
Package ‘AMR’
June 2, 2021

Version 1.7.1

Date 2021-06-02

Title Antimicrobial Resistance Data Analysis

Description Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by
using evidence-based methods and reliable reference data such as LPSN
<doi:10.1099/ijsem.0.004332>.

Depends R (>= 3.0.0)

Suggests cleaner,
curl,
dplyr,
ggplot2,
ggtext,
knitr,
microbenchmark,
pillar,
readxl,
rmarkdown,
rstudioapi,
rvest,
skimr,
tidyr,
tinytest,
xml2

VignetteBuilder knitr,rmarkdown

URL https://msberends.github.io/AMR/, https://github.com/msberends/AMR

BugReports https://github.com/msberends/AMR/issues

License GPL-2 | file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Roxygen list(markdown = TRUE)

1

https://doi.org/10.1099/ijsem.0.004332
https://msberends.github.io/AMR/
https://github.com/msberends/AMR
https://github.com/msberends/AMR/issues

2 R topics documented:

R topics documented:
ab_from_text . 3
ab_property . 5
age . 8
age_groups . 9
AMR . 11
antibiotics . 12
antibiotic_class_selectors . 15
as.ab . 18
as.disk . 20
as.mic . 22
as.mo . 24
as.rsi . 30
atc_online_property . 35
availability . 37
bug_drug_combinations . 38
catalogue_of_life . 40
catalogue_of_life_version . 42
count . 43
custom_eucast_rules . 47
dosage . 52
eucast_rules . 53
example_isolates . 58
example_isolates_unclean . 59
first_isolate . 60
g.test . 65
get_episode . 68
ggplot_pca . 71
ggplot_rsi . 73
guess_ab_col . 78
intrinsic_resistant . 80
italicise_taxonomy . 81
join . 82
key_antimicrobials . 83
kurtosis . 87
lifecycle . 88
like . 89
mdro . 91
microorganisms . 97
microorganisms.codes . 99
microorganisms.old . 100
mo_matching_score . 102
mo_property . 104
mo_source . 110
pca . 113
plot . 115
proportion . 118
random . 123
resistance_predict . 124
rsi_translation . 128
skewness . 130

ab_from_text 3

translate . 131
WHOCC . 132
WHONET . 133

Index 135

ab_from_text Retrieve Antimicrobial Drug Names and Doses from Clinical Text

Description

Use this function on e.g. clinical texts from health care records. It returns a list with all antimicrobial
drugs, doses and forms of administration found in the texts.

Usage

ab_from_text(
text,
type = c("drug", "dose", "administration"),
collapse = NULL,
translate_ab = FALSE,
thorough_search = NULL,
info = interactive(),
...

)

Arguments

text text to analyse

type type of property to search for, either "drug", "dose" or "administration",
see Examples

collapse a character to pass on to paste(,collapse = ...) to only return one character
per element of text, see Examples

translate_ab if type = "drug": a column name of the antibiotics data set to translate the
antibiotic abbreviations to, using ab_property(). Defaults to FALSE. Using
TRUE is equal to using "name".

thorough_search

a logical to indicate whether the input must be extensively searched for mis-
spelling and other faulty input values. Setting this to TRUE will take considerably
more time than when using FALSE. At default, it will turn TRUE when all input
elements contain a maximum of three words.

info a logical to indicate whether a progress bar should be printed, defaults to TRUE
only in interactive mode

... arguments passed on to as.ab()

Details

This function is also internally used by as.ab(), although it then only searches for the first drug
name and will throw a note if more drug names could have been returned. Note: the as.ab()
function may use very long regular expression to match brand names of antimicrobial agents. This
may fail on some systems.

4 ab_from_text

Argument type:
At default, the function will search for antimicrobial drug names. All text elements will be
searched for official names, ATC codes and brand names. As it uses as.ab() internally, it will
correct for misspelling.
With type = "dose" (or similar, like "dosing", "doses"), all text elements will be searched for
numeric values that are higher than 100 and do not resemble years. The output will be numeric.
It supports any unit (g, mg, IE, etc.) and multiple values in one clinical text, see Examples.
With type = "administration" (or abbreviations, like "admin", "adm"), all text elements will
be searched for a form of drug administration. It supports the following forms (including common
abbreviations): buccal, implant, inhalation, instillation, intravenous, nasal, oral, parenteral, rectal,
sublingual, transdermal and vaginal. Abbreviations for oral (such as ’po’, ’per os’) will become
"oral", all values for intravenous (such as ’iv’, ’intraven’) will become "iv". It supports multiple
values in one clinical text, see Examples.

Argument collapse:
Without using collapse, this function will return a list. This can be convenient to use e.g. inside
a mutate()):
df %>% mutate(abx = ab_from_text(clinical_text))

The returned AB codes can be transformed to official names, groups, etc. with all ab_* functions
such as ab_name() and ab_group(), or by using the translate_ab argument.
With using collapse, this function will return a character:
df %>% mutate(abx = ab_from_text(clinical_text,collapse = "|"))

Value

A list, or a character if collapse is not NULL

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

mind the bad spelling of amoxicillin in this line,
straight from a true health care record:
ab_from_text("28/03/2020 regular amoxicilliin 500mg po tds")

ab_from_text("500 mg amoxi po and 400mg cipro iv")
ab_from_text("500 mg amoxi po and 400mg cipro iv", type = "dose")
ab_from_text("500 mg amoxi po and 400mg cipro iv", type = "admin")

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

ab_property 5

ab_from_text("500 mg amoxi po and 400mg cipro iv", collapse = ", ")

if you want to know which antibiotic groups were administered, do e.g.:
abx <- ab_from_text("500 mg amoxi po and 400mg cipro iv")
ab_group(abx[[1]])

if (require("dplyr")) {
tibble(clinical_text = c("given 400mg cipro and 500 mg amox",

"started on doxy iv today")) %>%
mutate(abx_codes = ab_from_text(clinical_text),

abx_doses = ab_from_text(clinical_text, type = "doses"),
abx_admin = ab_from_text(clinical_text, type = "admin"),
abx_coll = ab_from_text(clinical_text, collapse = "|"),
abx_coll_names = ab_from_text(clinical_text,

collapse = "|",
translate_ab = "name"),

abx_coll_doses = ab_from_text(clinical_text,
type = "doses",
collapse = "|"),

abx_coll_admin = ab_from_text(clinical_text,
type = "admin",
collapse = "|"))

}

ab_property Get Properties of an Antibiotic

Description

Use these functions to return a specific property of an antibiotic from the antibiotics data set. All
input values will be evaluated internally with as.ab().

Usage

ab_name(x, language = get_locale(), tolower = FALSE, ...)

ab_atc(x, ...)

ab_cid(x, ...)

ab_synonyms(x, ...)

ab_tradenames(x, ...)

ab_group(x, language = get_locale(), ...)

ab_atc_group1(x, language = get_locale(), ...)

ab_atc_group2(x, language = get_locale(), ...)

ab_loinc(x, ...)

6 ab_property

ab_ddd(x, administration = "oral", units = FALSE, ...)

ab_info(x, language = get_locale(), ...)

ab_url(x, open = FALSE, ...)

ab_property(x, property = "name", language = get_locale(), ...)

Arguments

x any (vector of) text that can be coerced to a valid antibiotic code with as.ab()

language language of the returned text, defaults to system language (see get_locale())
and can also be set with getOption("AMR_locale"). Use language = NULL or
language = "" to prevent translation.

tolower a logical to indicate whether the first character of every output should be trans-
formed to a lower case character. This will lead to e.g. "polymyxin B" and not
"polymyxin b".

... other arguments passed on to as.ab()

administration way of administration, either "oral" or "iv"

units a logical to indicate whether the units instead of the DDDs itself must be re-
turned, see Examples

open browse the URL using utils::browseURL()

property one of the column names of one of the antibiotics data set

Details

All output will be translated where possible.

The function ab_url() will return the direct URL to the official WHO website. A warning will be
returned if the required ATC code is not available.

Value

• An integer in case of ab_cid()

• A named list in case of ab_info() and multiple ab_synonyms()/ab_tradenames()

• A double in case of ab_ddd()

• A character in all other cases

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

ab_property 7

Source

World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology: https:
//www.whocc.no/atc_ddd_index/

WHONET 2019 software: http://www.whonet.org/software.html

European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: https:
//ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

antibiotics

Examples

all properties:
ab_name("AMX") # "Amoxicillin"
ab_atc("AMX") # J01CA04 (ATC code from the WHO)
ab_cid("AMX") # 33613 (Compound ID from PubChem)
ab_synonyms("AMX") # a list with brand names of amoxicillin
ab_tradenames("AMX") # same
ab_group("AMX") # "Beta-lactams/penicillins"
ab_atc_group1("AMX") # "Beta-lactam antibacterials, penicillins"
ab_atc_group2("AMX") # "Penicillins with extended spectrum"
ab_url("AMX") # link to the official WHO page

smart lowercase tranformation
ab_name(x = c("AMC", "PLB")) # "Amoxicillin/clavulanic acid" "Polymyxin B"
ab_name(x = c("AMC", "PLB"),

tolower = TRUE) # "amoxicillin/clavulanic acid" "polymyxin B"

defined daily doses (DDD)
ab_ddd("AMX", "oral") # 1
ab_ddd("AMX", "oral", units = TRUE) # "g"
ab_ddd("AMX", "iv") # 1
ab_ddd("AMX", "iv", units = TRUE) # "g"

ab_info("AMX") # all properties as a list

all ab_* functions use as.ab() internally, so you can go from 'any' to 'any':
ab_atc("AMP") # ATC code of AMP (ampicillin)
ab_group("J01CA01") # Drug group of ampicillins ATC code

https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
http://www.whonet.org/software.html
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

8 age

ab_loinc("ampicillin") # LOINC codes of ampicillin
ab_name("21066-6") # "Ampicillin" (using LOINC)
ab_name(6249) # "Ampicillin" (using CID)
ab_name("J01CA01") # "Ampicillin" (using ATC)

spelling from different languages and dyslexia are no problem
ab_atc("ceftriaxon")
ab_atc("cephtriaxone")
ab_atc("cephthriaxone")
ab_atc("seephthriaaksone")

age Age in Years of Individuals

Description

Calculates age in years based on a reference date, which is the sytem date at default.

Usage

age(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...)

Arguments

x date(s), character (vectors) will be coerced with as.POSIXlt()

reference reference date(s) (defaults to today), character (vectors) will be coerced with
as.POSIXlt()

exact a logical to indicate whether age calculation should be exact, i.e. with decimals.
It divides the number of days of year-to-date (YTD) of x by the number of days
in the year of reference (either 365 or 366).

na.rm a logical to indicate whether missing values should be removed
... arguments passed on to as.POSIXlt(), such as origin

Details

Ages below 0 will be returned as NA with a warning. Ages above 120 will only give a warning.

This function vectorises over both x and reference, meaning that either can have a length of 1
while the other argument has a larger length.

Value

An integer (no decimals) if exact = FALSE, a double (with decimals) otherwise

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

https://en.wikipedia.org/wiki/Year-to-date

age_groups 9

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

To split ages into groups, use the age_groups() function.

Examples

10 random birth dates
df <- data.frame(birth_date = Sys.Date() - runif(10) * 25000)
add ages
df$age <- age(df$birth_date)
add exact ages
df$age_exact <- age(df$birth_date, exact = TRUE)

df

age_groups Split Ages into Age Groups

Description

Split ages into age groups defined by the split argument. This allows for easier demographic
(antimicrobial resistance) analysis.

Usage

age_groups(x, split_at = c(12, 25, 55, 75), na.rm = FALSE)

Arguments

x age, e.g. calculated with age()

split_at values to split x at, defaults to age groups 0-11, 12-24, 25-54, 55-74 and 75+.
See Details.

na.rm a logical to indicate whether missing values should be removed

Details

To split ages, the input for the split_at argument can be:

• A numeric vector. A value of e.g. c(10,20) will split x on 0-9, 10-19 and 20+. A value of
only 50 will split x on 0-49 and 50+. The default is to split on young children (0-11), youth
(12-24), young adults (25-54), middle-aged adults (55-74) and elderly (75+).

• A character:
– "children" or "kids", equivalent of: c(0,1,2,4,6,13,18). This will split on 0, 1, 2-3,

4-5, 6-12, 13-17 and 18+.
– "elderly" or "seniors", equivalent of: c(65,75,85). This will split on 0-64, 65-74,

75-84, 85+.
– "fives", equivalent of: 1:20 * 5. This will split on 0-4, 5-9, ..., 95-99, 100+.
– "tens", equivalent of: 1:10 * 10. This will split on 0-9, 10-19, ..., 90-99, 100+.

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

10 age_groups

Value

Ordered factor

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

To determine ages, based on one or more reference dates, use the age() function.

Examples

ages <- c(3, 8, 16, 54, 31, 76, 101, 43, 21)

split into 0-49 and 50+
age_groups(ages, 50)

split into 0-19, 20-49 and 50+
age_groups(ages, c(20, 50))

split into groups of ten years
age_groups(ages, 1:10 * 10)
age_groups(ages, split_at = "tens")

split into groups of five years
age_groups(ages, 1:20 * 5)
age_groups(ages, split_at = "fives")

split specifically for children
age_groups(ages, c(1, 2, 4, 6, 13, 17))
age_groups(ages, "children")

resistance of ciprofloxacin per age group
if (require("dplyr")) {

example_isolates %>%
filter_first_isolate() %>%
filter(mo == as.mo("E. coli")) %>%
group_by(age_group = age_groups(age)) %>%
select(age_group, CIP) %>%
ggplot_rsi(x = "age_group", minimum = 0)

}

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

AMR 11

AMR The AMR Package

Description

Welcome to the AMR package.

Details

AMR is a free, open-source and independent R package to simplify the analysis and prediction of
Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial data and proper-
ties, by using evidence-based methods. Our aim is to provide a standard for clean and reproducible
antimicrobial resistance data analysis, that can therefore empower epidemiological analyses to con-
tinuously enable surveillance and treatment evaluation in any setting.

After installing this package, R knows ~70,000 distinct microbial species and all ~560 antibi-
otic, antimycotic and antiviral drugs by name and code (including ATC, EARS-NET, LOINC and
SNOMED CT), and knows all about valid R/SI and MIC values. It supports any data format, in-
cluding WHONET/EARS-Net data.

This package is fully independent of any other R package and works on Windows, macOS and
Linux with all versions of R since R-3.0.0 (April 2013). It was designed to work in any setting,
including those with very limited resources. It was created for both routine data analysis and aca-
demic research at the Faculty of Medical Sciences of the University of Groningen, in collaboration
with non-profit organisations Certe Medical Diagnostics and Advice and University Medical Cen-
ter Groningen. This R package is actively maintained and free software; you can freely use and
distribute it for both personal and commercial (but not patent) purposes under the terms of the GNU
General Public License version 2.0 (GPL-2), as published by the Free Software Foundation.

This package can be used for:

• Reference for the taxonomy of microorganisms, since the package contains all microbial
(sub)species from the Catalogue of Life and List of Prokaryotic names with Standing in
Nomenclature

• Interpreting raw MIC and disk diffusion values, based on the latest CLSI or EUCAST guide-
lines

• Retrieving antimicrobial drug names, doses and forms of administration from clinical health
care records

• Determining first isolates to be used for AMR data analysis

• Calculating antimicrobial resistance

• Determining multi-drug resistance (MDR) / multi-drug resistant organisms (MDRO)

• Calculating (empirical) susceptibility of both mono therapy and combination therapies

• Predicting future antimicrobial resistance using regression models

• Getting properties for any microorganism (such as Gram stain, species, genus or family)

• Getting properties for any antibiotic (such as name, code of EARS-Net/ATC/LOINC/PubChem,
defined daily dose or trade name)

• Plotting antimicrobial resistance

• Applying EUCAST expert rules

12 antibiotics

• Getting SNOMED codes of a microorganism, or getting properties of a microorganism based
on a SNOMED code

• Getting LOINC codes of an antibiotic, or getting properties of an antibiotic based on a LOINC
code

• Machine reading the EUCAST and CLSI guidelines from 2011-2020 to translate MIC values
and disk diffusion diameters to R/SI

• Principal component analysis for AMR

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Contact Us

For suggestions, comments or questions, please contact us at:

Matthijs S. Berends
m.s.berends [at] umcg [dot] nl
University of Groningen Department of Medical Microbiology and Infection Prevention University
Medical Center Groningen
Post Office Box 30001
9700 RB Groningen
The Netherlands https://msberends.github.io/AMR/

If you have found a bug, please file a new issue at:
https://github.com/msberends/AMR/issues

antibiotics Data Sets with 558 Antimicrobials

Description

Two data sets containing all antibiotics/antimycotics and antivirals. Use as.ab() or one of the ab_*
functions to retrieve values from the antibiotics data set. Three identifiers are included in this data
set: an antibiotic ID (ab, primarily used in this package) as defined by WHONET/EARS-Net, an
ATC code (atc) as defined by the WHO, and a Compound ID (cid) as found in PubChem. Other
properties in this data set are derived from one or more of these codes.

Usage

antibiotics

antivirals

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/
https://github.com/msberends/AMR/issues

antibiotics 13

Format

For the antibiotics data set: a data.frame with 456 observations and 14 variables::
• ab

Antibiotic ID as used in this package (such as AMC), using the official EARS-Net (European
Antimicrobial Resistance Surveillance Network) codes where available

• atc
ATC code (Anatomical Therapeutic Chemical) as defined by the WHOCC, like J01CR02

• cid
Compound ID as found in PubChem

• name
Official name as used by WHONET/EARS-Net or the WHO

• group
A short and concise group name, based on WHONET and WHOCC definitions

• atc_group1
Official pharmacological subgroup (3rd level ATC code) as defined by the WHOCC, like
"Macrolides,lincosamides and streptogramins"

• atc_group2
Official chemical subgroup (4th level ATC code) as defined by the WHOCC, like "Macrolides"

• abbr
List of abbreviations as used in many countries, also for antibiotic susceptibility testing (AST)

• synonyms
Synonyms (often trade names) of a drug, as found in PubChem based on their compound ID

• oral_ddd
Defined Daily Dose (DDD), oral treatment

• oral_units
Units of oral_ddd

• iv_ddd
Defined Daily Dose (DDD), parenteral treatment

• iv_units
Units of iv_ddd

• loinc
All LOINC codes (Logical Observation Identifiers Names and Codes) associated with the
name of the antimicrobial agent. Use ab_loinc() to retrieve them quickly, see ab_property().

For the antivirals data set: a data.frame with 102 observations and 9 variables::
• atc

ATC code (Anatomical Therapeutic Chemical) as defined by the WHOCC
• cid

Compound ID as found in PubChem
• name

Official name as used by WHONET/EARS-Net or the WHO
• atc_group

Official pharmacological subgroup (3rd level ATC code) as defined by the WHOCC
• synonyms

Synonyms (often trade names) of a drug, as found in PubChem based on their compound ID
• oral_ddd

Defined Daily Dose (DDD), oral treatment
• oral_units

Units of oral_ddd

14 antibiotics

• iv_ddd
Defined Daily Dose (DDD), parenteral treatment

• iv_units
Units of iv_ddd

An object of class data.frame with 102 rows and 9 columns.

Details

Properties that are based on an ATC code are only available when an ATC is available. These
properties are: atc_group1, atc_group2, oral_ddd, oral_units, iv_ddd and iv_units.

Synonyms (i.e. trade names) are derived from the Compound ID (cid) and consequently only
available where a CID is available.

Direct download:
These data sets are available as ’flat files’ for use even without R - you can find the files here:

• https://github.com/msberends/AMR/raw/master/data-raw/antibiotics.txt

• https://github.com/msberends/AMR/raw/master/data-raw/antivirals.txt

Files in R format (with preserved data structure) can be found here:

• https://github.com/msberends/AMR/raw/master/data/antibiotics.rda

• https://github.com/msberends/AMR/raw/master/data/antivirals.rda

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

WHOCC

This package contains all ~550 antibiotic, antimycotic and antiviral drugs and their Anatomical
Therapeutic Chemical (ATC) codes, ATC groups and Defined Daily Dose (DDD) from the World
Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC, https://
www.whocc.no) and the Pharmaceuticals Community Register of the European Commission (https:
//ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm).

These have become the gold standard for international drug utilisation monitoring and research.

The WHOCC is located in Oslo at the Norwegian Institute of Public Health and funded by the
Norwegian government. The European Commission is the executive of the European Union and
promotes its general interest.

NOTE: The WHOCC copyright does not allow use for commercial purposes, unlike any other
info from this package. See https://www.whocc.no/copyright_disclaimer/.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

https://github.com/msberends/AMR/raw/master/data-raw/antibiotics.txt
https://github.com/msberends/AMR/raw/master/data-raw/antivirals.txt
https://github.com/msberends/AMR/raw/master/data/antibiotics.rda
https://github.com/msberends/AMR/raw/master/data/antivirals.rda
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://www.whocc.no
https://www.whocc.no
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://www.whocc.no/copyright_disclaimer/.
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

antibiotic_class_selectors 15

Source

World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology (WHOCC):
https://www.whocc.no/atc_ddd_index/

WHONET 2019 software: http://www.whonet.org/software.html

European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: https:
//ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm

See Also

microorganisms, intrinsic_resistant

antibiotic_class_selectors

Antibiotic Class Selectors

Description

These functions help to filter and select columns with antibiotic test results that are of a specific
antibiotic class, without the need to define the columns or antibiotic abbreviations.

Usage

ab_class(ab_class, only_rsi_columns = FALSE)

aminoglycosides(only_rsi_columns = FALSE)

betalactams(only_rsi_columns = FALSE)

carbapenems(only_rsi_columns = FALSE)

cephalosporins(only_rsi_columns = FALSE)

cephalosporins_1st(only_rsi_columns = FALSE)

cephalosporins_2nd(only_rsi_columns = FALSE)

cephalosporins_3rd(only_rsi_columns = FALSE)

cephalosporins_4th(only_rsi_columns = FALSE)

cephalosporins_5th(only_rsi_columns = FALSE)

fluoroquinolones(only_rsi_columns = FALSE)

glycopeptides(only_rsi_columns = FALSE)

macrolides(only_rsi_columns = FALSE)

oxazolidinones(only_rsi_columns = FALSE)

https://www.whocc.no/atc_ddd_index/
http://www.whonet.org/software.html
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm

16 antibiotic_class_selectors

penicillins(only_rsi_columns = FALSE)

tetracyclines(only_rsi_columns = FALSE)

Arguments

ab_class an antimicrobial class, such as "carbapenems". The columns group, atc_group1
and atc_group2 of the antibiotics data set will be searched (case-insensitive) for
this value.

only_rsi_columns

a logical to indicate whether only columns of class <rsi> must be selected (de-
faults to FALSE), see as.rsi()

Details

These functions can be used in data set calls for selecting columns and filtering rows, see Examples.
They support base R, but work more convenient in dplyr functions such as select(), filter()
and summarise().

All columns in the data in which these functions are called will be searched for known antibiotic
names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) in the antibiotics data
set. This means that a selector like e.g. aminoglycosides() will pick up column names like ’gen’,
’genta’, ’J01GB03’, ’tobra’, ’Tobracin’, etc.

The group of betalactams consists of all carbapenems, cephalosporins and penicillins.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

`example_isolates` is a data set available in the AMR package.
See ?example_isolates.

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

antibiotic_class_selectors 17

Base R --

select columns 'IPM' (imipenem) and 'MEM' (meropenem)
example_isolates[, carbapenems()]

select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'
example_isolates[, c("mo", aminoglycosides())]

filter using any() or all()
example_isolates[any(carbapenems() == "R"),]
subset(example_isolates, any(carbapenems() == "R"))

filter on any or all results in the carbapenem columns (i.e., IPM, MEM):
example_isolates[any(carbapenems()),]
example_isolates[all(carbapenems()),]

filter with multiple antibiotic selectors using c()
example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"),]

filter + select in one go: get penicillins in carbapenems-resistant strains
example_isolates[any(carbapenems() == "R"), penicillins()]

dplyr ---

if (require("dplyr")) {

this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):
example_isolates %>%

select(carbapenems())

this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB':
example_isolates %>%

select(mo, aminoglycosides())

any() and all() work in dplyr's filter() too:
example_isolates %>%

filter(any(aminoglycosides() == "R"),
all(cephalosporins_2nd() == "R"))

also works with c():
example_isolates %>%

filter(any(c(carbapenems(), aminoglycosides()) == "R"))

not setting any/all will automatically apply all():
example_isolates %>%

filter(aminoglycosides() == "R")
#> i Assuming a filter on all 4 aminoglycosides.

this will select columns 'mo' and all antimycobacterial drugs ('RIF'):
example_isolates %>%

select(mo, ab_class("mycobact"))

get bug/drug combinations for only macrolides in Gram-positives:
example_isolates %>%

filter(mo_is_gram_positive()) %>%

18 as.ab

select(mo, macrolides()) %>%
bug_drug_combinations() %>%
format()

data.frame(some_column = "some_value",
J01CA01 = "S") %>% # ATC code of ampicillin

select(penicillins()) # only the 'J01CA01' column will be selected

with dplyr 1.0.0 and higher (that adds 'across()'), this is all equal:
(though the row names on the first are more correct)
example_isolates[carbapenems() == "R",]
example_isolates %>% filter(carbapenems() == "R")
example_isolates %>% filter(across(carbapenems(), ~.x == "R"))

}

as.ab Transform Input to an Antibiotic ID

Description

Use this function to determine the antibiotic code of one or more antibiotics. The data set antibiotics
will be searched for abbreviations, official names and synonyms (brand names).

Usage

as.ab(x, flag_multiple_results = TRUE, info = interactive(), ...)

is.ab(x)

Arguments

x a character vector to determine to antibiotic ID
flag_multiple_results

a logical to indicate whether a note should be printed to the console that probably
more than one antibiotic code or name can be retrieved from a single input value.

info a logical to indicate whether a progress bar should be printed, defaults to TRUE
only in interactive mode

... arguments passed on to internal functions

Details

All entries in the antibiotics data set have three different identifiers: a human readable EARS-Net
code (column ab, used by ECDC and WHONET), an ATC code (column atc, used by WHO), and
a CID code (column cid, Compound ID, used by PubChem). The data set contains more than 5,000
official brand names from many different countries, as found in PubChem.

All these properties will be searched for the user input. The as.ab() can correct for different forms
of misspelling:

• Wrong spelling of drug names (such as "tobramicin" or "gentamycin"), which corrects for
most audible similarities such as f/ph, x/ks, c/z/s, t/th, etc.

as.ab 19

• Too few or too many vowels or consonants
• Switching two characters (such as "mreopenem", often the case in clinical data, when doctors

typed too fast)
• Digitalised paper records, leaving artefacts like 0/o/O (zero and O’s), B/8, n/r, etc.

Use the ab_* functions to get properties based on the returned antibiotic ID, see Examples.

Note: the as.ab() and ab_* functions may use very long regular expression to match brand names
of antimicrobial agents. This may fail on some systems.

Value

A character vector with additional class ab

Source

World Health Organization (WHO) Collaborating Centre for Drug Statistics Methodology: https:
//www.whocc.no/atc_ddd_index/

WHONET 2019 software: http://www.whonet.org/software.html

European Commission Public Health PHARMACEUTICALS - COMMUNITY REGISTER: https:
//ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

WHOCC

This package contains all ~550 antibiotic, antimycotic and antiviral drugs and their Anatomical
Therapeutic Chemical (ATC) codes, ATC groups and Defined Daily Dose (DDD) from the World
Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC, https://
www.whocc.no) and the Pharmaceuticals Community Register of the European Commission (https:
//ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm).

These have become the gold standard for international drug utilisation monitoring and research.

The WHOCC is located in Oslo at the Norwegian Institute of Public Health and funded by the
Norwegian government. The European Commission is the executive of the European Union and
promotes its general interest.

NOTE: The WHOCC copyright does not allow use for commercial purposes, unlike any other
info from this package. See https://www.whocc.no/copyright_disclaimer/.

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
http://www.whonet.org/software.html
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://www.whocc.no
https://www.whocc.no
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://www.whocc.no/copyright_disclaimer/.
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html

20 as.disk

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

• antibiotics for the data.frame that is being used to determine ATCs

• ab_from_text() for a function to retrieve antimicrobial drugs from clinical text (from health
care records)

Examples

these examples all return "ERY", the ID of erythromycin:
as.ab("J01FA01")
as.ab("J 01 FA 01")
as.ab("Erythromycin")
as.ab("eryt")
as.ab(" eryt 123")
as.ab("ERYT")
as.ab("ERY")
as.ab("eritromicine") # spelled wrong, yet works
as.ab("Erythrocin") # trade name
as.ab("Romycin") # trade name

spelling from different languages and dyslexia are no problem
ab_atc("ceftriaxon")
ab_atc("cephtriaxone") # small spelling error
ab_atc("cephthriaxone") # or a bit more severe
ab_atc("seephthriaaksone") # and even this works

use ab_* functions to get a specific properties (see ?ab_property);
they use as.ab() internally:
ab_name("J01FA01") # "Erythromycin"
ab_name("eryt") # "Erythromycin"

if (require("dplyr")) {

you can quickly rename <rsi> columns using dplyr >= 1.0.0:
example_isolates %>%
rename_with(as.ab, where(is.rsi))

}

as.disk Transform Input to Disk Diffusion Diameters

Description

This transforms a vector to a new class disk, which is a disk diffusion growth zone size (around an
antibiotic disk) in millimetres between 6 and 50.

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

as.disk 21

Usage

as.disk(x, na.rm = FALSE)

is.disk(x)

Arguments

x vector

na.rm a logical indicating whether missing values should be removed

Details

Interpret disk values as RSI values with as.rsi(). It supports guidelines from EUCAST and CLSI.

Value

An integer with additional class disk

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

as.rsi()

Examples

transform existing disk zones to the `disk` class
df <- data.frame(microorganism = "E. coli",

AMP = 20,
CIP = 14,
GEN = 18,
TOB = 16)

df[, 2:5] <- lapply(df[, 2:5], as.disk)
same with dplyr:
df %>% mutate(across(AMP:TOB, as.disk))

interpret disk values, see ?as.rsi
as.rsi(x = as.disk(18),

mo = "Strep pneu", # `mo` will be coerced with as.mo()

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

22 as.mic

ab = "ampicillin", # and `ab` with as.ab()
guideline = "EUCAST")

as.rsi(df)

as.mic Transform Input to Minimum Inhibitory Concentrations (MIC)

Description

This ransforms vectors to a new class mic, which treats the input as decimal numbers, while main-
taining operators (such as ">=") and only allowing valid MIC values known to the field of (medical)
microbiology.

Usage

as.mic(x, na.rm = FALSE)

is.mic(x)

Arguments

x a character or numeric vector

na.rm a logical indicating whether missing values should be removed

Details

To interpret MIC values as RSI values, use as.rsi() on MIC values. It supports guidelines from
EUCAST and CLSI.

This class for MIC values is a quite a special data type: formally it is an ordered factor with valid
MIC values as factor levels (to make sure only valid MIC values are retained), but for any mathe-
matical operation it acts as decimal numbers:

x <- random_mic(10)
x
#> Class <mic>
#> [1] 16 1 8 8 64 >=128 0.0625 32 32 16

is.factor(x)
#> [1] TRUE

x[1] * 2
#> [1] 32

median(x)
#> [1] 26

This makes it possible to maintain operators that often come with MIC values, such ">=" and "<=",
even when filtering using numeric values in data analysis, e.g.:

as.mic 23

x[x > 4]
#> Class <mic>
#> [1] 16 8 8 64 >=128 32 32 16

df <- data.frame(x, hospital = "A")
subset(df, x > 4) # or with dplyr: df %>% filter(x > 4)
#> x hospital
#> 1 16 A
#> 5 64 A
#> 6 >=128 A
#> 8 32 A
#> 9 32 A
#> 10 16 A

The following generic functions are implemented for the MIC class: !, !=, %%, %/%, &, *, +, -,
/, <, <=, ==, >, >=, ^, |, abs(), acos(), acosh(), all(), any(), asin(), asinh(), atan(),
atanh(), ceiling(), cos(), cosh(), cospi(), cummax(), cummin(), cumprod(), cumsum(),
digamma(), exp(), expm1(), floor(), gamma(), lgamma(), log(), log1p(), log2(), log10(),
max(), mean(), min(), prod(), range(), round(), sign(), signif(), sin(), sinh(), sinpi(),
sqrt(), sum(), tan(), tanh(), tanpi(), trigamma() and trunc(). Some functions of the stats
package are also implemented: median(), quantile(), mad(), IQR(), fivenum(). Also, boxplot.stats()
is supported. Since sd() and var() are non-generic functions, these could not be extended. Use
mad() as an alternative, or use e.g. sd(as.numeric(x)) where x is your vector of MIC values.

