al.
(2016) given by:

φ ∼ N
(

0,
[

Q(W, ρ)⊗Σ−1
]−1
)

. (9)

Here Q(W, ρ) = ρ[diag(W1)−W]+ (1−ρ)I is the precision matrix for the joint distribution
corresponding to the CAR prior proposed by Leroux et al. (2000) and described above, while
ΣJ×J is a cross variable covariance matrix. In common with the univariate models, the
correlation structure imposed by (9) is more easily seen by its full conditional form, that is:

φk|φ−k,W,Σ, ρ ∼ N

(

ρ
∑K

i=1wkiφi

ρ
∑K

i=1wki + 1− ρ
,

Σ

ρ
∑K

i=1wki + 1− ρ

)
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Σ ∼ Inverse-Wishart(df,Ω)

ρ ∼ Uniform(0, 1),

where φ−k denotes the vector of random effects except those relating to the kth areal unit.
Here df is the degrees of freedom for the Inverse-Wishart prior for Σ and the default value is
df = J + 1. Similarly, Ω is the J × J scale matrix, with the default value being the identity
matrix. In common with the univariate model S.CARleroux(), the spatial autocorrelation
parameter ρ can be fixed to any value in the unit interval using the argument rho.

2.3. Two-level spatial data models

The study region S is again partitioned into K non-overlapping areal units S = {S1, . . . ,SK},
and data are available on mk individuals within area k. Thus for areal unit Sk there are mk

different response variables being modelled, leading to both spatial variation and individual-
level variation. The general likelihood model allowed for these data is given by

Ykj |µkj ∼ f(ykj |µkj , ν
2) for k = 1, . . . ,K, j = 1, . . . ,mk, (10)

g(µkj) = x⊤

kjβ +Okj + ψkj ,

β ∼ N(µβ ,Σβ).

In common with the univariate models (x⊤

kj , Okj) are respectively a vector of p covariates and
an offset for individual j within area k. For this model the response and each covariate vector
is of length m =

∑K
k=1mk. Gaussian priors are again assumed for the regression parameters

β. Binomial, Gaussian and Poisson data likelihood models are allowed, that is:

• Binomial - Ykj ∼ Binomial(nkj , θkj) and ln(θkj/(1− θkj)) = x⊤

kjβ +Okj + ψkj .

• Gaussian - Ykj ∼ N(µkj , ν
2) and µkj = x⊤

kjβ +Okj + ψkj .

The scale parameter ν2 for the Gaussian likelihood is assigned a conjugate inverse-
gamma prior distribution, where the default specification is ν2 ∼ Inverse-Gamma(1, 0.01).

• Poisson - Ykj ∼ Poisson(µkj) and ln(µkj) = x⊤

kjβ +Okj + ψkj .

CARBayes can only fit the following model for ψkj .

S.CARmultilevel()

This model can be implemented with binomial, Gaussian and Poisson data likelihoods. The
spatial and individual-level variation are modelled by the decomposition:

ψkj = φk + ζλ(k,j), (11)

φk|φ−k ∼ N

(

ρ
∑K

j=1wkjφj

ρ
∑K

j=1wkj + 1− ρ
,

τ2

ρ
∑K

j=1wkj + 1− ρ

)

,
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ζr ∼ N(0, σ2) for all r,

τ2, σ2 ∼ Inverse-Gamma(a, b).

ρ ∼ Uniform(0, 1).

The spatial variation is modelled by φ = (φ1, . . . , φK), which is common to all individuals
within each area and is modelled by the CAR prior proposed by Leroux et al. (2000). Again
ρ can be fixed to any value in the unit interval using the argument rho. The ordering of
the response and covariate data vectors are not constrained to have all individuals in area 1
followed by all individuals in area 2, etc. Instead, the S.CARmultilevel() function requires
the ind.area argument to be specified, which is a vector of length m. Each element in
that vector must be an integer between 1 and K (where K is the number of areas), and
denotes which area an individual belongs to as ordered by the W matrix. For example, if
the rth element of ind.area is 5, then the rth element in each response and covariate data
vector refers to an individual in area 5, that is the area represented by the 5th row of the
neighbourhood matrix W.

The second term ζλ(k,j) is a random effect allowing for individual-level variation, which
is given an independent and identically distributed zero-mean Gaussian prior with a constant
variance σ2. It can incorporate correlation between individuals (if desired) by allowing dif-
ferent individuals to have the same random effect value. For example, if individual r in area
Sk had the same random effect value as individual s in area St, then λ(k, r) = λ(t, s). Oper-
ationally, this random effect structure is achieved by specifying the ind.re argument in the
S.CARmultilevel() function as a factor variable, which is the same length as each response
and covariate data vector, namely m. Two data points with the same level of this factor vari-
able will have the same random effect value. This individual-level variation term ζλ(k,j) can
be omitted from the model by omitting the ind.re argument from the S.CARmultilevel()

function call.

