
Continuous outcomes with BART: Part 1

Robert McCulloch

Arizona State University
Rodney Sparapani

Medical College of Wisconsin

Abstract

This short article delves into the BART prior with respect to continuous outcomes
and the BART R package implementation.

Keywords: Bayesian Additive Regression Trees.

1. Introduction to Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) arose out of earlier research on Bayesian model
fitting of an outcome to a single tree (Chipman, George, and McCulloch 1998). In this era
from 1996 to 2001, the excellent predictive performance of ensemble models became apparent
(Breiman 1996; Krogh and Solich 1997; Freund and Schapire 1997; Breiman 2001; Friedman
2001; Baldi and Brunak 2001). Instead of making a single prediction from a complex model,
ensemble models make a single prediction which is the summary of the predictions from
many simple models. Generally, ensemble models have nice properties, e.g., they do not
suffer from over-fitting (Kuhn and Johnson 2013). Like bagging (Breiman 1996), boosting
(Freund and Schapire 1997; Friedman 2001) and random forests (Breiman 2001), BART relies
on an ensemble of trees to predict the outcome; and, although, there are similarities, there
are also differences between these approaches.

BART is a Bayesian nonparametric, sum of trees method for continuous, dichotomous, cat-
egorical and time-to-event outcomes. Furthermore, BART is a black-box, machine learn-
ing method which fits the outcome via an arbitrary random function, f , of the covariates.
So-called black-box models generate functions of the covariates which are so complex that
interpreting the internal details of the fitted model is generally abandoned in favor of assess-
ment via evaluations of the fitted function, f , at chosen values of the covariates. As shown
by Chipman, George, and McCulloch (2010), BART’s out-of-sample predictive performance
is generally equivalent to, or exceeds that, of alternatives like lasso with L1 regularization
(Efron, Hastie, Johnstone, and Tibshirani 2004) or black-box models such as gradient boost-
ing (Freund and Schapire 1997; Friedman 2001), neural nets with one hidden layer (Venables
and Ripley 2013) and random forests (Breiman 2001). Over-fitting is the tendency to overly
fit a model to an in-sample training data set at the expense of poor predictive performance
for unseen out-of-sample data. Typically, BART does not over-fit to the training data due to
the regularization tree-branching penalty of the BART prior, i.e., generally, each tree has few
branches and plays a small part in the overall fit yielding desirable properties. Essentially,
BART is a Bayesian nonlinear model with all the advantages of the Bayesian paradigm such
as posterior inference including point and interval estimation. Conveniently, BART naturally



2 Continuous outcomes with BART: Part 1

scales to large numbers of covariates and facilitates variable selection; it does not require the
covariates to be rescaled; neither does it require the covariate functional relationship, nor the
interactions considered, to be pre-specified.

2. Continuous outcomes with BART

In this section, we document the analysis of continuous outcomes with the BART R package.
This requires delving into the details of the BART prior itself and the corresponding arguments
to the wbart function.

2.1. The BART prior

Underlying this methodology is the BART prior. The BART prior specifies a flexible class
of unknown functions, f , from which we can gather randomly generated fits to the given
data via the posterior. Let the function g(x;T,M) assign a value based on the input x; T
representing the structure of a binary tree, including interior decision rules as branches and
terminal nodes as leaves; and M = {µ1, . . . , µL}, the parameter values associated with the L
leaves one of which will be the output. T is composed of decision rules of the form xj ≤ c
which means branch left and xj > c, branch right; or terminal leaves where it stops. The

function, f(x), is a sum of H trees, i.e., f(x) =
∑H

h=1 g(x;Th,Mh) where H is “large”, let’s
say, 50, 100 or 200.

For a continuous outcome, yi, we have the following BART regression on the vector of covari-

ates, xi: yi = µ0 + f(xi) + ǫi where ǫi
iid∼ N

(

0, w2
i σ

2
)

; the unknown random function, f , and

the error variance, σ2, follow the BART prior expressed notationally as (f, σ2)
prior∼ BART

and µ0 is a known constant which centers y. The wi are known standard deviation weights
which you can supply with the argument w that is only available for continuous outcomes;
the unit vector is the default. The centering parameter, µ0, can be specified via the fmean

argument where the default is taken to be ȳ.

