GNU Linear Programming Kit

Reference Manual

Version 4.36

(DRAFT, February 2009)

The GLPK package is part of the GNU Project released under the aegis of
GNU.

Copyright (© 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Andrew Makhorin, Department for Applied Informatics, Moscow Aviation
Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on
all copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

Contents

1 Introduction

2

1.1 LP problem

1.2 MIP problem

1.3 Using the package

1.3.1
1.3.2
1.3.3

Brief exampleo
Compiling L L
Linking oo

Basic API Routines
2.1 Problem object L

2.2 Problem creating and modifying routines

2.2.1
2.2.2
2.2.3

2.24

2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11

2.2.12

2.2.13

glp_create_prob—create problem object
glp_set_prob_name—assign (change) problem name . .
glp_set_obj_name—assign (change) objective function
NAME .« . o o oo e e e e e
glp_set_obj_dir—set (change) optimization direction
flag
glp_add_rows—add new rows to problem object
glp_add_cols—add new columns to problem object
glp_set_row_name—assign (change) row name
glp_set_col_name—assign (change) column name
glp_set_row_bnds—set (change) row bounds
glp_set_col_bnds—set (change) column bounds.
glp_set_obj_coef—set (change) objective coefficient or
constant termo Lo oo L L
glp_set_mat_row—set (replace) row of the constraint
matrix
glp_set_mat_col—set (replace) column of the constr-
aint matrixo

11
11
12
13
13
16
16

18
19
23
23
23

23

2.3

2.4

2.5

2.2.14

2.2.15
2.2.16
2.2.17
2.2.18
2.2.19

glp_load_matrix—load (replace) the whole constraint
matrix
glp_del_rows—delete rows from problem object
glp_del_cols—delete columns from problem object . . .
glp_copy_prob—copy problem object content
glp_erase_prob—erase problem object content
glp_delete_prob—delete problem object

Problem retrieving routines

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13
2.3.14

2.3.15

2.3.16
2.3.17

glp_get_prob_name—retrieve problem name
glp_get_obj_name—retrieve objective function name
glp_get_obj_dir—retrieve optimization direction flag
glp_get_num_rows—retrieve number of rows
glp_get_num_cols—retrieve number of columns
glp_get_row_name—retrieve row name
glp_get_col_name—retrieve column name
glp_get_row_type—retrieve row type
glp_get_row_lb—retrieve row lower bound
glp_get_row_ub—retrieve row upper bound
glp_get_col_type—retrieve column type
glp_get_col_lb—retrieve column lower bound
glp_get_col_ub—retrieve column upper bound
glp_get_obj_coef—retrieve objective coefficient or
constant termo Lo o000
glp_get_num_nz—retrieve number of constraint coeffi-
clents
glp_get_mat_row—retrieve row of the constraint matrix
glp_get_mat_col—retrieve column of the constraint
matrix

Row and column searching routines

24.1
2.4.2
2.4.3
244

glp_create_index—create the name index
glp_find_row—find row by its name
glp_find_col—find column by its name
glp_delete_index—delete the name index

Problem scaling routines,

2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

Background L
glp_set_rii—set (change) row scale factor
glp_set_sjj—set (change) column scale factor
glp_get_rii—retrieve row scale factor
glp_get_sjj—retrieve column scale factor
glp_scale_prob—scale problem data

29
30
30
30
31
32
32
32

33
33
33
33
34
34
34
35
35
35

36

36
36

2.6

2.7

2.8

2.9

2.5.7 glp_unscale_prob—unscale problem data 42
LP basis constructing routines 43
2.6.1 Background oL 43
2.6.2 glp_set_row_stat—set (change) row status 43
2.6.3 glp_set_col_stat—set (change) column status 44
2.6.4 glp_std_basis—construct standard initial LP basis. . . 44
2.6.5 glp_adv_basis—construct advanced initial LP basis . . 45
2.6.6 glp_cpx_basis—construct Bixby’s initial LP basis . . . 45
Simplex method routines 46
2.7.1 glp_simplex—solve LP problem with the primal or dual
simplex method oL 47
2.7.2 glp_exact—solve LP problem in exact arithmetic . . . 51
2.7.3 glp_init_smcp—initialize simplex method control pa-
rameters L. Lo 52
2.7.4 glp_get_status—retrieve generic status of basic solution 53
2.7.5 glp_get_prim_stat—retrieve status of primal basic so-
lution 53
2.7.6 glp_get_dual_stat—retrieve status of dual basic solution 54
2.7.7 glp_get_obj_val—retrieve objective value 54
2.7.8 glp_get_row_stat—retrieve row status 54
2.7.9 glp_get_row_prim—retrieve row primal value 59
2.7.10 glp_get_row_dual—retrieve row dual value 55
2.7.11 glp_get_col_stat—retrieve column status 55
2.7.12 glp_get_col_prim—retrieve column primal value 56
2.7.13 glp_get_col_dual—retrieve column dual value 56
2.7.14 glp_get_unbnd_ray—determine variable causing
unboundednesso 56
2.7.15 lpx_check_kkt—check Karush-Kuhn-Tucker optimality
conditions Lo 57
Interior-point method routines 63
2.8.1 glp_interior—solve LP problem with the interior-point
method L 63
2.8.2 glp_ipt_status—retrieve status of interior-point solution 64
2.8.3 glp_ipt_obj_val—retrieve objective value 65
2.8.4 glp_ipt_row_prim—retrieve row primal value 65
2.8.5 glp_ipt_row_dual—retrieve row dual value 65
2.8.6 glp_-ipt_col_prim—retrieve column primal value 65
2.8.7 glp_ipt_col_dual—retrieve column dual value 66
Mixed integer programming routines 67
2.9.1 glp_set_col kind—set (change) column kind 67

