
BART::wbart: BART for Numeric Outcomes

Robert McCulloch and Rodney Sparapani

Contents

1 BART 1

1.1 Boston Housing Data . 2

1.2 A Quick Look at the Data . 2

1.3 Run wbart . 3

1.4 Results returned with a list . 4

1.5 Assess Convegence with σ Draws . 4

1.6 Look at in-sample Fit and Compare to a Linear Fit . 5

1.7 A Quick Look at the Uncertainty . 6

2 Using predict.wbart 7

2.1 Train and Test Data Sets . 7

3 Thining 8

3.1 The thinning arguments: . 8

3.2 Let’s have a look at the predictions . 9

1 BART

BART is Bayesian Additive Regression Trees (see Chipman, George, and McCulloch).

We fit the basic model:

Yi = f(xi) + ǫi, ǫi ∼ N(0, σ2)

We use Markov Chain Monte Carlo to get draws from the posterior distribution of the parameter (f, σ).

In this vignette we look at BART::wbart which is the basic function in the R package BART.

1

1.1 Boston Housing Data

Let’s just use the good old Boston housing data.

We’ll predict the median house value, y=mdev, from x1 = rm (number of rooms) and x2=lsat (% lower
status).

library(MASS)

x = Boston[,c(6,13)] #rm=number of rooms and lstat= percent lower status

y = Boston$medv # median value

head(cbind(x,y))

rm lstat y

1 6.575 4.98 24.0

2 6.421 9.14 21.6

3 7.185 4.03 34.7

4 6.998 2.94 33.4

5 7.147 5.33 36.2

6 6.430 5.21 28.7

1.2 A Quick Look at the Data

par(mfrow=c(2,2))

par(mai=c(.8,.8,.2,.2))

plot(x[,1],y,xlab="x1=rm",ylab="y=mdev",cex.axis=1.3,cex.lab=1.2)

plot(x[,2],y,xlab="x2=lstat",ylab="y=mdev",cex.axis=1.3,cex.lab=1.2)

plot(x[,1],x[,2],xlab="x1=rm",ylab="x2=lstat",cex.axis=1.3,cex.lab=1.2)

2

4 5 6 7 8

10
30

50

x1=rm

y=
m

de
v

10 20 30

10
30

50

x2=lstat

y=
m

de
v

4 5 6 7 8

10
30

x1=rm

x2
=

ls
ta

t

1.3 Run wbart

library(BART) #BART package

set.seed(99) #MCMC, so set the seed

nd=200 # number of kept draws

burn=50 # number of burn in draws

bf = wbart(x,y,nskip=burn,ndpost=nd)

*****Into main of wbart

*****Data:

data:n,p,np: 506, 2, 0

y1,yn: 1.467194, -10.632806

x1,x[n*p]: 6.575000, 7.880000

*****Number of Trees: 200

*****Number of Cut Points: 100 ... 100

*****burn and ndpost: 50, 200

*****Prior:beta,alpha,tau,nu,lambda: 2.000000,0.950000,0.795495,3.000000,5.979017

*****sigma: 5.540257

*****w (weights): 1.000000 ... 1.000000

*****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,2,0

*****nkeeptrain,nkeeptest,nkeeptestme,nkeeptreedraws: 200,200,200,200

*****printevery: 100

*****skiptr,skipte,skipteme,skiptreedraws: 1,1,1,1

##

MCMC

done 0 (out of 250)

done 100 (out of 250)

3

done 200 (out of 250)

time: 1s

check counts

trcnt,tecnt,temecnt,treedrawscnt: 200,0,0,200

1.4 Results returned with a list

We stored the results of running wbart in the list bf.

names(bf)

[1] "sigma" "yhat.train.mean" "yhat.train"

[4] "yhat.test.mean" "yhat.test" "varcount"

[7] "varprob" "treedraws" "proc.time"

[10] "mu" "varcount.mean" "varprob.mean"

[13] "rm.const"

length(bf$sigma)

[1] 250

length(bf$yhat.train.mean)

[1] 506

dim(bf$yhat.train)

[1] 200 506

Remember, the training data has n = 506 observations, we had burn=50 burn-in draws and nd=200 kept
draws.

Let’s look at a couple key list components:

• sigma: burnin + kept (burn+nd) draws of σ.

• yhat.train.mean: jth value is posterior mean of f(xj), f evaluated at the jth training observation.

• yhat.train: i, j value is the ith kept MCMC draw of f(xj).

1.5 Assess Convegence with σ Draws

As with any high-dimensional MCMC, assessing convergence may be tricky.

A nice simple thing to look at is the draws of σ. The parameter σ is the only identified parameter in the
model and it also gives us a sense of the size of the errors.

4

plot(bf$sigma)

abline(v=burn,lwd=2,col="red")

0 50 100 150 200 250

3.
8

4.
0

4.
2

4.
4

4.
6

4.
8

Index

bf
$s

ig
m

a

Look’s like it burned in almost right away.
Just one initial draw looking a bit bigger than the rest. Hopefully, subsequent variation is legitimate posterior
variation.

In a more difficult problem you may see the σ draws initially declining as the MCMC search for fit.