Value

Ordered factor with additional class mic, that in mathematical operations acts as decimal numbers.
Bare in mind that the outcome of any mathematical operation on MICs will return a numeric value.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

as.rsi()

Examples

mic_data <- as.mic(c(">=32", "1.0", "1", "1.00", 8, "<=0.128", "8", "16", "16"))
is.mic(mic_data)

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

24 as.mo

this can also coerce combined MIC/RSI values:
as.mic("<=0.002; S") # will return <=0.002

mathematical processing treats MICs as [numeric] values
fivenum(mic_data)
quantile(mic_data)
all(mic_data < 512)

interpret MIC values
as.rsi(x = as.mic(2),

mo = as.mo("S. pneumoniae"),
ab = "AMX",
guideline = "EUCAST")

as.rsi(x = as.mic(4),
mo = as.mo("S. pneumoniae"),
ab = "AMX",
guideline = "EUCAST")

plot MIC values, see ?plot
plot(mic_data)
plot(mic_data, mo = "E. coli", ab = "cipro")

as.mo Transform Input to a Microorganism Code

Description

Use this function to determine a valid microorganism code (mo). Determination is done using in-
telligent rules and the complete taxonomic kingdoms Bacteria, Chromista, Protozoa, Archaea and
most microbial species from the kingdom Fungi (see Source). The input can be almost anything:
a full name (like "Staphylococcus aureus"), an abbreviated name (such as "S. aureus"), an ab-
breviation known in the field (such as "MRSA"), or just a genus. See Examples.

Usage

as.mo(
x,
Becker = FALSE,
Lancefield = FALSE,
allow_uncertain = TRUE,
reference_df = get_mo_source(),
ignore_pattern = getOption("AMR_ignore_pattern"),
language = get_locale(),
info = interactive(),
...

)

is.mo(x)

mo_failures()

mo_uncertainties()

mo_renamed()

as.mo 25

Arguments

x a character vector or a data.frame with one or two columns

Becker a logical to indicate whether staphylococci should be categorised into coagulase-
negative staphylococci ("CoNS") and coagulase-positive staphylococci ("CoPS")
instead of their own species, according to Karsten Becker et al. (1,2,3).
This excludes Staphylococcus aureus at default, use Becker = "all" to also cat-
egorise S. aureus as "CoPS".

Lancefield a logical to indicate whether beta-haemolytic Streptococci should be categorised
into Lancefield groups instead of their own species, according to Rebecca C.
Lancefield (4). These Streptococci will be categorised in their first group, e.g.
Streptococcus dysgalactiae will be group C, although officially it was also cate-
gorised into groups G and L.
This excludes Enterococci at default (who are in group D), use Lancefield =
"all" to also categorise all Enterococci as group D.

allow_uncertain

a number between 0 (or "none") and 3 (or "all"), or TRUE (= 2) or FALSE (=
0) to indicate whether the input should be checked for less probable results, see
Details

reference_df a data.frame to be used for extra reference when translating x to a valid mo. See
set_mo_source() and get_mo_source() to automate the usage of your own
codes (e.g. used in your analysis or organisation).

ignore_pattern a regular expression (case-insensitive) of which all matches in x must return NA.
This can be convenient to exclude known non-relevant input and can also be set
with the option AMR_ignore_pattern, e.g. options(AMR_ignore_pattern =
"(not reported|contaminated flora)").

language language to translate text like "no growth", which defaults to the system lan-
guage (see get_locale())

info a logical to indicate if a progress bar should be printed if more than 25 items are
to be coerced, defaults to TRUE only in interactive mode

... other arguments passed on to functions

Details

General Info:
A microorganism (MO) code from this package (class: mo) is human readable and typically looks
like these examples:

Code Full name
--------------- --------------------------------------
B_KLBSL Klebsiella
B_KLBSL_PNMN Klebsiella pneumoniae
B_KLBSL_PNMN_RHNS Klebsiella pneumoniae rhinoscleromatis
| | | |
| | | |
| | | \---> subspecies, a 4-5 letter acronym
| | \----> species, a 4-5 letter acronym
| \----> genus, a 5-7 letter acronym
\----> taxonomic kingdom: A (Archaea), AN (Animalia), B (Bacteria),

C (Chromista), F (Fungi), P (Protozoa)

26 as.mo

Values that cannot be coerced will be considered ’unknown’ and will get the MO code UNKNOWN.
Use the mo_* functions to get properties based on the returned code, see Examples.
The algorithm uses data from the Catalogue of Life (see below) and from one other source (see
microorganisms).
The as.mo() function uses several coercion rules for fast and logical results. It assesses the input
matching criteria in the following order:

1. Human pathogenic prevalence: the function starts with more prevalent microorganisms, fol-
lowed by less prevalent ones;

2. Taxonomic kingdom: the function starts with determining Bacteria, then Fungi, then Proto-
zoa, then others;

3. Breakdown of input values to identify possible matches.

This will lead to the effect that e.g. "E. coli" (a microorganism highly prevalent in humans)
will return the microbial ID of Escherichia coli and not Entamoeba coli (a microorganism less
prevalent in humans), although the latter would alphabetically come first.

Coping with Uncertain Results:
In addition, the as.mo() function can differentiate four levels of uncertainty to guess valid results:

• Uncertainty level 0: no additional rules are applied;
• Uncertainty level 1: allow previously accepted (but now invalid) taxonomic names and minor

spelling errors;
• Uncertainty level 2: allow all of level 1, strip values between brackets, inverse the words of

the input, strip off text elements from the end keeping at least two elements;
• Uncertainty level 3: allow all of level 1 and 2, strip off text elements from the end, allow any

part of a taxonomic name.

The level of uncertainty can be set using the argument allow_uncertain. The default is allow_uncertain
= TRUE, which is equal to uncertainty level 2. Using allow_uncertain = FALSE is equal to uncer-
tainty level 0 and will skip all rules. You can also use e.g. as.mo(...,allow_uncertain = 1) to
only allow up to level 1 uncertainty.
With the default setting (allow_uncertain = TRUE, level 2), below examples will lead to valid
results:

• "Streptococcus group B (known as S. agalactiae)". The text between brackets will be
removed and a warning will be thrown that the result Streptococcus group B (B_STRPT_GRPB)
needs review.

• "S. aureus -please mind: MRSA". The last word will be stripped, after which the function
will try to find a match. If it does not, the second last word will be stripped, etc. Again, a
warning will be thrown that the result Staphylococcus aureus (B_STPHY_AURS) needs review.

• "Fluoroquinolone-resistant Neisseria gonorrhoeae". The first word will be stripped,
after which the function will try to find a match. A warning will be thrown that the result
Neisseria gonorrhoeae (B_NESSR_GNRR) needs review.

There are three helper functions that can be run after using the as.mo() function:

• Use mo_uncertainties() to get a data.frame that prints in a pretty format with all taxo-
nomic names that were guessed. The output contains the matching score for all matches (see
Matching Score for Microorganisms below).

• Use mo_failures() to get a character vector with all values that could not be coerced to a
valid value.

• Use mo_renamed() to get a data.frame with all values that could be coerced based on old,
previously accepted taxonomic names.

as.mo 27

Microbial Prevalence of Pathogens in Humans:
The intelligent rules consider the prevalence of microorganisms in humans grouped into three
groups, which is available as the prevalence columns in the microorganisms and microorgan-
isms.old data sets. The grouping into human pathogenic prevalence is explained in the section
Matching Score for Microorganisms below.

Value

A character vector with additional class mo

Source

1. Becker K et al. Coagulase-Negative Staphylococci. 2014. Clin Microbiol Rev. 27(4):
870–926; doi: 10.1128/CMR.0010913

2. Becker K et al. Implications of identifying the recently defined members of the S. aureus
complex, S. argenteus and S. schweitzeri: A position paper of members of the ESCMID
Study Group for staphylococci and Staphylococcal Diseases (ESGS). 2019. Clin Microbiol
Infect; doi: 10.1016/j.cmi.2019.02.028

3. Becker K et al. Emergence of coagulase-negative staphylococci 2020. Expert Rev Anti
Infect Ther. 18(4):349-366; doi: 10.1080/14787210.2020.1730813

4. Lancefield RC A serological differentiation of human and other groups of hemolytic
streptococci. 1933. J Exp Med. 57(4): 571–95; doi: 10.1084/jem.57.4.571

5. Catalogue of Life: 2019 Annual Checklist, http://www.catalogueoflife.org

6. List of Prokaryotic names with Standing in Nomenclature (March 2021), doi: 10.1099/ijsem.0.004332

7. US Edition of SNOMED CT from 1 September 2020, retrieved from the Public Health Infor-
mation Network Vocabulary Access and Distribution System (PHIN VADS), OID 2.16.840.1.114222.4.11.1009,
version 12; url: https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.
1.114222.4.11.1009

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Matching Score for Microorganisms

With ambiguous user input in as.mo() and all the mo_* functions, the returned results are chosen
based on their matching score using mo_matching_score(). This matching score m, is calculated
as:

m(x,n) =
ln − 0.5 ·min { ln lev(x, n)

ln · pn · kn

where:

• x is the user input;

https://doi.org/10.1128/CMR.00109-13
https://doi.org/10.1016/j.cmi.2019.02.028
https://doi.org/10.1080/14787210.2020.1730813
https://doi.org/10.1084/jem.57.4.571
http://www.catalogueoflife.org
https://doi.org/10.1099/ijsem.0.004332
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009

28 as.mo

• n is a taxonomic name (genus, species, and subspecies);

• l_n is the length of n;

• lev is the Levenshtein distance function, which counts any insertion, deletion and substitution
as 1 that is needed to change x into n;

• p_n is the human pathogenic prevalence group of n, as described below;

• l_n is the taxonomic kingdom of n, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4,
others = 5.

The grouping into human pathogenic prevalence (p) is based on experience from several microbio-
logical laboratories in the Netherlands in conjunction with international reports on pathogen preva-
lence. Group 1 (most prevalent microorganisms) consists of all microorganisms where the taxo-
nomic class is Gammaproteobacteria or where the taxonomic genus is Enterococcus, Staphylococ-
cus or Streptococcus. This group consequently contains all common Gram-negative bacteria, such
as Pseudomonas and Legionella and all species within the order Enterobacterales. Group 2 consists
of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes, Actinobacteria
or Sarcomastigophora, or where the taxonomic genus is Absidia, Acremonium, Actinotignum, Al-
ternaria, Anaerosalibacter, Apophysomyces, Arachnia, Aspergillus, Aureobacterium, Aureobasid-
ium, Bacteroides, Basidiobolus, Beauveria, Blastocystis, Branhamella, Calymmatobacterium, Can-
dida, Capnocytophaga, Catabacter, Chaetomium, Chryseobacterium, Chryseomonas, Chrysonilia,
Cladophialophora, Cladosporium, Conidiobolus, Cryptococcus, Curvularia, Exophiala, Exsero-
hilum, Flavobacterium, Fonsecaea, Fusarium, Fusobacterium, Hendersonula, Hypomyces, Koserella,
Lelliottia, Leptosphaeria, Leptotrichia, Malassezia, Malbranchea, Mortierella, Mucor, Mycocen-
trospora, Mycoplasma, Nectria, Ochroconis, Oidiodendron, Phoma, Piedraia, Pithomyces, Pity-
rosporum, Prevotella, Pseudallescheria, Rhizomucor, Rhizopus, Rhodotorula, Scolecobasidium,
Scopulariopsis, Scytalidium, Sporobolomyces, Stachybotrys, Stomatococcus, Treponema, Tricho-
derma, Trichophyton, Trichosporon, Tritirachium or Ureaplasma. Group 3 consists of all other
microorganisms.

All matches are sorted descending on their matching score and for all user input values, the top
match will be returned. This will lead to the effect that e.g., "E. coli" will return the microbial
ID of Escherichia coli (m = 0.688, a highly prevalent microorganism found in humans) and not
Entamoeba coli (m = 0.079, a less prevalent microorganism in humans), although the latter would
alphabetically come first.

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html

as.mo 29

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

microorganisms for the data.frame that is being used to determine ID’s.

The mo_* functions (such as mo_genus(), mo_gramstain()) to get properties based on the returned
code.

Examples

These examples all return "B_STPHY_AURS", the ID of S. aureus:
as.mo("sau") # WHONET code
as.mo("stau")
as.mo("STAU")
as.mo("staaur")
as.mo("S. aureus")
as.mo("S aureus")
as.mo("Staphylococcus aureus")
as.mo("Staphylococcus aureus (MRSA)")
as.mo("Zthafilokkoockus oureuz") # handles incorrect spelling
as.mo("MRSA") # Methicillin Resistant S. aureus
as.mo("VISA") # Vancomycin Intermediate S. aureus
as.mo("VRSA") # Vancomycin Resistant S. aureus
as.mo(115329001) # SNOMED CT code

Dyslexia is no problem - these all work:
as.mo("Ureaplasma urealyticum")
as.mo("Ureaplasma urealyticus")
as.mo("Ureaplasmium urealytica")
as.mo("Ureaplazma urealitycium")

as.mo("Streptococcus group A")
as.mo("GAS") # Group A Streptococci
as.mo("GBS") # Group B Streptococci

as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR
as.mo("S. epidermidis", Becker = TRUE) # will not remain species: B_STPHY_CONS

as.mo("S. pyogenes") # will remain species: B_STRPT_PYGN
as.mo("S. pyogenes", Lancefield = TRUE) # will not remain species: B_STRPT_GRPA

All mo_* functions use as.mo() internally too (see ?mo_property):
mo_genus("E. coli") # returns "Escherichia"
mo_gramstain("E. coli") # returns "Gram negative"
mo_is_intrinsic_resistant("E. coli", "vanco") # returns TRUE

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

30 as.rsi

as.rsi Interpret MIC and Disk Values, or Clean Raw R/SI Data

Description

Interpret minimum inhibitory concentration (MIC) values and disk diffusion diameters according to
EUCAST or CLSI, or clean up existing R/SI values. This transforms the input to a new class rsi,
which is an ordered factor with levels S < I < R.

Usage

as.rsi(x, ...)

is.rsi(x)

is.rsi.eligible(x, threshold = 0.05)

S3 method for class 'mic'
as.rsi(
x,
mo = NULL,
ab = deparse(substitute(x)),
guideline = "EUCAST",
uti = FALSE,
conserve_capped_values = FALSE,
add_intrinsic_resistance = FALSE,
reference_data = AMR::rsi_translation,
...

)

S3 method for class 'disk'
as.rsi(
x,
mo = NULL,
ab = deparse(substitute(x)),
guideline = "EUCAST",
uti = FALSE,
add_intrinsic_resistance = FALSE,
reference_data = AMR::rsi_translation,
...

)

S3 method for class 'data.frame'
as.rsi(
x,
...,
col_mo = NULL,
guideline = "EUCAST",
uti = NULL,
conserve_capped_values = FALSE,
add_intrinsic_resistance = FALSE,

as.rsi 31

reference_data = AMR::rsi_translation
)

Arguments

x vector of values (for class mic: MIC values in mg/L, for class disk: a disk
diffusion radius in millimetres)

... for using on a data.frame: names of columns to apply as.rsi() on (supports
tidy selection like AMX:VAN). Otherwise: arguments passed on to methods.

threshold maximum fraction of invalid antimicrobial interpretations of x, see Examples

mo any (vector of) text that can be coerced to valid microorganism codes with
as.mo(), can be left empty to determine it automatically

ab any (vector of) text that can be coerced to a valid antimicrobial code with as.ab()

guideline defaults to the latest included EUCAST guideline, see Details for all options

uti (Urinary Tract Infection) A vector with logicals (TRUE or FALSE) to specify
whether a UTI specific interpretation from the guideline should be chosen. For
using as.rsi() on a data.frame, this can also be a column containing logicals or
when left blank, the data set will be searched for a column ’specimen’, and rows
within this column containing ’urin’ (such as ’urine’, ’urina’) will be regarded
isolates from a UTI. See Examples.

conserve_capped_values

a logical to indicate that MIC values starting with ">" (but not ">=") must al-
ways return "R" , and that MIC values starting with "<" (but not "<=") must
always return "S"

add_intrinsic_resistance

(only useful when using a EUCAST guideline) a logical to indicate whether
intrinsic antibiotic resistance must also be considered for applicable bug-drug
combinations, meaning that e.g. ampicillin will always return "R" in Klebsiella
species. Determination is based on the intrinsic_resistant data set, that itself
is based on ’EUCAST Expert Rules’ and ’EUCAST Intrinsic Resistance and
Unusual Phenotypes’ v3.2 (2020).

reference_data a data.frame to be used for interpretation, which defaults to the rsi_translation
data set. Changing this argument allows for using own interpretation guide-
lines. This argument must contain a data set that is equal in structure to the
rsi_translation data set (same column names and column types). Please note
that the guideline argument will be ignored when reference_data is manu-
ally set.

col_mo column name of the IDs of the microorganisms (see as.mo()), defaults to the
first column of class mo. Values will be coerced using as.mo().

Details

How it Works:
The as.rsi() function works in four ways:

1. For cleaning raw / untransformed data. The data will be cleaned to only contain values S,
I and R and will try its best to determine this with some intelligence. For example, mixed
values with R/SI interpretations and MIC values such as "<0.25; S" will be coerced to "S".
Combined interpretations for multiple test methods (as seen in laboratory records) such as
"S; S" will be coerced to "S", but a value like "S; I" will return NA with a warning that the
input is unclear.

https://www.eucast.org/expert_rules_and_intrinsic_resistance/
https://www.eucast.org/expert_rules_and_intrinsic_resistance/

32 as.rsi

2. For interpreting minimum inhibitory concentration (MIC) values according to EUCAST
or CLSI. You must clean your MIC values first using as.mic(), that also gives your columns
the new data class mic. Also, be sure to have a column with microorganism names or codes.
It will be found automatically, but can be set manually using the mo argument.

• Using dplyr, R/SI interpretation can be done very easily with either:
your_data %>% mutate_if(is.mic, as.rsi) # until dplyr 1.0.0
your_data %>% mutate(across(where(is.mic), as.rsi)) # since dplyr 1.0.0

• Operators like "<=" will be stripped before interpretation. When using conserve_capped_values
= TRUE, an MIC value of e.g. ">2" will always return "R", even if the breakpoint accord-
ing to the chosen guideline is ">=4". This is to prevent that capped values from raw labo-
ratory data would not be treated conservatively. The default behaviour (conserve_capped_values
= FALSE) considers ">2" to be lower than ">=4" and might in this case return "S" or "I".

3. For interpreting disk diffusion diameters according to EUCAST or CLSI. You must clean
your disk zones first using as.disk(), that also gives your columns the new data class disk.
Also, be sure to have a column with microorganism names or codes. It will be found auto-
matically, but can be set manually using the mo argument.

• Using dplyr, R/SI interpretation can be done very easily with either:
your_data %>% mutate_if(is.disk, as.rsi) # until dplyr 1.0.0
your_data %>% mutate(across(where(is.disk), as.rsi)) # since dplyr 1.0.0

4. For interpreting a complete data set, with automatic determination of MIC values, disk
diffusion diameters, microorganism names or codes, and antimicrobial test results. This is
done very simply by running as.rsi(data).

Supported Guidelines:
For interpreting MIC values as well as disk diffusion diameters, currently implemented guidelines
are EUCAST (2011-2021) and CLSI (2010-2020).
Thus, the guideline argument must be set to e.g., "EUCAST 2021" or "CLSI 2020". By simply
using "EUCAST" (the default) or "CLSI" as input, the latest version of that guideline will auto-
matically be selected. You can set your own data set using the reference_data argument. The
guideline argument will then be ignored.

After Interpretation:
After using as.rsi(), you can use the eucast_rules() defined by EUCAST to (1) apply in-
ferred susceptibility and resistance based on results of other antimicrobials and (2) apply intrinsic
resistance based on taxonomic properties of a microorganism.

Machine-Readable Interpretation Guidelines:
The repository of this package contains a machine-readable version of all guidelines. This is
a CSV file consisting of 21,996 rows and 10 columns. This file is machine-readable, since it
contains one row for every unique combination of the test method (MIC or disk diffusion), the
antimicrobial agent and the microorganism. This allows for easy implementation of these rules
in laboratory information systems (LIS). Note that it only contains interpretation guidelines for
humans - interpretation guidelines from CLSI for animals were removed.

Other:
The function is.rsi() detects if the input contains class <rsi>. If the input is a data.frame, it
iterates over all columns and returns a logical vector.
The function is.rsi.eligible() returns TRUE when a columns contains at most 5% invalid
antimicrobial interpretations (not S and/or I and/or R), and FALSE otherwise. The threshold of 5%
can be set with the threshold argument. If the input is a data.frame, it iterates over all columns
and returns a logical vector.

https://github.com/msberends/AMR/blob/master/data-raw/rsi_translation.txt

as.rsi 33

Value

Ordered factor with new class <rsi>

Interpretation of R and S/I

In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided
to change the definitions of susceptibility testing categories R and S/I as shown below (https:
//www.eucast.org/newsiandr/).

• R = Resistant
A microorganism is categorised as Resistant when there is a high likelihood of therapeutic
failure even when there is increased exposure. Exposure is a function of how the mode of
administration, dose, dosing interval, infusion time, as well as distribution and excretion of
the antimicrobial agent will influence the infecting organism at the site of infection.

• S = Susceptible
A microorganism is categorised as Susceptible, standard dosing regimen, when there is a high
likelihood of therapeutic success using a standard dosing regimen of the agent.

• I = Increased exposure, but still susceptible
A microorganism is categorised as Susceptible, Increased exposure when there is a high likeli-
hood of therapeutic success because exposure to the agent is increased by adjusting the dosing
regimen or by its concentration at the site of infection.

This AMR package honours this (new) insight. Use susceptibility() (equal to proportion_SI())
to determine antimicrobial susceptibility and count_susceptible() (equal to count_SI()) to
count susceptible isolates.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

as.mic(), as.disk(), as.mo()

https://www.eucast.org/newsiandr/
https://www.eucast.org/newsiandr/
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

34 as.rsi

Examples

summary(example_isolates) # see all R/SI results at a glance

if (require("skimr")) {
class <rsi> supported in skim() too:
skim(example_isolates)

}

For INTERPRETING disk diffusion and MIC values -----------------------

a whole data set, even with combined MIC values and disk zones
df <- data.frame(microorganism = "Escherichia coli",

AMP = as.mic(8),
CIP = as.mic(0.256),
GEN = as.disk(18),
TOB = as.disk(16),
NIT = as.mic(32),
ERY = "R")

as.rsi(df)

for single values
as.rsi(x = as.mic(2),

mo = as.mo("S. pneumoniae"),
ab = "AMP",
guideline = "EUCAST")

as.rsi(x = as.disk(18),
mo = "Strep pneu", # `mo` will be coerced with as.mo()
ab = "ampicillin", # and `ab` with as.ab()
guideline = "EUCAST")

the dplyr way
if (require("dplyr")) {

df %>% mutate_if(is.mic, as.rsi)
df %>% mutate_if(function(x) is.mic(x) | is.disk(x), as.rsi)
df %>% mutate(across(where(is.mic), as.rsi))
df %>% mutate_at(vars(AMP:TOB), as.rsi)
df %>% mutate(across(AMP:TOB, as.rsi))

df %>%
mutate_at(vars(AMP:TOB), as.rsi, mo = .$microorganism)

to include information about urinary tract infections (UTI)
data.frame(mo = "E. coli",

NIT = c("<= 2", 32),
from_the_bladder = c(TRUE, FALSE)) %>%

as.rsi(uti = "from_the_bladder")

data.frame(mo = "E. coli",
NIT = c("<= 2", 32),
specimen = c("urine", "blood")) %>%

as.rsi() # automatically determines urine isolates

df %>%
mutate_at(vars(AMP:NIT), as.rsi, mo = "E. coli", uti = TRUE)

atc_online_property 35

}

For CLEANING existing R/SI values ------------------------------------

as.rsi(c("S", "I", "R", "A", "B", "C"))
as.rsi("<= 0.002; S") # will return "S"
rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370)))
is.rsi(rsi_data)
plot(rsi_data) # for percentages
barplot(rsi_data) # for frequencies

the dplyr way
if (require("dplyr")) {

example_isolates %>%
mutate_at(vars(PEN:RIF), as.rsi)

same:
example_isolates %>%

as.rsi(PEN:RIF)

fastest way to transform all columns with already valid AMR results to class `rsi`:
example_isolates %>%

mutate_if(is.rsi.eligible, as.rsi)

note: from dplyr 1.0.0 on, this will be:
example_isolates %>%
mutate(across(where(is.rsi.eligible), as.rsi))

}

atc_online_property Get ATC Properties from WHOCC Website

Description

Gets data from the WHO to determine properties of an ATC (e.g. an antibiotic), such as the name,
defined daily dose (DDD) or standard unit.

Usage

atc_online_property(
atc_code,
property,
administration = "O",
url = "https://www.whocc.no/atc_ddd_index/?code=%s&showdescription=no",
url_vet = "https://www.whocc.no/atcvet/atcvet_index/?code=%s&showdescription=no"

)

atc_online_groups(atc_code, ...)

atc_online_ddd(atc_code, ...)

36 atc_online_property

Arguments

atc_code a character or character vector with ATC code(s) of antibiotic(s)
property property of an ATC code. Valid values are "ATC", "Name", "DDD", "U" ("unit"),

"Adm.R", "Note" and groups. For this last option, all hierarchical groups of an
ATC code will be returned, see Examples.

administration type of administration when using property = "Adm.R", see Details
url url of website of the WHOCC. The sign %s can be used as a placeholder for

ATC codes.
url_vet url of website of the WHOCC for veterinary medicine. The sign %s can be used

as a placeholder for ATC_vet codes (that all start with "Q").
... arguments to pass on to atc_property

Details

Options for argument administration:

• "Implant" = Implant
• "Inhal" = Inhalation
• "Instill" = Instillation
• "N" = nasal
• "O" = oral
• "P" = parenteral
• "R" = rectal
• "SL" = sublingual/buccal
• "TD" = transdermal
• "V" = vaginal

Abbreviations of return values when using property = "U" (unit):

• "g" = gram
• "mg" = milligram
• ‘"mcg"“ = microgram
• "U" = unit
• "TU" = thousand units
• "MU" = million units
• "mmol" = millimole
• "ml" = millilitre (e.g. eyedrops)

N.B. This function requires an internet connection and only works if the following packages
are installed: curl, rvest, xml2.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

availability 37

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

https://www.whocc.no/atc_ddd_alterations__cumulative/ddd_alterations/abbrevations/

Examples

if (requireNamespace("curl") && requireNamespace("rvest") && requireNamespace("xml2")) {
oral DDD (Defined Daily Dose) of amoxicillin
atc_online_property("J01CA04", "DDD", "O")

parenteral DDD (Defined Daily Dose) of amoxicillin
atc_online_property("J01CA04", "DDD", "P")

atc_online_property("J01CA04", property = "groups") # search hierarchical groups of amoxicillin
}

availability Check Availability of Columns

Description

Easy check for data availability of all columns in a data set. This makes it easy to get an idea of
which antimicrobial combinations can be used for calculation with e.g. susceptibility() and
resistance().

Usage

availability(tbl, width = NULL)

Arguments

tbl a data.frame or list

width number of characters to present the visual availability, defaults to filling the
width of the console

Details

The function returns a data.frame with columns "resistant" and "visual_resistance". The
values in that columns are calculated with resistance().

Value

data.frame with column names of tbl as row names

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://www.whocc.no/atc_ddd_alterations__cumulative/ddd_alterations/abbrevations/

38 bug_drug_combinations

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

availability(example_isolates)

if (require("dplyr")) {
example_isolates %>%
filter(mo == as.mo("E. coli")) %>%
select_if(is.rsi) %>%
availability()

}

bug_drug_combinations Determine Bug-Drug Combinations

Description

Determine antimicrobial resistance (AMR) of all bug-drug combinations in your data set where at
least 30 (default) isolates are available per species. Use format() on the result to prettify it to a
publicable/printable format, see Examples.

Usage

bug_drug_combinations(x, col_mo = NULL, FUN = mo_shortname, ...)

S3 method for class 'bug_drug_combinations'
format(
x,
translate_ab = "name (ab, atc)",
language = get_locale(),
minimum = 30,
combine_SI = TRUE,
combine_IR = FALSE,
add_ab_group = TRUE,
remove_intrinsic_resistant = FALSE,
decimal.mark = getOption("OutDec"),

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

bug_drug_combinations 39

big.mark = ifelse(decimal.mark == ",", ".", ","),
...

)

Arguments

x data with antibiotic columns, such as amox, AMX and AMC

col_mo column name of the IDs of the microorganisms (see as.mo()), defaults to the
first column of class mo. Values will be coerced using as.mo().

FUN the function to call on the mo column to transform the microorganism codes,
defaults to mo_shortname()

... arguments passed on to FUN

translate_ab a character of length 1 containing column names of the antibiotics data set

language language of the returned text, defaults to system language (see get_locale())
and can also be set with getOption("AMR_locale"). Use language = NULL or
language = "" to prevent translation.

minimum the minimum allowed number of available (tested) isolates. Any isolate count
lower than minimum will return NA with a warning. The default number of 30
isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as
best practice, see Source.

combine_SI a logical to indicate whether all values of S and I must be merged into one, so the
output only consists of S+I vs. R (susceptible vs. resistant). This used to be the
argument combine_IR, but this now follows the redefinition by EUCAST about
the interpretation of I (increased exposure) in 2019, see section ’Interpretation
of S, I and R’ below. Default is TRUE.

combine_IR a logical to indicate whether values R and I should be summed

add_ab_group a logical to indicate where the group of the antimicrobials must be included as a
first column

remove_intrinsic_resistant

logical to indicate that rows and columns with 100% resistance for all tested
antimicrobials must be removed from the table

decimal.mark the character to be used to indicate the numeric decimal point.

big.mark character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

Details

The function format() calculates the resistance per bug-drug combination. Use combine_IR =
FALSE (default) to test R vs. S+I and combine_IR = TRUE to test R+I vs. S.

Value

The function bug_drug_combinations() returns a data.frame with columns "mo", "ab", "S", "I",
"R" and "total".

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

40 catalogue_of_life

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edi-
tion, 2014, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/standards/
products/microbiology/documents/m39/.

Examples

x <- bug_drug_combinations(example_isolates)
x
format(x, translate_ab = "name (atc)")

Use FUN to change to transformation of microorganism codes
bug_drug_combinations(example_isolates,

FUN = mo_gramstain)

bug_drug_combinations(example_isolates,
FUN = function(x) ifelse(x == as.mo("E. coli"),

"E. coli",
"Others"))

catalogue_of_life The Catalogue of Life

Description

This package contains the complete taxonomic tree of almost all microorganisms from the authori-
tative and comprehensive Catalogue of Life.