2.9.2
2.9.3
2.94
2.9.5

2.9.6

2.9.7
2.9.8
2.9.9
2.9.10

glp_get_col_kind—retrieve column kind
glp_get_num_int—retrieve number of integer columns .
glp_get_num_bin—retrieve number of binary columns .
glp_intopt—solve MIP problem with the branch-and-

cut method oL
glp_init_iocp—initialize integer optimizer control pa-

rameters L Lo
glp_mip_status—retrieve status of MIP solution
glp_mip_obj_val—retrieve objective value
glp_mip_row_val—retrieve row value
glp_mip_col_val—retrieve column value

3 Utility API routines
3.1 Problem data reading/writing routines

3.2

3.3

3.1.1
3.1.2
3.1.3

3.1.4 glp_write_lp—write problem data in CPLEX LP format

glp_read_mps—read problem data in MPS format . . .
glp_write_mps—write problem data in MPS format . .
glp_read_lp—read problem data in CPLEX LP format

Routines for processing MathProg models

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6

3.2.7
3.2.8

Introduction
glp_mpl_alloc_wksp—allocate the translator workspace
glp_mpl_read_model—read and translate model section
glp_mpl_read_data—read and translate data section . .
glp_mpl_generate—generate the model
glp_mpl_build_prob—build problem instance from the

model
glp_mpl_postsolve—postsolve the model
glp_mpl_free_wksp—free the translator workspace . . .

Problem solution reading/writing routines

3.3.1
3.3.2

3.3.3

3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9

Ipx_print_sol—write basic solution in printable format
lpx_print_sens_bnds—write bounds sensitivity informa-
tion
lpx_print_ips—write interior-point solution in print-
able format L.
Ipx_print_mip—write MIP solution in printable format
glp_read_sol—read basic solution from text file
glp_write_sol—write basic solution to text file
glp_read_ipt—read interior-point solution from text file
glp_write_ipt—write interior-point solution to text file
glp_read_mip—read MIP solution from text file

67
68

68

73
73
74
74
74

75
75
6]
76
76
77
78
78
81
81
82
82

83
83
84
85
85

85

86
86
87
87
88
89
90

3.3.10

glp_write_mip—write MIP solution to text file

4 Advanced API Routines
4.1 LP basis and simplex tableau routines

4.1.1
4.1.2
4.1.3
4.14

4.1.5

4.1.6
4.1.7
4.1.8

4.1.9

4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15

4.1.16

4.1.17
4.1.18

Background
glp_bf_exists—check if the basis factorization exists . .
glp_factorize—compute the basis factorization
glp_bf_updated—check if the basis factorization has
been updated
glp_get_bfcp—retrieve basis factorization control pa-
rameters Lo Lo
Change basis factorization control parameters
glp_get_bhead—retrieve the basis header information .
glp_get_row_bind—retrieve row index in the basis
header Lo
glp_get_col_bind—retrieve column index in the basis
header L
glp_ftran—perform forward transformation
glp_btran—perform backward transformation
lpx_warm_up—“warm up” LP basis.
glp_eval_tab_row—compute row of the tableau.
glp_eval_tab_col-—compute column of the tableau . . .
Ipx_transform_row—transform explicitly specified

TOW o v oo e e e e e e e e
Ipx_transform_col—transform explicitly specified
column
Ipx_prim_ratio_test—perform primal ratio test
Ipx_dual_ratio_test—perform dual ratio test

4.2 Library environment routines

4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6
4.2.7

glp_long—64-bit integer data type
glp_version—determine library version
glp_term_out—enable/disable terminal output
glp_term_hook—intercept terminal output
glp_mem_usage—get memory usage information
glp_mem_limit—set memory usage limit
glp_free_env—free GLPK library environment

5 Branch-and-Cut API Routines
5.1 Introduction

5.1.1

Using the callback routine

5.2

5.3

0.4

5.1.2 Branch-and-cut algorithm 124
5.1.3 Thesearchtree 125
5.1.4 Current subproblem 127
5.1.5 Thecutpool 127
5.1.6 Reasons for calling the callback routine 127
Basicroutines Lo oo 131
5.2.1 glp_ios_reason—determine reason for calling the call-

back routineo 131
5.2.2 glp_ios_get_prob—access the problem object 131
5.2.3 glp_ios_row_attr—determine additional row attributes 132
5.2.4 glp_ios_mip_gap—compute relative MIP gap 133
5.2.5 glp_ios_node_data—access application-specific data . . 134
5.2.6 glp_ios_select_node—select subproblem to continue the

search 134
5.2.7 glp_ios_heur_sol—provide solution found by heuristic . 135
5.2.8 glp_ios_can_branch—check if can branch upon speci-

