Time Dependent Shared Frailty Cox Model


[Up] [Top]

Documentation for package ‘TimeDepFrail’ version 0.0.1

Help Pages

AdPaikModel Adapted Paik et al.'s Model: Time-Dependent Shared Frailty Cox Model
AdPaik_1D One-dimensional analysis of log-likelihood function
bas_hazard Baseline hazard step-function
check.categories_params Check correctness of parameters categories
check.centre Check correctness for the cluster variable
check.C_mult Check positiveness of the multiplicative constant C
check.dataset Check presence of null or nan element value in the dataset
check.flag_optimal_params Check coherence between flag for optimal parameters and optimal parameters
check.formula_terms Check correctness of formula terms
check.frailty_dispersion Check correctness of frailty standard deviation
check.index Check existence of provided input index
check.pchtype_colorbg Check correctness of plot variables pch and color
check.poslegend Check correctness of legend position
check.post_frailty_centre Check numerosity of posterior frailty estimates
check.pos_frailty_sd Check positiviness of the frailty standard deviation
check.range_params Check correctness of input parameters
check.result.AdPaik Check structure of the 'AdPaikModel' output
check.structure_paramsCI Check structure for the Parameters Confidence Interval
check.structure_post_frailty_CI Check structure of Posterior Frailty Confidence Interval
check.structure_post_frailty_est Check structure of Posterior Frailty Estimates
check.structure_post_frailty_var Check structure of Posterior Frailty Variances
check.time_axis Check correctness of time domain subdivision
check.value_post_frailty Check non-negativeness of the posterior frailty estimates
coef.AdPaik Extracts the optimal parameters of each cateogry for the 'Adapted Paik et al.' Model
coefse Extracts the standard errors computed for each cateogry for the 'Adapted Paik et al.' Model
confint.AdPaik Extracts the confidence intervals computed for each cateogry for the 'Adapted Paik et al.' Model
data_dropout Data Dropout Dataset
extract_dummy_variables Transform categorical covariate into dummy variables
extract_event_data Extracting variables for Posterior Frailty Estimates computation
frailty_sd Frailty standard deviation and Variance for the 'Adapted Paik et al.'s Model'
frailty_sd.AdPaik Frailty standard deviation and Variance for the 'Adapted Paik et al.'s Model'
ll_AdPaik_1D One-dimensional log-likelihood function to be optimized.
ll_AdPaik_centre_1D One-dimensional group log-likelihood function.
ll_AdPaik_centre_eval Evaluation of model group log-likelihood
ll_AdPaik_eval Evaluation of model log-likelihood
n_nodes Nodes and weights for the Gauss_hermite quadrature formula for the 'Centre-Specific Frailty Model with Power Parameter'. The nodes and weights have been extracted from the 'Handbook of Mathematical functions' pag 940.
n_nodesG Nodes and weights for the Gauss-Hermite quadrature formula, for the 'Stochastic Time-Dependent Centre-Specific Frailty Model'. For the G function, the chosen nodes should not contain the zero (node) since it appears at the denominator of a fraction. Also in this case, the nodes and weights have been extracted from the 'Handbook of Mathematical functions', pag 940.
params_CI Confidence interval for the optimal estimated parameters
params_se.AdPaik Standard error of the parameters
plot_bas_hazard Plot the Baseline Hazard Step-Function
plot_frailty_sd Plot for the Frailty Standard Deviation or Variance
plot_ll_1D Plot the One-Dimensional Log-Likelihood Function
plot_ll_1D.AdPaik Plot the One-Dimensional Log-Likelihood Function
plot_post_frailty_est Plot the Posterior Frailty Estimates
plot_survival Plot of Conditional Survival Function
post_frailty.AdPaik Posterior frailty estimates and variances for the 'Adapted Paik et al.'s Model'
post_frailty_CI.AdPaik Confidence interval for posterior frailty estimates
summary Summary for Time-Dependent Frailty Models
summary.AdPaik Summary of the Adapted Paik et al.'s Time-Dependent Shared Frailty Model
survival Compute the Conditional Survival Function
time_int_eval Resolution of integral with respect to time