BART is a Bayesian nonparametric prior, but it is best understood as a bundle of priors. Using
the Gelfand-Smith shorthand bracket notation for the abstract specification of random vari-
able distributions (Gelfand and Smith 1990), we represent the BART prior as [Th] [µhl|Th]

[

σ2
]

where [Th] is the tree prior, [µhl|Th] is the leaf prior and
[

σ2
]

is the error variance prior.

The tree prior: [Th]. There are three priors for Th which govern whether the tree branches
grow or are pruned. The first is a regularity prior dictating the probability of an interior
branch, event B, given the branch tier, t, is: P[B|t] = base(1 + t)−power. You can specify
these prior parameters with arguments, but the following defaults are highly recommended:
base=0.95 and power=2; for a detailed discussion of these parameters, see Chipman et al.
(1998). Note that this prior penalizes branch growth, i.e., in prior probability, the default
number of branches will likely be 1 or 2. Next, there is a prior dictating the choice of a
splitting variable conditional on a branch event B which defaults to uniform probability 1/P
where P is the number of covariates; however, you can specify a Dirichlet prior which is more
appropriate if the number of covariates is large (Linero 2018) which we will return to below.
Given a branch event, B, and a variable chosen, xj , the last tree prior selects a cut point, c,
within the range of observed values for xj ; this prior is uniform.

We represent the probability of variable selection via the sparse Dirichlet prior as



Robert McCulloch, Rodney Sparapani 3

[s1, . . . , sP ]
prior∼ Dirichlet (θ/P, . . . , θ/P ) which is specified by the argument sparse=TRUE

while the default is sparse=FALSE for uniform 1/P . The prior parameter θ can be fixed or
random; the default theta=0means random, but fixed can be specified by supplying a positive

number to the argument theta. Random θ is specified via θ
θ+ρ

prior∼ Beta (a, b) where the
parameter ρ can be specified by the argument rho (which defaults to NULL representing P ;
provide a value to over-ride), the parameter b defaults to 1 (which can be over-ridden by the
argument b) and the parameter a defaults to 0.5 (which can be over-ridden by the argument
a); a=0.5 induces a sparse posture and a=1, non-sparse or dense.

If covariates are supplied via a data frame (rather than a matrix) with the argument x.train,
then factors with more than two levels can be specified along with continuous variables. The
factors are transformed into dummy variables with each factor in their own group while each
continuous variable is a group all by itself (similarly, factors with two levels are a group
with a single dummy variable). By specifying sparse=TRUE, these groups are handled with
a sparse Dirichlet prior for grouped variables (Yuan and Lin 2006; Linero and Yang 2017).
Suppose we have P groups each withKj variables, then the probability of selecting a particular

variable is ujk = sjtjk where [s1, . . . , sP ]
prior∼ Dirichlet (θ/P, . . . , θ/P ) and

[

tj1, . . . , tjKj

] prior∼
Dirichlet (ω/Kj , . . . , ω/Kj). The specification of the θ prior is as above. The prior parameter
ω is fixed and the default specification is set by the argument omega=1.

The leaf prior: [µhl|Th]. Given a tree, Th, there is a prior on its leaf values, µhl|Th and we
denote the collection of all leaves in Th byMh = [µh1, . . . , µhLh

]. Suppose that yi ∈ [ymin, ymax]
for all i and

[

µ1(i), . . . , µH(i)

]

are the leaf output values from each tree corresponding to the

vector of covariates, xi. If µh(i)|Th
iid∼ N

(

µµ, σ2
µ

)

, then E [yi|xi] = µi∼N
(

µ0 +Hµµ, Hσ2
µ

)

.
We choose values for µµ and σµ which are solutions to the system of equations created by the
1−α/2 confidence interval: ymin = µ0+Hµµ−|zα/2|

√
Hσµ and ymax = µ0+Hµµ+|zα/2|

√
Hσµ,

i.e., µµ = ymax−µ0+ymin−µ0

2H and σµ = ymax−ymin

2|zα/2|
√
H
. Since y is centered around µ0, the solution

for µµ will generally be near zero so we set it to zero. Therefore, we arrive at µhl
prior∼

N

(

0,
[

τ
2k

√
H

]2
)

where τ = ymax − ymin. So, the prior for µhl is informed by the data, y, but

only weakly via the extrema, ymin and ymax. The parameter k calibrates this prior as follows.