2.4. Inference

All models in this package are fitted in a Bayesian setting using MCMC simulation, via a
combination of Gibbs sampling (when the appropriate full conditional distributions are pro-
portional to standard distributions) and Metropolis type steps. The Metropolis steps for the
random effects and the regression parameters use the Metropolis adjusted Langevin algorithm
(MALA, Roberts and Rosenthal 1998), although for the random effects there is the option
of using simple random walk Metropolis steps by setting MALA=FALSE in the function call.
Note also that simple random walk Metropolis updates are used in the multinomial models.
The overall functions that implement the MCMC algorithms are written in R, while the com-
putationally intensive updating steps are written as computationally efficient C++ routines
using the R package Rcpp (Eddelbuettel and Francois 2011). Additionally, the sparsity of the
neighbourhood matrix W is utilised via its triplet form when updating the random effects
within the algorithms, which increases the computational efficiency of the software. Addi-
tionally, matrix identities and Kronecker product forms are used to speed up the computation
where possible. Missing values are allowed in the response variable Y for most models (not
the S.CARlocalised() model), and are treated as additional parameters to be updated in
the MCMC algorithm using a data augmentation approach (Tanner and Wong 1987).
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3. Loading and using the software

3.1. Loading the software

CARBayes is an add-on package to the statistical software R, and is freely available to down-
load from the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/) for
Windows, Linux and Apple platforms. The package requires R (≥ 3.0.0) and depends on
packages MASS (Venables and Ripley 2002), and Rcpp (≥ 0.11.5). Additionally, it imports
functionality from the following other packages: CARBayesdata (Lee 2016), coda (Plummer
et al. 2006), leaflet (Cheng et al. 2018), matrixcalc (Novomestky 2012), MCMCpack (Martin
et al. 2011), spam (Furrer and Sain 2010), sp (Bivand et al. 2013), spdep, stats, truncnorm
(Trautmann et al. 2014) and utils. Once installed it can be loaded using the command
library(CARBayes).

Note, certain functionality from the packages listed in the previous paragraph are
automatically loaded upon loading CARBayes, but only for use within the package. However,
a complete spatial analysis will typically also include the creation of the neighbourhood matrix
W from a shapefile, the production of spatial maps of the fitted values and residuals, and
tests for the presence of spatial autocorrelation. To achieve these tasks the following packages
should be loaded separately into R: leaflet, maptools, rgdal (Bivand et al. 2018), shapefiles,
sp and spdep.

3.2. Using the software

The software can fit seven models: S.glm(), S.CARbym(), S.CARleroux(), S.CARdissimilarity()
and S.CARlocalised() for univariate spatial data, MVS.CARleroux() for multivariate spatial
data, and S.CARmultilevel() for two-level data relating to individuals within areas. Full
details of the arguments required for each model are given in the helpfiles. However, the main
common arguments that are required for a baseline analysis (for example using default priors)
are as follows.

• formula - A formula for the covariate part of the model using the same syntax as the
lm() function. Offsets can be included here using the offset() function.

• family - The likelihood model which must be one of "binomial", "gaussian", "multinomial",
"poisson" or "zip".

• trials - This is only needed if family="binomial" or family="multinomial", and is
a vector the same length as the response containing the total number of trials for each
area.

• W - A K×K symmetric and non-negative neighbourhood matrix, whose row sums must
all be positive.

• burnin - The number of MCMC samples to discard as the burn-in period.

• n.sample - The number of MCMC samples to generate.

When a model has run CARBayes has the following summary extractor functions:
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• coef() - returns the estimated (posterior median) regression coefficients.

• fitted() - returns the fitted values based on posterior medians.

• logLik() - returns the estimated loglikelihood.

• model.matrix() - returns the design matrix of covariates.

• print() - prints a summary of the fitted model to the screen, including both parameter
summaries and convergence diagnostics for the MCMC run.

• residuals() - returns either the“response”(raw) or“pearson”, residuals from the model
(based on posterior means).

Additionally, CARBayes has functions summarise.samples() and summarise.lincomb() to
summarise the results, and both functions are illustrated in the examples that follow. The
software updates the user on its progress to the R console, which allows the user to monitor
the function’s progress. However, using the verbose=FALSE option will disable this feature.
Once run, each model returns a list object with the following components.

• summary.results - A summary table of selected parameters that is presented when
using the print() function. The table includes the posterior median (Median) and
95% credible interval (2.5%, 97.5%), the number of samples generated (n.sample), the
acceptance rate for the Markov chain (% accept), the effective number of independent
samples using the effectiveSize() function from the coda package (n.effective),
and the convergence diagnostic proposed by Geweke (1992) and implemented in the
coda package (Geweke.diag). This diagnostic takes the form of a Z-score, so that
convergence is suggested by the statistic being within the range (-1.96, 1.96).

• samples - A list containing the MCMC samples generated from the model, where each
element in the list is a matrix. The names of these matrix objects correspond to the
parameters defined in Section 2 of this paper, and each column of a matrix contains
the set of samples for a single parameter. This list includes samples from the posterior
distribution of the fitted values for each data point (fitted). Additionally, if the re-
sponse variable Y contains missing values, then samples from its posterior predictive
distribution obtained via data augmentation are available (Y).

