In this vignette, we will explore the OmopSketch functions
designed to provide an overview of the observation_period
table. Specifically, there are six key functions that facilitate
this:
summariseObservationPeriod()
,
plotObservationPeriod()
and
tableObservationPeriod()
: Use them to get some overall
statistics describing the observation_period
tablesummariseInObservation()
,
plotInObservation()
, tableInObservation()
: Use
them to summarise the trend in the number of records, individuals,
person-days and females in observation during specific intervals of time
and how the median age varies.Let’s see an example of its functionalities. To start with, we will load essential packages and create a mock cdm using the mockOmopSketch() database.
library(dplyr)
library(OmopSketch)
# Connect to mock database
cdm <- mockOmopSketch()
Let’s now use the summariseObservationPeriod()
function
from the OmopSketch package to help us have an overview of one of the
observation_period
table, including some statistics such as
the Number of subjects
and Duration in days
for each observation period (e.g., 1st, 2nd)
summarisedResult <- summariseObservationPeriod(cdm$observation_period)
summarisedResult
#> # A tibble: 3,102 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 mockOmopSketch observation_pe… all overall overall
#> 2 1 mockOmopSketch observation_pe… all overall overall
#> 3 1 mockOmopSketch observation_pe… all overall overall
#> 4 1 mockOmopSketch observation_pe… all overall overall
#> 5 1 mockOmopSketch observation_pe… all overall overall
#> 6 1 mockOmopSketch observation_pe… all overall overall
#> 7 1 mockOmopSketch observation_pe… all overall overall
#> 8 1 mockOmopSketch observation_pe… all overall overall
#> 9 1 mockOmopSketch observation_pe… all overall overall
#> 10 1 mockOmopSketch observation_pe… all overall overall
#> # ℹ 3,092 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
Notice that the output is in the summarised result format.
We can use the arguments to specify which statistics we want to
perform. For example, use the argument estimates
to
indicate which estimates you are interested regarding the
Duration in days
of the observation period.
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
estimates = c("mean", "sd", "q05", "q95")
)
summarisedResult |>
filter(variable_name == "Duration in days") |>
select(group_level, variable_name, estimate_name, estimate_value)
#> # A tibble: 8 × 4
#> group_level variable_name estimate_name estimate_value
#> <chr> <chr> <chr> <chr>
#> 1 all Duration in days mean 3908.36
#> 2 all Duration in days sd 3667.2069037827
#> 3 all Duration in days q05 249
#> 4 all Duration in days q95 10817
#> 5 1st Duration in days mean 3908.36
#> 6 1st Duration in days sd 3667.2069037827
#> 7 1st Duration in days q05 249
#> 8 1st Duration in days q95 10817
Additionally, you can stratify the results by sex and age groups, and specify a date range of interest:
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
estimates = c("mean", "sd", "q05", "q95"),
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
dateRange = as.Date(c("1970-01-01", "2010-01-01"))
)
summarisedResult |>
select(group_level, variable_name, strata_level, estimate_name, estimate_value) |>
glimpse()
#> Rows: 135
#> Columns: 5
#> $ group_level <chr> "all", "all", "all", "all", "all", "all", "all", "all",…
#> $ variable_name <chr> "Number records", "Number subjects", "Records per perso…
#> $ strata_level <chr> "overall", "overall", "overall", "overall", "overall", …
#> $ estimate_name <chr> "count", "count", "mean", "sd", "q05", "q95", "mean", "…
#> $ estimate_value <chr> "75", "75", "1", "0", "1", "1", "3922.24", "3453.495169…
Notice that, by default, the “overall” group will be also included, as well as crossed strata (that means, sex == “Female” and ageGroup == “>35”).
tableObservationPeriod()
will help you to create a table
(see supported types with: visOmopResults::tableType()). By default it
creates a gt table.
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
estimates = c("mean", "sd", "q05", "q95"),
sex = TRUE
)
summarisedResult |>
tableObservationPeriod()
#> ℹ <median> [<q25> - <q75>] has not been formatted.