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://clsi.org/standards/products/microbiology/documents/m39/
https://clsi.org/standards/products/microbiology/documents/m39/
http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general

catalogue_of_life 41

Included Taxa

Included are:

• All ~58,000 (sub)species from the kingdoms of Archaea, Bacteria, Chromista and Protozoa

• All ~5,000 (sub)species from these orders of the kingdom of Fungi: Eurotiales, Microascales,
Mucorales, Onygenales, Pneumocystales, Saccharomycetales, Schizosaccharomycetales and
Tremellales, as well as ~4,600 other fungal (sub)species. The kingdom of Fungi is a very
large taxon with almost 300,000 different (sub)species, of which most are not microbial (but
rather macroscopic, like mushrooms). Because of this, not all fungi fit the scope of this pack-
age and including everything would tremendously slow down our algorithms too. By only
including the aforementioned taxonomic orders, the most relevant fungi are covered (such as
all species of Aspergillus, Candida, Cryptococcus, Histplasma, Pneumocystis, Saccharomyces
and Trichophyton).

• All ~2,200 (sub)species from ~50 other relevant genera from the kingdom of Animalia (such
as Strongyloides and Taenia)

• All ~14,000 previously accepted names of all included (sub)species (these were taxonomically
renamed)

• The complete taxonomic tree of all included (sub)species: from kingdom to subspecies

• The responsible author(s) and year of scientific publication

The Catalogue of Life (http://www.catalogueoflife.org) is the most comprehensive and au-
thoritative global index of species currently available. It holds essential information on the names,
relationships and distributions of over 1.9 million species. The Catalogue of Life is used to support
the major biodiversity and conservation information services such as the Global Biodiversity Infor-
mation Facility (GBIF), Encyclopedia of Life (EoL) and the International Union for Conservation
of Nature Red List. It is recognised by the Convention on Biological Diversity as a significant com-
ponent of the Global Taxonomy Initiative and a contribution to Target 1 of the Global Strategy for
Plant Conservation.

The syntax used to transform the original data to a cleansed R format, can be found here: https://
github.com/msberends/AMR/blob/master/data-raw/reproduction_of_microorganisms.R.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

Data set microorganisms for the actual data.
Function as.mo() to use the data for intelligent determination of microorganisms.

Examples

Get version info of included data set
catalogue_of_life_version()

Get a note when a species was renamed
mo_shortname("Chlamydophila psittaci")
Note: 'Chlamydophila psittaci' (Everett et al., 1999) was renamed back to
'Chlamydia psittaci' (Page, 1968)

http://www.catalogueoflife.org
https://github.com/msberends/AMR/blob/master/data-raw/reproduction_of_microorganisms.R
https://github.com/msberends/AMR/blob/master/data-raw/reproduction_of_microorganisms.R
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

42 catalogue_of_life_version

#> [1] "C. psittaci"

Get any property from the entire taxonomic tree for all included species
mo_class("E. coli")
#> [1] "Gammaproteobacteria"

mo_family("E. coli")
#> [1] "Enterobacteriaceae"

mo_gramstain("E. coli") # based on kingdom and phylum, see ?mo_gramstain
#> [1] "Gram-negative"

mo_ref("E. coli")
#> [1] "Castellani et al., 1919"

Do not get mistaken - this package is about microorganisms
mo_kingdom("C. elegans")
#> [1] "Fungi" # Fungi?!
mo_name("C. elegans")
#> [1] "Cladosporium elegans" # Because a microorganism was found

catalogue_of_life_version

Version info of included Catalogue of Life

Description

This function returns information about the included data from the Catalogue of Life.

Usage

catalogue_of_life_version()

Details

For LPSN, see microorganisms.

Value

a list, which prints in pretty format

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general

count 43

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

microorganisms

count Count Available Isolates

Description

These functions can be used to count resistant/susceptible microbial isolates. All functions support
quasiquotation with pipes, can be used in summarise() from the dplyr package and also support
grouped variables, see Examples.

count_resistant() should be used to count resistant isolates, count_susceptible() should be
used to count susceptible isolates.

Usage

count_resistant(..., only_all_tested = FALSE)

count_susceptible(..., only_all_tested = FALSE)

count_R(..., only_all_tested = FALSE)

count_IR(..., only_all_tested = FALSE)

count_I(..., only_all_tested = FALSE)

count_SI(..., only_all_tested = FALSE)

count_S(..., only_all_tested = FALSE)

count_all(..., only_all_tested = FALSE)

n_rsi(..., only_all_tested = FALSE)

count_df(
data,
translate_ab = "name",
language = get_locale(),
combine_SI = TRUE,
combine_IR = FALSE

)

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

44 count

Arguments

... one or more vectors (or columns) with antibiotic interpretations. They will be
transformed internally with as.rsi() if needed.

only_all_tested

(for combination therapies, i.e. using more than one variable for ...): a logical
to indicate that isolates must be tested for all antibiotics, see section Combina-
tion Therapy below

data a data.frame containing columns with class rsi (see as.rsi())

translate_ab a column name of the antibiotics data set to translate the antibiotic abbreviations
to, using ab_property()

language language of the returned text, defaults to system language (see get_locale())
and can also be set with getOption("AMR_locale"). Use language = NULL or
language = "" to prevent translation.

combine_SI a logical to indicate whether all values of S and I must be merged into one, so the
output only consists of S+I vs. R (susceptible vs. resistant). This used to be the
argument combine_IR, but this now follows the redefinition by EUCAST about
the interpretation of I (increased exposure) in 2019, see section ’Interpretation
of S, I and R’ below. Default is TRUE.

combine_IR a logical to indicate whether all values of I and R must be merged into one, so
the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is
outdated, see argument combine_SI.

Details

These functions are meant to count isolates. Use the resistance()/susceptibility() functions
to calculate microbial resistance/susceptibility.

The function count_resistant() is equal to the function count_R(). The function count_susceptible()
is equal to the function count_SI().

The function n_rsi() is an alias of count_all(). They can be used to count all available iso-
lates, i.e. where all input antibiotics have an available result (S, I or R). Their use is equal to
n_distinct(). Their function is equal to count_susceptible(...) + count_resistant(...).

The function count_df() takes any variable from data that has an rsi class (created with as.rsi())
and counts the number of S’s, I’s and R’s. It also supports grouped variables. The function
rsi_df() works exactly like count_df(), but adds the percentage of S, I and R.

Value

An integer

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

count 45

Interpretation of R and S/I

In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided
to change the definitions of susceptibility testing categories R and S/I as shown below (https:
//www.eucast.org/newsiandr/).

• R = Resistant
A microorganism is categorised as Resistant when there is a high likelihood of therapeutic
failure even when there is increased exposure. Exposure is a function of how the mode of
administration, dose, dosing interval, infusion time, as well as distribution and excretion of
the antimicrobial agent will influence the infecting organism at the site of infection.

• S = Susceptible
A microorganism is categorised as Susceptible, standard dosing regimen, when there is a high
likelihood of therapeutic success using a standard dosing regimen of the agent.

• I = Increased exposure, but still susceptible
A microorganism is categorised as Susceptible, Increased exposure when there is a high likeli-
hood of therapeutic success because exposure to the agent is increased by adjusting the dosing
regimen or by its concentration at the site of infection.

This AMR package honours this (new) insight. Use susceptibility() (equal to proportion_SI())
to determine antimicrobial susceptibility and count_susceptible() (equal to count_SI()) to
count susceptible isolates.

Combination Therapy

When using more than one variable for ... (= combination therapy), use only_all_tested to only
count isolates that are tested for all antibiotics/variables that you test them for. See this example for
two antibiotics, Drug A and Drug B, about how susceptibility() works to calculate the %SI:

--
only_all_tested = FALSE only_all_tested = TRUE
----------------------- -----------------------

Drug A Drug B include as include as include as include as
numerator denominator numerator denominator

-------- -------- ---------- ----------- ---------- -----------
S or I S or I X X X X
R S or I X X X X
<NA> S or I X X - -
S or I R X X X X
R R - X - X
<NA> R - - - -
S or I <NA> X X - -
R <NA> - - - -
<NA> <NA> - - - -

--

Please note that, in combination therapies, for only_all_tested = TRUE applies that:

count_S() + count_I() + count_R() = count_all()
proportion_S() + proportion_I() + proportion_R() = 1

and that, in combination therapies, for only_all_tested = FALSE applies that:

https://www.eucast.org/newsiandr/
https://www.eucast.org/newsiandr/

46 count

count_S() + count_I() + count_R() >= count_all()
proportion_S() + proportion_I() + proportion_R() >= 1

Using only_all_tested has no impact when only using one antibiotic as input.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

proportion_* to calculate microbial resistance and susceptibility.

Examples

example_isolates is a data set available in the AMR package.
?example_isolates

count_resistant(example_isolates$AMX) # counts "R"
count_susceptible(example_isolates$AMX) # counts "S" and "I"
count_all(example_isolates$AMX) # counts "S", "I" and "R"

be more specific
count_S(example_isolates$AMX)
count_SI(example_isolates$AMX)
count_I(example_isolates$AMX)
count_IR(example_isolates$AMX)
count_R(example_isolates$AMX)

Count all available isolates
count_all(example_isolates$AMX)
n_rsi(example_isolates$AMX)

n_rsi() is an alias of count_all().
Since it counts all available isolates, you can
calculate back to count e.g. susceptible isolates.
These results are the same:
count_susceptible(example_isolates$AMX)
susceptibility(example_isolates$AMX) * n_rsi(example_isolates$AMX)

if (require("dplyr")) {
example_isolates %>%
group_by(hospital_id) %>%
summarise(R = count_R(CIP),

I = count_I(CIP),
S = count_S(CIP),
n1 = count_all(CIP), # the actual total; sum of all three
n2 = n_rsi(CIP), # same - analogous to n_distinct
total = n()) # NOT the number of tested isolates!

Count co-resistance between amoxicillin/clav acid and gentamicin,
so we can see that combination therapy does a lot more than mono therapy.
Please mind that `susceptibility()` calculates percentages right away instead.
example_isolates %>% count_susceptible(AMC) # 1433

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

custom_eucast_rules 47

example_isolates %>% count_all(AMC) # 1879

example_isolates %>% count_susceptible(GEN) # 1399
example_isolates %>% count_all(GEN) # 1855

example_isolates %>% count_susceptible(AMC, GEN) # 1764
example_isolates %>% count_all(AMC, GEN) # 1936

Get number of S+I vs. R immediately of selected columns
example_isolates %>%

select(AMX, CIP) %>%
count_df(translate = FALSE)

It also supports grouping variables
example_isolates %>%

select(hospital_id, AMX, CIP) %>%
group_by(hospital_id) %>%
count_df(translate = FALSE)

}

custom_eucast_rules Define Custom EUCAST Rules

Description

Define custom EUCAST rules for your organisation or specific analysis and use the output of this
function in eucast_rules().

Usage

custom_eucast_rules(...)

Arguments

... rules in formula notation, see Examples

Details

Some organisations have their own adoption of EUCAST rules. This function can be used to define
custom EUCAST rules to be used in the eucast_rules() function.

Value

A list containing the custom rules

How it works

Basics:
If you are familiar with the case_when() function of the dplyr package, you will recognise the
input method to set your own rules. Rules must be set using what R considers to be the ’formula
notation’. The rule itself is written before the tilde (~) and the consequence of the rule is written
after the tilde:

48 custom_eucast_rules

x <- custom_eucast_rules(TZP == "S" ~ aminopenicillins == "S",
TZP == "R" ~ aminopenicillins == "R")

These are two custom EUCAST rules: if TZP (piperacillin/tazobactam) is "S", all aminopeni-
cillins (ampicillin and amoxicillin) must be made "S", and if TZP is "R", aminopenicillins must
be made "R". These rules can also be printed to the console, so it is immediately clear how they
work:

x
#> A set of custom EUCAST rules:
#>
#> 1. If TZP is S then set to S:
#> amoxicillin (AMX), ampicillin (AMP)
#>
#> 2. If TZP is R then set to R:
#> amoxicillin (AMX), ampicillin (AMP)

The rules (the part before the tilde, in above example TZP == "S" and TZP == "R") must be evalu-
able in your data set: it should be able to run as a filter in your data set without errors. This means
for the above example that the column TZP must exist. We will create a sample data set and test
the rules set:

df <- data.frame(mo = c("E. coli", "K. pneumoniae"),
TZP = "R",
amox = "",
AMP = "")

df
#> mo TZP amox AMP
#> 1 E. coli R
#> 2 K. pneumoniae R

eucast_rules(df, rules = "custom", custom_rules = x)
#> mo TZP amox AMP
#> 1 E. coli R R R
#> 2 K. pneumoniae R R R

Using taxonomic properties in rules:
There is one exception in variables used for the rules: all column names of the microorganisms
data set can also be used, but do not have to exist in the data set. These column names are:
mo, fullname, kingdom, phylum, class, order, family, genus, species, subspecies, rank,
ref, species_id, source, prevalence and snomed. Thus, this next example will work as well,
despite the fact that the df data set does not contain a column genus:

y <- custom_eucast_rules(TZP == "S" & genus == "Klebsiella" ~ aminopenicillins == "S",
TZP == "R" & genus == "Klebsiella" ~ aminopenicillins == "R")

eucast_rules(df, rules = "custom", custom_rules = y)
#> mo TZP amox AMP
#> 1 E. coli R
#> 2 K. pneumoniae R R R

Usage of antibiotic group names:
It is possible to define antibiotic groups instead of single antibiotics for the rule consequence,
the part after the tilde. In above examples, the antibiotic group aminopenicillins is used to
include ampicillin and amoxicillin. The following groups are allowed (case-insensitive). Within
parentheses are the antibiotic agents that will be matched when running the rule.

custom_eucast_rules 49

• aminoglycosides
(amikacin, amikacin/fosfomycin, amphotericin B-high, apramycin, arbekacin, astromicin,
bekanamycin, dibekacin, framycetin, gentamicin, gentamicin-high, habekacin, hygromycin,
isepamicin, kanamycin, kanamycin-high, kanamycin/cephalexin, micronomicin, neomycin,
netilmicin, pentisomicin, plazomicin, propikacin, ribostamycin, sisomicin, streptoduocin,
streptomycin, streptomycin-high, tobramycin, tobramycin-high)

• aminopenicillins
(amoxicillin, ampicillin)

• betalactams
(amoxicillin, amoxicillin/clavulanic acid, amoxicillin/sulbactam, ampicillin, ampicillin/sulbactam,
apalcillin, aspoxicillin, avibactam, azidocillin, azlocillin, aztreonam, aztreonam/avibactam,
bacampicillin, benzathine benzylpenicillin, benzathine phenoxymethylpenicillin, benzylpeni-
cillin, biapenem, cadazolid, carbenicillin, carindacillin, cefacetrile, cefaclor, cefadroxil, ce-
faloridine, cefamandole, cefatrizine, cefazedone, cefazolin, cefcapene, cefcapene pivoxil,
cefdinir, cefditoren, cefditoren pivoxil, cefepime, cefepime/clavulanic acid, cefepime/tazobactam,
cefetamet, cefetamet pivoxil, cefetecol (Cefcatacol), cefetrizole, cefixime, cefmenoxime,
cefmetazole, cefodizime, cefonicid, cefoperazone, cefoperazone/sulbactam, ceforanide, ce-
foselis, cefotaxime, cefotaxime/clavulanic acid, cefotaxime/sulbactam, cefotetan, cefotiam,
cefotiam hexetil, cefovecin, cefoxitin, cefoxitin screening, cefozopran, cefpimizole, cefpi-
ramide, cefpirome, cefpodoxime, cefpodoxime proxetil, cefpodoxime/clavulanic acid, cef-
prozil, cefquinome, cefroxadine, cefsulodin, cefsumide, ceftaroline, ceftaroline/avibactam,
ceftazidime, ceftazidime/avibactam, ceftazidime/clavulanic acid, cefteram, cefteram pivoxil,
ceftezole, ceftibuten, ceftiofur, ceftizoxime, ceftizoxime alapivoxil, ceftobiprole, ceftobip-
role medocaril, ceftolozane/enzyme inhibitor, ceftolozane/tazobactam, ceftriaxone, cefurox-
ime, cefuroxime axetil, cephalexin, cephalothin, cephapirin, cephradine, ciclacillin, clome-
tocillin, cloxacillin, dicloxacillin, doripenem, epicillin, ertapenem, flucloxacillin, hetacillin,
imipenem, imipenem/EDTA, imipenem/relebactam, latamoxef, lenampicillin, loracarbef, mecil-
linam (Amdinocillin), meropenem, meropenem/nacubactam, meropenem/vaborbactam, metampi-
cillin, methicillin, mezlocillin, mezlocillin/sulbactam, nacubactam, nafcillin, oxacillin, pa-
nipenem, penamecillin, penicillin/novobiocin, penicillin/sulbactam, phenethicillin, phenoxymethylpeni-
cillin, piperacillin, piperacillin/sulbactam, piperacillin/tazobactam, piridicillin, pivampicillin,
pivmecillinam, procaine benzylpenicillin, propicillin, razupenem, ritipenem, ritipenem acoxil,
sarmoxicillin, sulbactam, sulbenicillin, sultamicillin, talampicillin, tazobactam, tebipenem,
temocillin, ticarcillin, ticarcillin/clavulanic acid)

• carbapenems
(biapenem, doripenem, ertapenem, imipenem, imipenem/EDTA, imipenem/relebactam, meropenem,
meropenem/nacubactam, meropenem/vaborbactam, panipenem, razupenem, ritipenem, ri-
tipenem acoxil, tebipenem)

• cephalosporins
(cadazolid, cefacetrile, cefaclor, cefadroxil, cefaloridine, cefamandole, cefatrizine, cefaze-
done, cefazolin, cefcapene, cefcapene pivoxil, cefdinir, cefditoren, cefditoren pivoxil, ce-
fepime, cefepime/clavulanic acid, cefepime/tazobactam, cefetamet, cefetamet pivoxil, ce-
fetecol (Cefcatacol), cefetrizole, cefixime, cefmenoxime, cefmetazole, cefodizime, cefonicid,
cefoperazone, cefoperazone/sulbactam, ceforanide, cefoselis, cefotaxime, cefotaxime/clavulanic
acid, cefotaxime/sulbactam, cefotetan, cefotiam, cefotiam hexetil, cefovecin, cefoxitin, ce-
foxitin screening, cefozopran, cefpimizole, cefpiramide, cefpirome, cefpodoxime, cefpo-
doxime proxetil, cefpodoxime/clavulanic acid, cefprozil, cefquinome, cefroxadine, cefsu-
lodin, cefsumide, ceftaroline, ceftaroline/avibactam, ceftazidime, ceftazidime/avibactam, cef-
tazidime/clavulanic acid, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftiofur, cefti-
zoxime, ceftizoxime alapivoxil, ceftobiprole, ceftobiprole medocaril, ceftolozane/enzyme
inhibitor, ceftolozane/tazobactam, ceftriaxone, cefuroxime, cefuroxime axetil, cephalexin,
cephalothin, cephapirin, cephradine, latamoxef, loracarbef)

50 custom_eucast_rules

• cephalosporins_1st
(cefacetrile, cefadroxil, cefaloridine, cefatrizine, cefazedone, cefazolin, cefroxadine, cefte-
zole, cephalexin, cephalothin, cephapirin, cephradine)

• cephalosporins_2nd
(cefaclor, cefamandole, cefmetazole, cefonicid, ceforanide, cefotetan, cefotiam, cefoxitin,
cefoxitin screening, cefprozil, cefuroxime, cefuroxime axetil, loracarbef)

• cephalosporins_3rd
(cadazolid, cefcapene, cefcapene pivoxil, cefdinir, cefditoren, cefditoren pivoxil, cefetamet,
cefetamet pivoxil, cefixime, cefmenoxime, cefodizime, cefoperazone, cefoperazone/sulbactam,
cefotaxime, cefotaxime/clavulanic acid, cefotaxime/sulbactam, cefotiam hexetil, cefovecin,
cefpimizole, cefpiramide, cefpodoxime, cefpodoxime proxetil, cefpodoxime/clavulanic acid,
cefsulodin, ceftazidime, ceftazidime/avibactam, ceftazidime/clavulanic acid, cefteram, cefteram
pivoxil, ceftibuten, ceftiofur, ceftizoxime, ceftizoxime alapivoxil, ceftriaxone, latamoxef)

• cephalosporins_except_caz
(cadazolid, cefacetrile, cefaclor, cefadroxil, cefaloridine, cefamandole, cefatrizine, cefaze-
done, cefazolin, cefcapene, cefcapene pivoxil, cefdinir, cefditoren, cefditoren pivoxil, ce-
fepime, cefepime/clavulanic acid, cefepime/tazobactam, cefetamet, cefetamet pivoxil, ce-
fetecol (Cefcatacol), cefetrizole, cefixime, cefmenoxime, cefmetazole, cefodizime, cefonicid,
cefoperazone, cefoperazone/sulbactam, ceforanide, cefoselis, cefotaxime, cefotaxime/clavulanic
acid, cefotaxime/sulbactam, cefotetan, cefotiam, cefotiam hexetil, cefovecin, cefoxitin, ce-
foxitin screening, cefozopran, cefpimizole, cefpiramide, cefpirome, cefpodoxime, cefpo-
doxime proxetil, cefpodoxime/clavulanic acid, cefprozil, cefquinome, cefroxadine, cefsu-
lodin, cefsumide, ceftaroline, ceftaroline/avibactam, ceftazidime/avibactam, ceftazidime/clavulanic
acid, cefteram, cefteram pivoxil, ceftezole, ceftibuten, ceftiofur, ceftizoxime, ceftizoxime
alapivoxil, ceftobiprole, ceftobiprole medocaril, ceftolozane/enzyme inhibitor, ceftolozane/tazobactam,
ceftriaxone, cefuroxime, cefuroxime axetil, cephalexin, cephalothin, cephapirin, cephradine,
latamoxef, loracarbef)

• fluoroquinolones
(ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin,
lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pazufloxacin, pefloxacin, prulifloxacin,
rufloxacin, sparfloxacin, temafloxacin, trovafloxacin)

• glycopeptides
(avoparcin, dalbavancin, norvancomycin, oritavancin, ramoplanin, teicoplanin, teicoplanin-
macromethod, telavancin, vancomycin, vancomycin-macromethod)

• glycopeptides_except_lipo
(avoparcin, norvancomycin, ramoplanin, teicoplanin, teicoplanin-macromethod, vancomycin,
vancomycin-macromethod)

• lincosamides
(clindamycin, lincomycin, pirlimycin)

• lipoglycopeptides
(dalbavancin, oritavancin, telavancin)

• macrolides
(azithromycin, clarithromycin, dirithromycin, erythromycin, flurithromycin, josamycin, mide-
camycin, miocamycin, oleandomycin, rokitamycin, roxithromycin, spiramycin, telithromycin,
troleandomycin)

• oxazolidinones
(cycloserine, linezolid, tedizolid, thiacetazone)

• penicillins
(amoxicillin, amoxicillin/clavulanic acid, amoxicillin/sulbactam, ampicillin, ampicillin/sulbactam,
apalcillin, aspoxicillin, avibactam, azidocillin, azlocillin, aztreonam, aztreonam/avibactam,
bacampicillin, benzathine benzylpenicillin, benzathine phenoxymethylpenicillin, benzylpeni-

custom_eucast_rules 51

cillin, carbenicillin, carindacillin, ciclacillin, clometocillin, cloxacillin, dicloxacillin, epi-
cillin, flucloxacillin, hetacillin, lenampicillin, mecillinam (Amdinocillin), metampicillin, me-
thicillin, mezlocillin, mezlocillin/sulbactam, nacubactam, nafcillin, oxacillin, penamecillin,
penicillin/novobiocin, penicillin/sulbactam, phenethicillin, phenoxymethylpenicillin, piperacillin,
piperacillin/sulbactam, piperacillin/tazobactam, piridicillin, pivampicillin, pivmecillinam, pro-
caine benzylpenicillin, propicillin, sarmoxicillin, sulbactam, sulbenicillin, sultamicillin, ta-
lampicillin, tazobactam, temocillin, ticarcillin, ticarcillin/clavulanic acid)

• polymyxins
(colistin, polymyxin B, polymyxin B/polysorbate 80)

• streptogramins
(pristinamycin, quinupristin/dalfopristin)

• tetracyclines
(chlortetracycline, clomocycline, demeclocycline, doxycycline, eravacycline, lymecycline,
metacycline, minocycline, oxytetracycline, penimepicycline, rolitetracycline, tetracycline,
tigecycline)

• tetracyclines_except_tgc
(chlortetracycline, clomocycline, demeclocycline, doxycycline, eravacycline, lymecycline,
metacycline, minocycline, oxytetracycline, penimepicycline, rolitetracycline, tetracycline)

• ureidopenicillins
(azlocillin, mezlocillin, piperacillin, piperacillin/tazobactam)

Maturing Lifecycle

The lifecycle of this function is maturing. The unlying code of a maturing function has been
roughed out, but finer details might still change. Since this function needs wider usage and more
extensive testing, you are very welcome to suggest changes at our repository or write us an email
(see section ’Contact Us’).

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

x <- custom_eucast_rules(AMC == "R" & genus == "Klebsiella" ~ aminopenicillins == "R",
AMC == "I" & genus == "Klebsiella" ~ aminopenicillins == "I")

eucast_rules(example_isolates,
rules = "custom",
custom_rules = x,
info = FALSE)

combine rule sets
x2 <- c(x,

custom_eucast_rules(TZP == "R" ~ carbapenems == "R"))
x2

https://github.com/msberends/AMR/issues
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

52 dosage

dosage Data Set with Treatment Dosages as Defined by EUCAST

Description

EUCAST breakpoints used in this package are based on the dosages in this data set. They can be
retrieved with eucast_dosage().

Usage

dosage

Format

A data.frame with 169 observations and 9 variables:

• ab
Antibiotic ID as used in this package (such as AMC), using the official EARS-Net (European
Antimicrobial Resistance Surveillance Network) codes where available

• name
Official name of the antimicrobial agent as used by WHONET/EARS-Net or the WHO

• type
Type of the dosage, either "high_dosage", "standard_dosage" or "uncomplicated_uti"

• dose
Dose, such as "2 g" or "25 mg/kg"

• dose_times
Number of times a dose must be administered

• administration
Route of administration, either "im", "iv" or "oral"

• notes
Additional dosage notes

• original_txt
Original text in the PDF file of EUCAST

• eucast_version
Version number of the EUCAST Clinical Breakpoints guideline to which these dosages apply

Details

’EUCAST Clinical Breakpoint Tables’ v11.0 (2021) are based on the dosages in this data set.

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

https://www.eucast.org/clinical_breakpoints/
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html

eucast_rules 53

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

eucast_rules Apply EUCAST Rules

Description

Apply rules for clinical breakpoints and intrinsic resistance as defined by the European Commit-
tee on Antimicrobial Susceptibility Testing (EUCAST, https://eucast.org), see Source. Use
eucast_dosage() to get a data.frame with advised dosages of a certain bug-drug combination,
which is based on the dosage data set.

To improve the interpretation of the antibiogram before EUCAST rules are applied, some non-
EUCAST rules can applied at default, see Details.

Usage

eucast_rules(
x,
col_mo = NULL,
info = interactive(),
rules = getOption("AMR_eucastrules", default = c("breakpoints", "expert")),
verbose = FALSE,
version_breakpoints = 11,
version_expertrules = 3.2,
ampc_cephalosporin_resistance = NA,
only_rsi_columns = FALSE,
custom_rules = NULL,
...

)

eucast_dosage(ab, administration = "iv", version_breakpoints = 11)

Arguments

x data with antibiotic columns, such as amox, AMX and AMC

col_mo column name of the IDs of the microorganisms (see as.mo()), defaults to the
first column of class mo. Values will be coerced using as.mo().

info a logical to indicate whether progress should be printed to the console, defaults
to only print while in interactive sessions

rules a character vector that specifies which rules should be applied. Must be one
or more of "breakpoints", "expert", "other", "custom", "all", and de-
faults to c("breakpoints","expert"). The default value can be set to another
value, e.g. using options(AMR_eucastrules = "all"). If using "custom", be
sure to fill in argument custom_rules too. Custom rules can be created with
custom_eucast_rules().

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://eucast.org

54 eucast_rules

verbose a logical to turn Verbose mode on and off (default is off). In Verbose mode, the
function does not apply rules to the data, but instead returns a data set in logbook
form with extensive info about which rows and columns would be effected and
in which way. Using Verbose mode takes a lot more time.

version_breakpoints

the version number to use for the EUCAST Clinical Breakpoints guideline. Can
be either "11.0" or "10.0".

version_expertrules

the version number to use for the EUCAST Expert Rules and Intrinsic Resis-
tance guideline. Can be either "3.2" or "3.1".

ampc_cephalosporin_resistance

a character value that should be applied to cefotaxime, ceftriaxone and cef-
tazidime for AmpC de-repressed cephalosporin-resistant mutants, defaults to NA.
Currently only works when version_expertrules is 3.2; ’EUCAST Expert
Rules v3.2 on Enterobacterales’ states that results of cefotaxime, ceftriaxone
and ceftazidime should be reported with a note, or results should be suppressed
(emptied) for these three agents. A value of NA (the default) for this argument
will remove results for these three agents, while e.g. a value of "R" will make
the results for these agents resistant. Use NULL or FALSE to not alter results for
these three agents of AmpC de-repressed cephalosporin-resistant mutants. Us-
ing TRUE is equal to using "R".
For EUCAST Expert Rules v3.2, this rule applies to: Citrobacter braakii, Cit-
robacter freundii, Citrobacter gillenii, Citrobacter murliniae, Citrobacter ro-
denticum, Citrobacter sedlakii, Citrobacter werkmanii, Citrobacter youngae,
Enterobacter, Hafnia alvei, Klebsiella aerogenes, Morganella morganii, Provi-
dencia and Serratia.

only_rsi_columns

a logical to indicate whether only antibiotic columns must be detected that were
transformed to class <rsi> (see as.rsi()) on beforehand (defaults to FALSE)

custom_rules custom rules to apply, created with custom_eucast_rules()

... column name of an antibiotic, see section Antibiotics below

ab any (vector of) text that can be coerced to a valid antibiotic code with as.ab()

administration route of administration, either "im", "iv" or "oral"

Details

Note: This function does not translate MIC values to RSI values. Use as.rsi() for that.
Note: When ampicillin (AMP, J01CA01) is not available but amoxicillin (AMX, J01CA04) is, the
latter will be used for all rules where there is a dependency on ampicillin. These drugs are inter-
changeable when it comes to expression of antimicrobial resistance.

The file containing all EUCAST rules is located here: https://github.com/msberends/AMR/
blob/master/data-raw/eucast_rules.tsv. Note: Old taxonomic names are replaced with the
current taxonomy where applicable. For example, Ochrobactrum anthropi was renamed to Brucella
anthropi in 2020; the original EUCAST rules v3.1 and v3.2 did not yet contain this new taxonomic
name. The file used as input for this AMR package contains the taxonomy updated until March 2021.

Custom Rules:
Custom rules can be created using custom_eucast_rules(), e.g.:

https://github.com/msberends/AMR/blob/master/data-raw/eucast_rules.tsv
https://github.com/msberends/AMR/blob/master/data-raw/eucast_rules.tsv

eucast_rules 55

x <- custom_eucast_rules(AMC == "R" & genus == "Klebsiella" ~ aminopenicillins == "R",
AMC == "I" & genus == "Klebsiella" ~ aminopenicillins == "I")

eucast_rules(example_isolates, rules = "custom", custom_rules = x)

’Other’ Rules:
Before further processing, two non-EUCAST rules about drug combinations can be applied to
improve the efficacy of the EUCAST rules, and the reliability of your data (analysis). These rules
are:

1. A drug with enzyme inhibitor will be set to S if the same drug without enzyme inhibitor is S
2. A drug without enzyme inhibitor will be set to R if the same drug with enzyme inhibitor is

R

Important examples include amoxicillin and amoxicillin/clavulanic acid, and trimethoprim and
trimethoprim/sulfamethoxazole. Needless to say, for these rules to work, both drugs must be
available in the data set.
Since these rules are not officially approved by EUCAST, they are not applied at default. To use
these rules, include "other" to the rules argument, or use eucast_rules(...,rules = "all").
You can also set the option AMR_eucastrules, i.e. run options(AMR_eucastrules = "all").

Value

The input of x, possibly with edited values of antibiotics. Or, if verbose = TRUE, a data.frame with
all original and new values of the affected bug-drug combinations.