µi∼N

(

µ0,
[ τ

2k

]2
)

P[ymin ≤ µi ≤ ymax] = Φ(k)− Φ(−k)

Since P[µi ≤ ymax] = P

[

z ≤ 2k
ymax − µ0

τ

]

≈ P[z ≤ k] = Φ(k)

Similarly P[µi ≤ ymin] = Φ(−k)

The default value, k = 2, corresponds to µi falling within the extrema with 0.95 probability.
Alternative choices of k can be supplied via the k argument. We have found that values of
k ∈ [1, 3] generally yield good results. Note that k is a good candidate parameter for choice
via cross-validation.

The error variance prior:
[

σ2
]

. The prior for σ2 is the conjugate scaled inverse chi-square
distribution, i.e., νλχ−2 (ν). We recommend that the degrees of freedom, ν, be from 3 to 10
and the default is 3 which can be over-ridden by the argument sigdf. The lambda parameter



4 Continuous outcomes with BART: Part 1

can be specifed by the lambda argument which defaults to NA. If lambda is unspecified, then
we determine a reasonable value for λ based on an estimate, σ̂, (which can be specified
by the argument sigest and defaults to NA). If sigest is unspecified, the default value of
sigest is determined via linear regression or the sample standard deviation: if P < N , then

yi∼N
(

x′
iβ̂, σ̂2

)

; otherwise, σ̂ = sy. Now we solve for λ such that P
[

σ2 ≤ σ̂2
]

= q. This

quantity, q, can be specified by the argument sigquant and the default is 0.9 whereas we also
recommend considering 0.75 and 0.99. Note that the pair (ν, q) are good candidate parameters
for choice via cross-validation.

Other important arguments for the BART prior. We fix the number of trees at H which
corresponds to the argument ntree. The default number of trees is 200; as shown by Bleich,
Kapelner, George, and Jensen (2014), 50 is also a reasonable choice and cross-validation could
be considered. The number of cutpoints is provided by the argument numcut and the default
is 100. The default number of cutpoints is achieved for continuous covariates; however,
discrete covariates which have fewer than 100 values will necessarily have fewer cutpoints.
For continuous covariates, the cutpoints are uniformly distributed by default, or generated
via uniform quantiles if the argument usequants=TRUE is provided.

2.2. Posterior samples returned

The number of MCMC samples discarded for burnin is specified by the nskip argument
and the default is 100. The number of MCMC samples returned is specified by the ndpost

argument and the default is 1000. Returning every lth value, or thinning, can be specified
by the keepevery argument which defaults to 1, i.e., no thinning. You can also thin some
returned values, but not others. The following arguments default to ndpost, but can be
over-ridden as needed.

• nkeeptrain : number of f draws to return corresponding to x.train

• nkeeptest : number of f draws to return corresponding to x.test

• nkeeptestmeam : number of f draws to use in computing yhat.test.mean

• nkeeptreedraws : number of tree ensembles to return

2.3. Typical use case

Typically, when calling the wbart function to analyze some data, many of the arguments
can be omitted since the default values are adequate for most purposes. However, there are
certain common arguments which are either always needed or frequently provided. The wbart
(mc.wbart) function is for serial (parallel) computation. The outcome y.train is a vector of
numeric values. The covariates for training (validation, if any) are x.train (x.test) which
can be matrices or data frames containing factors; in the display below, we assume matrices
for simplicity.
set.seed(99)

post <- wbart(x.train, y.train, x.test, ..., ndpost=M) or
post <- mc.pbart(x.train, y.train, x.test, ..., ndpost=M, mc.cores=2, seed=99)



Robert McCulloch, Rodney Sparapani 5

Input matrices: x.train and, optionally, x.test:











x1

x2
...

xN











or xi

post, of type wbart, which is essentially a list

post$yhat.train and post$yhat.test:







ŷ11 . . . ŷN1
... . . .