Observation period ordinal | Variable name | Estimate name |
CDM name
|
---|---|---|---|
mockOmopSketch | |||
overall | |||
all | Number records | N | 100 |
Number subjects | N | 100 | |
Records per person | mean (sd) | 1.00 (0.00) | |
Duration in days | mean (sd) | 3,908.36 (3,667.21) | |
1st | Number subjects | N | 100 |
Duration in days | mean (sd) | 3,908.36 (3,667.21) | |
Female | |||
all | Number records | N | 47 |
Number subjects | N | 47 | |
Records per person | mean (sd) | 1.00 (0.00) | |
Duration in days | mean (sd) | 3,860.36 (3,709.03) | |
1st | Number subjects | N | 47 |
Duration in days | mean (sd) | 3,860.36 (3,709.03) | |
Male | |||
all | Number records | N | 53 |
Number subjects | N | 53 | |
Records per person | mean (sd) | 1.00 (0.00) | |
Duration in days | mean (sd) | 3,950.92 (3,664.73) | |
1st | Number subjects | N | 53 |
Duration in days | mean (sd) | 3,950.92 (3,664.73) |
Finally, we can visualise the result using
plotObservationPeriod()
.
summarisedResult <- summariseObservationPeriod(cdm$observation_period)
plotObservationPeriod(summarisedResult,
variableName = "Number subjects",
plotType = "barplot"
)
Note that either Number subjects
or
Duration in days
can be plotted. For
Number of subjects
, the plot type can be
barplot
, whereas for Duration in days
, the
plot type can be barplot
, boxplot
, or
densityplot
.”
Additionally, if results were stratified by sex or age group, we can
further use facet
or colour
arguments to
highlight the different results in the plot. To help us identify by
which variables we can colour or facet by, we can use visOmopResult
package.
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
sex = TRUE
)
plotObservationPeriod(summarisedResult,
variableName = "Duration in days",
plotType = "boxplot",
facet = "sex"
)
summarisedResult <- summariseObservationPeriod(cdm$observation_period,
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf))
)
plotObservationPeriod(summarisedResult,
colour = "sex",
facet = "age_group"
)
OmopSketch can also help you to summarise the number of records in observation during specific intervals of time.
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years"
)
summarisedResult |>
select(variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 126 × 5
#> variable_name estimate_name estimate_value additional_name additional_level
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Number records… count 100 overall overall
#> 2 Number records… percentage 100.00 overall overall
#> 3 Number records… count 1 time_interval 1958-01-01 to 1…
#> 4 Number records… percentage 1.00 time_interval 1958-01-01 to 1…
#> 5 Number records… count 1 time_interval 1959-01-01 to 1…
#> 6 Number records… percentage 1.00 time_interval 1959-01-01 to 1…
#> 7 Number records… count 1 time_interval 1960-01-01 to 1…
#> 8 Number records… percentage 1.00 time_interval 1960-01-01 to 1…
#> 9 Number records… count 1 time_interval 1961-01-01 to 1…
#> 10 Number records… percentage 1.00 time_interval 1961-01-01 to 1…
#> # ℹ 116 more rows
Note that you can adjust the time interval period using the
interval
argument, which can be set to either “years”,
“quarters”, “months” or “overall” (default value).
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "months"
)
summarisedResult |>
select(variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 1,468 × 5
#> variable_name estimate_name estimate_value additional_name additional_level
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Number records… count 100 overall overall
#> 2 Number records… percentage 100.00 overall overall
#> 3 Number records… count 1 time_interval 1958-10-01 to 1…
#> 4 Number records… percentage 1.00 time_interval 1958-10-01 to 1…
#> 5 Number records… count 1 time_interval 1958-11-01 to 1…
#> 6 Number records… percentage 1.00 time_interval 1958-11-01 to 1…
#> 7 Number records… count 1 time_interval 1958-12-01 to 1…
#> 8 Number records… percentage 1.00 time_interval 1958-12-01 to 1…
#> 9 Number records… count 1 time_interval 1959-01-01 to 1…
#> 10 Number records… percentage 1.00 time_interval 1959-01-01 to 1…
#> # ℹ 1,458 more rows
Along with the number of records in observation, you can also
calculate the number of person-days by setting the output
argument to c(“record”, “person-days”).