fied variable 135
5.2.9 glp_ios_branch_upon—choose variable to branch upon 136
5.2.10 glp_ios_terminate—terminate the solution process . . . 137
The search tree exploring routines 138
5.3.1 glp_ios_tree_size—determine size of the search tree . . 138
5.3.2 glp_ios_curr_.node—determine current active subproblem138
5.3.3 glp_ios_next_node—determine next active subproblem 139
5.3.4 glp_ios_prev_node—determine previous active subprob-

lem 139
5.3.5 glp_ios_up_node—determine parent subproblem 140
5.3.6 glp_ios_node_level—determine subproblem level 140
5.3.7 glp_ios_node_bound—determine subproblem local

bound 140
5.3.8 glp_ios_best_ node—find active subproblem with best

local bound oL 141
The cut pool routines 142
5.4.1 glp_ios_pool_size—determine current size of the cut

pool 142
5.4.2 glp_ios_add_row—add constraint to the cut pool 142
5.4.3 glp_ios_del_row—remove constraint from the cut pool . 144
5.4.4 glp_ios_clear_pool—remove all constraints from the cut

pool 145

6 Graph and Network API Routines 146

6.1 Introduction. o 146
6.1.1 Graph program object 146
6.2 Graph creating and modifying routines 149
6.2.1 glp_create_graph—create graph 149
6.2.2 glp_set_graph_name—assign (change) graph name . . . 149
6.2.3 glp_add_vertices—add new vertices to graph 150
6.2.4 glp_set_vertex_name—assign (change) vertex name . . 150
6.2.5 glp.add_arc—add new arc tograph 150
6.2.6 glp_remove_vertices—remove vertices from graph . . . 151
6.2.7 glp_remove_arc—remove arc from graph 151
6.2.8 glp_erase_graph—erase graph content 151
6.2.9 glp_delete_graph—delete graph 151
6.3 Minimum cost flow problem 152
6.3.1 Background o oL 152
6.3.2 glp_read_mincost—read minimum cost flow problem

data in DIMACS format 153

6.3.3 glp_write_mincost—write minimum cost flow problem
data in DIMACS format 157

6.3.4 glp_mincost_lp—convert minimum cost flow problem

toLP . .o 158

6.3.5 glp_mincost_okalg—solve minimum cost flow problem
with out-of-kilter algorithm 160
6.3.6 glp_netgen—Klingman’s network problem generator . 165
6.3.7 glp_gridgen—grid-like network problem generator . . . 166
6.4 Maximum flow problem 0000 169
6.4.1 Background L 169

6.4.2 glp_read_maxflow—read maximum flow problem data
in DIMACS format 170

6.4.3 glp_write_maxflow—write maximum flow problem data
in DIMACS format 174
6.4.4 glp_maxflow_lp—convert maximum flow problem to LP 174

6.4.5 glp_maxflow_ffalg—solve maximum flow problem with
Ford-Fulkerson algorithm 177

6.4.6 glp_rmfgen—Goldfarb’s maximum flow problem gen-
erator L. 180
A Installing GLPK on Your Computer 182
A.1 Obtaining GLPK distribution file 182
A.2 Unpacking the distribution file 182

A.3 Configuring the package
A.4 Compiling and checking the package
A.5 Installing the package
A.6 Uninstalling the package

B MPS Format
B.1 Fixed MPS Format
B.2 Free MPS Format.
B.3 NAME indicator card
B.4 ROWSsection
B.5 COLUMNS section
B.6 RHSsection
B.7 RANGES section
B.8 BOUNDS section
B.9 ENDATA indicator card
B.10 Specifying objective function
B.11 Example of MPSfile
B.12 MIP features
B.13 Specifying predefined basiso

C CPLEX LP Format
C.1 Prelude
C.2 Objective function definition
C.3 Constraints section
C.4 Boundssection
C.5 General, integer, and binary sections
C.6 Endkeyword
C.7 Example of CPLEX LP file

D Stand-alone LP/MIP Solver

GNU General Public License

10

185
185
186
187
187
188
189
189
190
191
191
192
194
197

199
199
201
202
203
204
205
205

207

210

Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the
ANSI C programming language and organized in the form of a callable
library. It is intended for solving linear programming (LP), mixed integer
programming (MIP), and other related problems.

1.1

LP problem

GLPK assumes the following formulation of linear programming (LP) prob-

lem:

minimize (or maximize)
Z=C1Tm+1 T C2Tmy2 + ... + CnTm4n + Co
subject to linear constraints

T1 = 011Tm+1 + A12Tm+2 + .-+ AnPmin
T2 = G21Tm+1 T 022Tm+2 + ...+ A2nTm4n

Tm = Om1Tm+1 + Am2Tm+2 +...+ AmnTm+n
and bounds of variables

h< 21 <y
o< x93 <wo

11

(1.1)

(1.2)

where: x1,x9,...,%, are auxiliary variables; Zp41,Tm+42,...,Tmtn are
structural variables; z is the objective function; ci,co,...,c, are objec-
tive coefficients; ¢ is the constant term (“shift”) of the objective function;
a11,0a12, - - . , Amp are constraint coeflicients; l1,lo, . .., {4y are lower bounds
of variables; u1, ug, . .., Umiyn are upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows
of the constraint matrix (i.e. a matrix built of the constraint coefficients).
Similarly, structural variables are also called columns, because they corre-
spond to columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and
upper bounds can be equal to each other. Thus, the following types of
variables are possible:

Bounds of variable Type of variable
—00 <z < 00 Free (unbounded) variable
Iy <z < 400 Variable with lower bound

—00 < T < ug Variable with upper bound
I < xp < uy Double-bounded variable
lp, = xp, = ug Fixed variable

Note that the types of variables shown above are applicable to structural as
well as to auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all struc-
tural and auxiliary variables, which:

e satisfy to all the linear constraints (1.2), and

e are within their bounds (1.3), and

e provide the smallest (in case of minimization) or the largest (in case
of maximization) value of the objective function (1.1).