• fitted.values - The fitted values based on posterior medians from the model. For the
univariate data models this is a vector, while for the multivariate data models this is a
matrix.

• residuals - For the univariate data models this is a matrix with 2 columns, where each
column is a type of residual and each row relates to a single data point. The types are
response (raw) and pearson. For the multivariate data models this is a list with 2 K×J
matrix elements, where each matrix element is a type of residual (response or pearson).

• modelfit - Model fit criteria including the Deviance Information Criterion (DIC, Spiegel-
halter et al. (2002)) and its corresponding estimated effective number of parameters
(p.d), the Watanabe-Akaike Information Criterion (WAIC, Watanabe (2010)) and its
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corresponding estimated number of effective parameters (p.w), the Log Marginal Predic-
tive Likelihood (LMPL, Congdon (2005)), and the loglikelihood. The best fitting model
is one that minimises the DIC and WAIC but maximises the LMPL. If the response
data contains missing data, the DIC is computed based on only the observed data (see
Celeux et al. (2006)).

• accept The acceptance probabilities for the parameters.

• localised.structure - This element is NULL except for the models S.CARdissimilarity()
and S.CARlocalised(). For S.CARdissimilarity it is a list containing two matrices,
W.posterior and W.border.prob. W.posterior contains posterior medians for each
element wkj of the K × K neighbourhood matrix W, while W.border.prob contains
posterior probabilities that each wkj element equals zero, which corresponds to the
posterior probability of a boundary in the random effects surface. The latter is only
present if W.binary=TRUE, otherwise it is missing (NA). In all cases elements of W that
correspond to non-neighbouring areas as determined by the original W matrix have
NA values. For S.CARlocalised() this element is a vector of length K, and gives the
posterior median class (Zk value) that each data point is assigned to.

• formula - The formula (as a text string) for the response, covariate and offset part of
the model.

• model- A text string describing the model that has been fitted.

• X - The design matrix of covariates inherited from the formula argument.

The remainder of this vignette illustrates the CARBayes software via 3 worked examples.

4. Example 1 - Scottish lip cancer data

The first example is the famous Scottish lip cancer data set, which is included purely to illus-
trate how to combine a data frame and shapefile together into a SpatialPolygonsDataFrame

object. The creation of this object allows spatial maps to be produced of variables of in-
terest, as well as allowing the neighbourhood matrix W to be created for use in the models
implemented in CARBayes. The Scottish lip cancer data are contained in the CARBayesdata

package and can be loaded into R using the following commands:

R> library(CARBayesdata)

R> library(shapefiles)

R> library(sp)

R> data(lipdata)

R> data(lipdbf)

R> data(lipshp)

To create a SpatialPolygonsDataFrame object you essentially need two types of data. The
first is a data.frame containing the data you wish to model. If this is a comma separated
variable (csv) file then it can be read into R using the command read.csv(). The second
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data type is a shapefile, which comprises many separate components with different file exten-
sions. Here we need two of these components: shapefile.shp containing the polygons, and
shapefile.dbf containing a unique identifier linking each row in the data.frame to a poly-
gon in the shapefile.shp file. The shapefiles can be read in to R using the read.shp() and
read.dbf() functions. In the above example the code data(lipdata) loads the data.frame
object, data(lipdbf) loads the .dbf component of the shapefile, while data(lipshp) loads
the .shp component of the shapefile. These three data sets can be combined together to create
a SpatialPolygonsDataFrame object using the combine.data.shapefile() function.

R> library(CARBayes)

R> lipdbf$dbf <- lipdbf$dbf[ ,c(2,1)]

R> data.combined <- combine.data.shapefile(data=lipdata, shp=lipshp, dbf=lipdbf)

For this function to work the row-names of the data-frame (lipdata) must be contained in the
first column of the .dbf (lipdbf$dbf) object, which is the reason for re-ordering the columns in
the second line of the above code. The data.combined object is a SpatialPolygonsDataFrame
object, which is what is created in R if shapefiles are read in using the rgdal package (Bivand
et al. 2018).

5. Example 2 - property prices in Greater Glasgow

The CARBayes software is illustrated by modelling the spatial pattern in average property
prices across Greater Glasgow, Scotland, in 2008. This is an ecological regression analysis,
whose aim is to identify the factors that affect property prices and quantify their effects.