Antibiotics

To define antibiotics column names, leave as it is to determine it automatically with guess_ab_col()
or input a text (case-insensitive), or use NULL to skip a column (e.g. TIC = NULL to skip ticarcillin).
Manually defined but non-existing columns will be skipped with a warning.

The following antibiotics are eligible for the functions eucast_rules() and mdro(). These are
shown below in the format ’name (antimicrobial ID, ATC code)’, sorted alphabetically:

Amikacin (AMK, J01MA02), amoxicillin (AMX, J01MA04), amoxicillin/clavulanic acid (AMC, J01MA08),
ampicillin (AMP, J01MA16), ampicillin/sulbactam (SAM, J01MA15), azidocillin (AZD, J01MA11),
azithromycin (AZM, J01MA12), azlocillin (AZL, J01MA07), aztreonam (ATM, J01MA14), bacampi-
cillin (BAM, J01MA06), benzathine benzylpenicillin (BNB, J01MA01), benzathine phenoxymethylpeni-
cillin (BNP, J01MA18), benzylpenicillin (PEN, J01MA03), cadazolid (CDZ, J01MA17), carbeni-
cillin (CRB, J01MA10), carindacillin (CRN, J01MA09), cefacetrile (CAC, J01MA05), cefaclor (CEC,
J01MA13), cefadroxil (CFR, J01CA01), cefaloridine (RID, J01CA04), cefamandole (MAN, J01CA12),
cefatrizine (CTZ, J01CR05), cefazedone (CZD, J01CA13), cefazolin (CZO, J01AA02), cefdinir (CDR,
J01FA10), cefditoren (DIT, J01FA09), cefepime (FEP, J01CR02), cefetamet (CAT, J01AA08), ce-
fixime (CFM, J01FA06), cefmenoxime (CMX, J01CF04), cefmetazole (CMZ, J01CF05), cefodizime
(DIZ, J01CR01), cefonicid (CID, J01CE04), cefoperazone (CFP, J01CA09), cefoperazone/sulbactam
(CSL, J01DF01), ceforanide (CND, J01CA06), cefotaxime (CTX, J01CE08), cefotetan (CTT, J01CE10),
cefotiam (CTF, J01CE01), cefoxitin (FOX, J01CA03), cefpiramide (CPM, J01CA05), cefpirome (CPO,
J01CE07), cefpodoxime (CPD, J01CF02), cefprozil (CPR, J01CF01), cefroxadine (CRD, J01CA07),
cefsulodin (CFS, J01CA18), ceftaroline (CPT, J01CA11), ceftazidime (CAZ, J01CA14), ceftazidime/avibactam
(CZA, J01CF03), ceftazidime/clavulanic acid (CCV, J01CA10), ceftezole (CTL, J01CE06), ceftibuten
(CTB, J01CE05), ceftizoxime (CZX, J01CE02), ceftobiprole (BPR, J01CA02), ceftobiprole medo-
caril (CFM1, J01CA08), ceftolozane/enzyme inhibitor (CEI, J01CE09), ceftriaxone (CRO, J01CE03),
cefuroxime (CXM, J01CG01), cephalexin (LEX, J01CA16), cephalothin (CEP, J01CR04), cephapirin
(HAP, J01CA15), cephradine (CED, J01CG02), chloramphenicol (CHL, J01CA17), ciprofloxacin (CIP,

https://www.whocc.no/atc/structure_and_principles/
https://www.whocc.no/atc_ddd_index/?code=J01GB06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DF01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD16&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD62&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DE02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD52&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD52&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI54&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01BA01&showdescription=no

56 eucast_rules

J01CR03), clarithromycin (CLR, J01DD09), clindamycin (CLI, J01DB10), clometocillin (CLM, J01DC04),
cloxacillin (CLO, J01DB05), colistin (COL, J01DB02), cycloserine (CYC, J01DC03), dalbavancin
(DAL, J01DB07), daptomycin (DAP, J01DB06), dibekacin (DKB, J01DB04), dicloxacillin (DIC, J01DD15),
dirithromycin (DIR, J01DD16), doripenem (DOR, J01DE01), doxycycline (DOX, J01DD10), enoxacin
(ENX, J01DD08), epicillin (EPC, J01DD05), ertapenem (ETP, J01DC09), erythromycin (ERY, J01DD09),
fleroxacin (FLE, J01DC06), flucloxacillin (FLC, J01DD12), flurithromycin (FLR1, J01DD62), fos-
fomycin (FOS, J01DC11), fusidic acid (FUS, J01DD01), gatifloxacin (GAT, J01DC05), gemifloxacin
(GEM, J01DC07), gentamicin (GEN, J01DC01), grepafloxacin (GRX, J01DD11), hetacillin (HET, J01DE02),
imipenem (IPM, J01DD13), isepamicin (ISE, J01DC10), josamycin (JOS, J01DB11), kanamycin
(KAN, J01DD03), latamoxef (LTM, J01DI02), levofloxacin (LVX, J01DD02), lincomycin (LIN, J01DD52),
linezolid (LNZ, J01DD52), lomefloxacin (LOM, J01DB12), loracarbef (LOR, J01DD14), mecillinam
(Amdinocillin) (MEC, J01DD07), meropenem (MEM, J01DI01), meropenem/vaborbactam (MEV, J01DI01),
metampicillin (MTM, J01DI54), methicillin (MET, J01DD04), mezlocillin (MEZ, J01DC02), mide-
camycin (MID, J01DB01), minocycline (MNO, J01DB03), miocamycin (MCM, J01DB08), moxifloxacin
(MFX, J01DB09), nalidixic acid (NAL, J01DD06), neomycin (NEO, J01DC08), netilmicin (NET, J01DH04),
nitrofurantoin (NIT, J01DH03), norfloxacin (NOR, J01DH51), novobiocin (NOV, J01DH02), ofloxacin
(OFX, J01DH52), oleandomycin (OLE, J01XA02), oritavancin (ORI, J01XA01), oxacillin (OXA, J01XC01),
pazufloxacin (PAZ, J01FA13), pefloxacin (PEF, J01FA01), penamecillin (PNM, J01FA14), phenethi-
cillin (PHE, J01FA07), phenoxymethylpenicillin (PHN, J01FA03), piperacillin (PIP, J01FA11), piperacillin/tazobactam
(TZP, J01FA05), pivampicillin (PVM, J01FA12), pivmecillinam (PME, J01FA02), polymyxin B (PLB,
J01FA15), pristinamycin (PRI, J01FA08), procaine benzylpenicillin (PRB, J01FF02), propicillin
(PRP, J01FG01), prulifloxacin (PRU, J01FG02), quinupristin/dalfopristin (QDA, J04AB02), ribostamycin
(RST, J01XX09), rifampicin (RIF, J01XX08), rokitamycin (ROK, J01AA07), roxithromycin (RXT,
J01XB01), rufloxacin (RFL, J01XB02), sisomicin (SIS, J01XE01), sparfloxacin (SPX, J01AA12),
spiramycin (SPI, J01EA01), streptoduocin (STR, J01XX01), streptomycin (STR1, J01BA01), sul-
bactam (SUL, J01GB06), sulbenicillin (SBC, J01GB09), sulfadiazine (SDI, J01GB03), sulfadiazine/trimethoprim
(SLT1, J01GB11), sulfadimethoxine (SUD, J01GB04), sulfadimidine (SDM, J01GB05), sulfadimi-
dine/trimethoprim (SLT2, J01GB07), sulfafurazole (SLF, J01GB10), sulfaisodimidine (SLF1, J01GB08),
sulfalene (SLF2, J01GA02), sulfamazone (SZO, J01GA01), sulfamerazine (SLF3, J01GB01), sul-
famerazine/trimethoprim (SLT3, J01EE01), sulfamethizole (SLF4, J01MB02), sulfamethoxazole
(SMX, QJ01XX95), sulfamethoxypyridazine (SLF5, J01FF01), sulfametomidine (SLF6, J01XA04),
sulfametoxydiazine (SLF7, J01XA05), sulfametrole/trimethoprim (SLT4, J01XA03), sulfamoxole
(SLF8, J04AB01), sulfamoxole/trimethoprim (SLT5, J01XX11), sulfanilamide (SLF9, J01EC02),
sulfaperin (SLF10, J01ED01), sulfaphenazole (SLF11, J01EB03), sulfapyridine (SLF12, J01EB05),
sulfathiazole (SUT, J01EB01), sulfathiourea (SLF13, J01ED02), sultamicillin (SLT6, J01ED09), ta-
lampicillin (TAL, J01ED07), tazobactam (TAZ, J01EB02), tedizolid (TZD, J01EC01), teicoplanin
(TEC, J01ED05), telavancin (TLV, J01ED03), telithromycin (TLT, J01ED04), temafloxacin (TMX,
J01EC03), temocillin (TEM, J01EB06), tetracycline (TCY, J01ED06), ticarcillin (TIC, J01ED08),
ticarcillin/clavulanic acid (TCC, J01EB04), tigecycline (TGC, J01EB07), tobramycin (TOB, J01EB08),
trimethoprim (TMP, J01EE02), trimethoprim/sulfamethoxazole (SXT, J01EE05), troleandomycin (TRL,
J01EE07), trovafloxacin (TVA, J01EE03), vancomycin (VAN, J01EE04)

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

https://www.whocc.no/atc_ddd_index/?code=J01MA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FF01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J04AB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XC01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA16&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA18&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH51&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FF02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH52&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=QJ01XX95&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA18&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FG01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA17&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FG02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J04AB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CG01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA16&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EC02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EC01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EC03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CG02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA17&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA01&showdescription=no

eucast_rules 57

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

• EUCAST Expert Rules. Version 2.0, 2012.
Leclercq et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol
Infect. 2013;19(2):141-60; doi: 10.1111/j.14690691.2011.03703.x

• EUCAST Expert Rules, Intrinsic Resistance and Exceptional Phenotypes Tables. Version 3.1,
2016. (link)

• EUCAST Intrinsic Resistance and Unusual Phenotypes. Version 3.2, 2020. (link)

• EUCAST Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019.
(link)

• EUCAST Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0,
2020. (link)

• EUCAST Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0,
2021. (link)

Examples

a <- data.frame(mo = c("Staphylococcus aureus",
"Enterococcus faecalis",
"Escherichia coli",
"Klebsiella pneumoniae",
"Pseudomonas aeruginosa"),

VAN = "-", # Vancomycin
AMX = "-", # Amoxicillin
COL = "-", # Colistin
CAZ = "-", # Ceftazidime
CXM = "-", # Cefuroxime
PEN = "S", # Benzylpenicillin
FOX = "S", # Cefoxitin
stringsAsFactors = FALSE)

a
mo VAN AMX COL CAZ CXM PEN FOX
1 Staphylococcus aureus - - - - - S S
2 Enterococcus faecalis - - - - - S S
3 Escherichia coli - - - - - S S
4 Klebsiella pneumoniae - - - - - S S
5 Pseudomonas aeruginosa - - - - - S S

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://doi.org/10.1111/j.1469-0691.2011.03703.x
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/Expert_rules_intrinsic_exceptional_V3.1.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2020/Intrinsic_Resistance_and_Unusual_Phenotypes_Tables_v3.2_20200225.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.xlsx
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.xlsx
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.xlsx

58 example_isolates

apply EUCAST rules: some results wil be changed
b <- eucast_rules(a)

b
mo VAN AMX COL CAZ CXM PEN FOX
1 Staphylococcus aureus - S R R S S S
2 Enterococcus faecalis - - R R R S R
3 Escherichia coli R - - - - R S
4 Klebsiella pneumoniae R R - - - R S
5 Pseudomonas aeruginosa R R - - R R R

do not apply EUCAST rules, but rather get a data.frame
containing all details about the transformations:
c <- eucast_rules(a, verbose = TRUE)

eucast_dosage(c("tobra", "genta", "cipro"), "iv")

example_isolates Data Set with 2,000 Example Isolates

Description

A data set containing 2,000 microbial isolates with their full antibiograms. The data set reflects
reality and can be used to practice AMR data analysis. For examples, please read the tutorial on our
website.

Usage

example_isolates

Format

A data.frame with 2,000 observations and 49 variables:

• date
date of receipt at the laboratory

• hospital_id
ID of the hospital, from A to D

• ward_icu
logical to determine if ward is an intensive care unit

• ward_clinical
logical to determine if ward is a regular clinical ward

• ward_outpatient
logical to determine if ward is an outpatient clinic

• age
age of the patient

• gender
gender of the patient

https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/articles/AMR.html

example_isolates_unclean 59

• patient_id
ID of the patient

• mo
ID of microorganism created with as.mo(), see also microorganisms

• PEN:RIF
40 different antibiotics with class rsi (see as.rsi()); these column names occur in the an-
tibiotics data set and can be translated with ab_name()

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

example_isolates_unclean

Data Set with Unclean Data

Description

A data set containing 3,000 microbial isolates that are not cleaned up and consequently not ready
for AMR data analysis. This data set can be used for practice.

Usage

example_isolates_unclean

Format

A data.frame with 3,000 observations and 8 variables:

• patient_id
ID of the patient

• date
date of receipt at the laboratory

• hospital
ID of the hospital, from A to C

• bacteria
info about microorganism that can be transformed with as.mo(), see also microorganisms

• AMX:GEN
4 different antibiotics that have to be transformed with as.rsi()

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

60 first_isolate

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

first_isolate Determine First (Weighted) Isolates

Description

Determine first (weighted) isolates of all microorganisms of every patient per episode and (if
needed) per specimen type. These functions support all four methods as summarised by Hindler
et al. in 2007 (doi: 10.1086/511864). To determine patient episodes not necessarily based on mi-
croorganisms, use is_new_episode() that also supports grouping with the dplyr package.

Usage

first_isolate(
x = NULL,
col_date = NULL,
col_patient_id = NULL,
col_mo = NULL,
col_testcode = NULL,
col_specimen = NULL,
col_icu = NULL,
col_keyantimicrobials = NULL,
episode_days = 365,
testcodes_exclude = NULL,
icu_exclude = FALSE,
specimen_group = NULL,
type = "points",
method = c("phenotype-based", "episode-based", "patient-based", "isolate-based"),
ignore_I = TRUE,
points_threshold = 2,
info = interactive(),
include_unknown = FALSE,
include_untested_rsi = TRUE,
...

)

filter_first_isolate(
x = NULL,
col_date = NULL,

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://doi.org/10.1086/511864

first_isolate 61

col_patient_id = NULL,
col_mo = NULL,
episode_days = 365,
method = c("phenotype-based", "episode-based", "patient-based", "isolate-based"),
...

)

Arguments

x a data.frame containing isolates. Can be left blank for automatic determination,
see Examples.

col_date column name of the result date (or date that is was received on the lab), defaults
to the first column with a date class

col_patient_id column name of the unique IDs of the patients, defaults to the first column that
starts with ’patient’ or ’patid’ (case insensitive)

col_mo column name of the IDs of the microorganisms (see as.mo()), defaults to the
first column of class mo. Values will be coerced using as.mo().

col_testcode column name of the test codes. Use col_testcode = NULL to not exclude cer-
tain test codes (such as test codes for screening). In that case testcodes_exclude
will be ignored.

col_specimen column name of the specimen type or group

col_icu column name of the logicals (TRUE/FALSE) whether a ward or department is an
Intensive Care Unit (ICU)

col_keyantimicrobials

(only useful when method = "phenotype-based") column name of the key an-
timicrobials to determine first (weighted) isolates, see key_antimicrobials().
Defaults to the first column that starts with ’key’ followed by ’ab’ or ’antibiotics’
or ’antimicrobials’ (case insensitive). Use col_keyantimicrobials = FALSE to
prevent this. Can also be the output of key_antimicrobials().

episode_days episode in days after which a genus/species combination will be determined as
’first isolate’ again. The default of 365 days is based on the guideline by CLSI,
see Source.

testcodes_exclude

a character vector with test codes that should be excluded (case-insensitive)

icu_exclude a logical to indicate whether ICU isolates should be excluded (rows with value
TRUE in the column set with col_icu)

specimen_group value in the column set with col_specimen to filter on

type type to determine weighed isolates; can be "keyantimicrobials" or "points",
see Details

method the method to apply, either "phenotype-based", "episode-based", "patient-based"
or "isolate-based" (can be abbreviated), see Details. The default is "phenotype-based"
if antimicrobial test results are present in the data, and "episode-based" oth-
erwise.

ignore_I logical to indicate whether antibiotic interpretations with "I" will be ignored
when type = "keyantimicrobials", see Details

points_threshold

minimum number of points to require before differences in the antibiogram will
lead to inclusion of an isolate when type = "points", see Details

62 first_isolate

info a logical to indicate info should be printed, defaults to TRUE only in interactive
mode

include_unknown

a logical to indicate whether ’unknown’ microorganisms should be included too,
i.e. microbial code "UNKNOWN", which defaults to FALSE. For WHONET users,
this means that all records with organism code "con" (contamination) will be
excluded at default. Isolates with a microbial ID of NA will always be excluded
as first isolate.

include_untested_rsi

a logical to indicate whether also rows without antibiotic results are still eligible
for becoming a first isolate. Use include_untested_rsi = FALSE to always
return FALSE for such rows. This checks the data set for columns of class <rsi>
and consequently requires transforming columns with antibiotic results using
as.rsi() first.

... arguments passed on to first_isolate() when using filter_first_isolate(),
otherwise arguments passed on to key_antimicrobials() (such as universal,
gram_negative, gram_positive)

Details

To conduct epidemiological analyses on antimicrobial resistance data, only so-called first isolates
should be included to prevent overestimation and underestimation of antimicrobial resistance. Dif-
ferent methods can be used to do so, see below.

These functions are context-aware. This means that the x argument can be left blank if used inside
a data.frame call, see Examples.

The first_isolate() function is a wrapper around the is_new_episode() function, but more
efficient for data sets containing microorganism codes or names.

All isolates with a microbial ID of NA will be excluded as first isolate.

Different methods:
According to Hindler et al. (2007, doi: 10.1086/511864), there are different methods (algorithms)
to select first isolates with increasing reliability: isolate-based, patient-based, episode-based and
phenotype-based. All methods select on a combination of the taxonomic genus and species (not
subspecies).
All mentioned methods are covered in the first_isolate() function:

Method Function to apply
Isolate-based first_isolate(x, method = "isolate-based")
(= all isolates)

Patient-based first_isolate(x, method = "patient-based")
(= first isolate per patient)

Episode-based first_isolate(x, method = "episode-based"), or:
(= first isolate per episode)
- 7-Day interval from initial isolate - first_isolate(x, method = "e", episode_days = 7)
- 30-Day interval from initial isolate - first_isolate(x, method = "e", episode_days = 30)

Phenotype-based first_isolate(x, method = "phenotype-based"), or:

https://doi.org/10.1086/511864

first_isolate 63

(= first isolate per phenotype)
- Major difference in any antimicrobial result - first_isolate(x, type = "points")
- Any difference in key antimicrobial results - first_isolate(x, type = "keyantimicrobials")

Isolate-based:
This method does not require any selection, as all isolates should be included. It does, however,
respect all arguments set in the first_isolate() function. For example, the default setting for
include_unknown (FALSE) will omit selection of rows without a microbial ID.

Patient-based:
To include every genus-species combination per patient once, set the episode_days to Inf.
Although often inappropriate, this method makes sure that no duplicate isolates are selected
from the same patient. In a large longitudinal data set, this could mean that isolates are excluded
that were found years after the initial isolate.

Episode-based:
To include every genus-species combination per patient episode once, set the episode_days
to a sensible number of days. Depending on the type of analysis, this could be 14, 30, 60 or
365. Short episodes are common for analysing specific hospital or ward data, long episodes are
common for analysing regional and national data.
This is the most common method to correct for duplicate isolates. Patients are categorised into
episodes based on their ID and dates (e.g., the date of specimen receipt or laboratory result).
While this is a common method, it does not take into account antimicrobial test results. This
means that e.g. a methicillin-resistant Staphylococcus aureus (MRSA) isolate cannot be differ-
entiated from a wildtype Staphylococcus aureus isolate.

Phenotype-based:
This is a more reliable method, since it also weighs the antibiogram (antimicrobial test results)
yielding so-called ’first weighted isolates’. There are two different methods to weigh the antibi-
ogram:
1. Using type = "points" and argument points_threshold

This method weighs all antimicrobial agents available in the data set. Any difference from I
to S or R (or vice versa) counts as 0.5 points, a difference from S to R (or vice versa) counts
as 1 point. When the sum of points exceeds points_threshold, which defaults to 2, an
isolate will be selected as a first weighted isolate.
All antimicrobials are internally selected using the all_antimicrobials() function. The
output of this function does not need to be passed to the first_isolate() function.

2. Using type = "keyantimicrobials" and argument ignore_I
This method only weighs specific antimicrobial agents, called key antimicrobials. Any
difference from S to R (or vice versa) in these key antimicrobials will select an isolate as
a first weighted isolate. With ignore_I = FALSE, also differences from I to S or R (or vice
versa) will lead to this.
Key antimicrobials are internally selected using the key_antimicrobials() function, but
can also be added manually as a variable to the data and set in the col_keyantimicrobials
argument. Another option is to pass the output of the key_antimicrobials() function
directly to the col_keyantimicrobials argument.

The default method is phenotype-based (using type = "points") and episode-based (using
episode_days = 365). This makes sure that every genus-species combination is selected per
patient once per year, while taking into account all antimicrobial test results. If no antimicrobial
test results are available in the data set, only the episode-based method is applied at default.

Value

A logical vector

64 first_isolate

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

Methodology of this function is strictly based on:

• M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data,
4th Edition, 2014, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/
standards/products/microbiology/documents/m39/.

• Hindler JF and Stelling J (2007). Analysis and Presentation of Cumulative Antibiograms:
A New Consensus Guideline from the Clinical and Laboratory Standards Institute. Clin-
ical Infectious Diseases, 44(6), 867–873. doi: 10.1086/511864

See Also

key_antimicrobials()

Examples

`example_isolates` is a data set available in the AMR package.
See ?example_isolates.

example_isolates[first_isolate(example_isolates),]

faster way, only works in R 3.2 and later:
example_isolates[first_isolate(),]

get all first Gram-negatives
example_isolates[which(first_isolate() & mo_is_gram_negative()),]

if (require("dplyr")) {
filter on first isolates using dplyr:
example_isolates %>%
filter(first_isolate())

short-hand version:
example_isolates %>%

filter_first_isolate()

grouped determination of first isolates (also prints group names):
example_isolates %>%

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://clsi.org/standards/products/microbiology/documents/m39/
https://clsi.org/standards/products/microbiology/documents/m39/
https://doi.org/10.1086/511864

g.test 65

group_by(hospital_id) %>%
mutate(first = first_isolate())

now let's see if first isolates matter:
A <- example_isolates %>%

group_by(hospital_id) %>%
summarise(count = n_rsi(GEN), # gentamicin availability

resistance = resistance(GEN)) # gentamicin resistance

B <- example_isolates %>%
filter_first_isolate() %>% # the 1st isolate filter
group_by(hospital_id) %>%
summarise(count = n_rsi(GEN), # gentamicin availability

resistance = resistance(GEN)) # gentamicin resistance

Have a look at A and B.
B is more reliable because every isolate is counted only once.
Gentamicin resistance in hospital D appears to be 4.2% higher than
when you (erroneously) would have used all isolates for analysis.

}

g.test G-test for Count Data

Description

g.test() performs chi-squared contingency table tests and goodness-of-fit tests, just like chisq.test()
but is more reliable (1). A G-test can be used to see whether the number of observations in each
category fits a theoretical expectation (called a G-test of goodness-of-fit), or to see whether the
proportions of one variable are different for different values of the other variable (called a G-test of
independence).

Usage

g.test(x, y = NULL, p = rep(1/length(x), length(x)), rescale.p = FALSE)

Arguments

x a numeric vector or matrix. x and y can also both be factors.

y a numeric vector; ignored if x is a matrix. If x is a factor, y should be a factor of
the same length.

p a vector of probabilities of the same length of x. An error is given if any entry
of p is negative.

rescale.p a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 1. If
rescale.p is FALSE, and p does not sum to 1, an error is given.

Details

If x is a matrix with one row or column, or if x is a vector and y is not given, then a goodness-of-fit
test is performed (x is treated as a one-dimensional contingency table). The entries of x must be

66 g.test

non-negative integers. In this case, the hypothesis tested is whether the population probabilities
equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional contingency
table: the entries of x must be non-negative integers. Otherwise, x and y must be vectors or factors
of the same length; cases with missing values are removed, the objects are coerced to factors, and
the contingency table is computed from these. Then Pearson’s chi-squared test is performed of the
null hypothesis that the joint distribution of the cell counts in a 2-dimensional contingency table is
the product of the row and column marginals.

The p-value is computed from the asymptotic chi-squared distribution of the test statistic.

In the contingency table case simulation is done by random sampling from the set of all contingency
tables with given marginals, and works only if the marginals are strictly positive. Note that this is
not the usual sampling situation assumed for a chi-squared test (such as the G-test) but rather that
for Fisher’s exact test.

In the goodness-of-fit case simulation is done by random sampling from the discrete distribution
specified by p, each sample being of size n = sum(x). This simulation is done in R and may be
slow.

G-test Of Goodness-of-Fit (Likelihood Ratio Test):
Use the G-test of goodness-of-fit when you have one nominal variable with two or more values
(such as male and female, or red, pink and white flowers). You compare the observed counts of
numbers of observations in each category with the expected counts, which you calculate using
some kind of theoretical expectation (such as a 1:1 sex ratio or a 1:2:1 ratio in a genetic cross).
If the expected number of observations in any category is too small, the G-test may give inaccurate
results, and you should use an exact test instead (fisher.test()).
The G-test of goodness-of-fit is an alternative to the chi-square test of goodness-of-fit (chisq.test());
each of these tests has some advantages and some disadvantages, and the results of the two tests
are usually very similar.

G-test of Independence:
Use the G-test of independence when you have two nominal variables, each with two or more
possible values. You want to know whether the proportions for one variable are different among
values of the other variable.
It is also possible to do a G-test of independence with more than two nominal variables. For
example, Jackson et al. (2013) also had data for children under 3, so you could do an analysis of
old vs. young, thigh vs. arm, and reaction vs. no reaction, all analyzed together.
Fisher’s exact test (fisher.test()) is an exact test, where the G-test is still only an approxima-
tion. For any 2x2 table, Fisher’s Exact test may be slower but will still run in seconds, even if the
sum of your observations is multiple millions.
The G-test of independence is an alternative to the chi-square test of independence (chisq.test()),
and they will give approximately the same results.

How the Test Works:
Unlike the exact test of goodness-of-fit (fisher.test()), the G-test does not directly calculate
the probability of obtaining the observed results or something more extreme. Instead, like almost
all statistical tests, the G-test has an intermediate step; it uses the data to calculate a test statistic
that measures how far the observed data are from the null expectation. You then use a mathemat-
ical relationship, in this case the chi-square distribution, to estimate the probability of obtaining
that value of the test statistic.
The G-test uses the log of the ratio of two likelihoods as the test statistic, which is why it is also
called a likelihood ratio test or log-likelihood ratio test. The formula to calculate a G-statistic is:
G = 2 ∗ sum(x ∗ log(x/E))

g.test 67

where E are the expected values. Since this is chi-square distributed, the p value can be calculated
in R with:

p <- stats::pchisq(G, df, lower.tail = FALSE)

where df are the degrees of freedom.
If there are more than two categories and you want to find out which ones are significantly different
from their null expectation, you can use the same method of testing each category vs. the sum of
all categories, with the Bonferroni correction. You use G-tests for each category, of course.

Value

A list with class "htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic, NA if the p-value is computed by Monte Carlo simulation.

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether Monte Carlo
simulation or continuity correction was used.

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed -expected) / sqrt(expected).

stdres standardized residuals, (observed -expected) / sqrt(V), where V is the resid-
ual cell variance (Agresti, 2007, section 2.4.5 for the case where x is a matrix, n
* p * (1 -p) otherwise).

Questioning Lifecycle

The lifecycle of this function is questioning. This function might be no longer be optimal approach,
or is it questionable whether this function should be in this AMR package at all.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

The code for this function is identical to that of chisq.test(), except that:

• The calculation of the statistic was changed to 2 ∗ sum(x ∗ log(x/E))

• Yates’ continuity correction was removed as it does not apply to a G-test

• The possibility to simulate p values with simulate.p.value was removed

References

1. McDonald, J.H. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House Publish-
ing, Baltimore, Maryland. http://www.biostathandbook.com/gtestgof.html.

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
http://www.biostathandbook.com/gtestgof.html

68 get_episode

See Also

chisq.test()

Examples

= EXAMPLE 1 =
Shivrain et al. (2006) crossed clearfield rice (which are resistant
to the herbicide imazethapyr) with red rice (which are susceptible to
imazethapyr). They then crossed the hybrid offspring and examined the
F2 generation, where they found 772 resistant plants, 1611 moderately
resistant plants, and 737 susceptible plants. If resistance is controlled
by a single gene with two co-dominant alleles, you would expect a 1:2:1
ratio.

x <- c(772, 1611, 737)
G <- g.test(x, p = c(1, 2, 1) / 4)
G$p.value = 0.12574.

There is no significant difference from a 1:2:1 ratio.
Meaning: resistance controlled by a single gene with two co-dominant
alleles, is plausible.

= EXAMPLE 2 =
Red crossbills (Loxia curvirostra) have the tip of the upper bill either
right or left of the lower bill, which helps them extract seeds from pine
cones. Some have hypothesized that frequency-dependent selection would
keep the number of right and left-billed birds at a 1:1 ratio. Groth (1992)
observed 1752 right-billed and 1895 left-billed crossbills.

x <- c(1752, 1895)
g.test(x)
p = 0.01787343

There is a significant difference from a 1:1 ratio.
Meaning: there are significantly more left-billed birds.

get_episode Determine (New) Episodes for Patients

Description

These functions determine which items in a vector can be considered (the start of) a new episode,
based on the argument episode_days. This can be used to determine clinical episodes for any
epidemiological analysis. The get_episode() function returns the index number of the episode
per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an
item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

get_episode 69

Arguments

x vector of dates (class Date or POSIXt)

episode_days required episode length in days, can also be less than a day or Inf, see Details

... ignored, only in place to allow future extensions

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After
this date, the next date will be marked that is at least episode_days days later than the start of
the first episode. From that second marked date on, the next date will be marked that is at least
episode_days days later than the start of the second episode which will be the start of the third
episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more
efficient for data sets containing microorganism codes or names and allows for different isolate
selection methods.

The dplyr package is not required for these functions to work, but these functions do support
variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and
summarise().

Value

• get_episode(): a double vector

• is_new_episode(): a logical vector

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

first_isolate()

Examples

`example_isolates` is a data set available in the AMR package.
See ?example_isolates.

get_episode(example_isolates$date, episode_days = 60) # indices
is_new_episode(example_isolates$date, episode_days = 60) # TRUE/FALSE

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

70 get_episode

filter on results from the third 60-day episode only, using base R
example_isolates[which(get_episode(example_isolates$date, 60) == 3),]

the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(Sys.time(),

Sys.time() + 60 * 60),
episode_days = 1/24)

if (require("dplyr")) {
is_new_episode() can also be used in dplyr verbs to determine patient
episodes based on any (combination of) grouping variables:
example_isolates %>%
mutate(condition = sample(x = c("A", "B", "C"),

size = 2000,
replace = TRUE)) %>%

group_by(condition) %>%
mutate(new_episode = is_new_episode(date, 365))

example_isolates %>%
group_by(hospital_id, patient_id) %>%
transmute(date,

patient_id,
new_index = get_episode(date, 60),
new_logical = is_new_episode(date, 60))

example_isolates %>%
group_by(hospital_id) %>%
summarise(patients = n_distinct(patient_id),

n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
n_episodes_30 = sum(is_new_episode(date, episode_days = 30)))

grouping on patients and microorganisms leads to the same
results as first_isolate() when using 'episode-based':
x <- example_isolates %>%

filter_first_isolate(include_unknown = TRUE,
method = "episode-based")

y <- example_isolates %>%
group_by(patient_id, mo) %>%
filter(is_new_episode(date, 365))

identical(x$patient_id, y$patient_id)

but is_new_episode() has a lot more flexibility than first_isolate(),
since you can now group on anything that seems relevant:
example_isolates %>%

group_by(patient_id, mo, hospital_id, ward_icu) %>%
mutate(flag_episode = is_new_episode(date, 365))

}

ggplot_pca 71

ggplot_pca PCA Biplot with ggplot2

Description

Produces a ggplot2 variant of a so-called biplot for PCA (principal component analysis), but is
more flexible and more appealing than the base R biplot() function.