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("record", "person-days"))
summarisedResult |>
select(variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 4 × 5
#> variable_name estimate_name estimate_value additional_name additional_level
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Number person-d… count 390836 overall overall
#> 2 Number records … count 100 overall overall
#> 3 Number person-d… percentage 100.00 overall overall
#> 4 Number records … percentage 100.00 overall overall
We can further stratify our counts by sex (setting argument
sex = TRUE
) or by age (providing an age group). Notice that
in both cases, the function will automatically create a group called
overall with all the sex groups and all the age groups. We can
also define a date range of interest to filter the
observation_period
table accordingly.
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("record", "person-days"),
interval = "quarters",
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
dateRange = as.Date(c("1970-01-01", "2010-01-01")))
summarisedResult |>
select(strata_level, variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 1,704 × 6
#> strata_level variable_name estimate_name estimate_value additional_name
#> <chr> <chr> <chr> <chr> <chr>
#> 1 overall Number person-d… count 294168 overall
#> 2 Male Number person-d… count 155915 overall
#> 3 Female Number person-d… count 138253 overall
#> 4 <35 Number person-d… count 267676 overall
#> 5 >=35 Number person-d… count 26492 overall
#> 6 Male &&& >=35 Number person-d… count 15563 overall
#> 7 Female &&& <35 Number person-d… count 127324 overall
#> 8 Male &&& <35 Number person-d… count 140352 overall
#> 9 Female &&& >=35 Number person-d… count 10929 overall
#> 10 overall Number records … count 75 overall
#> # ℹ 1,694 more rows
#> # ℹ 1 more variable: additional_level <chr>
You can include additional output metrics by them to the output argument:
If output = "person"
, the trend in the number of
individuals in observation is returned.
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("person"),
interval = "years",
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
)
summarisedResult |>
select(strata_level, variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 938 × 6
#> strata_level variable_name estimate_name estimate_value additional_name
#> <chr> <chr> <chr> <chr> <chr>
#> 1 overall Number subjects… count 100 overall
#> 2 Female Number subjects… count 47 overall
#> 3 Male Number subjects… count 53 overall
#> 4 <35 Number subjects… count 83 overall
#> 5 >=35 Number subjects… count 17 overall
#> 6 Female &&& <35 Number subjects… count 39 overall
#> 7 Male &&& >=35 Number subjects… count 9 overall
#> 8 Female &&& >=35 Number subjects… count 8 overall
#> 9 Male &&& <35 Number subjects… count 44 overall
#> 10 overall Number subjects… percentage 100.00 overall
#> # ℹ 928 more rows
#> # ℹ 1 more variable: additional_level <chr>
If output = "sex"
, the trend in the number of females in
observation is returned. If sex = TRUE
is specified, this
stratification is ignored.
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("sex"),
interval = "years",
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
)
summarisedResult |>
select(strata_level, variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 294 × 6
#> strata_level variable_name estimate_name estimate_value additional_name
#> <chr> <chr> <chr> <chr> <chr>
#> 1 overall Number females in … count 47 overall
#> 2 <35 Number females in … count 39 overall
#> 3 >=35 Number females in … count 8 overall
#> 4 overall Number females in … percentage 47.00 overall
#> 5 <35 Number females in … percentage 39.00 overall
#> 6 >=35 Number females in … percentage 8.00 overall
#> 7 overall Number females in … count 1 time_interval
#> 8 <35 Number females in … count 1 time_interval
#> 9 overall Number females in … percentage 1.00 time_interval
#> 10 <35 Number females in … percentage 1.00 time_interval
#> # ℹ 284 more rows
#> # ℹ 1 more variable: additional_level <chr>
If output = "age
, the trend in the median age of the
population in observation is calculated. If ageGroup
and
interval
are both specified, the age is computed at the
beginning of the interval or of the observation period, whichever is
more recent.