5.1. Data and exploratory analysis

The data come from the Scottish Statistics database (http://statistics.gov.scot), but are also
included in the CARBayesdata R package. The study region is the Greater Glasgow and
Clyde health board (GGHB), which is split into 271 Intermediate Geographies (IG). These
IGs are also known as Intermediate zones (IG), but hereafter we refer to them as Intermediate
Geographies. These IGs are small areas that have a median area of 124 hectares and a median
population of 4,239. These data can be loaded into R using the code shown below:

R> library(CARBayesdata)

R> library(sp)

R> data(GGHB.IG)

R> data(pricedata)

The GGHB.IG object is a SpatialPolygonsDataFrame containing the spatial information for
the GGHB, which is used to plot the data, construct the neighbourhood matrix W, and
conduct a test for spatial autocorrelation. The pricedata object is a data.frame containing
the property price data for 270 of the 271 IGs in GGHB, because one area had outlying values
and was hence removed. These two data sets can be merged using the code below

R> propertydata.spatial <- merge(x=GGHB.IG, y=pricedata, by="IG", all.x=FALSE)
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Variable Percentiles

0% 25% 50% 75% 100%

Property price (in thousands) 50.0 95.0 121.8 159.2 372.8
Crime rate (per 10,000) 85.0 303.2 517.0 728.0 1994.0
Number of rooms (median) 3 3 4 4 6
Property sales 4 46 58 85 266
Drive time to a shop (minutes) 0.3 0.8 1.2 1.9 8.5

Table 1: Summary of the distribution of the data.

The variables in pricedata are summarised in Table 1, which displays the percentiles of their
distribution (with the exception of the categorical variable type). The response variable in
this study is the median price (in thousands, price) of all properties sold in 2008 in each IG.
The table shows large variation in this variable, with average prices ranging between £50, 000
and £372, 800 across the study region. The first covariate in this study is the crime rate
(crime) in each IG, because areas with higher crime rates are likely to be less desirable to
live in. Crime rate is measured as the total number of recorded crimes in each IG per 10,000
people that live there, and the values range between 85 and 1994. Other covariates included
in this study are the median number of rooms in a property (rooms), the number of properties
that sold in a year (sales), and the average time taken to drive to the nearest shopping centre
(driveshop). The latter is a proxy measure of access to services which may affect property
prices. Finally, a categorical variable measuring the most prevalent property type in each area
is available (type), with levels; ‘flat’ (68% of areas), ‘terraced’ (7%), ‘semi-detached’ (13%)
and ‘detached’ (12%).

A spatial map of the price response variable can be overlaid on a OpenStreetMap using the
functionality of the leaflet package. However, first the propertydata.spatial object needs
to have its coordinate reference system changed to longitude and latitude as this is what the
leaflet package requires, which can be done using the following R code.

R> library(rgdal)

R> propertydata.spatial <- spTransform(propertydata.spatial,

+ CRS("+proj=longlat +datum=WGS84 +no_defs"))

Then a map of price can be drawn using the following code.

R> library(leaflet)

R> colours <- colorNumeric(palette = "BuPu", domain = propertydata.spatial@data$price)

R> map1 <- leaflet(data=propertydata.spatial) %>%

+ addTiles() %>%

+ addPolygons(fillColor = ~colours(price), color="red", weight=1,

+ fillOpacity = 0.7) %>%

+ addLegend(pal = colours, values = propertydata.spatial@data$price, opacity = 1,

+ title="Price") %>%

+ addScaleBar(position="bottomleft")

R> map1
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Figure 1: Map showing the average property price in each IG (in thousands).

The map is shown in Figure 1 and suggests that Glasgow has a number of property sub-
markets, whose prices are not related to those in neighbouring areas. An example of this is
the two groups of higher priced regions north of the river Clyde, which are the highly sought
after Westerton / Bearsden (northerly cluster) and Dowanhill / Hyndland (central cluster)
districts.

5.2. Non-spatial modelling

The natural log of the median property price is treated as the response and assumed to be
Gaussian, and an initial covariate only model is built in a frequentist framework using linear
models. Initial plots of the data using the pairs() command suggest that the natural log of
drive time to a shopping centre (driveshop) is linearly related to the response, and that crime
rate (crime) has a non-linear relationship to the response. The natural log transformations
of price and driveshop are created using the following commands.

R> propertydata.spatial@data$logprice <- log(propertydata.spatial@data$price)

R> propertydata.spatial@data$logdriveshop <- log(propertydata.spatial@data$driveshop)

A model with all the covariates is fitted to the data, where the crime rate variable is modelled
as non-linear using a natural cubic spline with 3 degrees of freedom.

R> library(splines)

R> form <- logprice~ns(crime,3)+rooms+sales+factor(type) + logdriveshop

R> model <- lm(formula=form, data=propertydata.spatial@data)
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From fitting this model all of the numeric covariates are significantly related to the response
at the 5% level, suggesting they all play an important role in explaining the spatial pattern in
median property price. The predominant property type variable also appears to be important,
with areas where the level is ‘detached’ (the baseline level) having significantly higher property
prices than the other three levels.

To quantify the presence of spatial autocorrelation in the residuals from this model
we can compute Moran’s I statistic (Moran 1950) and conduct a permutation test. The
permutation test has the null hypothesis of no spatial autocorrelation and an alternative
hypothesis of positive spatial autocorrelation, and is conducted using the moran.mc() function
from the spdep package. The test can be implemented using the code below. Lines 2 and 3
turn propertydata.spatial into a neighbourhood (nb) object and then into a listw object,
which is required by the moran.mc() function.