Usage

ggplot_pca(
x,
choices = 1:2,
scale = 1,
pc.biplot = TRUE,
labels = NULL,
labels_textsize = 3,
labels_text_placement = 1.5,
groups = NULL,
ellipse = TRUE,
ellipse_prob = 0.68,
ellipse_size = 0.5,
ellipse_alpha = 0.5,
points_size = 2,
points_alpha = 0.25,
arrows = TRUE,
arrows_colour = "darkblue",
arrows_size = 0.5,
arrows_textsize = 3,
arrows_textangled = TRUE,
arrows_alpha = 0.75,
base_textsize = 10,
...

)

Arguments

x an object returned by pca(), prcomp() or princomp()

choices length 2 vector specifying the components to plot. Only the default is a biplot in
the strict sense.

scale The variables are scaled by lambda ^ scale and the observations are scaled
by lambda ^ (1-scale) where lambda are the singular values as computed by
princomp. Normally 0 <= scale <= 1, and a warning will be issued if the spec-
ified scale is outside this range.

pc.biplot If true, use what Gabriel (1971) refers to as a "principal component biplot", with
lambda = 1 and observations scaled up by sqrt(n) and variables scaled down by
sqrt(n). Then inner products between variables approximate covariances and
distances between observations approximate Mahalanobis distance.

https://en.wikipedia.org/wiki/Biplot

72 ggplot_pca

labels an optional vector of labels for the observations. If set, the labels will be placed
below their respective points. When using the pca() function as input for x, this
will be determined automatically based on the attribute non_numeric_cols, see
pca().

labels_textsize

the size of the text used for the labels
labels_text_placement

adjustment factor the placement of the variable names (>=1 means further away
from the arrow head)

groups an optional vector of groups for the labels, with the same length as labels. If
set, the points and labels will be coloured according to these groups. When
using the pca() function as input for x, this will be determined automatically
based on the attribute non_numeric_cols, see pca().

ellipse a logical to indicate whether a normal data ellipse should be drawn for each
group (set with groups)

ellipse_prob statistical size of the ellipse in normal probability

ellipse_size the size of the ellipse line

ellipse_alpha the alpha (transparency) of the ellipse line

points_size the size of the points

points_alpha the alpha (transparency) of the points

arrows a logical to indicate whether arrows should be drawn

arrows_colour the colour of the arrow and their text

arrows_size the size (thickness) of the arrow lines
arrows_textsize

the size of the text at the end of the arrows
arrows_textangled

a logical whether the text at the end of the arrows should be angled

arrows_alpha the alpha (transparency) of the arrows and their text

base_textsize the text size for all plot elements except the labels and arrows

... arguments passed on to functions

Details

The colours for labels and points can be changed by adding another scale layer for colour, such as
scale_colour_viridis_d() and scale_colour_brewer().

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

ggplot_rsi 73

Source

The ggplot_pca() function is based on the ggbiplot() function from the ggbiplot package by
Vince Vu, as found on GitHub: https://github.com/vqv/ggbiplot (retrieved: 2 March 2020,
their latest commit: 7325e88; 12 February 2015).

As per their GPL-2 licence that demands documentation of code changes, the changes made based
on the source code were:

1. Rewritten code to remove the dependency on packages plyr, scales and grid

2. Parametrised more options, like arrow and ellipse settings

3. Hardened all input possibilities by defining the exact type of user input for every argument

4. Added total amount of explained variance as a caption in the plot

5. Cleaned all syntax based on the lintr package, fixed grammatical errors and added integrity
checks

6. Updated documentation

Examples

`example_isolates` is a data set available in the AMR package.
See ?example_isolates.

See ?pca for more info about Principal Component Analysis (PCA).

if (require("dplyr")) {
pca_model <- example_isolates %>%
filter(mo_genus(mo) == "Staphylococcus") %>%
group_by(species = mo_shortname(mo)) %>%
summarise_if (is.rsi, resistance) %>%
pca(FLC, AMC, CXM, GEN, TOB, TMP, SXT, CIP, TEC, TCY, ERY)

old (base R)
biplot(pca_model)

new
ggplot_pca(pca_model)

if (require("ggplot2")) {
ggplot_pca(pca_model) +

scale_colour_viridis_d() +
labs(title = "Title here")

}
}

ggplot_rsi AMR Plots with ggplot2

Description

Use these functions to create bar plots for AMR data analysis. All functions rely on ggplot2 func-
tions.

https://github.com/vqv/ggbiplot
https://github.com/vqv/ggbiplot/commit/7325e880485bea4c07465a0304c470608fffb5d9

74 ggplot_rsi

Usage

ggplot_rsi(
data,
position = NULL,
x = "antibiotic",
fill = "interpretation",
facet = NULL,
breaks = seq(0, 1, 0.1),
limits = NULL,
translate_ab = "name",
combine_SI = TRUE,
combine_IR = FALSE,
minimum = 30,
language = get_locale(),
nrow = NULL,
colours = c(S = "#3CAEA3", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B", R =
"#ED553B"),

datalabels = TRUE,
datalabels.size = 2.5,
datalabels.colour = "grey15",
title = NULL,
subtitle = NULL,
caption = NULL,
x.title = "Antimicrobial",
y.title = "Proportion",
...

)

geom_rsi(
position = NULL,
x = c("antibiotic", "interpretation"),
fill = "interpretation",
translate_ab = "name",
minimum = 30,
language = get_locale(),
combine_SI = TRUE,
combine_IR = FALSE,
...

)

facet_rsi(facet = c("interpretation", "antibiotic"), nrow = NULL)

scale_y_percent(breaks = seq(0, 1, 0.1), limits = NULL)

scale_rsi_colours(..., aesthetics = "fill")

theme_rsi()

labels_rsi_count(
position = NULL,
x = "antibiotic",
translate_ab = "name",

ggplot_rsi 75

minimum = 30,
language = get_locale(),
combine_SI = TRUE,
combine_IR = FALSE,
datalabels.size = 3,
datalabels.colour = "grey15"

)

Arguments

data a data.frame with column(s) of class rsi (see as.rsi())

position position adjustment of bars, either "fill", "stack" or "dodge"

x variable to show on x axis, either "antibiotic" (default) or "interpretation"
or a grouping variable

fill variable to categorise using the plots legend, either "antibiotic" (default) or
"interpretation" or a grouping variable

facet variable to split plots by, either "interpretation" (default) or "antibiotic"
or a grouping variable

breaks a numeric vector of positions

limits a numeric vector of length two providing limits of the scale, use NA to refer to
the existing minimum or maximum

translate_ab a column name of the antibiotics data set to translate the antibiotic abbreviations
to, using ab_property()

combine_SI a logical to indicate whether all values of S and I must be merged into one, so the
output only consists of S+I vs. R (susceptible vs. resistant). This used to be the
argument combine_IR, but this now follows the redefinition by EUCAST about
the interpretation of I (increased exposure) in 2019, see section ’Interpretation
of S, I and R’ below. Default is TRUE.

combine_IR a logical to indicate whether all values of I and R must be merged into one, so
the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is
outdated, see argument combine_SI.

minimum the minimum allowed number of available (tested) isolates. Any isolate count
lower than minimum will return NA with a warning. The default number of 30
isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as
best practice, see Source.

language language of the returned text, defaults to system language (see get_locale())
and can also be set with getOption("AMR_locale"). Use language = NULL or
language = "" to prevent translation.

nrow (when using facet) number of rows

colours a named vactor with colour to be used for filling. The default colours are colour-
blind friendly.

datalabels show datalabels using labels_rsi_count()

datalabels.size

size of the datalabels
datalabels.colour

colour of the datalabels

title text to show as title of the plot

subtitle text to show as subtitle of the plot

76 ggplot_rsi

caption text to show as caption of the plot

x.title text to show as x axis description

y.title text to show as y axis description

... other arguments passed on to geom_rsi() or, in case of scale_rsi_colours(),
named values to set colours. The default colours are colour-blind friendly, while
maintaining the convention that e.g. ’susceptible’ should be green and ’resistant’
should be red. See Examples.

aesthetics aesthetics to apply the colours to, defaults to "fill" but can also be (a combination
of) "alpha", "colour", "fill", "linetype", "shape" or "size"

Details

At default, the names of antibiotics will be shown on the plots using ab_name(). This can be set
with the translate_ab argument. See count_df().

The Functions:
geom_rsi() will take any variable from the data that has an rsi class (created with as.rsi())
using rsi_df() and will plot bars with the percentage R, I and S. The default behaviour is to have
the bars stacked and to have the different antibiotics on the x axis.
facet_rsi() creates 2d plots (at default based on S/I/R) using ggplot2::facet_wrap().
scale_y_percent() transforms the y axis to a 0 to 100% range using ggplot2::scale_y_continuous().
scale_rsi_colours() sets colours to the bars (green for S, yellow for I, and red for R). with mul-
tilingual support. The default colours are colour-blind friendly, while maintaining the convention
that e.g. ’susceptible’ should be green and ’resistant’ should be red.
theme_rsi() is a [ggplot2 theme][ggplot2::theme() with minimal distraction.
labels_rsi_count() print datalabels on the bars with percentage and amount of isolates using
ggplot2::geom_text().
ggplot_rsi() is a wrapper around all above functions that uses data as first input. This makes it
possible to use this function after a pipe (%>%). See Examples.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

if (require("ggplot2") & require("dplyr")) {

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

ggplot_rsi 77

get antimicrobial results for drugs against a UTI:
ggplot(example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)) +

geom_rsi()

prettify the plot using some additional functions:
df <- example_isolates %>% select(AMX, NIT, FOS, TMP, CIP)
ggplot(df) +

geom_rsi() +
scale_y_percent() +
scale_rsi_colours() +
labels_rsi_count() +
theme_rsi()

or better yet, simplify this using the wrapper function - a single command:
example_isolates %>%

select(AMX, NIT, FOS, TMP, CIP) %>%
ggplot_rsi()

get only proportions and no counts:
example_isolates %>%

select(AMX, NIT, FOS, TMP, CIP) %>%
ggplot_rsi(datalabels = FALSE)

add other ggplot2 arguments as you like:
example_isolates %>%

select(AMX, NIT, FOS, TMP, CIP) %>%
ggplot_rsi(width = 0.5,

colour = "black",
size = 1,
linetype = 2,
alpha = 0.25)

you can alter the colours with colour names:
example_isolates %>%
select(AMX) %>%
ggplot_rsi(colours = c(SI = "yellow"))

but you can also use the built-in colour-blind friendly colours for
your plots, where "S" is green, "I" is yellow and "R" is red:
data.frame(x = c("Value1", "Value2", "Value3"),

y = c(1, 2, 3),
z = c("Value4", "Value5", "Value6")) %>%

ggplot() +
geom_col(aes(x = x, y = y, fill = z)) +
scale_rsi_colours(Value4 = "S", Value5 = "I", Value6 = "R")

resistance of ciprofloxacine per age group
example_isolates %>%

mutate(first_isolate = first_isolate()) %>%
filter(first_isolate == TRUE,

mo == as.mo("E. coli")) %>%
age_groups() is also a function in this AMR package:
group_by(age_group = age_groups(age)) %>%
select(age_group,

CIP) %>%
ggplot_rsi(x = "age_group")

78 guess_ab_col

a shorter version which also adjusts data label colours:
example_isolates %>%

select(AMX, NIT, FOS, TMP, CIP) %>%
ggplot_rsi(colours = FALSE)

it also supports groups (don't forget to use the group var on `x` or `facet`):
example_isolates %>%

select(hospital_id, AMX, NIT, FOS, TMP, CIP) %>%
group_by(hospital_id) %>%
ggplot_rsi(x = "hospital_id",

facet = "antibiotic",
nrow = 1,
title = "AMR of Anti-UTI Drugs Per Hospital",
x.title = "Hospital",
datalabels = FALSE)

}

guess_ab_col Guess Antibiotic Column

Description

This tries to find a column name in a data set based on information from the antibiotics data set.
Also supports WHONET abbreviations.

Usage

guess_ab_col(
x = NULL,
search_string = NULL,
verbose = FALSE,
only_rsi_columns = FALSE

)

Arguments

x a data.frame

search_string a text to search x for, will be checked with as.ab() if this value is not a column
in x

verbose a logical to indicate whether additional info should be printed
only_rsi_columns

a logical to indicate whether only antibiotic columns must be detected that were
transformed to class <rsi> (see as.rsi()) on beforehand (defaults to FALSE)

Details

You can look for an antibiotic (trade) name or abbreviation and it will search x and the antibiotics
data set for any column containing a name or code of that antibiotic. Longer columns names take
precedence over shorter column names.

guess_ab_col 79

Value

A column name of x, or NULL when no result is found.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

df <- data.frame(amox = "S",
tetr = "R")

guess_ab_col(df, "amoxicillin")
[1] "amox"
guess_ab_col(df, "J01AA07") # ATC code of tetracycline
[1] "tetr"

guess_ab_col(df, "J01AA07", verbose = TRUE)
NOTE: Using column 'tetr' as input for J01AA07 (tetracycline).
[1] "tetr"

WHONET codes
df <- data.frame(AMP_ND10 = "R",

AMC_ED20 = "S")
guess_ab_col(df, "ampicillin")
[1] "AMP_ND10"
guess_ab_col(df, "J01CR02")
[1] "AMC_ED20"
guess_ab_col(df, as.ab("augmentin"))
[1] "AMC_ED20"

Longer names take precendence:
df <- data.frame(AMP_ED2 = "S",

AMP_ED20 = "S")
guess_ab_col(df, "ampicillin")
[1] "AMP_ED20"

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

80 intrinsic_resistant

intrinsic_resistant Data Set with Bacterial Intrinsic Resistance

Description

Data set containing defined intrinsic resistance by EUCAST of all bug-drug combinations.

Usage

intrinsic_resistant

Format

A data.frame with 93,892 observations and 2 variables:

• microorganism
Name of the microorganism

• antibiotic
Name of the antibiotic drug

Details

The repository of this AMR package contains a file comprising this exact data set: https://github.
com/msberends/AMR/blob/master/data-raw/intrinsic_resistant.txt. This file allows for
machine reading EUCAST guidelines about intrinsic resistance, which is almost impossible
with the Excel and PDF files distributed by EUCAST. The file is updated automatically.

This data set is based on ’EUCAST Expert Rules’ and ’EUCAST Intrinsic Resistance and Unusual
Phenotypes’ v3.2 (2020).

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

if (require("dplyr")) {
intrinsic_resistant %>%
filter(antibiotic == "Vancomycin", microorganism %like% "Enterococcus") %>%
pull(microorganism)

[1] "Enterococcus casseliflavus" "Enterococcus gallinarum"
}

https://github.com/msberends/AMR/blob/master/data-raw/intrinsic_resistant.txt
https://github.com/msberends/AMR/blob/master/data-raw/intrinsic_resistant.txt
https://www.eucast.org/expert_rules_and_intrinsic_resistance/
https://www.eucast.org/expert_rules_and_intrinsic_resistance/
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

italicise_taxonomy 81

italicise_taxonomy Italicise Taxonomic Families, Genera, Species, Subspecies

Description

According to the binomial nomenclature, the lowest four taxonomic levels (family, genus, species,
subspecies) should be printed in italic. This function finds taxonomic names within strings and
makes them italic.

Usage

italicise_taxonomy(string, type = c("markdown", "ansi"))

italicize_taxonomy(string, type = c("markdown", "ansi"))

Arguments

string a character (vector)

type type of conversion of the taxonomic names, either "markdown" or "ansi", see
Details

Details

This function finds the taxonomic names and makes them italic based on the microorganisms data
set.

The taxonomic names can be italicised using markdown (the default) by adding * before and after
the taxonomic names, or using ANSI colours by adding \033[3m before and \033[23m after the
taxonomic names. If multiple ANSI colours are not available, no conversion will occur.

This function also supports abbreviation of the genus if it is followed by a species, such as "E. coli"
and "K. pneumoniae ozaenae".

Maturing Lifecycle

The lifecycle of this function is maturing. The unlying code of a maturing function has been
roughed out, but finer details might still change. Since this function needs wider usage and more
extensive testing, you are very welcome to suggest changes at our repository or write us an email
(see section ’Contact Us’).

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

italicise_taxonomy("An overview of Staphylococcus aureus isolates")
italicise_taxonomy("An overview of S. aureus isolates")

cat(italicise_taxonomy("An overview of S. aureus isolates", type = "ansi"))

https://github.com/msberends/AMR/issues
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

82 join

since ggplot2 supports no markdown (yet), use
italicise_taxonomy() and the `ggtext` pkg for titles:

if (require("ggplot2") && require("ggtext")) {
ggplot(example_isolates$AMC,

title = italicise_taxonomy("Amoxi/clav in E. coli")) +
theme(plot.title = ggtext::element_markdown())

}

join Join microorganisms to a Data Set

Description

Join the data set microorganisms easily to an existing data set or to a character vector.

Usage

inner_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...)

left_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...)

right_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...)

full_join_microorganisms(x, by = NULL, suffix = c("2", ""), ...)

semi_join_microorganisms(x, by = NULL, ...)

anti_join_microorganisms(x, by = NULL, ...)

Arguments

x existing data set to join, or character vector. In case of a character vector, the
resulting data.frame will contain a column ’x’ with these values.

by a variable to join by - if left empty will search for a column with class mo (created
with as.mo()) or will be "mo" if that column name exists in x, could otherwise
be a column name of x with values that exist in microorganisms$mo (such as
by = "bacteria_id"), or another column in microorganisms (but then it should
be named, like by = c("bacteria_id" = "fullname"))

suffix if there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... ignored, only in place to allow future extensions

Details

Note: As opposed to the join() functions of dplyr, character vectors are supported and at default
existing columns will get a suffix "2" and the newly joined columns will not get a suffix.

If the dplyr package is installed, their join functions will be used. Otherwise, the much slower
merge() and interaction() functions from base R will be used.

key_antimicrobials 83

Value

a data.frame

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

left_join_microorganisms(as.mo("K. pneumoniae"))
left_join_microorganisms("B_KLBSL_PNMN")

if (require("dplyr")) {
example_isolates %>%
left_join_microorganisms() %>%
colnames()

df <- data.frame(date = seq(from = as.Date("2018-01-01"),
to = as.Date("2018-01-07"),
by = 1),

bacteria = as.mo(c("S. aureus", "MRSA", "MSSA", "STAAUR",
"E. coli", "E. coli", "E. coli")),

stringsAsFactors = FALSE)
colnames(df)
df_joined <- left_join_microorganisms(df, "bacteria")
colnames(df_joined)

}

key_antimicrobials (Key) Antimicrobials for First Weighted Isolates

Description

These functions can be used to determine first weighted isolates by considering the phenotype
for isolate selection (see first_isolate()). Using a phenotype-based method to determine first
isolates is more reliable than methods that disregard phenotypes.

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

84 key_antimicrobials

Usage

key_antimicrobials(
x = NULL,
col_mo = NULL,
universal = c("ampicillin", "amoxicillin/clavulanic acid", "cefuroxime",
"piperacillin/tazobactam", "ciprofloxacin", "trimethoprim/sulfamethoxazole"),
gram_negative = c("gentamicin", "tobramycin", "colistin", "cefotaxime",
"ceftazidime", "meropenem"),

gram_positive = c("vancomycin", "teicoplanin", "tetracycline", "erythromycin",
"oxacillin", "rifampin"),

antifungal = c("anidulafungin", "caspofungin", "fluconazole", "miconazole",
"nystatin", "voriconazole"),

only_rsi_columns = FALSE,
...

)

all_antimicrobials(x = NULL, only_rsi_columns = FALSE, ...)

antimicrobials_equal(
y,
z,
type = c("points", "keyantimicrobials"),
ignore_I = TRUE,
points_threshold = 2,
...

)

Arguments

x a data.frame with antibiotics columns, like AMX or amox. Can be left blank to
determine automatically

col_mo column name of the IDs of the microorganisms (see as.mo()), defaults to the
first column of class mo. Values will be coerced using as.mo().

universal names of broad-spectrum antimicrobial agents, case-insensitive. Set to NULL
to ignore. See Details for the default agents.

gram_negative names of antibiotic agents for Gram-positives, case-insensitive. Set to NULL to
ignore. See Details for the default agents.

gram_positive names of antibiotic agents for Gram-negatives, case-insensitive. Set to NULL to
ignore. See Details for the default agents.

antifungal names of antifungal agents for fungi, case-insensitive. Set to NULL to ignore.
See Details for the default agents.

only_rsi_columns

a logical to indicate whether only columns must be included that were trans-
formed to class <rsi> (see as.rsi()) on beforehand (defaults to FALSE)

... ignored, only in place to allow future extensions

y, z character vectors to compare

type type to determine weighed isolates; can be "keyantimicrobials" or "points",
see Details

ignore_I logical to indicate whether antibiotic interpretations with "I" will be ignored
when type = "keyantimicrobials", see Details

key_antimicrobials 85

points_threshold

minimum number of points to require before differences in the antibiogram will
lead to inclusion of an isolate when type = "points", see Details

Details

The key_antimicrobials() and all_antimicrobials() functions are context-aware. This means
that the x argument can be left blank if used inside a data.frame call, see Examples.

The function key_antimicrobials() returns a character vector with 12 antimicrobial results for
every isolate. The function all_antimicrobials() returns a character vector with all antimicro-
bial results for every isolate. These vectors can then be compared using antimicrobials_equal(),
to check if two isolates have generally the same antibiogram. Missing and invalid values are re-
placed with a dot (".") by key_antimicrobials() and ignored by antimicrobials_equal().

Please see the first_isolate() function how these important functions enable the ’phenotype-
based’ method for determination of first isolates.

The default antimicrobial agents used for all rows (set in universal) are:

• Ampicillin

• Amoxicillin/clavulanic acid

• Cefuroxime

• Ciprofloxacin

• Piperacillin/tazobactam

• Trimethoprim/sulfamethoxazole

The default antimicrobial agents used for Gram-negative bacteria (set in gram_negative) are:

• Cefotaxime

• Ceftazidime

• Colistin

• Gentamicin

• Meropenem

• Tobramycin

The default antimicrobial agents used for Gram-positive bacteria (set in gram_positive) are:

• Erythromycin

• Oxacillin

• Rifampin

• Teicoplanin

• Tetracycline

• Vancomycin

The default antimicrobial agents used for fungi (set in antifungal) are:

• Anidulafungin

• Caspofungin

• Fluconazole

• Miconazole

• Nystatin

• Voriconazole

86 key_antimicrobials

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

first_isolate()

Examples

`example_isolates` is a data set available in the AMR package.
See ?example_isolates.

output of the `key_antimicrobials()` function could be like this:
strainA <- "SSSRR.S.R..S"
strainB <- "SSSIRSSSRSSS"

those strings can be compared with:
antimicrobials_equal(strainA, strainB, type = "keyantimicrobials")
TRUE, because I is ignored (as well as missing values)

antimicrobials_equal(strainA, strainB, type = "keyantimicrobials", ignore_I = FALSE)
FALSE, because I is not ignored and so the 4th [character] differs

if (require("dplyr")) {
set key antibiotics to a new variable
my_patients <- example_isolates %>%
mutate(keyab = key_antimicrobials(antifungal = NULL)) %>% # no need to define `x`
mutate(

now calculate first isolates
first_regular = first_isolate(col_keyantimicrobials = FALSE),
and first WEIGHTED isolates
first_weighted = first_isolate(col_keyantimicrobials = "keyab")

)

Check the difference, in this data set it results in more isolates:
sum(my_patients$first_regular, na.rm = TRUE)
sum(my_patients$first_weighted, na.rm = TRUE)

}

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

kurtosis 87

kurtosis Kurtosis of the Sample

Description

Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random
variable. A normal distribution has a kurtosis of 3 and a excess kurtosis of 0.

Usage

kurtosis(x, na.rm = FALSE, excess = FALSE)

Default S3 method:
kurtosis(x, na.rm = FALSE, excess = FALSE)

S3 method for class 'matrix'
kurtosis(x, na.rm = FALSE, excess = FALSE)

S3 method for class 'data.frame'
kurtosis(x, na.rm = FALSE, excess = FALSE)

Arguments

x a vector of values, a matrix or a data.frame

na.rm a logical to indicate whether NA values should be stripped before the computation
proceeds

excess a logical to indicate whether the excess kurtosis should be returned, defined as
the kurtosis minus 3.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

skewness()

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

88 lifecycle

lifecycle Lifecycles of Functions in the AMR Package

Description

Functions in this AMR package are categorised using the lifecycle circle of the Tidyverse as found
on www.tidyverse.org/lifecycle.

This page contains a section for every lifecycle (with text borrowed from the aforementioned Tidy-
verse website), so they can be used in the manual pages of the functions.

Experimental Lifecycle

The lifecycle of this function is experimental. An experimental function is in early stages of
development. The unlying code might be changing frequently. Experimental functions might be
removed without deprecation, so you are generally best off waiting until a function is more mature
before you use it in production code. Experimental functions are only available in development
versions of this AMR package and will thus not be included in releases that are submitted to CRAN,
since such functions have not yet matured enough.

Maturing Lifecycle

The lifecycle of this function is maturing. The unlying code of a maturing function has been
roughed out, but finer details might still change. Since this function needs wider usage and more
extensive testing, you are very welcome to suggest changes at our repository or write us an email
(see section ’Contact Us’).

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Retired Lifecycle

The lifecycle of this function is retired. A retired function is no longer under active development,
and (if appropiate) a better alternative is available. No new arguments will be added, and only the
most critical bugs will be fixed. In a future version, this function will be removed.

Questioning Lifecycle

The lifecycle of this function is questioning. This function might be no longer be optimal approach,
or is it questionable whether this function should be in this AMR package at all.

https://lifecycle.r-lib.org/articles/stages.html
https://lifecycle.r-lib.org/articles/stages.html
https://github.com/msberends/AMR/issues

like 89

like Vectorised Pattern Matching with Keyboard Shortcut

Description

Convenient wrapper around grepl() to match a pattern: x %like% pattern. It always returns
a logical vector and is always case-insensitive (use x %like_case% pattern for case-sensitive
matching). Also, pattern can be as long as x to compare items of each index in both vectors, or
they both can have the same length to iterate over all cases.

Usage

like(x, pattern, ignore.case = TRUE)

x %like% pattern

x %unlike% pattern

x %like_case% pattern

x %unlike_case% pattern

Arguments

x a character vector where matches are sought, or an object which can be coerced
by as.character() to a character vector.

pattern a character vector containing regular expressions (or a character string for fixed
= TRUE) to be matched in the given character vector. Coerced by as.character()
to a character string if possible.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

Details

These like() and %like%/%unlike% functions:

• Are case-insensitive (use %like_case%/%unlike_case% for case-sensitive matching)

• Support multiple patterns

• Check if pattern is a valid regular expression and sets fixed = TRUE if not, to greatly improve
speed (vectorised over pattern)

• Always use compatibility with Perl unless fixed = TRUE, to greatly improve speed

Using RStudio? The %like%/%unlike% functions can also be directly inserted in your code from
the Addins menu and can have its own keyboard shortcut like Shift+Ctrl+L or Shift+Cmd+L (see
menu Tools > Modify Keyboard Shortcuts...). If you keep pressing your shortcut, the inserted text
will be iterated over %like% -> %unlike% -> %like_case% -> %unlike_case%.

Value

A logical vector

90 like

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

Idea from the like function from the data.table package, although altered as explained in Details.

See Also

grepl()

Examples

a <- "This is a test"
b <- "TEST"
a %like% b
#> TRUE
b %like% a
#> FALSE

also supports multiple patterns
a <- c("Test case", "Something different", "Yet another thing")
b <- c("case", "diff", "yet")
a %like% b
#> TRUE TRUE TRUE
a %unlike% b
#> FALSE FALSE FALSE

a[1] %like% b
#> TRUE FALSE FALSE
a %like% b[1]
#> TRUE FALSE FALSE

get isolates whose name start with 'Ent' or 'ent'
example_isolates[which(mo_name(example_isolates$mo) %like% "^ent"),]

faster way, only works in R 3.2 and later:
example_isolates[which(mo_name() %like% "^ent"),]

if (require("dplyr")) {
example_isolates %>%
filter(mo_name() %like% "^ent")

}

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://github.com/Rdatatable/data.table/blob/ec1259af1bf13fc0c96a1d3f9e84d55d8106a9a4/R/like.R

mdro 91

mdro Determine Multidrug-Resistant Organisms (MDRO)

Description

Determine which isolates are multidrug-resistant organisms (MDRO) according to international,
national and custom guidelines.

Usage

mdro(
x = NULL,
guideline = "CMI2012",
col_mo = NULL,
info = interactive(),
pct_required_classes = 0.5,
combine_SI = TRUE,
verbose = FALSE,
only_rsi_columns = FALSE,
...

)

custom_mdro_guideline(..., as_factor = TRUE)

brmo(x = NULL, only_rsi_columns = FALSE, ...)

mrgn(x = NULL, only_rsi_columns = FALSE, ...)

mdr_tb(x = NULL, only_rsi_columns = FALSE, ...)

mdr_cmi2012(x = NULL, only_rsi_columns = FALSE, ...)

eucast_exceptional_phenotypes(x = NULL, only_rsi_columns = FALSE, ...)

Arguments

x a data.frame with antibiotics columns, like AMX or amox. Can be left blank for
automatic determination.

guideline a specific guideline to follow, see sections Supported international / national
guidelines and Using Custom Guidelines below. When left empty, the publica-
tion by Magiorakos et al. (see below) will be followed.

col_mo column name of the IDs of the microorganisms (see as.mo()), defaults to the
first column of class mo. Values will be coerced using as.mo().

info a logical to indicate whether progress should be printed to the console, defaults
to only print while in interactive sessions

pct_required_classes

minimal required percentage of antimicrobial classes that must be available per
isolate, rounded down. For example, with the default guideline, 17 antimicrobial

92 mdro

classes must be available for S. aureus. Setting this pct_required_classes ar-
gument to 0.5 (default) means that for every S. aureus isolate at least 8 different
classes must be available. Any lower number of available classes will return NA
for that isolate.

combine_SI a logical to indicate whether all values of S and I must be merged into one, so
resistance is only considered when isolates are R, not I. As this is the default
behaviour of the mdro() function, it follows the redefinition by EUCAST about
the interpretation of I (increased exposure) in 2019, see section ’Interpretation
of S, I and R’ below. When using combine_SI = FALSE, resistance is considered
when isolates are R or I.

verbose a logical to turn Verbose mode on and off (default is off). In Verbose mode,
the function does not return the MDRO results, but instead returns a data set
in logbook form with extensive info about which isolates would be MDRO-
positive, or why they are not.

only_rsi_columns

a logical to indicate whether only antibiotic columns must be detected that were
transformed to class <rsi> (see as.rsi()) on beforehand (defaults to FALSE)

... in case of custom_mdro_guideline(): a set of rules, see section Using Cus-
tom Guidelines below. Otherwise: column name of an antibiotic, see section
Antibiotics below.

as_factor a logical to indicate whether the returned value should be an ordered factor
(TRUE, default), or otherwise a character vector

Details

These functions are context-aware. This means that the x argument can be left blank if used inside
a data.frame call, see Examples.

For the pct_required_classes argument, values above 1 will be divided by 100. This is to support
both fractions (0.75 or 3/4) and percentages (75).