1.2 MIP problem

Mized integer linear programming (MIP) problem is LP problem in which
some variables are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordi-
nary (pure) LP problem (1.1)—(1.3), i.e. includes auxiliary and structural
variables, which may have lower and/or upper bounds. However, in case of
MIP problem some variables may be required to be integer. This additional
constraint means that a value of each integer variable must be only integer
number. (Should note that GLPK allows only structural variables to be of
integer kind.)

12

1.3 Using the package

1.3.1 Brief example

In order to understand what GLPK is from the user’s standpoint, consider
the following simple LP problem:

maximize
z = 10zx1 + 622 + 4x3

subject to
1+ x2+ 3 <100
10x1 + 429 + 5x3 < 600
2x1 + 2x9 + 623 < 300

where all variables are non-negative
xlzoa ;UQZOa .%'320

At first this LP problem should be transformed to the standard form
(1.1)——(1.3). This can be easily done by introducing auxiliary variables,
by one for each original inequality constraint. Thus, the problem can be
reformulated as follows:

maximize
z =10z1 + 625 + 4z3

subject to
p= 1+ 22+ I3
q = 10x1 4 429 + dx3
r= 2x1 4+ 2x9 + 623

and bounds of variables

—oo0 < p <100 0<2 <+
—00 < ¢ <600 0<zo <+
—o0 < r <300 0< 23 <+

where p, ¢, r are auxiliary variables (rows), and x1, x2, x3 are structural vari-
ables (columns).

The example C program shown below uses GLPK API routines in order
to solve this LP problem.!

'If you just need to solve LP or MIP instance, you may write it in MPS or CPLEX LP
format and then use the GLPK stand-alone solver to obtain a solution. This is much less
time-consuming than programming in C with GLPK API routines.

13

/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *1p;
int ia[1+1000], ja[1+1000];
double ar[1+1000], =z, x1, x2, x3;
sl: 1lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);
s4: glp_add_rows(lp, 3);
sb: glp_set_row_name(lp, 1, "p");
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
s7: glp_set_row_name(lp, 2, "q");
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
s9: glp_set_row_name(lp, 3, "r");
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
s11: glp_add_cols(lp, 3);

s12: glp_set_col_name(lp, 1, "x1");

s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);

sl4: glp_set_obj_coef(lp, 1, 10.0);

s16: glp_set_col_name(lp, 2, "x2");

s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);

s17: glp_set_obj_coef(lp, 2, 6.0);

s18: glp_set_col_name(lp, 3, "x3");

s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);

s20: glp_set_obj_coef(1lp, 3, 4.0);

s21: iaf1] =1, jal1]l =1, ar[1] = 1.0; /* al1,1] =
s22: ia[2] =1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] =
s23: ial3] =1, jal3] = 3, ar[3] = 1.0; /* al[1,3] =
s24: ial4] = 2, jal4] = 1, ar[4] = 10.0; /* al[2,1]
s26: ia[5] = 3, jalb] =1, ar[5] = 2.0; /* al3,1] =
s26: ial6] = 2, jal6] = 2, ar[6] = 4.0; /* al[2,2] =
s27: ial7] = 3, jal7] = 2, ar[7] = 2.0; /* al3,2] =
s28: ial8] = 2, jal8] = 3, ar[8] = 5.0; /* a[2,3] =
s29: ial9] = 3, jal9] = 3, ar[9] = 6.0; /* al3,3]

s30: glp_load_matrix(lp, 9, ia, ja, ar);

14

=

o 0NN

s31: glp_simplex(lp, NULL);
s32: z = glp_get_obj_val(lp);

s33: x1 = glp_get_col_prim(lp, 1);
s34: x2 = glp_get_col_prim(lp, 2);
s35: x3 = glp_get_col_prim(lp, 3);

s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = Jg\n",
z, x1, x2, x3);
s37: glp_delete_prob(lp);
return O;

/* eof x/

The statement s1 creates a problem object. Being created the object is
initially empty. The statement s2 assigns a symbolic name to the problem
object.

The statement s3 calls the routine glp_set_obj_dir in order to set the
optimization direction flag, where GLP_MAX means maximization.

The statement s4 adds three rows to the problem object.

The statement s5 assigns the symbolic name ‘p’ to the first row, and
the statement s6 sets the type and bounds of the first row, where GLP_UP
means that the row has an upper bound. The statements s7, s8, s9, s10
are used in the same way in order to assign the symbolic names ‘q’ and ‘r’
to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.