R> library(spdep)

R> W.nb <- poly2nb(propertydata.spatial, row.names = rownames(propertydata.spatial@data))

R> W.list <- nb2listw(W.nb, style="B")

R> resid.model <- residuals(model)

R> moran.mc(x=resid.model, listw=W.list, nsim=1000)

Monte-Carlo simulation of Moran I

data: resid.model

weights: W.list

number of simulations + 1: 1001

statistic = 0.2733, observed rank = 1001, p-value = 0.000999

alternative hypothesis: greater

The Moran’s I test has a p-value much less than 0.05, which suggests that the residuals contain
substantial positive spatial autocorrelation.

5.3. Spatial modelling with CARBayes

The residual spatial autocorrelation can be accounted for by adding a set of random effects to
the model, and we apply model (1) and (3) to the data as shown below. Note, line 2 creates
the binary neighbourhood matrix W from the W.nb object.

R> library(CARBayes)

R> W <- nb2mat(W.nb, style="B")

R> model.spatial <- S.CARleroux(formula=form, data=propertydata.spatial@data,

+ family="gaussian", W=W, burnin=100000, n.sample=300000, thin=20)

In the above code the covariate and offset component defined by formula is the same as for the
simple linear model fitted earlier, and the neighbourhood matrix W is binary and defined by
whether or not two areas share a common border. Inference for this model is based on 10,000
MCMC samples, which were obtained following a burn-in period of 100,000 and thinning the
remaining 200,000 samples by 20 to reduced their autocorrelation. A summary of the fitted
model can be obtained using the following code.
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R> print(model.spatial)

#################

#### Model fitted

#################

Likelihood model - Gaussian (identity link function)

Random effects model - Leroux CAR

Regression equation - logprice ~ ns(crime, 3) + rooms + sales + factor(type) + logdrivesho

Number of missing observations - 0

############

#### Results

############

Posterior quantities and DIC

Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag

(Intercept) 4.2423 3.9625 4.5213 10000 100.0 10000.0 -0.4

ns(crime, 3)1 -0.2475 -0.4000 -0.0945 10000 100.0 9398.8 -0.8

ns(crime, 3)2 -0.4081 -0.7055 -0.1105 10000 100.0 9268.4 0.8

ns(crime, 3)3 -0.2021 -0.4052 0.0045 10000 100.0 10000.0 0.4

rooms 0.2205 0.1682 0.2714 10000 100.0 10000.0 -0.3

sales 0.0022 0.0016 0.0029 10000 100.0 10000.0 0.5

factor(type)flat -0.2474 -0.3660 -0.1279 10000 100.0 9483.0 0.6

factor(type)semi -0.1616 -0.2606 -0.0598 10000 100.0 10516.5 -0.5

factor(type)terrace -0.2918 -0.4206 -0.1641 10000 100.0 10000.0 0.1

logdriveshop -0.0055 -0.0621 0.0521 10000 100.0 8321.1 0.5

nu2 0.0246 0.0146 0.0340 10000 100.0 4364.2 0.3

tau2 0.0423 0.0196 0.0831 10000 100.0 3626.0 -0.1

rho 0.9344 0.7499 0.9922 10000 45.5 6323.1 0.2

DIC = -145.598 p.d = 93.88278 LMPL = 56.89

The Summary is presented in two parts, the first of which describes the model that has
been fit. The second summarises the results, and includes the posterior median (Median)
and 95% credible intervals (2.5%, 97.5%) for selected parameters (not the random effects),
the convergence diagnostic proposed by Geweke (1992) (Geweke.diag) as a Z-score, and
the effective number of independent samples (n.effective). Also displayed are the actual
number of samples kept from the MCMC run (n.sample), as well as the acceptance rate
for each parameter (% accept). Note, parameters that have an acceptance rate of 100%
have been Gibbs sampled. Finally, the DIC and LMPL model fit criteria are displayed. In
addition to producing the summary above, the model returns a list object with the following
components:

R> summary(model.spatial)

Length Class Mode

summary.results 91 -none- numeric
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samples 7 -none- list

fitted.values 270 -none- numeric

residuals 3 data.frame list

modelfit 7 -none- numeric

accept 5 -none- numeric

localised.structure 0 -none- NULL

formula 3 formula call

model 2 -none- character

X 2700 -none- numeric

The first element is the summary results table used by the print() function. The next element
is a list containing matrices of the thinned and post burn-in MCMC samples for each set of
parameters. For example, model.spatial$samples$beta is a matrix containing the MCMC
samples for all the regression parameters. The next two elements in the list fitted.values
and residuals are vectors of fitted values and residuals from the model, while modelfit gives
a selection of model fit criteria. These criteria include the Deviance Information Criterion
(DIC), the log Marginal Predictive Likelihood (LMPL), the Watanabe-Akaike Information
Criterion (WAIC), and the log likelihood. For further details about Bayesian modelling and
model fit criteria see Gelman et al. (2003). The item accept contains the acceptance rates
for the model, while localised.structure is NULL for this model and is used for compati-
bility with the other functions in the package. Finally, the formula and model elements are
text strings describing the formula used and the model fit, while X gives the design matrix
corresponding to the formula object.