Note: Every test that involves the Enterobacteriaceae family, will internally be performed using its
newly named order Enterobacterales, since the Enterobacteriaceae family has been taxonomically
reclassified by Adeolu et al. in 2016. Before that, Enterobacteriaceae was the only family under
the Enterobacteriales (with an i) order. All species under the old Enterobacteriaceae family are still
under the new Enterobacterales (without an i) order, but divided into multiple families. The way
tests are performed now by this mdro() function makes sure that results from before 2016 and after
2016 are identical.

Value

• CMI 2012 paper - function mdr_cmi2012() or mdro():
Ordered factor with levels Negative < Multi-drug-resistant (MDR) < Extensively drug-
resistant (XDR) < Pandrug-resistant (PDR)

• TB guideline - function mdr_tb() or mdro(...,guideline = "TB"):
Ordered factor with levels Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant
< Extensively drug-resistant

• German guideline - function mrgn() or mdro(...,guideline = "MRGN"):
Ordered factor with levels Negative < 3MRGN < 4MRGN

• Everything else, except for custom guidelines:
Ordered factor with levels Negative < Positive, unconfirmed < Positive. The value "Positive,unconfirmed"
means that, according to the guideline, it is not entirely sure if the isolate is multi-drug resistant
and this should be confirmed with additional (e.g. molecular) tests

mdro 93

Supported International / National Guidelines

Currently supported guidelines are (case-insensitive):

• guideline = "CMI2012" (default)
Magiorakos AP, Srinivasan A et al. "Multidrug-resistant, extensively drug-resistant and pandrug-
resistant bacteria: an international expert proposal for interim standard definitions for acquired
resistance." Clinical Microbiology and Infection (2012) (link)

• guideline = "EUCAST3.2" (or simply guideline = "EUCAST")
The European international guideline - EUCAST Expert Rules Version 3.2 "Intrinsic Resis-
tance and Unusual Phenotypes" (link)

• guideline = "EUCAST3.1"

The European international guideline - EUCAST Expert Rules Version 3.1 "Intrinsic Resis-
tance and Exceptional Phenotypes Tables" (link)

• guideline = "TB"

The international guideline for multi-drug resistant tuberculosis - World Health Organization
"Companion handbook to the WHO guidelines for the programmatic management of drug-
resistant tuberculosis" (link)

• guideline = "MRGN"

The German national guideline - Mueller et al. (2015) Antimicrobial Resistance and Infection
Control 4:7; doi: 10.1186/s1375601500476

• guideline = "BRMO"

The Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu "WIP-richtlijn
BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)" (link)

Please suggest your own (country-specific) guidelines by letting us know: https://github.com/
msberends/AMR/issues/new.

Using Custom Guidelines

Custom guidelines can be set with the custom_mdro_guideline() function. This is of great impor-
tance if you have custom rules to determine MDROs in your hospital, e.g., rules that are dependent
on ward, state of contact isolation or other variables in your data.

If you are familiar with the case_when() function of the dplyr package, you will recognise the
input method to set your own rules. Rules must be set using what R considers to be the ’formula
notation’. The rule is written before the tilde (~) and the consequence of the rule is written after the
tilde:

custom <- custom_mdro_guideline(CIP == "R" & age > 60 ~ "Elderly Type A",
ERY == "R" & age > 60 ~ "Elderly Type B")

If a row/an isolate matches the first rule, the value after the first ~ (in this case ’Elderly Type A’) will
be set as MDRO value. Otherwise, the second rule will be tried and so on. The number of rules is
unlimited.

You can print the rules set in the console for an overview. Colours will help reading it if your
console supports colours.

custom
#> A set of custom MDRO rules:
#> 1. CIP is "R" and age is higher than 60 -> Elderly Type A
#> 2. ERY is "R" and age is higher than 60 -> Elderly Type B

https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)61632-3/fulltext
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2020/Intrinsic_Resistance_and_Unusual_Phenotypes_Tables_v3.2_20200225.pdf
https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/Expert_rules_intrinsic_exceptional_V3.1.pdf
https://www.who.int/tb/publications/pmdt_companionhandbook/en/
https://doi.org/10.1186/s13756-015-0047-6
https://www.rivm.nl/wip-richtlijn-brmo-bijzonder-resistente-micro-organismen-zkh
https://github.com/msberends/AMR/issues/new
https://github.com/msberends/AMR/issues/new

94 mdro

#> 3. Otherwise -> Negative
#>
#> Unmatched rows will return NA.

The outcome of the function can be used for the guideline argument in the mdro() function:

x <- mdro(example_isolates,
guideline = custom)

table(x)
#> Negative Elderly Type A Elderly Type B
#> 1070 198 732

Rules can also be combined with other custom rules by using c():

x <- mdro(example_isolates,
guideline = c(custom,

custom_mdro_guideline(ERY == "R" & age > 50 ~ "Elderly Type C")))
table(x)
#> Negative Elderly Type A Elderly Type B Elderly Type C
#> 961 198 732 109

The rules set (the custom object in this case) could be exported to a shared file location using
saveRDS() if you collaborate with multiple users. The custom rules set could then be imported
using readRDS().

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Antibiotics

To define antibiotics column names, leave as it is to determine it automatically with guess_ab_col()
or input a text (case-insensitive), or use NULL to skip a column (e.g. TIC = NULL to skip ticarcillin).
Manually defined but non-existing columns will be skipped with a warning.

The following antibiotics are eligible for the functions eucast_rules() and mdro(). These are
shown below in the format ’name (antimicrobial ID, ATC code)’, sorted alphabetically:

Amikacin (AMK, J01MA02), amoxicillin (AMX, J01MA04), amoxicillin/clavulanic acid (AMC, J01MA08),
ampicillin (AMP, J01MA16), ampicillin/sulbactam (SAM, J01MA15), azidocillin (AZD, J01MA11),
azithromycin (AZM, J01MA12), azlocillin (AZL, J01MA07), aztreonam (ATM, J01MA14), bacampi-
cillin (BAM, J01MA06), benzathine benzylpenicillin (BNB, J01MA01), benzathine phenoxymethylpeni-
cillin (BNP, J01MA18), benzylpenicillin (PEN, J01MA03), cadazolid (CDZ, J01MA17), carbeni-
cillin (CRB, J01MA10), carindacillin (CRN, J01MA09), cefacetrile (CAC, J01MA05), cefaclor (CEC,
J01MA13), cefadroxil (CFR, J01CA01), cefaloridine (RID, J01CA04), cefamandole (MAN, J01CA12),
cefatrizine (CTZ, J01CR05), cefazedone (CZD, J01CA13), cefazolin (CZO, J01AA02), cefdinir (CDR,
J01FA10), cefditoren (DIT, J01FA09), cefepime (FEP, J01CR02), cefetamet (CAT, J01AA08), ce-
fixime (CFM, J01FA06), cefmenoxime (CMX, J01CF04), cefmetazole (CMZ, J01CF05), cefodizime

https://www.whocc.no/atc/structure_and_principles/
https://www.whocc.no/atc_ddd_index/?code=J01GB06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DF01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD16&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC09&showdescription=no

mdro 95

(DIZ, J01CR01), cefonicid (CID, J01CE04), cefoperazone (CFP, J01CA09), cefoperazone/sulbactam
(CSL, J01DF01), ceforanide (CND, J01CA06), cefotaxime (CTX, J01CE08), cefotetan (CTT, J01CE10),
cefotiam (CTF, J01CE01), cefoxitin (FOX, J01CA03), cefpiramide (CPM, J01CA05), cefpirome (CPO,
J01CE07), cefpodoxime (CPD, J01CF02), cefprozil (CPR, J01CF01), cefroxadine (CRD, J01CA07),
cefsulodin (CFS, J01CA18), ceftaroline (CPT, J01CA11), ceftazidime (CAZ, J01CA14), ceftazidime/avibactam
(CZA, J01CF03), ceftazidime/clavulanic acid (CCV, J01CA10), ceftezole (CTL, J01CE06), ceftibuten
(CTB, J01CE05), ceftizoxime (CZX, J01CE02), ceftobiprole (BPR, J01CA02), ceftobiprole medo-
caril (CFM1, J01CA08), ceftolozane/enzyme inhibitor (CEI, J01CE09), ceftriaxone (CRO, J01CE03),
cefuroxime (CXM, J01CG01), cephalexin (LEX, J01CA16), cephalothin (CEP, J01CR04), cephapirin
(HAP, J01CA15), cephradine (CED, J01CG02), chloramphenicol (CHL, J01CA17), ciprofloxacin (CIP,
J01CR03), clarithromycin (CLR, J01DD09), clindamycin (CLI, J01DB10), clometocillin (CLM, J01DC04),
cloxacillin (CLO, J01DB05), colistin (COL, J01DB02), cycloserine (CYC, J01DC03), dalbavancin
(DAL, J01DB07), daptomycin (DAP, J01DB06), dibekacin (DKB, J01DB04), dicloxacillin (DIC, J01DD15),
dirithromycin (DIR, J01DD16), doripenem (DOR, J01DE01), doxycycline (DOX, J01DD10), enoxacin
(ENX, J01DD08), epicillin (EPC, J01DD05), ertapenem (ETP, J01DC09), erythromycin (ERY, J01DD09),
fleroxacin (FLE, J01DC06), flucloxacillin (FLC, J01DD12), flurithromycin (FLR1, J01DD62), fos-
fomycin (FOS, J01DC11), fusidic acid (FUS, J01DD01), gatifloxacin (GAT, J01DC05), gemifloxacin
(GEM, J01DC07), gentamicin (GEN, J01DC01), grepafloxacin (GRX, J01DD11), hetacillin (HET, J01DE02),
imipenem (IPM, J01DD13), isepamicin (ISE, J01DC10), josamycin (JOS, J01DB11), kanamycin
(KAN, J01DD03), latamoxef (LTM, J01DI02), levofloxacin (LVX, J01DD02), lincomycin (LIN, J01DD52),
linezolid (LNZ, J01DD52), lomefloxacin (LOM, J01DB12), loracarbef (LOR, J01DD14), mecillinam
(Amdinocillin) (MEC, J01DD07), meropenem (MEM, J01DI01), meropenem/vaborbactam (MEV, J01DI01),
metampicillin (MTM, J01DI54), methicillin (MET, J01DD04), mezlocillin (MEZ, J01DC02), mide-
camycin (MID, J01DB01), minocycline (MNO, J01DB03), miocamycin (MCM, J01DB08), moxifloxacin
(MFX, J01DB09), nalidixic acid (NAL, J01DD06), neomycin (NEO, J01DC08), netilmicin (NET, J01DH04),
nitrofurantoin (NIT, J01DH03), norfloxacin (NOR, J01DH51), novobiocin (NOV, J01DH02), ofloxacin
(OFX, J01DH52), oleandomycin (OLE, J01XA02), oritavancin (ORI, J01XA01), oxacillin (OXA, J01XC01),
pazufloxacin (PAZ, J01FA13), pefloxacin (PEF, J01FA01), penamecillin (PNM, J01FA14), phenethi-
cillin (PHE, J01FA07), phenoxymethylpenicillin (PHN, J01FA03), piperacillin (PIP, J01FA11), piperacillin/tazobactam
(TZP, J01FA05), pivampicillin (PVM, J01FA12), pivmecillinam (PME, J01FA02), polymyxin B (PLB,
J01FA15), pristinamycin (PRI, J01FA08), procaine benzylpenicillin (PRB, J01FF02), propicillin
(PRP, J01FG01), prulifloxacin (PRU, J01FG02), quinupristin/dalfopristin (QDA, J04AB02), ribostamycin
(RST, J01XX09), rifampicin (RIF, J01XX08), rokitamycin (ROK, J01AA07), roxithromycin (RXT,
J01XB01), rufloxacin (RFL, J01XB02), sisomicin (SIS, J01XE01), sparfloxacin (SPX, J01AA12),
spiramycin (SPI, J01EA01), streptoduocin (STR, J01XX01), streptomycin (STR1, J01BA01), sul-
bactam (SUL, J01GB06), sulbenicillin (SBC, J01GB09), sulfadiazine (SDI, J01GB03), sulfadiazine/trimethoprim
(SLT1, J01GB11), sulfadimethoxine (SUD, J01GB04), sulfadimidine (SDM, J01GB05), sulfadimi-
dine/trimethoprim (SLT2, J01GB07), sulfafurazole (SLF, J01GB10), sulfaisodimidine (SLF1, J01GB08),
sulfalene (SLF2, J01GA02), sulfamazone (SZO, J01GA01), sulfamerazine (SLF3, J01GB01), sul-
famerazine/trimethoprim (SLT3, J01EE01), sulfamethizole (SLF4, J01MB02), sulfamethoxazole
(SMX, QJ01XX95), sulfamethoxypyridazine (SLF5, J01FF01), sulfametomidine (SLF6, J01XA04),
sulfametoxydiazine (SLF7, J01XA05), sulfametrole/trimethoprim (SLT4, J01XA03), sulfamoxole
(SLF8, J04AB01), sulfamoxole/trimethoprim (SLT5, J01XX11), sulfanilamide (SLF9, J01EC02),
sulfaperin (SLF10, J01ED01), sulfaphenazole (SLF11, J01EB03), sulfapyridine (SLF12, J01EB05),
sulfathiazole (SUT, J01EB01), sulfathiourea (SLF13, J01ED02), sultamicillin (SLT6, J01ED09), ta-
lampicillin (TAL, J01ED07), tazobactam (TAZ, J01EB02), tedizolid (TZD, J01EC01), teicoplanin
(TEC, J01ED05), telavancin (TLV, J01ED03), telithromycin (TLT, J01ED04), temafloxacin (TMX,
J01EC03), temocillin (TEM, J01EB06), tetracycline (TCY, J01ED06), ticarcillin (TIC, J01ED08),
ticarcillin/clavulanic acid (TCC, J01EB04), tigecycline (TGC, J01EB07), tobramycin (TOB, J01EB08),
trimethoprim (TMP, J01EE02), trimethoprim/sulfamethoxazole (SXT, J01EE05), troleandomycin (TRL,
J01EE07), trovafloxacin (TVA, J01EE03), vancomycin (VAN, J01EE04)

https://www.whocc.no/atc_ddd_index/?code=J01DD09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD62&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DE02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD52&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD52&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DI54&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DB09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01BA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FF01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J04AB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XC01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA16&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA18&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH51&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DD06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FF02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DC08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01DH52&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA14&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=QJ01XX95&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CF04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA18&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FG01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CE03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA17&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FG02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J04AB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA10&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CG01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA16&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EC02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED09&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EC01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EC03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED06&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01ED08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EB08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR04&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CG02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XX11&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA02&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA15&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA05&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA17&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA07&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CA13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01CR03&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01AA12&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01GB01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EA01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01EE01&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01FA08&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01MA13&showdescription=no
https://www.whocc.no/atc_ddd_index/?code=J01XA01&showdescription=no

96 mdro

Interpretation of R and S/I

In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided
to change the definitions of susceptibility testing categories R and S/I as shown below (https:
//www.eucast.org/newsiandr/).

• R = Resistant
A microorganism is categorised as Resistant when there is a high likelihood of therapeutic
failure even when there is increased exposure. Exposure is a function of how the mode of
administration, dose, dosing interval, infusion time, as well as distribution and excretion of
the antimicrobial agent will influence the infecting organism at the site of infection.

• S = Susceptible
A microorganism is categorised as Susceptible, standard dosing regimen, when there is a high
likelihood of therapeutic success using a standard dosing regimen of the agent.

• I = Increased exposure, but still susceptible
A microorganism is categorised as Susceptible, Increased exposure when there is a high likeli-
hood of therapeutic success because exposure to the agent is increased by adjusting the dosing
regimen or by its concentration at the site of infection.

This AMR package honours this (new) insight. Use susceptibility() (equal to proportion_SI())
to determine antimicrobial susceptibility and count_susceptible() (equal to count_SI()) to
count susceptible isolates.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

See the supported guidelines above for the list of publications used for this function.

Examples

mdro(example_isolates, guideline = "EUCAST")

mdro(example_isolates,
guideline = custom_mdro_guideline(AMX == "R" ~ "Custom MDRO 1",

VAN == "R" ~ "Custom MDRO 2"))

if (require("dplyr")) {
example_isolates %>%
mdro() %>%
table()

no need to define `x` when used inside dplyr verbs:
example_isolates %>%
mutate(MDRO = mdro(),

EUCAST = eucast_exceptional_phenotypes(),
BRMO = brmo(),
MRGN = mrgn())

}

https://www.eucast.org/newsiandr/
https://www.eucast.org/newsiandr/
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

microorganisms 97

microorganisms Data Set with 70,026 Microorganisms

Description

A data set containing the microbial taxonomy, last updated in March 2021, of six kingdoms from the
Catalogue of Life (CoL) and the List of Prokaryotic names with Standing in Nomenclature (LPSN).
MO codes can be looked up using as.mo().

Usage

microorganisms

Format

A data.frame with 70,026 observations and 16 variables:

• mo
ID of microorganism as used by this package

• fullname
Full name, like "Escherichia coli"

• kingdom, phylum, class, order, family, genus, species, subspecies
Taxonomic rank of the microorganism

• rank
Text of the taxonomic rank of the microorganism, like "species" or "genus"

• ref
Author(s) and year of concerning scientific publication

• species_id
ID of the species as used by the Catalogue of Life

• source
Either "CoL", "LPSN" or "manually added" (see Source)

• prevalence
Prevalence of the microorganism, see as.mo()

• snomed
Systematized Nomenclature of Medicine (SNOMED) code of the microorganism, according
to the US Edition of SNOMED CT from 1 September 2020 (see Source). Use mo_snomed()
to retrieve it quickly, see mo_property().

Details

Please note that entries are only based on the Catalogue of Life and the LPSN (see below). Since
these sources incorporate entries based on (recent) publications in the International Journal of Sys-
tematic and Evolutionary Microbiology (IJSEM), it can happen that the year of publication is some-
times later than one might expect.

For example, Staphylococcus pettenkoferi was described for the first time in Diagnostic Microbi-
ology and Infectious Disease in 2002 (doi: 10.1016/s07328893(02)003991), but it was not before
2007 that a publication in IJSEM followed (doi: 10.1099/ijs.0.643810). Consequently, the AMR
package returns 2007 for mo_year("S. pettenkoferi").

https://doi.org/10.1016/s0732-8893(02)00399-1
https://doi.org/10.1099/ijs.0.64381-0

98 microorganisms

Manual additions:
For convenience, some entries were added manually:

• 11 entries of Streptococcus (beta-haemolytic: groups A, B, C, D, F, G, H, K and unspecified;
other: viridans, milleri)

• 2 entries of Staphylococcus (coagulase-negative (CoNS) and coagulase-positive (CoPS))
• 3 entries of Trichomonas (Trichomonas vaginalis, and its family and genus)
• 1 entry of Candida (Candida krusei), that is not (yet) in the Catalogue of Life
• 1 entry of Blastocystis (Blastocystis hominis), although it officially does not exist (Noel et al.

2005, PMID 15634993)
• 5 other ’undefined’ entries (unknown, unknown Gram negatives, unknown Gram positives,

unknown yeast and unknown fungus)
• 6 families under the Enterobacterales order, according to Adeolu et al. (2016, PMID 27620848),

that are not (yet) in the Catalogue of Life

Direct download:
This data set is available as ’flat file’ for use even without R - you can find the file here:

• https://github.com/msberends/AMR/raw/master/data-raw/microorganisms.txt

The file in R format (with preserved data structure) can be found here:

• https://github.com/msberends/AMR/raw/master/data/microorganisms.rda

About the Records from LPSN (see Source)

The List of Prokaryotic names with Standing in Nomenclature (LPSN) provides comprehensive
information on the nomenclature of prokaryotes. LPSN is a free to use service founded by Jean P.
Euzeby in 1997 and later on maintained by Aidan C. Parte.

As of February 2020, the regularly augmented LPSN database at DSMZ is the basis of the new
LPSN service. The new database was implemented for the Type-Strain Genome Server and aug-
mented in 2018 to store all kinds of nomenclatural information. Data from the previous version of
LPSN and from the Prokaryotic Nomenclature Up-to-date (PNU) service were imported into the
new system. PNU had been established in 1993 as a service of the Leibniz Institute DSMZ, and
was curated by Norbert Weiss, Manfred Kracht and Dorothea Gleim.

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

https://github.com/msberends/AMR/raw/master/data-raw/microorganisms.txt
https://github.com/msberends/AMR/raw/master/data/microorganisms.rda
http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html

microorganisms.codes 99

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

Catalogue of Life: 2019 Annual Checklist as currently implemented in this AMR package:

• Annual Checklist (public online taxonomic database), http://www.catalogueoflife.org

List of Prokaryotic names with Standing in Nomenclature (March 2021) as currently implemented
in this AMR package:

• Parte, A.C., Sarda Carbasse, J., Meier-Kolthoff, J.P., Reimer, L.C. and Goker, M. (2020). List
of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Interna-
tional Journal of Systematic and Evolutionary Microbiology, 70, 5607-5612; doi: 10.1099/
ijsem.0.004332

• Parte, A.C. (2018). LPSN — List of Prokaryotic names with Standing in Nomenclature (bac-
terio.net), 20 years on. International Journal of Systematic and Evolutionary Microbiology,
68, 1825-1829; doi: 10.1099/ijsem.0.002786

• Parte, A.C. (2014). LPSN — List of Prokaryotic names with Standing in Nomenclature.
Nucleic Acids Research, 42, Issue D1, D613–D616; doi: 10.1093/nar/gkt1111

• Euzeby, J.P. (1997). List of Bacterial Names with Standing in Nomenclature: a Folder Avail-
able on the Internet. International Journal of Systematic Bacteriology, 47, 590-592; doi: 10.1099/
00207713472590

US Edition of SNOMED CT from 1 September 2020 as currently implemented in this AMR package:

• Retrieved from the Public Health Information Network Vocabulary Access and Distribution
System (PHIN VADS), OID 2.16.840.1.114222.4.11.1009, version 12; url: https://phinvads.
cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009

See Also

as.mo(), mo_property(), microorganisms.codes, intrinsic_resistant

microorganisms.codes Data Set with 5,605 Common Microorganism Codes

Description

A data set containing commonly used codes for microorganisms, from laboratory systems and
WHONET. Define your own with set_mo_source(). They will all be searched when using as.mo()
and consequently all the mo_* functions.

Usage

microorganisms.codes

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
http://www.catalogueoflife.org
https://doi.org/10.1099/ijsem.0.004332
https://doi.org/10.1099/ijsem.0.004332
https://doi.org/10.1099/ijsem.0.002786
https://doi.org/10.1093/nar/gkt1111
https://doi.org/10.1099/00207713-47-2-590
https://doi.org/10.1099/00207713-47-2-590
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009

100 microorganisms.old

Format

A data.frame with 5,605 observations and 2 variables:

• code
Commonly used code of a microorganism

• mo
ID of the microorganism in the microorganisms data set

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

as.mo() microorganisms

microorganisms.old Data Set with Previously Accepted Taxonomic Names

Description

A data set containing old (previously valid or accepted) taxonomic names according to the Cata-
logue of Life. This data set is used internally by as.mo().

Usage

microorganisms.old

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

microorganisms.old 101

Format

A data.frame with 14,100 observations and 4 variables:

• fullname
Old full taxonomic name of the microorganism

• fullname_new
New full taxonomic name of the microorganism

• ref
Author(s) and year of concerning scientific publication

• prevalence
Prevalence of the microorganism, see as.mo()

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

Catalogue of Life: Annual Checklist (public online taxonomic database), http://www.catalogueoflife.
org (check included annual version with catalogue_of_life_version()).

Parte, A.C. (2018). LPSN — List of Prokaryotic names with Standing in Nomenclature (bac-
terio.net), 20 years on. International Journal of Systematic and Evolutionary Microbiology, 68,
1825-1829; doi: 10.1099/ijsem.0.002786

See Also

as.mo() mo_property() microorganisms

http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://doi.org/10.1099/ijsem.0.002786

102 mo_matching_score

mo_matching_score Calculate the Matching Score for Microorganisms

Description

This algorithm is used by as.mo() and all the mo_* functions to determine the most probable match
of taxonomic records based on user input.

Usage

mo_matching_score(x, n)

Arguments

x Any user input value(s)

n A full taxonomic name, that exists in microorganisms$fullname

Matching Score for Microorganisms

With ambiguous user input in as.mo() and all the mo_* functions, the returned results are chosen
based on their matching score using mo_matching_score(). This matching score m, is calculated
as:

m(x,n) =
ln − 0.5 ·min { ln lev(x, n)

ln · pn · kn

where:

• x is the user input;

• n is a taxonomic name (genus, species, and subspecies);

• l_n is the length of n;

• lev is the Levenshtein distance function, which counts any insertion, deletion and substitution
as 1 that is needed to change x into n;

• p_n is the human pathogenic prevalence group of n, as described below;

• l_n is the taxonomic kingdom of n, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4,
others = 5.

The grouping into human pathogenic prevalence (p) is based on experience from several microbio-
logical laboratories in the Netherlands in conjunction with international reports on pathogen preva-
lence. Group 1 (most prevalent microorganisms) consists of all microorganisms where the taxo-
nomic class is Gammaproteobacteria or where the taxonomic genus is Enterococcus, Staphylococ-
cus or Streptococcus. This group consequently contains all common Gram-negative bacteria, such
as Pseudomonas and Legionella and all species within the order Enterobacterales. Group 2 consists
of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes, Actinobacteria
or Sarcomastigophora, or where the taxonomic genus is Absidia, Acremonium, Actinotignum, Al-
ternaria, Anaerosalibacter, Apophysomyces, Arachnia, Aspergillus, Aureobacterium, Aureobasid-
ium, Bacteroides, Basidiobolus, Beauveria, Blastocystis, Branhamella, Calymmatobacterium, Can-
dida, Capnocytophaga, Catabacter, Chaetomium, Chryseobacterium, Chryseomonas, Chrysonilia,
Cladophialophora, Cladosporium, Conidiobolus, Cryptococcus, Curvularia, Exophiala, Exsero-
hilum, Flavobacterium, Fonsecaea, Fusarium, Fusobacterium, Hendersonula, Hypomyces, Koserella,

mo_matching_score 103

Lelliottia, Leptosphaeria, Leptotrichia, Malassezia, Malbranchea, Mortierella, Mucor, Mycocen-
trospora, Mycoplasma, Nectria, Ochroconis, Oidiodendron, Phoma, Piedraia, Pithomyces, Pity-
rosporum, Prevotella, Pseudallescheria, Rhizomucor, Rhizopus, Rhodotorula, Scolecobasidium,
Scopulariopsis, Scytalidium, Sporobolomyces, Stachybotrys, Stomatococcus, Treponema, Tricho-
derma, Trichophyton, Trichosporon, Tritirachium or Ureaplasma. Group 3 consists of all other
microorganisms.

All matches are sorted descending on their matching score and for all user input values, the top
match will be returned. This will lead to the effect that e.g., "E. coli" will return the microbial
ID of Escherichia coli (m = 0.688, a highly prevalent microorganism found in humans) and not
Entamoeba coli (m = 0.079, a less prevalent microorganism in humans), although the latter would
alphabetically come first.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Author(s)

Matthijs S. Berends

Examples

as.mo("E. coli")
mo_uncertainties()

mo_matching_score(x = "E. coli",
n = c("Escherichia coli", "Entamoeba coli"))

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

104 mo_property

mo_property Get Properties of a Microorganism

Description

Use these functions to return a specific property of a microorganism based on the latest accepted
taxonomy. All input values will be evaluated internally with as.mo(), which makes it possible to
use microbial abbreviations, codes and names as input. See Examples.

Usage

mo_name(x, language = get_locale(), ...)

mo_fullname(x, language = get_locale(), ...)

mo_shortname(x, language = get_locale(), ...)

mo_subspecies(x, language = get_locale(), ...)

mo_species(x, language = get_locale(), ...)

mo_genus(x, language = get_locale(), ...)

mo_family(x, language = get_locale(), ...)

mo_order(x, language = get_locale(), ...)

mo_class(x, language = get_locale(), ...)

mo_phylum(x, language = get_locale(), ...)

mo_kingdom(x, language = get_locale(), ...)

mo_domain(x, language = get_locale(), ...)

mo_type(x, language = get_locale(), ...)

mo_gramstain(x, language = get_locale(), ...)

mo_is_gram_negative(x, language = get_locale(), ...)

mo_is_gram_positive(x, language = get_locale(), ...)

mo_is_yeast(x, language = get_locale(), ...)

mo_is_intrinsic_resistant(x, ab, language = get_locale(), ...)

mo_snomed(x, language = get_locale(), ...)

mo_ref(x, language = get_locale(), ...)

mo_property 105

mo_authors(x, language = get_locale(), ...)

mo_year(x, language = get_locale(), ...)

mo_rank(x, language = get_locale(), ...)

mo_taxonomy(x, language = get_locale(), ...)

mo_synonyms(x, language = get_locale(), ...)

mo_info(x, language = get_locale(), ...)

mo_url(x, open = FALSE, language = get_locale(), ...)

mo_property(x, property = "fullname", language = get_locale(), ...)

Arguments

x any character (vector) that can be coerced to a valid microorganism code with
as.mo(). Can be left blank for auto-guessing the column containing microor-
ganism codes if used in a data set, see Examples.

language language of the returned text, defaults to system language (see get_locale())
and can be overwritten by setting the option AMR_locale, e.g. options(AMR_locale
= "de"), see translate. Also used to translate text like "no growth". Use language
= NULL or language = "" to prevent translation.

... other arguments passed on to as.mo(), such as ’allow_uncertain’ and ’ignore_pattern’

ab any (vector of) text that can be coerced to a valid antibiotic code with as.ab()

open browse the URL using browseURL()

property one of the column names of the microorganisms data set: "mo", "fullname",
"kingdom", "phylum", "class", "order", "family", "genus", "species", "subspecies",
"rank", "ref", "species_id", "source", "prevalence" or "snomed", or must be
"shortname"

Details

All functions will return the most recently known taxonomic property according to the Catalogue of
Life, except for mo_ref(), mo_authors() and mo_year(). Please refer to this example, knowing
that Escherichia blattae was renamed to Shimwellia blattae in 2010:

• mo_name("Escherichia blattae") will return "Shimwellia blattae" (with a message about
the renaming)

• mo_ref("Escherichia blattae") will return "Burgess et al.,1973" (with a message about
the renaming)

• mo_ref("Shimwellia blattae") will return "Priest et al.,2010" (without a message)

The short name - mo_shortname() - almost always returns the first character of the genus and
the full species, like "E. coli". Exceptions are abbreviations of staphylococci (such as "CoNS",
Coagulase-Negative Staphylococci) and beta-haemolytic streptococci (such as "GBS", Group B
Streptococci). Please bear in mind that e.g. E. coli could mean Escherichia coli (kingdom of
Bacteria) as well as Entamoeba coli (kingdom of Protozoa). Returning to the full name will be
done using as.mo() internally, giving priority to bacteria and human pathogens, i.e. "E. coli"

106 mo_property

will be considered Escherichia coli. In other words, mo_fullname(mo_shortname("Entamoeba
coli")) returns "Escherichia coli".

Since the top-level of the taxonomy is sometimes referred to as ’kingdom’ and sometimes as ’do-
main’, the functions mo_kingdom() and mo_domain() return the exact same results.

The Gram stain - mo_gramstain() - will be determined based on the taxonomic kingdom and
phylum. According to Cavalier-Smith (2002, PMID 11837318), who defined subkingdoms Neg-
ibacteria and Posibacteria, only these phyla are Posibacteria: Actinobacteria, Chloroflexi, Firmi-
cutes and Tenericutes. These bacteria are considered Gram-positive - all other bacteria are con-
sidered Gram-negative. Species outside the kingdom of Bacteria will return a value NA. Func-
tions mo_is_gram_negative() and mo_is_gram_positive() always return TRUE or FALSE (ex-
cept when the input is NA or the MO code is UNKNOWN), thus always return FALSE for species outside
the taxonomic kingdom of Bacteria.