The statement s12 assigns the symbolic name ‘x1’ to the first column,
the statement s13 sets the type and bounds of the first column, where
GLP_LO means that the column has an lower bound, and the statement s14
sets the objective coefficient for the first column. The statements s15—s20
are used in the same way in order to assign the symbolic names ‘x2’ and ‘x3’
to the second and third columns and set their types, bounds, and objective
coeflicients.

The statements s21—s29 prepare non-zero elements of the constraint
matrix (i.e. constraint coefficients). Row indices of each element are stored
in the array ia, column indices are stored in the array ja, and numerical
values of corresponding elements are stored in the array ar. Then the state-
ment s30 calls the routine glp_load_matrix, which loads information from
these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore
the statement s31 calls the routine glp_simplex, which is a driver to the

15

simplex method, in order to solve the LP problem. This routine finds an
optimal solution and stores all relevant information back into the problem
object.

The statement s32 obtains a computed value of the objective function,
and the statements s33—s35 obtain computed values of structural variables
(columns), which correspond to the optimal basic solution found by the
solver.

The statement s36 writes the optimal solution to the standard output.
The printout may look like follows:

0.000000000e+00 (0)

* 0: objval = 0.000000000e+00 infeas
= 0.000000000e+00 (0)

* 2: objval = 7.333333333e+02 infeas
OPTIMAL SOLUTION FOUND

z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine glp_delete_prob, which
frees all the memory allocated to the problem object.

1.3.2 Compiling

The GLPK package has the only header file glpk.h, which should be avail-
able on compiling a C (or C++) program using GLPK API routines.

If the header file is installed in the default location /usr/local/include,
the following typical command may be used to compile, say, the example C
program described above with the GNU C compiler:

$ gcc -c sample.c

If glpk.h is not in the default location, the corresponding directory
containing it should be made known to the C compiler through -I option,
for example:

$ gcc -I/foo/bar/glpk-4.15/include -c sample.c
In any case the compilation results in an object file sample.o.

1.3.3 Linking

The GLPK library is a single file 1ibglpk.a. (On systems which sup-
port shared libraries there may be also a shared version of the library
libglpk.so.)

16

If the library is installed in the default location /usr/local/lib, the
following typical command may be used to link, say, the example C program
described above against with the library:

$ gcc sample.o -1glpk -1m

If the GLPK library is not in the default location, the corresponding
directory containing it should be made known to the linker through -L
option, for example:

$ gcc -L/foo/bar/glpk-4.15 sample.o -1lglpk -1m

Depending on configuration of the package linking against with the
GLPK library may require the following optional libraries:

-lgmp the GNU MP bignum library;
-1z the zlib data compression library;
-11tdl the GNU Itdl shared support library.

in which case corresponding libraries should be also made known to the
linker, for example:

$ gcc sample.o -1glpk -1z -11tdl -1m

For more details about configuration options of the GLPK package see
Appendix A, page 182.

17

Chapter 2

Basic API Routines

This chapter describes GLPK API routines intended for using in application
programs.

Library header

All GLPK API data types and routines are defined in the header file glpk.h.
It should be included in all source files which use GLPK API, either directly
or indirectly through some other header file as follows:

#include <glpk.h>

Error handling

If some GLPK API routine detects erroneous or incorrect data passed by
the application program, it writes appropriate diagnostic messages to the
terminal and then abnormally terminates the application program. In most
practical cases this allows to simplify programming by avoiding numerous
checks of return codes. Thus, in order to prevent crashing the application
program should check all data, which are suspected to be incorrect, before
calling GLPK API routines.

Should note that this kind of error handling is used only in cases of
incorrect data passed by the application program. If, for example, the ap-
plication program calls some GLPK API routine to read data from an input
file and these data are incorrect, the GLPK API routine reports about error
in the usual way by means of the return code.

18

Thread safety

Currently GLPK API routines are non-reentrant and therefore cannot be
used in multi-threaded programs.

Array indexing

Normally all GLPK API routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, that if some
vector x of the length n is passed as an array to some GLPK API routine,
the latter expects vector components to be placed in locations x[1], x[2],
.., x[n], and the location x[0] normally is not used.
In order to avoid indexing errors it is most convenient and most reliable
to declare the array x as follows:

double x[1+n];
or to allocate it as follows:

double *x;
x = calloc(1l+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing the
array to GLPK routines in a usual way.

2.1 Problem object

All GLPK API routines deal with so called problem object, which is a pro-
gram object of type glp_prob and intended to represent a particular LP or
MIP instance.

The type glp_prob is a data structure declared in the header file glpk.h
as follows:

typedef struct { ... } glp_prob;

Problem objects (i.e. program objects of the glp_prob type) are allo-
cated and managed internally by the GLPK API routines. The application
program should never use any members of the glp_prob structure directly
and should deal only with pointers to these objects (that is, glp_prob *
values).

19

The problem object consists of five segments, which are:
e problem segment,

e basis segment,

e interior point segment,

e MIP segment, and

e control parameters and statistics segment.

Problem segment

The problem segment contains original LP/MIP data, which corresponds to
the problem formulation (1.1)—(1.3) (see Section 1.1, page 11). It includes
the following components:

e rows (auxiliary variables),

e columns (structural variables),

e objective function, and

e constraint matrix.