5.4. Inference

The summary table above gives posterior medians and 95% credible intervals for a selection
of model parameters, but these can be recreated (or similar summarise created for other
parameters) using the function

R> summarise.samples(model.spatial$samples$beta, quantiles=c(0.5, 0.025, 0.975))

$quantiles

0.5 0.025 0.975

[1,] 4.241896323 3.962957346 4.51787943

[2,] -0.245877968 -0.396698998 -0.09679782

[3,] -0.401030811 -0.704894560 -0.10461861

[4,] -0.200704600 -0.407327946 0.01018534

[5,] 0.219841199 0.169342794 0.27108763

[6,] 0.002237906 0.001611683 0.00287336

[7,] -0.248767056 -0.368024984 -0.12990882

[8,] -0.162194165 -0.263154252 -0.06109645

[9,] -0.294254065 -0.422182354 -0.16841391

[10,] -0.005002887 -0.061142928 0.04995092

$exceedences

NULL
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Figure 2: Plot showing the estimated non-linear relationship between crime rate and log-price.

which here has summarised posterior medians and 95% credible intervals for the covariate
effects. However, for the crime variable its relationship is non-linear and summarised by the
results for all 3 basis functions ns(crime, 3)1, ns(crime, 3)2, ns(crime, 3)3. There-
fore to summarise the entire non-linear relationship we can use the summarise.lincomb()

function, which allows us to compute the posterior distribution and quantiles of a linear
combination of the covariates. This can be achieved and then plotted using the code:

R> crime.effect <- summarise.lincomb(model=model.spatial, columns=c(2,3,4),

+ quantiles=c(0.5, 0.025, 0.975), distribution=FALSE)

R> plot(propertydata.spatial@data$crime, crime.effect$quantiles[ ,1], pch=19,

+ ylim=c(-0.55,0.05), xlab="Number of crimes", ylab="Effect of crime")

R> points(propertydata.spatial@data$crime, crime.effect$quantiles[ ,2], pch=19,

+ col="red")

R> points(propertydata.spatial@data$crime, crime.effect$quantiles[ ,3], pch=19,

+ col="red")

The first line creates the crime effect, while the remaining lines plot the graph which is shown
in Figure 2 and shows a decreasing relationship as crime rate increases as expected.

6. Example 3 - identifying high-risk disease clusters

The third example illustrates the utility of the localised spatial autocorrelation model pro-
posed by Lee and Mitchell (2012), which can identify boundaries that represent step changes
in the (random effects) response surface between geographically adjacent areal units. The aim
of this analysis is to identify boundaries in the risk surface of respiratory disease in Greater
Glasgow, Scotland, in 2010, so that the spatial extent of high-risk clusters can be identified.
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The identification of boundaries in spatial data is affectionately known as Wombling, after
the seminal paper by Womble (1951).

6.1. Data and exploratory analysis

The data again relate to the Greater Glasgow and Clyde health board, and are also freely
available to download from Scottish Statistics (http://statistics.gov.scot). However, the river
Clyde partitions the study region into a northern and a southern sub-region, and no areal
units on opposite banks of the river border each other. This means that boundaries could not
be identified across the river, and therefore here we only consider those areal units that are
on the northern side of the study region. This leaves 134 areal units in the new smaller study
region, and data on respiratory disease for this region are included with the CARBayesdata

package and can be loaded with the command:

R> library(CARBayesdata)

R> library(sp)

R> data(GGHB.IG)

R> data(respiratorydata)

The GGHB.IG spatialPolygonsDataFrame object can then be subset to just include IGs in
the respiratorydata data.frame using the following code.

R> respiratorydata.spatial <- merge(x=GGHB.IG, y=respiratorydata, by="IG", all.x=FALSE)

The first 6 rows of the data can be viewed using the code below.

R> head(respiratorydata.spatial@data)

IG name easting northing observed expected

1 S02000260 Auchinairn 261624.5 669657.4 107 106.45661

2 S02000261 Woodhill East 262927.1 670027.8 23 50.97354

3 S02000262 Woodhill West 262142.9 670428.0 53 104.49236

4 S02000263 Westerton East 254570.5 670593.8 40 90.35747

5 S02000264 Bishopbriggs West and Cadder 261248.4 670928.0 60 140.16546

6 S02000265 Westerton West 253764.4 670982.6 25 63.93549

incomedep SMR

1 22 1.0051044

2 7 0.4512145

3 6 0.5072141

4 5 0.4426861

5 7 0.4280655

6 6 0.3910191

In addition to the unique identifier IG codes (IG), the name of each IG (name), and the
geographical coordinates of each area’s centroid (easting, northing), the data contain 4
variables. observed is the number of hospital admissions in 2010 in each IG due to respiratory
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Figure 3: Map displaying the SMR for each area.