Determination of yeasts - mo_is_yeast() - will be based on the taxonomic kingdom and class.
Budding yeasts are fungi of the phylum Ascomycetes, class Saccharomycetes (also called Hemi-
ascomycetes). True yeasts are aggregated into the underlying order Saccharomycetales. Thus, for
all microorganisms that are fungi and member of the taxonomic class Saccharomycetes, the func-
tion will return TRUE. It returns FALSE otherwise (except when the input is NA or the MO code is
UNKNOWN).

Intrinsic resistance - mo_is_intrinsic_resistant() - will be determined based on the intrin-
sic_resistant data set, which is based on ’EUCAST Expert Rules’ and ’EUCAST Intrinsic Resis-
tance and Unusual Phenotypes’ v3.2 (2020). The mo_is_intrinsic_resistant() functions can
be vectorised over arguments x (input for microorganisms) and over ab (input for antibiotics).

All output will be translated where possible.

The function mo_url() will return the direct URL to the online database entry, which also shows
the scientific reference of the concerned species.

SNOMED codes - mo_snomed() - are from the US Edition of SNOMED CT from 1 September
2020. See the microorganisms data set for more info.

Value

• An integer in case of mo_year()

• A list in case of mo_taxonomy() and mo_info()

• A named character in case of mo_url()

• A numeric in case of mo_snomed()

• A character in all other cases

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

https://pubmed.ncbi.nlm.nih.gov/11837318
https://www.eucast.org/expert_rules_and_intrinsic_resistance/
https://www.eucast.org/expert_rules_and_intrinsic_resistance/

mo_property 107

Matching Score for Microorganisms

With ambiguous user input in as.mo() and all the mo_* functions, the returned results are chosen
based on their matching score using mo_matching_score(). This matching score m, is calculated
as:

m(x,n) =
ln − 0.5 ·min { ln lev(x, n)

ln · pn · kn

where:

• x is the user input;

• n is a taxonomic name (genus, species, and subspecies);

• l_n is the length of n;

• lev is the Levenshtein distance function, which counts any insertion, deletion and substitution
as 1 that is needed to change x into n;

• p_n is the human pathogenic prevalence group of n, as described below;

• l_n is the taxonomic kingdom of n, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4,
others = 5.

The grouping into human pathogenic prevalence (p) is based on experience from several microbio-
logical laboratories in the Netherlands in conjunction with international reports on pathogen preva-
lence. Group 1 (most prevalent microorganisms) consists of all microorganisms where the taxo-
nomic class is Gammaproteobacteria or where the taxonomic genus is Enterococcus, Staphylococ-
cus or Streptococcus. This group consequently contains all common Gram-negative bacteria, such
as Pseudomonas and Legionella and all species within the order Enterobacterales. Group 2 consists
of all microorganisms where the taxonomic phylum is Proteobacteria, Firmicutes, Actinobacteria
or Sarcomastigophora, or where the taxonomic genus is Absidia, Acremonium, Actinotignum, Al-
ternaria, Anaerosalibacter, Apophysomyces, Arachnia, Aspergillus, Aureobacterium, Aureobasid-
ium, Bacteroides, Basidiobolus, Beauveria, Blastocystis, Branhamella, Calymmatobacterium, Can-
dida, Capnocytophaga, Catabacter, Chaetomium, Chryseobacterium, Chryseomonas, Chrysonilia,
Cladophialophora, Cladosporium, Conidiobolus, Cryptococcus, Curvularia, Exophiala, Exsero-
hilum, Flavobacterium, Fonsecaea, Fusarium, Fusobacterium, Hendersonula, Hypomyces, Koserella,
Lelliottia, Leptosphaeria, Leptotrichia, Malassezia, Malbranchea, Mortierella, Mucor, Mycocen-
trospora, Mycoplasma, Nectria, Ochroconis, Oidiodendron, Phoma, Piedraia, Pithomyces, Pity-
rosporum, Prevotella, Pseudallescheria, Rhizomucor, Rhizopus, Rhodotorula, Scolecobasidium,
Scopulariopsis, Scytalidium, Sporobolomyces, Stachybotrys, Stomatococcus, Treponema, Tricho-
derma, Trichophyton, Trichosporon, Tritirachium or Ureaplasma. Group 3 consists of all other
microorganisms.

All matches are sorted descending on their matching score and for all user input values, the top
match will be returned. This will lead to the effect that e.g., "E. coli" will return the microbial
ID of Escherichia coli (m = 0.688, a highly prevalent microorganism found in humans) and not
Entamoeba coli (m = 0.079, a less prevalent microorganism in humans), although the latter would
alphabetically come first.

Catalogue of Life

This package contains the complete taxonomic tree of almost all microorganisms (~70,000 species)
from the authoritative and comprehensive Catalogue of Life (CoL, http://www.catalogueoflife.
org). The CoL is the most comprehensive and authoritative global index of species currently avail-
able. Nonetheless, we supplemented the CoL data with data from the List of Prokaryotic names
with Standing in Nomenclature (LPSN, lpsn.dsmz.de). This supplementation is needed until the
CoL+ project is finished, which we await.

http://www.catalogueoflife.org
http://www.catalogueoflife.org
https://lpsn.dsmz.de
https://github.com/CatalogueOfLife/general

108 mo_property

Click here for more information about the included taxa. Check which versions of the CoL and
LPSN were included in this package with catalogue_of_life_version().

Source

1. Becker K et al. Coagulase-Negative Staphylococci. 2014. Clin Microbiol Rev. 27(4):
870–926; doi: 10.1128/CMR.0010913

2. Becker K et al. Implications of identifying the recently defined members of the S. aureus
complex, S. argenteus and S. schweitzeri: A position paper of members of the ESCMID
Study Group for staphylococci and Staphylococcal Diseases (ESGS). 2019. Clin Microbiol
Infect; doi: 10.1016/j.cmi.2019.02.028

3. Becker K et al. Emergence of coagulase-negative staphylococci 2020. Expert Rev Anti
Infect Ther. 18(4):349-366; doi: 10.1080/14787210.2020.1730813

4. Lancefield RC A serological differentiation of human and other groups of hemolytic
streptococci. 1933. J Exp Med. 57(4): 571–95; doi: 10.1084/jem.57.4.571

5. Catalogue of Life: 2019 Annual Checklist, http://www.catalogueoflife.org

6. List of Prokaryotic names with Standing in Nomenclature (March 2021), doi: 10.1099/ijsem.0.004332

7. US Edition of SNOMED CT from 1 September 2020, retrieved from the Public Health Infor-
mation Network Vocabulary Access and Distribution System (PHIN VADS), OID 2.16.840.1.114222.4.11.1009,
version 12; url: https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.
1.114222.4.11.1009

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

microorganisms

Examples

taxonomic tree ---
mo_kingdom("E. coli") # "Bacteria"
mo_phylum("E. coli") # "Proteobacteria"
mo_class("E. coli") # "Gammaproteobacteria"
mo_order("E. coli") # "Enterobacterales"
mo_family("E. coli") # "Enterobacteriaceae"
mo_genus("E. coli") # "Escherichia"
mo_species("E. coli") # "coli"
mo_subspecies("E. coli") # ""

colloquial properties --

https://doi.org/10.1128/CMR.00109-13
https://doi.org/10.1016/j.cmi.2019.02.028
https://doi.org/10.1080/14787210.2020.1730813
https://doi.org/10.1084/jem.57.4.571
http://www.catalogueoflife.org
https://doi.org/10.1099/ijsem.0.004332
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009
https://phinvads.cdc.gov/vads/ViewValueSet.action?oid=2.16.840.1.114222.4.11.1009
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

mo_property 109

mo_name("E. coli") # "Escherichia coli"
mo_fullname("E. coli") # "Escherichia coli" - same as mo_name()
mo_shortname("E. coli") # "E. coli"

other properties ---
mo_gramstain("E. coli") # "Gram-negative"
mo_snomed("E. coli") # 112283007, 116395006, ... (SNOMED codes)
mo_type("E. coli") # "Bacteria" (equal to kingdom, but may be translated)
mo_rank("E. coli") # "species"
mo_url("E. coli") # get the direct url to the online database entry
mo_synonyms("E. coli") # get previously accepted taxonomic names

scientific reference ---
mo_ref("E. coli") # "Castellani et al., 1919"
mo_authors("E. coli") # "Castellani et al."
mo_year("E. coli") # 1919

abbreviations known in the field ---
mo_genus("MRSA") # "Staphylococcus"
mo_species("MRSA") # "aureus"
mo_shortname("VISA") # "S. aureus"
mo_gramstain("VISA") # "Gram-positive"

mo_genus("EHEC") # "Escherichia"
mo_species("EHEC") # "coli"

known subspecies ---
mo_name("doylei") # "Campylobacter jejuni doylei"
mo_genus("doylei") # "Campylobacter"
mo_species("doylei") # "jejuni"
mo_subspecies("doylei") # "doylei"

mo_fullname("K. pneu rh") # "Klebsiella pneumoniae rhinoscleromatis"
mo_shortname("K. pneu rh") # "K. pneumoniae"

Becker classification, see ?as.mo --
mo_fullname("S. epi") # "Staphylococcus epidermidis"
mo_fullname("S. epi", Becker = TRUE) # "Coagulase-negative Staphylococcus (CoNS)"
mo_shortname("S. epi") # "S. epidermidis"
mo_shortname("S. epi", Becker = TRUE) # "CoNS"

Lancefield classification, see ?as.mo ------------------------------------
mo_fullname("S. pyo") # "Streptococcus pyogenes"
mo_fullname("S. pyo", Lancefield = TRUE) # "Streptococcus group A"
mo_shortname("S. pyo") # "S. pyogenes"
mo_shortname("S. pyo", Lancefield = TRUE) # "GAS" (='Group A Streptococci')

language support --
mo_gramstain("E. coli", language = "de") # "Gramnegativ"
mo_gramstain("E. coli", language = "nl") # "Gram-negatief"
mo_gramstain("E. coli", language = "es") # "Gram negativo"

mo_type is equal to mo_kingdom, but mo_kingdom will remain official
mo_kingdom("E. coli") # "Bacteria" on a German system
mo_type("E. coli") # "Bakterien" on a German system

110 mo_source

mo_type("E. coli") # "Bacteria" on an English system

mo_fullname("S. pyogenes",
Lancefield = TRUE,
language = "de") # "Streptococcus Gruppe A"

mo_fullname("S. pyogenes",
Lancefield = TRUE,
language = "nl") # "Streptococcus groep A"

other --

mo_is_yeast(c("Candida", "E. coli")) # TRUE, FALSE

gram stains and intrinsic resistance can also be used as a filter in dplyr verbs

if (require("dplyr")) {
example_isolates %>%
filter(mo_is_gram_positive())

example_isolates %>%
filter(mo_is_intrinsic_resistant(ab = "vanco"))

}

get a list with the complete taxonomy (from kingdom to subspecies)
mo_taxonomy("E. coli")
get a list with the taxonomy, the authors, Gram-stain,
SNOMED codes, and URL to the online database
mo_info("E. coli")

mo_source User-Defined Reference Data Set for Microorganisms

Description

These functions can be used to predefine your own reference to be used in as.mo() and conse-
quently all mo_* functions (such as mo_genus() and mo_gramstain()).

This is the fastest way to have your organisation (or analysis) specific codes picked up and trans-
lated by this package, since you don’t have to bother about it again after setting it up once.

Usage

set_mo_source(
path,
destination = getOption("AMR_mo_source", "~/mo_source.rds")

)

get_mo_source(destination = getOption("AMR_mo_source", "~/mo_source.rds"))

mo_source 111

Arguments

path location of your reference file, see Details. Can be "", NULL or FALSE to delete
the reference file.

destination destination of the compressed data file, default to the user’s home directory.

Details

The reference file can be a text file separated with commas (CSV) or tabs or pipes, an Excel file
(either ’xls’ or ’xlsx’ format) or an R object file (extension ’.rds’). To use an Excel file, you will
need to have the readxl package installed.

set_mo_source() will check the file for validity: it must be a data.frame, must have a column
named "mo" which contains values from microorganisms$mo and must have a reference column
with your own defined values. If all tests pass, set_mo_source() will read the file into R and
will ask to export it to "~/mo_source.rds". The CRAN policy disallows packages to write to
the file system, although ’exceptions may be allowed in interactive sessions if the package obtains
confirmation from the user’. For this reason, this function only works in interactive sessions so that
the user can specifically confirm and allow that this file will be created. The destination of this file
can be set with the destination argument and defaults to the user’s home directory. It can also be
set as an R option, using options(AMR_mo_source = "my/location/file.rds").

The created compressed data file "mo_source.rds" will be used at default for MO determination
(function as.mo() and consequently all mo_* functions like mo_genus() and mo_gramstain()).
The location and timestamp of the original file will be saved as an attribute to the compressed data
file.

The function get_mo_source() will return the data set by reading "mo_source.rds" with readRDS().
If the original file has changed (by checking the location and timestamp of the original file), it will
call set_mo_source() to update the data file automatically if used in an interactive session.

Reading an Excel file (.xlsx) with only one row has a size of 8-9 kB. The compressed file created
with set_mo_source() will then have a size of 0.1 kB and can be read by get_mo_source() in
only a couple of microseconds (millionths of a second).

How to Setup

Imagine this data on a sheet of an Excel file (mo codes were looked up in the microorganisms data
set). The first column contains the organisation specific codes, the second column contains an MO
code from this package:

| A | B |
--|--------------------|--------------|
1 | Organisation XYZ | mo |
2 | lab_mo_ecoli | B_ESCHR_COLI |
3 | lab_mo_kpneumoniae | B_KLBSL_PNMN |
4 | | |

We save it as "home/me/ourcodes.xlsx". Now we have to set it as a source:

set_mo_source("home/me/ourcodes.xlsx")
#> NOTE: Created mo_source file '/Users/me/mo_source.rds' (0.3 kB) from
#> '/Users/me/Documents/ourcodes.xlsx' (9 kB), columns
#> "Organisation XYZ" and "mo"

112 mo_source

It has now created a file "~/mo_source.rds" with the contents of our Excel file. Only the first
column with foreign values and the ’mo’ column will be kept when creating the RDS file.

And now we can use it in our functions:

as.mo("lab_mo_ecoli")
#> Class <mo>
#> [1] B_ESCHR_COLI

mo_genus("lab_mo_kpneumoniae")
#> [1] "Klebsiella"

other input values still work too
as.mo(c("Escherichia coli", "E. coli", "lab_mo_ecoli"))
#> NOTE: Translation to one microorganism was guessed with uncertainty.
#> Use mo_uncertainties() to review it.
#> Class <mo>
#> [1] B_ESCHR_COLI B_ESCHR_COLI B_ESCHR_COLI

If we edit the Excel file by, let’s say, adding row 4 like this:

| A | B |
--|--------------------|--------------|
1 | Organisation XYZ | mo |
2 | lab_mo_ecoli | B_ESCHR_COLI |
3 | lab_mo_kpneumoniae | B_KLBSL_PNMN |
4 | lab_Staph_aureus | B_STPHY_AURS |
5 | | |

...any new usage of an MO function in this package will update your data file:

as.mo("lab_mo_ecoli")
#> NOTE: Updated mo_source file '/Users/me/mo_source.rds' (0.3 kB) from
#> '/Users/me/Documents/ourcodes.xlsx' (9 kB), columns
#> "Organisation XYZ" and "mo"
#> Class <mo>
#> [1] B_ESCHR_COLI

mo_genus("lab_Staph_aureus")
#> [1] "Staphylococcus"

To delete the reference data file, just use "", NULL or FALSE as input for set_mo_source():

set_mo_source(NULL)
#> Removed mo_source file '/Users/me/mo_source.rds'

If the original file (in the previous case an Excel file) is moved or deleted, the mo_source.rds file
will be removed upon the next use of as.mo() or any mo_* function.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

pca 113

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

pca Principal Component Analysis (for AMR)

Description

Performs a principal component analysis (PCA) based on a data set with automatic determination
for afterwards plotting the groups and labels, and automatic filtering on only suitable (i.e. non-
empty and numeric) variables.

Usage

pca(
x,
...,
retx = TRUE,
center = TRUE,
scale. = TRUE,
tol = NULL,
rank. = NULL

)

Arguments

x a data.frame containing numeric columns

... columns of x to be selected for PCA, can be unquoted since it supports quasiquo-
tation.

retx a logical value indicating whether the rotated variables should be returned.

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns of x can
be supplied. The value is passed to scale.

scale. a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with S, but in general scaling is advisable. Alternatively, a vector of length equal
the number of columns of x can be supplied. The value is passed to scale.

tol a value indicating the magnitude below which components should be omitted.
(Components are omitted if their standard deviations are less than or equal to
tol times the standard deviation of the first component.) With the default
null setting, no components are omitted (unless rank. is specified less than
min(dim(x)).). Other settings for tol could be tol = 0 or tol = sqrt(.Machine$double.eps),
which would omit essentially constant components.

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

114 pca

rank. optionally, a number specifying the maximal rank, i.e., maximal number of prin-
cipal components to be used. Can be set as alternative or in addition to tol, use-
ful notably when the desired rank is considerably smaller than the dimensions
of the matrix.

Details

The pca() function takes a data.frame as input and performs the actual PCA with the R function
prcomp().

The result of the pca() function is a prcomp object, with an additional attribute non_numeric_cols
which is a vector with the column names of all columns that do not contain numeric values. These
are probably the groups and labels, and will be used by ggplot_pca().

Value

An object of classes pca and prcomp

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

`example_isolates` is a data set available in the AMR package.
See ?example_isolates.

if (require("dplyr")) {
calculate the resistance per group first
resistance_data <- example_isolates %>%
group_by(order = mo_order(mo), # group on anything, like order

genus = mo_genus(mo)) %>% # and genus as we do here;
summarise_if(is.rsi, resistance) # then get resistance of all drugs

now conduct PCA for certain antimicrobial agents
pca_result <- resistance_data %>%

pca(AMC, CXM, CTX, CAZ, GEN, TOB, TMP, SXT)

pca_result
summary(pca_result)
biplot(pca_result)
ggplot_pca(pca_result) # a new and convenient plot function

}

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

plot 115

plot Plotting for Classes rsi, mic and disk

Description

Functions to plot classes rsi, mic and disk, with support for base R and ggplot2.

Usage

S3 method for class 'mic'
plot(
x,
main = paste("MIC values of", deparse(substitute(x))),
ylab = "Frequency",
xlab = "Minimum Inhibitory Concentration (mg/L)",
mo = NULL,
ab = NULL,
guideline = "EUCAST",
colours_RSI = c("#ED553B", "#3CAEA3", "#F6D55C"),
language = get_locale(),
expand = TRUE,
...

)

S3 method for class 'mic'
ggplot(
data,
mapping = NULL,
title = paste("MIC values of", deparse(substitute(data))),
ylab = "Frequency",
xlab = "Minimum Inhibitory Concentration (mg/L)",
mo = NULL,
ab = NULL,
guideline = "EUCAST",
colours_RSI = c("#ED553B", "#3CAEA3", "#F6D55C"),
language = get_locale(),
expand = TRUE,
...

)

S3 method for class 'disk'
plot(
x,
main = paste("Disk zones of", deparse(substitute(x))),
ylab = "Frequency",
xlab = "Disk diffusion diameter (mm)",
mo = NULL,
ab = NULL,
guideline = "EUCAST",

116 plot

colours_RSI = c("#ED553B", "#3CAEA3", "#F6D55C"),
language = get_locale(),
expand = TRUE,
...

)

S3 method for class 'disk'
ggplot(
data,
mapping = NULL,
title = paste("Disk zones of", deparse(substitute(data))),
ylab = "Frequency",
xlab = "Disk diffusion diameter (mm)",
mo = NULL,
ab = NULL,
guideline = "EUCAST",
colours_RSI = c("#ED553B", "#3CAEA3", "#F6D55C"),
language = get_locale(),
expand = TRUE,
...

)

S3 method for class 'rsi'
plot(
x,
ylab = "Percentage",
xlab = "Antimicrobial Interpretation",
main = paste("Resistance Overview of", deparse(substitute(x))),
...

)

S3 method for class 'rsi'
ggplot(
data,
mapping = NULL,
title = paste("Resistance Overview of", deparse(substitute(data))),
xlab = "Antimicrobial Interpretation",
ylab = "Frequency",
colours_RSI = c("#ED553B", "#3CAEA3", "#F6D55C"),
language = get_locale(),
...

)

Arguments

x, data MIC values created with as.mic() or disk diffusion values created with as.disk()

main, title title of the plot

xlab, ylab axis title

mo any (vector of) text that can be coerced to a valid microorganism code with
as.mo()

ab any (vector of) text that can be coerced to a valid antimicrobial code with as.ab()

plot 117

guideline interpretation guideline to use, defaults to the latest included EUCAST guide-
line, see Details

colours_RSI colours to use for filling in the bars, must be a vector of three values (in the order
R, S and I). The default colours are colour-blind friendly.

language language to be used to translate ’Susceptible’, ’Increased exposure’/’Intermediate’
and ’Resistant’, defaults to system language (see get_locale()) and can be
overwritten by setting the option AMR_locale, e.g. options(AMR_locale =
"de"), see translate. Use language = NULL or language = "" to prevent trans-
lation.

expand a logical to indicate whether the range on the x axis should be expanded between
the lowest and highest value. For MIC values, intermediate values will be factors
of 2 starting from the highest MIC value. For disk diameters, the whole diameter
range will be filled.

... arguments passed on to as.rsi()

mapping aesthetic mappings to use for ggplot()

Details

The interpretation of "I" will be named "Increased exposure" for all EUCAST guidelines since
2019, and will be named "Intermediate" in all other cases.

For interpreting MIC values as well as disk diffusion diameters, supported guidelines to be used
as input for the guideline argument are: "EUCAST 2021", "EUCAST 2020", "EUCAST 2019",
"EUCAST 2018", "EUCAST 2017", "EUCAST 2016", "EUCAST 2015", "EUCAST 2014", "EU-
CAST 2013", "EUCAST 2012", "EUCAST 2011", "CLSI 2020", "CLSI 2019", "CLSI 2018",
"CLSI 2017", "CLSI 2016", "CLSI 2015", "CLSI 2014", "CLSI 2013", "CLSI 2012", "CLSI 2011"
and "CLSI 2010".

Simply using "CLSI" or "EUCAST" as input will automatically select the latest version of that guide-
line.

Value

The ggplot functions return a ggplot model that is extendible with any ggplot2 function.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

118 proportion

Examples

some_mic_values <- random_mic(size = 100)
some_disk_values <- random_disk(size = 100, mo = "Escherichia coli", ab = "cipro")
some_rsi_values <- random_rsi(50, prob_RSI = c(0.30, 0.55, 0.05))

plot(some_mic_values)
plot(some_disk_values)
plot(some_rsi_values)

when providing the microorganism and antibiotic, colours will show interpretations:
plot(some_mic_values, mo = "S. aureus", ab = "ampicillin")
plot(some_disk_values, mo = "Escherichia coli", ab = "cipro")

if (require("ggplot2")) {
ggplot(some_mic_values)
ggplot(some_disk_values, mo = "Escherichia coli", ab = "cipro")
ggplot(some_rsi_values)

}

proportion Calculate Microbial Resistance

Description

These functions can be used to calculate the (co-)resistance or susceptibility of microbial isolates
(i.e. percentage of S, SI, I, IR or R). All functions support quasiquotation with pipes, can be used
in summarise() from the dplyr package and also support grouped variables, see Examples.

resistance() should be used to calculate resistance, susceptibility() should be used to calcu-
late susceptibility.

Usage

resistance(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

susceptibility(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

proportion_R(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

proportion_IR(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

proportion_I(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

proportion_SI(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

proportion_S(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)

proportion_df(
data,
translate_ab = "name",

proportion 119

language = get_locale(),
minimum = 30,
as_percent = FALSE,
combine_SI = TRUE,
combine_IR = FALSE

)

rsi_df(
data,
translate_ab = "name",
language = get_locale(),
minimum = 30,
as_percent = FALSE,
combine_SI = TRUE,
combine_IR = FALSE

)

Arguments

... one or more vectors (or columns) with antibiotic interpretations. They will be
transformed internally with as.rsi() if needed. Use multiple columns to cal-
culate (the lack of) co-resistance: the probability where one of two drugs have a
resistant or susceptible result. See Examples.

minimum the minimum allowed number of available (tested) isolates. Any isolate count
lower than minimum will return NA with a warning. The default number of 30
isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as
best practice, see Source.

as_percent a logical to indicate whether the output must be returned as a hundred fold with
% sign (a character). A value of 0.123456 will then be returned as "12.3%".

only_all_tested

(for combination therapies, i.e. using more than one variable for ...): a logical
to indicate that isolates must be tested for all antibiotics, see section Combina-
tion Therapy below

data a data.frame containing columns with class rsi (see as.rsi())
translate_ab a column name of the antibiotics data set to translate the antibiotic abbreviations

to, using ab_property()

language language of the returned text, defaults to system language (see get_locale())
and can also be set with getOption("AMR_locale"). Use language = NULL or
language = "" to prevent translation.

combine_SI a logical to indicate whether all values of S and I must be merged into one, so the
output only consists of S+I vs. R (susceptible vs. resistant). This used to be the
argument combine_IR, but this now follows the redefinition by EUCAST about
the interpretation of I (increased exposure) in 2019, see section ’Interpretation
of S, I and R’ below. Default is TRUE.

combine_IR a logical to indicate whether all values of I and R must be merged into one, so
the output only consists of S vs. I+R (susceptible vs. non-susceptible). This is
outdated, see argument combine_SI.

Details

The function resistance() is equal to the function proportion_R(). The function susceptibility()
is equal to the function proportion_SI().

120 proportion

Remember that you should filter your data to let it contain only first isolates! This is needed to
exclude duplicates and to reduce selection bias. Use first_isolate() to determine them in your
data set.

These functions are not meant to count isolates, but to calculate the proportion of resistance/susceptibility.
Use the count() functions to count isolates. The function susceptibility() is essentially equal
to count_susceptible() / count_all(). Low counts can influence the outcome - the proportion
functions may camouflage this, since they only return the proportion (albeit being dependent on the
minimum argument).

The function proportion_df() takes any variable from data that has an rsi class (created with
as.rsi()) and calculates the proportions R, I and S. It also supports grouped variables. The func-
tion rsi_df() works exactly like proportion_df(), but adds the number of isolates.

Value

A double or, when as_percent = TRUE, a character.

Combination Therapy

When using more than one variable for ... (= combination therapy), use only_all_tested to only
count isolates that are tested for all antibiotics/variables that you test them for. See this example for
two antibiotics, Drug A and Drug B, about how susceptibility() works to calculate the %SI:

--
only_all_tested = FALSE only_all_tested = TRUE
----------------------- -----------------------

Drug A Drug B include as include as include as include as
numerator denominator numerator denominator

-------- -------- ---------- ----------- ---------- -----------
S or I S or I X X X X
R S or I X X X X
<NA> S or I X X - -
S or I R X X X X
R R - X - X
<NA> R - - - -
S or I <NA> X X - -
R <NA> - - - -
<NA> <NA> - - - -

--

Please note that, in combination therapies, for only_all_tested = TRUE applies that:

count_S() + count_I() + count_R() = count_all()
proportion_S() + proportion_I() + proportion_R() = 1

and that, in combination therapies, for only_all_tested = FALSE applies that:

count_S() + count_I() + count_R() >= count_all()
proportion_S() + proportion_I() + proportion_R() >= 1

Using only_all_tested has no impact when only using one antibiotic as input.

proportion 121

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Interpretation of R and S/I

In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided
to change the definitions of susceptibility testing categories R and S/I as shown below (https:
//www.eucast.org/newsiandr/).

• R = Resistant
A microorganism is categorised as Resistant when there is a high likelihood of therapeutic
failure even when there is increased exposure. Exposure is a function of how the mode of
administration, dose, dosing interval, infusion time, as well as distribution and excretion of
the antimicrobial agent will influence the infecting organism at the site of infection.

• S = Susceptible
A microorganism is categorised as Susceptible, standard dosing regimen, when there is a high
likelihood of therapeutic success using a standard dosing regimen of the agent.

• I = Increased exposure, but still susceptible
A microorganism is categorised as Susceptible, Increased exposure when there is a high likeli-
hood of therapeutic success because exposure to the agent is increased by adjusting the dosing
regimen or by its concentration at the site of infection.

This AMR package honours this (new) insight. Use susceptibility() (equal to proportion_SI())
to determine antimicrobial susceptibility and count_susceptible() (equal to count_SI()) to
count susceptible isolates.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Source

M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edi-
tion, 2014, Clinical and Laboratory Standards Institute (CLSI). https://clsi.org/standards/
products/microbiology/documents/m39/.

See Also

count() to count resistant and susceptible isolates.

Examples

example_isolates is a data set available in the AMR package.
?example_isolates

https://www.eucast.org/newsiandr/
https://www.eucast.org/newsiandr/
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html
https://clsi.org/standards/products/microbiology/documents/m39/
https://clsi.org/standards/products/microbiology/documents/m39/

122 proportion

resistance(example_isolates$AMX) # determines %R
susceptibility(example_isolates$AMX) # determines %S+I

be more specific
proportion_S(example_isolates$AMX)
proportion_SI(example_isolates$AMX)
proportion_I(example_isolates$AMX)
proportion_IR(example_isolates$AMX)
proportion_R(example_isolates$AMX)

if (require("dplyr")) {
example_isolates %>%
group_by(hospital_id) %>%
summarise(r = resistance(CIP),

n = n_rsi(CIP)) # n_rsi works like n_distinct in dplyr, see ?n_rsi

example_isolates %>%
group_by(hospital_id) %>%
summarise(R = resistance(CIP, as_percent = TRUE),

SI = susceptibility(CIP, as_percent = TRUE),
n1 = count_all(CIP), # the actual total; sum of all three
n2 = n_rsi(CIP), # same - analogous to n_distinct
total = n()) # NOT the number of tested isolates!

Calculate co-resistance between amoxicillin/clav acid and gentamicin,
so we can see that combination therapy does a lot more than mono therapy:
example_isolates %>% susceptibility(AMC) # %SI = 76.3%
example_isolates %>% count_all(AMC) # n = 1879

example_isolates %>% susceptibility(GEN) # %SI = 75.4%
example_isolates %>% count_all(GEN) # n = 1855

example_isolates %>% susceptibility(AMC, GEN) # %SI = 94.1%
example_isolates %>% count_all(AMC, GEN) # n = 1939

See Details on how `only_all_tested` works. Example:
example_isolates %>%

summarise(numerator = count_susceptible(AMC, GEN),
denominator = count_all(AMC, GEN),
proportion = susceptibility(AMC, GEN))

example_isolates %>%
summarise(numerator = count_susceptible(AMC, GEN, only_all_tested = TRUE),

denominator = count_all(AMC, GEN, only_all_tested = TRUE),
proportion = susceptibility(AMC, GEN, only_all_tested = TRUE))

example_isolates %>%
group_by(hospital_id) %>%
summarise(cipro_p = susceptibility(CIP, as_percent = TRUE),

cipro_n = count_all(CIP),
genta_p = susceptibility(GEN, as_percent = TRUE),
genta_n = count_all(GEN),
combination_p = susceptibility(CIP, GEN, as_percent = TRUE),
combination_n = count_all(CIP, GEN))

random 123

Get proportions S/I/R immediately of all rsi columns
example_isolates %>%

select(AMX, CIP) %>%
proportion_df(translate = FALSE)

It also supports grouping variables
example_isolates %>%

select(hospital_id, AMX, CIP) %>%
group_by(hospital_id) %>%
proportion_df(translate = FALSE)

}

random Random MIC Values/Disk Zones/RSI Generation

Description

These functions can be used for generating random MIC values and disk diffusion diameters, for
AMR data analysis practice. By providing a microorganism and antimicrobial agent, the generated
results will reflect reality as much as possible.

Usage

random_mic(size, mo = NULL, ab = NULL, ...)

random_disk(size, mo = NULL, ab = NULL, ...)

random_rsi(size, prob_RSI = c(0.33, 0.33, 0.33), ...)