...
ŷ1M . . . ŷNM






where ŷim = fm(xi)

The columns of post$yhat.train and post$yhat.test represent different covariate settings
and the rows, the M draws from the posterior.

Often it is impractical to provide x.test in the call to wbart due to the number of predic-
tions considered or all the settings to evaluate are simply not known at that time. To allow
for this common problem, the BART package returns the trees encoded in an ASCII string,
treedraws$trees, and provides a predict function to generate any predictions needed. Note
that if you need to perform the prediction in some later R instance, then you can save the wbart
object returned and reload it when needed, e.g., save with saveRDS(post, ’post.rds’) and
reload, post <- readRDS(’post.rds’) . The x.test input can be a matrix or a data frame;
for simplicity, we assume a matrix below.
pred <- predict(post, x.test, mc.cores=1, ...)

Input: x.test:











x1

x2
...

xQ











or xh

pred is a matrix:







ŷ11 . . . ŷQ1
...

...
...

ŷ1M . . . ŷQM






where ŷhm = fm(xh)

References

Baldi P, Brunak S (2001). Bioinformatics: the machine learning approach. MIT Press,
Cambridge, MA.

Bleich J, Kapelner A, George EI, Jensen ST (2014). “Variable selection for BART: an appli-
cation to gene regulation.” The Annals of Applied Statistics, 8(3), 1750–1781.

Breiman L (1996). “Bagging predictors.” Machine learning, 24(2), 123–140.



6 Continuous outcomes with BART: Part 1

Breiman L (2001). “Random forests.” Machine learning, 45(1), 5–32.

Chipman HA, George EI, McCulloch RE (1998). “Bayesian CART Model Search.” Journal
of the American Statistical Association, 93(443), 935–948.

Chipman HA, George EI, McCulloch RE (2010). “BART: Bayesian Additive Regression
Trees.” Annals of Applied Statistics, 4, 266–98.

Efron B, Hastie T, Johnstone I, Tibshirani R (2004). “Least angle regression.” The Annals of
statistics, 32(2), 407–499.

Freund Y, Schapire RE (1997). “A decision-theoretic generalization of on-line learning and
an application to boosting.” Journal of computer and system sciences, 55(1), 119–139.

Friedman JH (2001). “Greedy function approximation: a gradient boosting machine.” Annals
of Statistics, 29, 1189–1232.

Gelfand AE, Smith AF (1990). “Sampling-based approaches to calculating marginal densities.”
Journal of the American statistical association, 85(410), 398–409.

Krogh A, Solich P (1997). “Statistical mechanics of ensemble learning.” Physical Review E,
55, 811–25.

Kuhn M, Johnson K (2013). Applied Predictive Modeling. Springer, New York, NY.

Linero A (2018). “Bayesian Regression Trees for High Dimensional Prediction and Variable
Selection.” Journal of the American Statistical Association, 113(522), 626–36.

Linero AR, Yang Y (2017). “Bayesian regression tree ensembles that adapt to smoothness
and sparsity.” arXiv preprint arXiv:1707.09461.

Venables WN, Ripley BD (2013). Modern applied statistics with S-PLUS. Springer Science
& Business Media.

Yuan M, Lin Y (2006). “Model selection and estimation in regression with grouped variables.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49–67.

Affiliation:

Rodney Sparapani rsparapa@mcw.edu
Division of Biostatistics, Institute for Health and Equity
Medical College of Wisconsin, Milwaukee campus


	Introduction to Bayesian Additive Regression Trees
	Continuous outcomes with BART
	The BART prior
	Posterior samples returned
	Typical use case