Rows and columns have the same set of the following attributes:

e ordinal number,

e symbolic name (1 up to 255 arbitrary graphic characters),

e type (free, lower bound, upper bound, double bound, fixed),

e numerical values of lower and upper bounds,

e scale factor.

Ordinal numbers are intended for referencing rows and columns. Row
ordinal numbers are integers 1,2,...,m, and column ordinal numbers are
integers 1,2,...,n, where m and n are, respectively, the current number of
rows and columns in the problem object.

Symbolic names are intended for informational purposes. They also can
be used for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural
variables) are explained above (see Section 1.1, page 11).

Scale factors are used internally for scaling rows and columns of the
constraint matrix.

Information about the objective function includes numerical values of
objective coefficients and a flag, which defines the optimization direction
(i.e. minimization or maximization).

The constraint matriz is a m X n rectangular matrix built of constraint
coefficients a;;, which defines the system of linear constraints (1.2) (see Sec-
tion 1.1, page 11). This matrix is stored in the problem object in both
row-wise and column-wise sparse formats.

20

Once the problem object has been created, the application program can
access and modify any components of the problem segment in arbitrary
order.

Basis segment

The basis segment of the problem object keeps information related to the
current basic solution. It includes:

e row and column statuses,

e basic solution statuses,

e factorization of the current basis matrix, and

e basic solution components.

The row and column statuses define which rows and columns are basic
and which are non-basic. These statuses may be assigned either by the
application program of by some API routines. Note that these statuses are
always defined independently on whether the corresponding basis is valid or
not.

The basic solution statuses include the primal status and the dual sta-
tus, which are set by the simplex-based solver once the problem has been
solved. The primal status shows whether a primal basic solution is feasible,
infeasible, or undefined. The dual status shows the same for a dual basic
solution.

The factorization of the basis matriz is some factorized form (like LU-
factorization) of the current basis matrix (defined by the current row and
column statuses). The factorization is used by the simplex-based solver
and kept when the solver terminates the search. This feature allows ef-
ficiently reoptimizing the problem after some modifications (for example,
after changing some bounds or objective coefficients). It also allows per-
forming the post-optimal analysis (for example, computing components of
the simplex table, etc.).

The basic solution components include primal and dual values of all aux-
iliary and structural variables for the most recently obtained basic solution.

Interior point segment

The interior point segment is automatically allocated after the problem has
been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values
of all auxiliary and structural variables.

21

MIP segment

The MIP segment is used only for MIP problems. This segment includes:

e column kinds,

e MIP solution status, and

e MIP solution components.

The column kinds define which columns (i.e. structural variables) are
integer and which are continuous.

The MIP solution status is set by the MIP solver and shows whether a
MIP solution is integer optimal, integer feasible (non-optimal), or undefined.

The MIP solution components are computed by the MIP solver and in-
clude primal values of all auxiliary and structural variables for the most
recently obtained MIP solution.

Note that in case of MIP problem the basis segment corresponds to the
optimal solution of LP relaxation, which is also available to the application
program.

Currently the search tree is not kept in the MIP segment. Therefore if
the search has been terminated, it cannot be continued.

22

2.2 Problem creating and modifying routines

2.2.1 glp_create_prob—-create problem object
Synopsis

glp_prob *glp_create_prob(void);

Description

The routine glp_create_prob creates a new problem object, which initially
is “empty”, i.e. has no rows and columns.

Returns

The routine returns a pointer to the created object, which should be used
in any subsequent operations on this object.

2.2.2 glp_set_prob_name—assign (change) problem name
Synopsis

void glp_set_prob_name(glp_prob *1lp, const char *name);

Description

The routine glp_set_prob_name assigns a given symbolic name (1 up to 255
characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the problem object.

2.2.3 glp_set_obj name—assign (change) objective function
name

Synopsis

void glp_set_obj_name(glp_prob *1lp, const char *name);

Description

The routine glp_set_obj_name assigns a given symbolic name (1 up to 255
characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the objective function.

23

2.2.4 glp set_obj_dir—set (change) optimization direction
flag

Synopsis

void glp_set_obj_dir(glp_prob *1lp, int dir);

Description

The routine glp_set_obj_dir sets (changes) the optimization direction flag
(i.e. “sense” of the objective function) as specified by the parameter dir:
GLP_MIN minimization;
GLP_MAX maximization.
(Note that by default the problem is minimization.)

2.2.5 glp_add_rows—add new rows to problem object

Synopsis

int glp_add_rows(glp_prob *1lp, int nrs);

Description

The routine glp_add_rows adds nrs rows (constraints) to the specified prob-
lem object. New rows are always added to the end of the row list, so the
ordinal numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty
list of the constraint coefficients.

Returns

The routine glp_add_rows returns the ordinal number of the first new row
added to the problem object.

24

2.2.6 glp_add_cols—add new columns to problem object
Synopsis

int glp_add_cols(glp_prob *1lp, int ncs);

Description

The routine glp_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the
column list, so the ordinal numbers of existing columns are not changed.

Being added each new column is initially fixed at zero and has empty
list of the constraint coefficients.

Returns

The routine glp_add_cols returns the ordinal number of the first new col-
umn added to the problem object.