Arguments

size desired size of the returned vector

mo any character that can be coerced to a valid microorganism code with as.mo()

ab any character that can be coerced to a valid antimicrobial agent code with as.ab()

... ignored, only in place to allow future extensions

prob_RSI a vector of length 3: the probabilities for R (1st value), S (2nd value) and I (3rd
value)

Details

The base R function sample() is used for generating values.

Generated values are based on the latest EUCAST guideline implemented in the rsi_translation data
set. To create specific generated values per bug or drug, set the mo and/or ab argument.

Value

class <mic> for random_mic() (see as.mic()) and class <disk> for random_disk() (see as.disk())

124 resistance_predict

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

random_mic(100)
random_disk(100)
random_rsi(100)

make the random generation more realistic by setting a bug and/or drug:
random_mic(100, "Klebsiella pneumoniae") # range 0.0625-64
random_mic(100, "Klebsiella pneumoniae", "meropenem") # range 0.0625-16
random_mic(100, "Streptococcus pneumoniae", "meropenem") # range 0.0625-4

random_disk(100, "Klebsiella pneumoniae") # range 8-50
random_disk(100, "Klebsiella pneumoniae", "ampicillin") # range 11-17
random_disk(100, "Streptococcus pneumoniae", "ampicillin") # range 12-27

resistance_predict Predict antimicrobial resistance

Description

Create a prediction model to predict antimicrobial resistance for the next years on statistical solid
ground. Standard errors (SE) will be returned as columns se_min and se_max. See Examples for a
real live example.

Usage

resistance_predict(
x,
col_ab,
col_date = NULL,
year_min = NULL,
year_max = NULL,
year_every = 1,
minimum = 30,
model = NULL,

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

resistance_predict 125

I_as_S = TRUE,
preserve_measurements = TRUE,
info = interactive(),
...

)

rsi_predict(
x,
col_ab,
col_date = NULL,
year_min = NULL,
year_max = NULL,
year_every = 1,
minimum = 30,
model = NULL,
I_as_S = TRUE,
preserve_measurements = TRUE,
info = interactive(),
...

)

S3 method for class 'resistance_predict'
plot(x, main = paste("Resistance Prediction of", x_name), ...)

S3 method for class 'resistance_predict'
ggplot(x, main = paste("Resistance Prediction of", x_name), ribbon = TRUE, ...)

ggplot_rsi_predict(
x,
main = paste("Resistance Prediction of", x_name),
ribbon = TRUE,
...

)

Arguments

x a data.frame containing isolates. Can be left blank for automatic determination,
see Examples.

col_ab column name of x containing antimicrobial interpretations ("R", "I" and "S")

col_date column name of the date, will be used to calculate years if this column doesn’t
consist of years already, defaults to the first column of with a date class

year_min lowest year to use in the prediction model, dafaults to the lowest year in col_date

year_max highest year to use in the prediction model, defaults to 10 years after today

year_every unit of sequence between lowest year found in the data and year_max

minimum minimal amount of available isolates per year to include. Years containing less
observations will be estimated by the model.

model the statistical model of choice. This could be a generalised linear regression
model with binomial distribution (i.e. using ‘glm(..., family = binomial)“, as-
suming that a period of zero resistance was followed by a period of increasing
resistance leading slowly to more and more resistance. See Details for all valid
options.

126 resistance_predict

I_as_S a logical to indicate whether values "I" should be treated as "S" (will otherwise
be treated as "R"). The default, TRUE, follows the redefinition by EUCAST about
the interpretation of I (increased exposure) in 2019, see section Interpretation of
S, I and R below.

preserve_measurements

a logical to indicate whether predictions of years that are actually available in
the data should be overwritten by the original data. The standard errors of those
years will be NA.

info a logical to indicate whether textual analysis should be printed with the name
and summary() of the statistical model.

... arguments passed on to functions

main title of the plot

ribbon a logical to indicate whether a ribbon should be shown (default) or error bars

Details

Valid options for the statistical model (argument model) are:

• "binomial" or "binom" or "logit": a generalised linear regression model with binomial
distribution

• "loglin" or "poisson": a generalised log-linear regression model with poisson distribution

• "lin" or "linear": a linear regression model

Value

A data.frame with extra class resistance_predict with columns:

• year

• value, the same as estimated when preserve_measurements = FALSE, and a combination
of observed and estimated otherwise

• se_min, the lower bound of the standard error with a minimum of 0 (so the standard error will
never go below 0%)

• se_max the upper bound of the standard error with a maximum of 1 (so the standard error will
never go above 100%)

• observations, the total number of available observations in that year, i.e. S + I +R

• observed, the original observed resistant percentages

• estimated, the estimated resistant percentages, calculated by the model

Furthermore, the model itself is available as an attribute: attributes(x)$model, see Examples.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

resistance_predict 127

Interpretation of R and S/I

In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided
to change the definitions of susceptibility testing categories R and S/I as shown below (https:
//www.eucast.org/newsiandr/).

• R = Resistant
A microorganism is categorised as Resistant when there is a high likelihood of therapeutic
failure even when there is increased exposure. Exposure is a function of how the mode of
administration, dose, dosing interval, infusion time, as well as distribution and excretion of
the antimicrobial agent will influence the infecting organism at the site of infection.

• S = Susceptible
A microorganism is categorised as Susceptible, standard dosing regimen, when there is a high
likelihood of therapeutic success using a standard dosing regimen of the agent.

• I = Increased exposure, but still susceptible
A microorganism is categorised as Susceptible, Increased exposure when there is a high likeli-
hood of therapeutic success because exposure to the agent is increased by adjusting the dosing
regimen or by its concentration at the site of infection.

This AMR package honours this (new) insight. Use susceptibility() (equal to proportion_SI())
to determine antimicrobial susceptibility and count_susceptible() (equal to count_SI()) to
count susceptible isolates.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

The proportion() functions to calculate resistance

Models: lm() glm()

Examples

x <- resistance_predict(example_isolates,
col_ab = "AMX",
year_min = 2010,
model = "binomial")

plot(x)

if (require("ggplot2")) {
ggplot_rsi_predict(x)

}

using dplyr:
if (require("dplyr")) {

x <- example_isolates %>%
filter_first_isolate() %>%
filter(mo_genus(mo) == "Staphylococcus") %>%
resistance_predict("PEN", model = "binomial")

plot(x)

get the model from the object

https://www.eucast.org/newsiandr/
https://www.eucast.org/newsiandr/
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

128 rsi_translation

mymodel <- attributes(x)$model
summary(mymodel)

}

create nice plots with ggplot2 yourself
if (require("dplyr") & require("ggplot2")) {

data <- example_isolates %>%
filter(mo == as.mo("E. coli")) %>%
resistance_predict(col_ab = "AMX",

col_date = "date",
model = "binomial",
info = FALSE,
minimum = 15)

ggplot(data)

ggplot(as.data.frame(data),
aes(x = year)) +

geom_col(aes(y = value),
fill = "grey75") +

geom_errorbar(aes(ymin = se_min,
ymax = se_max),

colour = "grey50") +
scale_y_continuous(limits = c(0, 1),

breaks = seq(0, 1, 0.1),
labels = paste0(seq(0, 100, 10), "%")) +

labs(title = expression(paste("Forecast of Amoxicillin Resistance in ",
italic("E. coli"))),

y = "%R",
x = "Year") +

theme_minimal(base_size = 13)
}

rsi_translation Data Set for R/SI Interpretation

Description

Data set containing reference data to interpret MIC and disk diffusion to R/SI values, according to
international guidelines. Currently implemented guidelines are EUCAST (2011-2021) and CLSI
(2010-2020). Use as.rsi() to transform MICs or disks measurements to R/SI values.

Usage

rsi_translation

Format

A data.frame with 21,996 observations and 10 variables:

• guideline
Name of the guideline

rsi_translation 129

• method
Either "DISK" or "MIC"

• site
Body site, e.g. "Oral" or "Respiratory"

• mo
Microbial ID, see as.mo()

• ab
Antibiotic ID, see as.ab()

• ref_tbl
Info about where the guideline rule can be found

• disk_dose
Dose of the used disk diffusion method

• breakpoint_S
Lowest MIC value or highest number of millimetres that leads to "S"

• breakpoint_R
Highest MIC value or lowest number of millimetres that leads to "R"

• uti
A logical value (TRUE/FALSE) to indicate whether the rule applies to a urinary tract infection
(UTI)

Details

The repository of this AMR package contains a file comprising this exact data set: https://github.
com/msberends/AMR/blob/master/data-raw/rsi_translation.txt. This file allows for ma-
chine reading EUCAST and CLSI guidelines, which is almost impossible with the Excel and
PDF files distributed by EUCAST and CLSI. The file is updated automatically.

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

intrinsic_resistant

https://github.com/msberends/AMR/blob/master/data-raw/rsi_translation.txt
https://github.com/msberends/AMR/blob/master/data-raw/rsi_translation.txt
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

130 skewness

skewness Skewness of the Sample

Description

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random
variable about its mean.

When negative (’left-skewed’): the left tail is longer; the mass of the distribution is concentrated
on the right of a histogram. When positive (’right-skewed’): the right tail is longer; the mass of the
distribution is concentrated on the left of a histogram. A normal distribution has a skewness of 0.

Usage

skewness(x, na.rm = FALSE)

Default S3 method:
skewness(x, na.rm = FALSE)

S3 method for class 'matrix'
skewness(x, na.rm = FALSE)

S3 method for class 'data.frame'
skewness(x, na.rm = FALSE)

Arguments

x a vector of values, a matrix or a data.frame

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

See Also

kurtosis()

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

translate 131

translate Translate Strings from AMR Package

Description

For language-dependent output of AMR functions, like mo_name(), mo_gramstain(), mo_type()
and ab_name().

Usage

get_locale()

Details

Strings will be translated to foreign languages if they are defined in a local translation file. Additions
to this file can be suggested at our repository. The file can be found here: https://github.
com/msberends/AMR/blob/master/data-raw/translations.tsv. This file will be read by all
functions where a translated output can be desired, like all mo_* functions (such as mo_name(),
mo_gramstain(), mo_type(), etc.) and ab_* functions (such as ab_name(), ab_group(), etc.).

Currently supported languages are: Dutch, English, French, German, Italian, Portuguese and Span-
ish. Please note that currently not all these languages have translations available for all antimicrobial
agents and colloquial microorganism names.

Please suggest your own translations by creating a new issue on our repository.

Changing the Default Language:
The system language will be used at default (as returned by Sys.getenv("LANG") or, if LANG is
not set, Sys.getlocale()), if that language is supported. But the language to be used can be
overwritten in two ways and will be checked in this order:

1. Setting the R option AMR_locale, e.g. by running options(AMR_locale = "de")

2. Setting the system variable LANGUAGE or LANG, e.g. by adding LANGUAGE="de_DE.utf8" to
your .Renviron file in your home directory

So if the R option AMR_locale is set, the system variables LANGUAGE and LANG will be ignored.

Stable Lifecycle

The lifecycle of this function is stable. In a stable function, major changes are unlikely. This
means that the unlying code will generally evolve by adding new arguments; removing arguments
or changing the meaning of existing arguments will be avoided.

If the unlying code needs breaking changes, they will occur gradually. For example, a argument
will be deprecated and first continue to work, but will emit an message informing you of the change.
Next, typically after at least one newly released version on CRAN, the message will be transformed
to an error.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

https://github.com/msberends/AMR/blob/master/data-raw/translations.tsv
https://github.com/msberends/AMR/blob/master/data-raw/translations.tsv
https://github.com/msberends/AMR/issues/new?title=Translations
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

132 WHOCC

Examples

The 'language' argument of below functions
will be set automatically to your system language
with get_locale()

English
mo_name("CoNS", language = "en")
#> "Coagulase-negative Staphylococcus (CoNS)"

German
mo_name("CoNS", language = "de")
#> "Koagulase-negative Staphylococcus (KNS)"

Dutch
mo_name("CoNS", language = "nl")
#> "Coagulase-negatieve Staphylococcus (CNS)"

Spanish
mo_name("CoNS", language = "es")
#> "Staphylococcus coagulasa negativo (SCN)"

Italian
mo_name("CoNS", language = "it")
#> "Staphylococcus negativo coagulasi (CoNS)"

Portuguese
mo_name("CoNS", language = "pt")
#> "Staphylococcus coagulase negativo (CoNS)"

WHOCC WHOCC: WHO Collaborating Centre for Drug Statistics Methodol-
ogy

Description

All antimicrobial drugs and their official names, ATC codes, ATC groups and defined daily dose
(DDD) are included in this package, using the WHO Collaborating Centre for Drug Statistics
Methodology.

WHOCC

This package contains all ~550 antibiotic, antimycotic and antiviral drugs and their Anatomical
Therapeutic Chemical (ATC) codes, ATC groups and Defined Daily Dose (DDD) from the World
Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC, https://
www.whocc.no) and the Pharmaceuticals Community Register of the European Commission (https:
//ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm).

These have become the gold standard for international drug utilisation monitoring and research.

The WHOCC is located in Oslo at the Norwegian Institute of Public Health and funded by the
Norwegian government. The European Commission is the executive of the European Union and
promotes its general interest.

NOTE: The WHOCC copyright does not allow use for commercial purposes, unlike any other
info from this package. See https://www.whocc.no/copyright_disclaimer/.

https://www.whocc.no
https://www.whocc.no
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://ec.europa.eu/health/documents/community-register/html/reg_hum_atc.htm
https://www.whocc.no/copyright_disclaimer/.

WHONET 133

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

Examples

as.ab("meropenem")
ab_name("J01DH02")

ab_tradenames("flucloxacillin")

WHONET Data Set with 500 Isolates - WHONET Example

Description

This example data set has the exact same structure as an export file from WHONET. Such files
can be used with this package, as this example data set shows. The antibiotic results are from our
example_isolates data set. All patient names are created using online surname generators and are
only in place for practice purposes.

Usage

WHONET

Format

A data.frame with 500 observations and 53 variables:

• Identification number
ID of the sample

• Specimen number
ID of the specimen

• Organism
Name of the microorganism. Before analysis, you should transform this to a valid microbial
class, using as.mo().

• Country
Country of origin

• Laboratory
Name of laboratory

• Last name
Fictitious last name of patient

• First name
Fictitious initial of patient

• Sex
Fictitious gender of patient

• Age
Fictitious age of patient

https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

134 WHONET

• Age category
Age group, can also be looked up using age_groups()

• Date of admission
Date of hospital admission

• Specimen date
Date when specimen was received at laboratory

• Specimen type
Specimen type or group

• Specimen type (Numeric)
Translation of "Specimen type"

• Reason
Reason of request with Differential Diagnosis

• Isolate number
ID of isolate

• Organism type
Type of microorganism, can also be looked up using mo_type()

• Serotype
Serotype of microorganism

• Beta-lactamase
Microorganism produces beta-lactamase?

• ESBL
Microorganism produces extended spectrum beta-lactamase?

• Carbapenemase
Microorganism produces carbapenemase?

• MRSA screening test
Microorganism is possible MRSA?

• Inducible clindamycin resistance
Clindamycin can be induced?

• Comment
Other comments

• Date of data entry
Date this data was entered in WHONET

• AMP_ND10:CIP_EE
28 different antibiotics. You can lookup the abbreviations in the antibiotics data set, or use e.g.
ab_name("AMP") to get the official name immediately. Before analysis, you should transform
this to a valid antibiotic class, using as.rsi().

Reference Data Publicly Available

All reference data sets (about microorganisms, antibiotics, R/SI interpretation, EUCAST rules, etc.)
in this AMR package are publicly and freely available. We continually export our data sets to formats
for use in R, SPSS, SAS, Stata and Excel. We also supply flat files that are machine-readable and
suitable for input in any software program, such as laboratory information systems. Please find all
download links on our website, which is automatically updated with every code change.

Read more on Our Website!

On our website https://msberends.github.io/AMR/ you can find a comprehensive tutorial about
how to conduct AMR data analysis, the complete documentation of all functions and an example
analysis using WHONET data.

https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/articles/datasets.html
https://msberends.github.io/AMR/
https://msberends.github.io/AMR/articles/AMR.html
https://msberends.github.io/AMR/reference/
https://msberends.github.io/AMR/articles/WHONET.html
https://msberends.github.io/AMR/articles/WHONET.html

Index

∗ Becker
as.mo, 24

∗ Lancefield
as.mo, 24

∗ becker
as.mo, 24

∗ datasets
antibiotics, 12
dosage, 52
example_isolates, 58
example_isolates_unclean, 59
intrinsic_resistant, 80
microorganisms, 97
microorganisms.codes, 99
microorganisms.old, 100
rsi_translation, 128
WHONET, 133

∗ guess
as.mo, 24

∗ lancefield
as.mo, 24

∗ mo
as.mo, 24

%like% (like), 89
%like_case% (like), 89
%unlike% (like), 89
%unlike_case% (like), 89
3MRGN (mdro), 91
4MRGN (mdro), 91

ab, 19
ab (as.ab), 18
ab_*, 4, 12, 19, 131
ab_atc (ab_property), 5
ab_atc_group1 (ab_property), 5
ab_atc_group2 (ab_property), 5
ab_cid (ab_property), 5
ab_cid(), 6
ab_class (antibiotic_class_selectors),

15
ab_ddd (ab_property), 5
ab_ddd(), 6
ab_from_text, 3
ab_from_text(), 20

ab_group (ab_property), 5
ab_group(), 4, 131
ab_info (ab_property), 5
ab_info(), 6
ab_loinc (ab_property), 5
ab_loinc(), 13
ab_name (ab_property), 5
ab_name(), 4, 59, 76, 131
ab_name(AMP), 134
ab_property, 5
ab_property(), 3, 13, 44, 75, 119
ab_synonyms (ab_property), 5
ab_synonyms(), 6
ab_tradenames (ab_property), 5
ab_tradenames(), 6
ab_url (ab_property), 5
ab_url(), 6
abs(), 23
acos(), 23
acosh(), 23
age, 8
age(), 9, 10
age_groups, 9
age_groups(), 9, 134
all(), 23
all_antimicrobials

(key_antimicrobials), 83
all_antimicrobials(), 63, 85
aminoglycosides

(antibiotic_class_selectors),
15

aminoglycosides(), 16
AMR, 11
anti_join_microorganisms (join), 82
antibiotic_class_selectors, 15
antibiotics, 3, 5–7, 12, 12, 13, 16, 18, 20,

39, 44, 59, 75, 78, 119, 134
antimicrobials_equal

(key_antimicrobials), 83
antimicrobials_equal(), 85
antivirals, 13
antivirals (antibiotics), 12
any(), 23

135

136 INDEX

as.ab, 18
as.ab(), 3–6, 12, 18, 19, 31, 54, 78, 105, 116,

123, 129
as.character(), 89
as.disk, 20
as.disk(), 32, 33, 116, 123
as.mic, 22
as.mic(), 32, 33, 116, 123
as.mo, 24
as.mo(), 26, 27, 31, 33, 39, 41, 53, 59, 61, 82,

84, 91, 97, 99–102, 104, 105, 107,
110–112, 116, 123, 129, 133

as.POSIXlt(), 8
as.rsi, 30
as.rsi(), 16, 21–23, 31, 32, 44, 54, 59, 62,

75, 76, 78, 84, 92, 117, 119, 120,
128, 134

asin(), 23
asinh(), 23
atan(), 23
atanh(), 23
ATC (ab_property), 5
atc_online_ddd (atc_online_property), 35
atc_online_groups

(atc_online_property), 35
atc_online_property, 35
availability, 37

betalactams
(antibiotic_class_selectors),
15

biplot(), 71
boxplot.stats(), 23
BRMO (mdro), 91
brmo (mdro), 91
browseURL(), 105
bug_drug_combinations, 38
bug_drug_combinations(), 39

c(), 94
carbapenems

(antibiotic_class_selectors),
15

case_when(), 47, 93
catalogue_of_life, 40
catalogue_of_life_version, 42
catalogue_of_life_version(), 28, 40, 42,

98, 100, 101, 108
ceiling(), 23
cephalosporins

(antibiotic_class_selectors),
15

cephalosporins_1st
(antibiotic_class_selectors),
15

cephalosporins_2nd
(antibiotic_class_selectors),
15

cephalosporins_3rd
(antibiotic_class_selectors),
15

cephalosporins_4th
(antibiotic_class_selectors),
15

cephalosporins_5th
(antibiotic_class_selectors),
15

character, 3, 4, 6, 8, 18, 19, 22, 25–27, 36,
39, 53, 54, 61, 81, 82, 84, 85, 89, 92,
105, 106, 120, 123

chisq.test(), 65–68
Click here, 28, 40, 42, 98, 100, 101, 108
cos(), 23
cosh(), 23
cospi(), 23
count, 43
count(), 120, 121
count_all (count), 43
count_all(), 44
count_df (count), 43
count_df(), 44, 76
count_I (count), 43
count_IR (count), 43
count_R (count), 43
count_R(), 44
count_resistant (count), 43
count_resistant(), 43, 44
count_S (count), 43
count_SI (count), 43
count_SI(), 33, 44, 45, 96, 121, 127
count_susceptible (count), 43
count_susceptible(), 33, 43–45, 96, 121,

127
cummax(), 23
cummin(), 23
cumprod(), 23
cumsum(), 23
custom_eucast_rules, 47
custom_eucast_rules(), 53, 54
custom_mdro_guideline (mdro), 91
custom_mdro_guideline(), 92, 93

data.frame, 13, 20, 25, 26, 29, 31, 32, 37, 39,
44, 52, 53, 55, 58, 59, 61, 62, 75, 78,
80, 82–85, 87, 91, 92, 97, 100, 101,

INDEX 137

111, 113, 114, 119, 125, 126, 128,
130, 133

Date, 134
digamma(), 23
disk, 20, 21, 31, 32
disk (as.disk), 20
dosage, 52, 53
double, 6, 8, 69, 120

EUCAST (eucast_rules), 53
eucast_dosage (eucast_rules), 53
eucast_dosage(), 52, 53
eucast_exceptional_phenotypes (mdro), 91
eucast_rules, 53
eucast_rules(), 32, 47, 55, 94
example_isolates, 58, 133
example_isolates_unclean, 59
exp(), 23
expm1(), 23

facet_rsi (ggplot_rsi), 73
facet_rsi(), 76
factor, 10, 22, 23, 30, 33, 92
filter(), 16, 69
filter_first_isolate (first_isolate), 60
filter_first_isolate(), 62
first_isolate, 60
first_isolate(), 62, 63, 69, 83, 85, 86, 120
fisher.test(), 66
fivenum(), 23
floor(), 23
fluoroquinolones

(antibiotic_class_selectors),
15

format(), 38, 39
format.bug_drug_combinations

(bug_drug_combinations), 38
full_join_microorganisms (join), 82

g.test, 65
g.test(), 65
gamma(), 23
generic functions, 23
geom_rsi (ggplot_rsi), 73
geom_rsi(), 76
get_episode, 68
get_episode(), 68, 69
get_locale (translate), 131
get_locale(), 6, 25, 39, 44, 75, 105, 117, 119
get_mo_source (mo_source), 110
get_mo_source(), 25, 111
ggplot, 117
ggplot(), 117

ggplot.disk (plot), 115
ggplot.mic (plot), 115
ggplot.resistance_predict

(resistance_predict), 124
ggplot.rsi (plot), 115
ggplot2, 73
ggplot2::facet_wrap(), 76
ggplot2::geom_text(), 76
ggplot2::scale_y_continuous(), 76
ggplot2::theme(), 76
ggplot_pca, 71
ggplot_pca(), 73, 114
ggplot_rsi, 73
ggplot_rsi(), 76
ggplot_rsi_predict

(resistance_predict), 124
glm(), 127
glycopeptides

(antibiotic_class_selectors),
15

grepl(), 89, 90
guess_ab_col, 78
guess_ab_col(), 55, 94

inner_join (join), 82
inner_join_microorganisms (join), 82
integer, 6, 8, 21, 44, 106
interaction(), 82
intrinsic_resistant, 15, 31, 80, 99, 106,

129
IQR(), 23
is.ab (as.ab), 18
is.disk (as.disk), 20
is.mic (as.mic), 22
is.mo (as.mo), 24
is.rsi (as.rsi), 30
is.rsi(), 32
is.rsi.eligible(), 32
is_new_episode (get_episode), 68
is_new_episode(), 60, 62, 68, 69
italicise_taxonomy, 81
italicize_taxonomy

(italicise_taxonomy), 81

join, 82

key_antimicrobials, 83
key_antimicrobials(), 61–64, 85
kurtosis, 87
kurtosis(), 130

labels_rsi_count (ggplot_rsi), 73
labels_rsi_count(), 75, 76

138 INDEX

left_join_microorganisms (join), 82
lgamma(), 23
lifecycle, 4, 6, 8, 10, 16, 19, 21, 23, 27, 33,

36, 38, 39, 44, 51, 56, 64, 67, 69, 72,
76, 79, 81, 83, 86–88, 88, 90, 94,
103, 106, 112, 114, 117, 121, 124,
126, 130, 131

like, 89
like(), 89
list, 3, 4, 6, 37, 42, 47, 96, 106
lm(), 127
log(), 23
log10(), 23
log1p(), 23
log2(), 23
logical, 3, 6, 8, 9, 16, 18, 21, 22, 25, 31, 32,

39, 44, 53, 54, 58, 61–63, 69, 72, 75,
78, 84, 87, 89, 91, 92, 117, 119, 126,
129, 130

macrolides
(antibiotic_class_selectors),
15

mad(), 23
March 2021, 54
matrix, 65, 66, 87, 130
max(), 23
MDR (mdro), 91
mdr_cmi2012 (mdro), 91
mdr_cmi2012(), 92
mdr_tb (mdro), 91
mdr_tb(), 92
mdro, 91
mdro(), 55, 92, 94
mean(), 23
median(), 23
merge(), 82
mic, 22, 23, 31, 32
mic (as.mic), 22
microorganisms, 15, 26, 27, 29, 41–43, 48,

59, 81, 82, 97, 100, 101, 105, 106,
108, 111

microorganisms.codes, 99, 99
microorganisms.old, 27, 100
microorganisms$fullname, 102
microorganisms$mo, 111
min(), 23
mo, 24, 25, 27, 31, 39, 53, 61, 82, 84, 91
mo (as.mo), 24
mo_*, 26, 27, 29, 99, 102, 107, 110, 112, 131
mo_authors (mo_property), 104
mo_authors(), 105
mo_class (mo_property), 104

mo_domain (mo_property), 104
mo_domain(), 106
mo_failures (as.mo), 24
mo_failures(), 26
mo_family (mo_property), 104
mo_fullname (mo_property), 104
mo_genus (mo_property), 104
mo_genus(), 29, 110, 111
mo_gramstain (mo_property), 104
mo_gramstain(), 29, 106, 110, 111, 131
mo_info (mo_property), 104
mo_info(), 106
mo_is_gram_negative (mo_property), 104
mo_is_gram_negative(), 106
mo_is_gram_positive (mo_property), 104
mo_is_gram_positive(), 106
mo_is_intrinsic_resistant

(mo_property), 104
mo_is_intrinsic_resistant(), 106
mo_is_yeast (mo_property), 104
mo_is_yeast(), 106
mo_kingdom (mo_property), 104
mo_kingdom(), 106
mo_matching_score, 102
mo_matching_score(), 27, 102, 107
mo_name (mo_property), 104
mo_name(), 131
mo_order (mo_property), 104
mo_phylum (mo_property), 104
mo_property, 104
mo_property(), 97, 99, 101
mo_rank (mo_property), 104
mo_ref (mo_property), 104
mo_ref(), 105
mo_renamed (as.mo), 24
mo_renamed(), 26
mo_shortname (mo_property), 104
mo_shortname(), 39, 105
mo_snomed (mo_property), 104
mo_snomed(), 97, 106
mo_source, 110
mo_species (mo_property), 104
mo_subspecies (mo_property), 104
mo_synonyms (mo_property), 104
mo_taxonomy (mo_property), 104
mo_taxonomy(), 106
mo_type (mo_property), 104
mo_type(), 131, 134
mo_uncertainties (as.mo), 24
mo_uncertainties(), 26
mo_url (mo_property), 104
mo_url(), 106

INDEX 139

mo_year (mo_property), 104
mo_year(), 105, 106
mrgn (mdro), 91
mrgn(), 92
mutate(), 69

n_rsi (count), 43
n_rsi(), 44
numeric, 4, 9, 22, 23, 75, 106, 113, 114

oxazolidinones
(antibiotic_class_selectors),
15

pca, 113, 114
pca(), 71, 72, 114
PDR (mdro), 91
penicillins

(antibiotic_class_selectors),
15

plot, 115
plot.resistance_predict

(resistance_predict), 124
portion (proportion), 118
prcomp, 114
prcomp(), 71, 114
princomp, 71
princomp(), 71
prod(), 23
proportion, 118
proportion(), 127
proportion_*, 46
proportion_df (proportion), 118
proportion_df(), 120
proportion_I (proportion), 118
proportion_IR (proportion), 118
proportion_R (proportion), 118
proportion_R(), 119
proportion_S (proportion), 118
proportion_SI (proportion), 118
proportion_SI(), 33, 45, 96, 119, 121, 127

quantile(), 23

random, 123
random_disk (random), 123
random_disk(), 123
random_mic (random), 123
random_mic(), 123
random_rsi (random), 123
range(), 23
readRDS(), 94, 111
resistance (proportion), 118

resistance(), 37, 44, 118, 119
resistance_predict, 124, 126
right_join_microorganisms (join), 82
round(), 23
rsi, 30, 44, 59, 75, 76, 119, 120
rsi (as.rsi), 30
rsi_df (proportion), 118
rsi_df(), 44, 76, 120
rsi_predict (resistance_predict), 124
rsi_translation, 31, 123, 128

sample(), 123
saveRDS(), 94
scale, 113
scale_rsi_colours (ggplot_rsi), 73
scale_rsi_colours(), 76
scale_y_percent (ggplot_rsi), 73
scale_y_percent(), 76
sd(), 23
select(), 16
semi_join_microorganisms (join), 82
set_mo_source (mo_source), 110
set_mo_source(), 25, 99, 111, 112
sign(), 23
signif(), 23
sin(), 23
sinh(), 23
sinpi(), 23
skewness, 130
skewness(), 87
sqrt(), 23
sum(), 23
summarise(), 16, 69
summary(), 126
susceptibility (proportion), 118
susceptibility(), 33, 37, 44, 45, 96,

118–121, 127
Sys.getlocale(), 131

tan(), 23
tanh(), 23
tanpi(), 23
tetracyclines

(antibiotic_class_selectors),
15

theme_rsi (ggplot_rsi), 73
theme_rsi(), 76
translate, 105, 117, 131
trigamma(), 23
trunc(), 23

utils::browseURL(), 6

var(), 23

140 INDEX

variable grouping, 69
vector, 19, 26, 27

WHOCC, 132
WHONET, 133
will be translated, 6, 106
write us an email (see section

’Contact Us’), 51, 81, 88

XDR (mdro), 91

	ab_from_text
	ab_property
	age
	age_groups
	AMR
	antibiotics
	antibiotic_class_selectors
	as.ab
	as.disk
	as.mic
	as.mo
	as.rsi
	atc_online_property
	availability
	bug_drug_combinations
	catalogue_of_life
	catalogue_of_life_version
	count
	custom_eucast_rules
	dosage
	eucast_rules
	example_isolates
	example_isolates_unclean
	first_isolate
	g.test
	get_episode
	ggplot_pca
	ggplot_rsi
	guess_ab_col
	intrinsic_resistant
	italicise_taxonomy
	join
	key_antimicrobials
	kurtosis
	lifecycle
	like
	mdro
	microorganisms
	microorganisms.codes
	microorganisms.old
	mo_matching_score
	mo_property
	mo_source
	pca
	plot
	proportion
	random
	resistance_predict
	rsi_translation
	skewness
	translate
	WHOCC
	WHONET
	Index