1.6 Look at in-sample Fit and Compare to a Linear Fit

Let’s look at the in-sample BART fit (yhat.train.mean) and compare it to y=medv and the fits from a
multiple linear regression.

lmf = lm(y~.,data.frame(x,y))

fitmat = cbind(y,bf$yhat.train.mean,lmf$fitted.values)

colnames(fitmat)=c("y","BART","Linear")

cor(fitmat)

y BART Linear

y 1.0000000 0.9051200 0.7991005

BART 0.9051200 1.0000000 0.8978003

Linear 0.7991005 0.8978003 1.0000000

pairs(fitmat)

5

y

10 20 30 40

10
30

50

10
20

30
40

BART

10 20 30 40 50 0 10 20 30 40

0
10

30

Linear

The BART fit is noticeably different from the linear fit.

1.7 A Quick Look at the Uncertainty

We order the observations by the fitted house value (yhat.train.mean) and then use boxplots to display the
draws of f(x) in each column of yhat.train.

ii = order(bf$yhat.train.mean) #order observations by predicted value

boxplot(bf$yhat.train[,ii]) #boxplots of f(x) draws

1 30 64 98 137 181 225 269 313 357 401 445 489

10
20

30
40

50

Substantial predictive uncertainty, but you are still pretty sure some houses should cost more that others!!

6

2 Using predict.wbart

We can get out of sample predictions two ways.

First, we can can just ask for them when we call wbart by supply a matrix of test x value.

Second, we can call a predict method.

2.1 Train and Test Data Sets

Let’s split our data into train and test subsets.

n=length(y) #total sample size

set.seed(14) # Dave Keon, greatest Leaf of all time!

ii = sample(1:n,floor(.75*n)) # indices for train data, 75% of data

xtrain=x[ii,]; ytrain=y[ii] # training data

xtest=x[-ii,]; ytest=y[-ii] # test data

cat("train sample size is ",length(ytrain)," and test sample size is ",length(ytest),"\n")

train sample size is 379 and test sample size is 127

And now we can run wbart using the train to learn and predict at xtest.

First, we’ll just give xtest to the wbart call.

set.seed(99)

bfp1 = wbart(xtrain,ytrain,xtest) #predict.wbart wants a matrix

dim(bfp1$yhat.test)

[1] 1000 127

length(bfp1$yhat.test.mean)

[1] 127

Now

• yhat.test: i, j value is the ith kept MCMC draw of f(xj) where xj is the jth row of xtest.

• yhat.test.mean: jth value is posterior mean of f(xj), f evaluated at the jth row of xtest.

7

Alternatively, we could run wbart saving all the MCMC results and then call predict.wbart.

set.seed(99)

bfp2 = wbart(xtrain,ytrain)

yhat = predict(bfp2,as.matrix(xtest)) #predict wants a matrix

Then yhat and bfp1$yhat.test are the same.

dim(yhat)

[1] 1000 127

summary(as.double(yhat-bfp1$yhat.test))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.091e-09 -1.186e-09 2.484e-11 2.288e-12 1.188e-09 6.790e-09

3 Thining

In our simple Boston housing data set wbart runs pretty fast.

But with more data and longer runs you may want to speed things up by saving less and then using predict.

Let’s just keep a thinned subset of 200 tree ensembles.

set.seed(4) #Bobby Orr, let's change the seed

bfthin = wbart(xtrain,ytrain,nskip=1000,ndpost=10000,

nkeeptrain=0,nkeeptest=0,nkeeptestmean=0,nkeeptreedraws=200)

yhatthin = predict(bfthin,as.matrix(xtest)) #predict wants a matrix

dim(bfthin$yhat.train)

[1] 0 379

dim(yhatthin)

[1] 200 127

Now there are no kept draws of f(x) for training x, and we have 200 tree ensembles to use in predict.wbart.

3.1 The thinning arguments:

• nkeeptrain : number of f(x) draws to save for training x.

8

• nkeeptest : number of f(x) draws to save for test x.

• nkeeptestmeam : number of draws to use in computing yhat.test.mean.

• nkeeptreedraws : number of tree ensembles to keep.

The default values are to keep all the draws (e.g. nkeeptrain=ndpost).

Of course, if you keep 100 out of 100,000, you keep every 1,000th draw.

3.2 Let’s have a look at the predictions

fmat=cbind(ytest,bfp1$yhat.test.mean,apply(yhatthin,2,mean))

colnames(fmat) = c("y","BARTpred","BARTpredThin")

pairs(fmat)

y

10 20 30 40 50

10
30

50

10
20

30
40

50

BARTpred

10 20 30 40 50 10 20 30 40 50

10
20

30
40

50

BARTpredThin

Recall, the BARTpred predictions are from a run are from a BART run with seed=99 and all default values.

The BARTpredThin are from 200 kept trees out of a long run with 1,000 burn-in and 10,000 kept draws
and seed=4.

Interesting how similar they are !!!!

9

	BART
	Boston Housing Data
	A Quick Look at the Data
	Run wbart
	Results returned with a list
	Assess Convegence with Draws
	Look at in-sample Fit and Compare to a Linear Fit
	A Quick Look at the Uncertainty

	Using predict.wbart
	Train and Test Data Sets

	Thining
	The thinning arguments:
	Let's have a look at the predictions