2.2.7 glp_set_row_name—assign (change) row name

Synopsis

void glp_set_row_name(glp_prob *1lp, int i, const char *name);

Description

The routine glp_set_row_name assigns a given symbolic name (1 up to 255

characters) to i-th row (auxiliary variable) of the specified problem object.
If the parameter name is NULL or empty string, the routine erases an

existing name of i-th row.

2.2.8 glp_set_col_ name—assign (change) column name

Synopsis

void glp_set_col_name(glp_prob *1lp, int j, const char #*name);

Description

The routine glp_set_col_name assigns a given symbolic name (1 up to 255
characters) to j-th column (structural variable) of the specified problem
object.

25

If the parameter name is NULL or empty string, the routine erases an
existing name of j-th column.

2.2.9 glp_set_row_bnds—set (change) row bounds
Synopsis

void glp_set_row_bnds(glp_prob *1lp, int i, int type,
double 1b, double ub);

Description

The routine glp_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR —o0o < z < +oo Free (unbounded) variable
GLP_LO Ib<x < +oo Variable with lower bound
GLP_UP —oo<z <ub Variable with upper bound
GLP_DB b<z<ub Double-bounded variable
GLP_FX b=z =ub Fixed variable

where z is the auxiliary variable associated with i-th row.

If the row has no lower bound, the parameter 1b is ignored. If the row
has no upper bound, the parameter ub is ignored. If the row is an equality
constraint (i.e. the corresponding auxiliary variable is of fixed type), only
the parameter 1b is used while the parameter ub is ignored.

Being added to the problem object each row is initially free, i.e. its type
is GLP_FR.

26

2.2.10 glp_set_col bnds—set (change) column bounds
Synopsis

void glp_set_col_bnds(glp_prob *1lp, int j, int type,
double 1b, double ub);

Description

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, 1b, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR —oo < z < 400 Free (unbounded) variable
GLP_LO Ib<x < +4+oo Variable with lower bound
GLP_UP —oo<z <ub Variable with upper bound
GLP_DB Ib<z<ub Double-bounded variable
GLP_FX b=z =ub Fixed variable

where z is the structural variable associated with j-th column.

If the column has no lower bound, the parameter 1b is ignored. If the
column has no upper bound, the parameter ub is ignored. If the column
is of fixed type, only the parameter 1b is used while the parameter ub is
ignored.

Being added to the problem object each column is initially fixed at zero,
i.e. its type is GLP_FX and both bounds are 0.

2.2.11 glp_set_obj_coef—set (change) objective coefficient or
constant term

Synopsis

void glp_set_obj_coef(glp_prob *1lp, int j, double coef);

Description

The routine glp_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient
is specified by the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term
(“shift”) of the objective function.

27

2.2.12 glp_set_mat_row—set (replace) row of the constraint
matrix

Synopsis

void glp_set_mat_row(glp_prob *1p, int i, int len,
const int ind[], const double valll);

Description

The routine glp_set_mat_row stores (replaces) the contents of i-th row of
the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < n is the new length of i-th row, n is the current number
of columns in the problem object. Elements with identical column indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

2.2.13 glp_set_mat_col—set (replace) column of the constr-
aint matrix

Synopsis

void glp_set_mat_col(glp_prob *1lp, int j, int len,
const int ind[], const double valll);

Description

The routine glp_set_mat_col stores (replaces) the contents of j-th column
of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed
in locations ind[1], ..., ind[len] and val[1], ..., val[len], respectively,
where 0 < len < m is the new length of j-th column, m is the current
number of rows in the problem object. Elements with identical row indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

28

2.2.14 glp_load _matrix—Iload (replace) the whole constraint
matrix

Synopsis

void glp_load_matrix(glp_prob *1lp, int ne, const int iall,
const int ja[l, const double ar[]);

Description

The routine glp_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the
current contents of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be spec-
ified as triplets (ial[k], jalk]l, ar[k]) for & = 1,...,ne, where ialk] is
the row index, jalk] is the column index, and ar[k] is a numeric value of
corresponding constraint coefficient. The parameter ne specifies the total
number of (non-zero) elements in the matrix to be loaded. Coefficients with
identical indices are not allowed. Zero coefficients are allowed, however, they
are not stored in the constraint matrix.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be spec-
ified as NULL.

2.2.15 glp_del rows—delete rows from problem object
Synopsis

void glp_del_rows(glp_prob *lp, int nrs, const int num[]);

Description

The routine glp_del_rows deletes rows from the specified problem ob-
ject. Ordinal numbers of rows to be deleted should be placed in locations
num[1], ..., num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows
remaining in the problem object. New ordinal numbers of the remaining
rows are assigned under the assumption that the original order of rows is
not changed. Let, for example, before deletion there be five rows a, b, ¢, d,
e with ordinal numbers 1, 2, 3, 4, 5, and let rows b and d have been deleted.
Then after deletion the remaining rows a, ¢, e are assigned new oridinal
numbers 1, 2, 3.