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("age"),
interval = "years",
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)),
)
#> ℹ The following estimates will be computed:
#> • age: median
#> → Start summary of data, at 2025-06-18 20:20:06.870177
#>
#> ✔ Summary finished, at 2025-06-18 20:20:06.965523
#> ℹ The following estimates will be computed:
#> • age: median
#> → Start summary of data, at 2025-06-18 20:20:07.485326
#>
#> ✔ Summary finished, at 2025-06-18 20:20:07.593965
summarisedResult |>
select(strata_level, variable_name, estimate_name, estimate_value, additional_name, additional_level)
#> # A tibble: 161 × 6
#> strata_level variable_name estimate_name estimate_value additional_name
#> <chr> <chr> <chr> <chr> <chr>
#> 1 overall Median age in obse… median 20 overall
#> 2 <35 Median age in obse… median 17 overall
#> 3 >=35 Median age in obse… median 43 overall
#> 4 overall Median age in obse… median 3 time_interval
#> 5 <35 Median age in obse… median 3 time_interval
#> 6 overall Median age in obse… median 3 time_interval
#> 7 <35 Median age in obse… median 3 time_interval
#> 8 overall Median age in obse… median 4 time_interval
#> 9 <35 Median age in obse… median 4 time_interval
#> 10 overall Median age in obse… median 5 time_interval
#> # ℹ 151 more rows
#> # ℹ 1 more variable: additional_level <chr>
tableInObservartion()
will help you to create a table of
type gt, reactable or datatable. By default it
creates a gt table.
summarisedResult <- summariseInObservation(cdm$observation_period,
output = c("person", "person-days", "sex"),
sex = TRUE)
summarisedResult |>
tableInObservation(type = "gt")
Variable name | Estimate name | Sex |
Database name
|
---|---|---|---|
mockOmopSketch | |||
Number person-days | N (%) | Female | 181437 (46.42%) |
Number subjects in observation | N (%) | Female | 47 (47.00%) |
Number person-days | N (%) | Male | 209399 (53.58%) |
Number subjects in observation | N (%) | Male | 53 (53.00%) |
Number females in observation | N (%) | overall | 47 (47.00%) |
Number person-days | N (%) | overall | 390836 (100.00%) |
Number subjects in observation | N (%) | overall | 100 (100.00%) |
Finally, we can visualise the trend using
plotInObservation()
.
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years"
)
plotInObservation(summarisedResult)
#> `result_id` is not present in result.
#> `result_id` is not present in result.
Notice that one output at a time can be plotted. If more outputs have been included in the summarised result, you will have to filter to only include one variable at time.
Additionally, if results were stratified by sex or age group, we can
further use facet
or colour
arguments to
highlight the different results in the plot. To help us identify by
which variables we can colour or facet by, we can use visOmopResult
package.
summarisedResult <- summariseInObservation(cdm$observation_period,
interval = "years",
output = c("record", "age"),
sex = TRUE,
ageGroup = list("<35" = c(0, 34), ">=35" = c(35, Inf)))
#> ℹ The following estimates will be computed:
#> • age: median
#> → Start summary of data, at 2025-06-18 20:20:09.561128
#>
#> ✔ Summary finished, at 2025-06-18 20:20:09.758062
#> ℹ The following estimates will be computed:
#> • age: median
#> → Start summary of data, at 2025-06-18 20:20:10.434073
#>
#> ✔ Summary finished, at 2025-06-18 20:20:10.617626
plotInObservation(summarisedResult |>
filter(variable_name == "Median age in observation"),
colour = "sex",
facet = "age_group")
#> `result_id` is not present in result.
#> `result_id` is not present in result.
Finally, disconnect from the cdm
PatientProfiles::mockDisconnect(cdm = cdm)