disease (International Classification of Disease tenth revision codes J00-J99). These observed
numbers will depend on the size and demographic structure of the populations living in each
IG, and these factors need to be adjusted for before estimating disease risk. This is typically
achieved by computing the expected numbers of hospital admissions in each IG based on
this demographic information, using indirect standardisation. These expected numbers are
stored in the expected column, and the simplest measure of disease risk is the Standardised
Morbidity Ratio (SMR), which is the ratio of the observed to the expected numbers of hospital
admissions and is stored in the SMR column. Finally, the percentage of people defined to be
income deprived (in receipt of means tested benefits) is stored in the incomedep column. A
map showing the SMR is displayed in Figure 3, and is created using the code below, where in
common with the previous example the coordinate reference system is changed to longitude
and latitude.

R> respiratorydata.spatial <- spTransform(respiratorydata.spatial,

+ CRS("+proj=longlat +datum=WGS84 +no_defs"))

R> library(leaflet)

R> colours <- colorNumeric(palette = "BuPu", domain = respiratorydata.spatial@data$SMR)

R> map2 <- leaflet(data=respiratorydata.spatial) %>%

+ addTiles() %>%

+ addPolygons(fillColor = ~colours(SMR), color="red", weight=1,

+ fillOpacity = 0.7) %>%

+ addLegend(pal = colours, values = respiratorydata.spatial@data$SMR, opacity = 1,

+ title="SMR") %>%

+ addScaleBar(position="bottomleft")

R> map2
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Values of the SMR above one relate to areas exhibiting above average risks, while values
below one correspond to below average risks. For example, an SMR of 1.2 corresponds to a
20% increased risk relative to the expected numbers of respiratory disease cases. The figure
shows evidence of localised spatial structure, with numerous different locations where high
and low risk areas border each other. This in turn suggests that boundaries are likely to be
present, and their identification is the goal of this analysis. The method proposed by Lee
and Mitchell (2012) identifies these boundaries using dissimilarity metrics, which are non-
negative measures of the dissimilarity between all pairs of adjacent areas. In this example
we use the absolute difference in the percentage of people in each IG who are defined to be
income deprived (incomedep), because it is well known that socio-economic deprivation plays
a large role in determining people’s health. However, before fitting the model the spatial
neighbourhood matrix W based on sharing a common border is computed using the following
code.

R> W.nb <- poly2nb(respiratorydata.spatial, row.names =

+ rownames(respiratorydata.spatial@data))

R> W <- nb2mat(W.nb, style="B")

6.2. Spatial modelling with CARBayes

Let the observed and expected numbers of hospital admissions be denoted byY = (Y1, . . . , YK)
and E = (E1, . . . , EK) respectively. Then as the observed numbers of hospital admissions
are counts, a Poisson likelihood model given by Yk ∼ Poisson(EkRk) is appropriate, where
Rk represents disease risk in areal unit Sk. A log-linear model is specified for Rk, that is,
ln(Rk) = β0 +φk, and for a general review of disease mapping see Wakefield (2007). We note
that in fitting this model in CARBayes, the offset is specified on the linear predictor scale
rather than the expected value scale, so in this analysis the offset is log(E) rather than E.
The dissimilarity metric used here is the absolute difference in the level of income deprivation
between each pair of areal units, which can be created from the vector of area level income
deprivation scores using the following code.

R> income <- respiratorydata.spatial@data$incomedep

R> Z.incomedep <- as.matrix(dist(income, diag=TRUE, upper=TRUE))

The first line pulls out the income deprivation covariate while the second line computes the
K ×K matrix of absolute differences in income deprivation levels between each pair of areal
units, that is Z.incomedepkj = |incomek - incomej |. The function to implement the localised
CAR model is called S.CARdissimilarity(), and it takes the same arguments as the other
CAR models except that it additionally requires the dissimilarity metrics. These are required
in the form of a list of K×K matrices, and for this example we only have a single dissimilarity
metric. Additionally, we add the argument W.binary=TRUE, so that the estimated elements
in W are ones or zeros (corresponding to (5)), the latter corresponding to boundaries. The
model is run using the following code.