29

2.2.16 glp_del_cols—delete columns from problem object
Synopsis

void glp_del_cols(glp_prob *1p, int ncs, const int num[]);

Description

The routine glp_del_cols deletes columns from the specified problem ob-
ject. Ordinal numbers of columns to be deleted should be placed in locations
num([1], ..., num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other
columns remaining in the problem object. New ordinal numbers of the
remaining columns are assigned under the assumption that the original order
of columns is not changed. Let, for example, before deletion there be six
columns p, q, r, s, t, u with ordinal numbers 1, 2, 3, 4, 5, 6, and let columns
P, ¢, s have been deleted. Then after deletion the remaining columns r, t, u
are assigned new ordinal numbers 1, 2, 3.

2.2.17 glp_copy_prob—copy problem object content

Synopsis

void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);

Description

The routine glp_copy_prob copies the content of the problem object prob
to the problem object dest.

The parameter names is a flag. If it is GLP_ON, the routine also copies all
symbolic names; otherwise, if it is GLP_OFF, no symbolic names are copied.

2.2.18 glp_erase_prob—erase problem object content

Synopsis
void glp_erase_prob(glp_prob *1lp);

Description

The routine glp_erase_prob erases the content of the specified problem
object. The effect of this operation is the same as if the problem object
would be deleted with the routine glp_delete_prob and then created anew

30

with the routine glp_create_prob, with the only exception that the handle
(pointer) to the problem object remains valid.

2.2.19 glp_delete_prob—delete problem object

Synopsis

void glp_delete_prob(glp_prob *1p);

Description

The routine glp_delete_prob deletes a problem object, which the param-
eter 1p points to, freeing all the memory allocated to this object.

31

2.3 Problem retrieving routines

2.3.1 glp_get_prob_name—retrieve problem name
Synopsis

const char *glp_get_prob_name(glp_prob *lp);

Returns

The routine glp_get_prob_name returns a pointer to an internal buffer,
which contains symbolic name of the problem. However, if the problem has
no assigned name, the routine returns NULL.

2.3.2 glp_get_obj_name—retrieve objective function name

Synopsis

const char *glp_get_obj_name(glp_prob *1p);

Returns

The routine glp_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the
objective function has no assigned name, the routine returns NULL.

2.3.3 glp_get_obj_dir—retrieve optimization direction flag

Synopsis

int glp_get_obj_dir(glp_prob *1p);

Returns

The routine glp_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

GLP_MIN minimization;

GLP_MAX maximization.

32

2.3.4 glp_get num rows—retrieve number of rows
Synopsis

int glp_get_num_rows(glp_prob *1p);

Returns

The routine glp_get_num_rows returns the current number of rows in the
specified problem object.

2.3.5 glp_get_ num _cols—retrieve number of columns
Synopsis

int glp_get_num_cols(glp_prob *1lp);

Returns

The routine glp_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 glp_get_row_name—retrieve row name

Synopsis

const char *glp_get_row_name(glp_prob *lp, int i);

Returns

The routine glp_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no
assigned name, the routine returns NULL.

2.3.7 glp_get_col name—retrieve column name

Synopsis

const char *glp_get_col_name(glp_prob *1lp, int j);

Returns

The routine glp_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column
has no assigned name, the routine returns NULL.

33

2.3.8 glp_get_row_type—retrieve row type
Synopsis

int glp_get_row_type(glp_prob *1lp, int i);

Returns

The routine glp_get_row_type returns the type of i-th row, i.e. the type
of corresponding auxiliary variable, as follows:
GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.
2.3.9 glp_get row_lb—retrieve row lower bound
Synopsis

double glp_get_row_lb(glp_prob *1lp, int i);

Returns

The routine glp_get_row_1b returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no
lower bound, the routine returns -DBL_MAX.

2.3.10 glp_get_ row_ub—retrieve row upper bound

Synopsis

double glp_get_row_ub(glp_prob *1p, int i);

Returns

The routine glp_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has
no upper bound, the routine returns +DBL_MAX.

34

2.3.11 glp_get_col type—retrieve column type
Synopsis
int glp_get_col_type(glp_prob *1lp, int j);

Returns

The routine glp_get_col_type returns the type of j-th column, i.e. the
type of corresponding structural variable, as follows:

GLP_FR free (unbounded) variable;

GLP_LO variable with lower bound;

GLP_UP variable with upper bound;

GLP_DB double-bounded variable;

GLP_FX fixed variable.
2.3.12 glp_get_col_lb—retrieve column lower bound
Synopsis

double glp_get_col_lb(glp_prob *1p, int j);

Returns

The routine glp_get_col_1b returns the lower bound of j-th column, i.e.
the lower bound of corresponding structural variable. However, if the column
has no lower bound, the routine returns -DBL_MAX.

2.3.13 glp_get_col ub—retrieve column upper bound
Synopsis

double glp_get_col_ub(glp_prob *1p, int j);

Returns

The routine glp_get_col_ub returns the upper bound of j-th column, i.e.
the upper bound of corresponding structural variable. However, if the col-
umn has no upper bound, the routine returns +DBL_MAX.

35

2.3.14 glp_get_obj_coef—retrieve objective coefficient or
constant term

Synopsis

double glp_get_obj_coef (glp_prob *1lp, int j);

Returns

The routine glp_get_obj_coef returns the objective coefficient at j-th
structural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”)
of the objective function.

2.3.15 glp_get num nz—retrieve number of constraint coef-
ficients

Synopsis

int glp_get_num_nz(glp_prob *1p);

Returns

The routine glp_get_num_nz returns th