R> formula <- observed ~ offset(log(expected))

R> model.dissimilarity <- S.CARdissimilarity(formula=formula,
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+ data=respiratorydata.spatial@data, family="poisson", W=W,

+ Z=list(Z.incomedep=Z.incomedep), W.binary=TRUE, burnin=100000,

+ n.sample=300000, thin=20)

R> print(model.dissimilarity)

#################

#### Model fitted

#################

Likelihood model - Poisson (log link function)

Random effects model - Binary dissimilarity CAR

Dissimilarity metrics - Z.incomedep

Regression equation - observed ~ offset(log(expected))

Number of missing observations - 0

############

#### Results

############

Posterior quantities and DIC

Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag alpha.min

(Intercept) -0.2197 -0.2414 -0.1987 10000 35.2 10000.0 -0.5 NA

tau2 0.1373 0.0980 0.1927 10000 100.0 9089.8 -0.5 NA

Z.incomedep 0.0500 0.0464 0.0513 10000 45.4 10000.0 0.3 0.0139

DIC = 1070.334 p.d = 105.4371 LMPL = -615.38

The number of stepchanges identified in the random effect surface

no stepchange stepchange

[1,] 261 99

The first line of the above code specifies the formula with an offset (the natural log of the
expected numbers of cases) but no covariates, the latter being required so that boundaries
identified in the random effects surface can also be interpreted as boundaries in the risk surface
(that is boundaries in R = (R1, . . . , Rn)). The above model bases inference on 10,000 post
burn-in and thinned MCMC samples. When the model has been fit the print() function
produces the summary output above, which is similar to that produced for the property price
data in the previous example. The main difference between this and the corresponding output
from the property price analysis is the addition of a column in the parameter summary table
headed alpha.min. This column only applies to the dissimilarity metrics, which is why it is NA
for the remaining parameters. The value of alpha.min is the threshold value for the regression
parameter α, below which the dissimilarity metric has no effect in identifying boundaries in
the response (random effects) surface. A brief description is given in Section 2.1, while full
details are given in Lee and Mitchell (2012). For these data the posterior median and 95%
credible interval lie completely above this threshold, suggesting that the income deprivation
dissimilarity metric has identified a number of boundaries.

The number and locations of these boundaries are summarised in the element of the
output list called model.dissimilarity$localised.structure$W.posterior, which is a
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K × K symmetric matrix containing the posterior median for the set {wkj |k ∼ j}. Values
equal to zero represent a boundary, values equal to one correspond to no boundary, while NA
values correspond to non-adjacent areas. The locations of these boundaries can be overlaid
on a map of the estimated disease risk (that is the posterior median of R). This is done in
two steps, the first being the creation of a SpatialPoints object using the following code.

R> border.locations <- model.dissimilarity$localised.structure$W.posterior

R> respiratorydata.spatial@data$risk <- model.dissimilarity$fitted.values /

+ respiratorydata.spatial@data$expected

R> boundary.final <- highlight.borders(border.locations=border.locations,

+ spdata=respiratorydata.spatial)

The first line saves the matrix of border locations, while the second adds the estimated risk
values to the respiratorydata.spatial object. The next line identifies the boundary points
(using the CARBayes function highlight.borders()) and formats them to enable plotting.
Then plotting can be done using the code below, and the result is presented in Figure 4.

colours <- colorNumeric(palette = "BuPu", domain = respiratorydata.spatial@data$risk)

map3 <- leaflet(data=respiratorydata.spatial) %>%

addTiles() %>%

addPolygons(fillColor = ~colours(risk), color="red", weight=1,

fillOpacity = 0.7) %>%

addLegend(pal = colours, values = respiratorydata.spatial@data$risk, opacity = 1,

title="Risk") %>%

addCircles(lng = ~boundary.final$X, lat = ~boundary.final$Y, weight = 1,

radius = 2) %>%

addScaleBar(position="bottomleft")

map3

The figure shows the fitted risk surface and the locations of the boundaries (denoted by blue
circles). The model has identified 99 boundaries in the risk surface. The majority of these
visually seem to correspond to sizeable changes in the risk surface, suggesting that the model
has the power to distinguish between boundaries and non-boundaries. The notable boundaries
are the demarcation between the low risk (shaded green) city centre / west end of Glasgow
in the middle of the region and the deprived neighbouring areas on both sides, which include
Easterhouse / Parkhead in the east and Knightswood / Drumchapel in the west. The other
interesting feature of this map is that the boundaries are not closed, suggesting that the
spatial pattern in risk is more complex than being partitioned into groups of non-overlapping
areas of similar risk.

7. Discussion

This vignette has illustrated the R package CARBayes, which can fit a number of commonly
used conditional autoregressive models to spatial areal unit data, as well as the localised
spatial smoothing models proposed by Lee and Mitchell (2012) and Lee and Sarran (2015).
The response data can be binomial, Gaussian, multinomial, Poisson or ZIP, with link functions
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Figure 4: Map displaying estimated risk and locations of the boundaries for the northern part
of Greater Glasgow.

logit, identity, logit, natural log and (natural log / logit) respectively. The availability of areal
unit data has grown dramatically in recent times, due to the launch of freely available on-line
databases. This increased availability of spatial data has fuelled a growth of modelling in
this area, leading to the need for user friendly software such as CARBayes for use by both
statisticians and non-statisticians alike. Finally, this software now has a sister spatio-temporal
modelling package called CARBayesST, which can fit a range of spatio-temporal areal unit
models based on CAR priors. These models include similar models to those proposed by
Bernardinelli et al. (1995) and Knorr-Held (2000), as well as other alternatives.
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