GTK+ 1.2 Tutorial

Tony Gale

lan Main

GTK+ 1.2 Tutorial
by Tony Gale and lan Main

This is a tutorial on how to use GTK (the GIMP Toolkit) through its C interface.

Table of Contents

2.2 Compiling HEMO WOTT.........coveiieieiiesiese et T8
2.3. Theory of Signals and CallDatks...........ccocurererenieneninenesese e 9

A S = Y o |

5. Stepping Through HENO WOTI.........ooiiiiiiieeereeee e 24

3. NV o1 L R 2C
I N B - L = N 7 T3 RO 29
B-Z.VIore on SigNal HANAIEIS..........ccceveieresesese e 29
B3 An Upgraded HENO WOTIM.........cccovererererese e 30

B = o) TR0 YA [0 =3 SRR 35
A.T. TNEOry Of PACKING BOXEScrereereerueriesiesiesiesiesiessessessessessessessessessessessessenes 35

A B) 72 1 R0 103 2 35
A3 Packing DemMONSIralion PTOOTAIM.......ccuveveriereerieeiesieeseesseeseesseessesessseseens 387

A PacKing USING TADIES.......ccooeieieriesiesie et At
A.5. Table PacKing EXAMPIE........ccccoriiirirerenese e 5
IAQETOVEIVIEW.......eeiiiiieee ettt e e s e e s s e e e s e s e e e e snnneeeanns 54
... 54
S\ [0 =) A 1T -V Y SRR 55
5.3 WIdgeTS WITNOUT WINTOWS.vevereereeriesiesiesiesiesiesiesee et ssessesiessessessessessees 58

SO I AT =V 0T YA/ [T PSR 60
oYM B N T Tda a1 I AW 0T £ 60
SNV oo (3 = U o TR 64
.. %
SO - To [To T =T T 1 1 USSR G6

T A TV ST (AT TSR 79
[T, Crealing an AQUSTMENL.........cccoiiierire e 79
[7-Z.Using AJJUSTMENTS TNE EASY WNaY.......cccorererienierieniesiesie st 1
[7-3 Ad[USTIMENT INTETNAIS.....cveceeeeceeee e 72

B = VA0 T AT [0 =] S 79

B SCIOIDAr WIAGEES .. e eveeveeueereeeeesreeseeseesseeseessesseessesessseesessseessesseessessesssessenns Is)
IS Yo -1 [AY 0 [0 =GRS IS)
B.Z. 1. Crealing @ SCale WIAHEL.......ccvvieririieeieeesiessniee s sree e 79
B.-Z.Z_ Functions and Signals (Well, Tunclions, at [€ast).........c.cc.cveeruenne. 71
B-3.CommoN RAaNgE FUNCIUDNS.......ccuerereerieeeesieeeesieeeesieeseesseeseesseessessesssessenns 77
B-3L. Setling The UPAATE POIICY.......ccuereereerieeriesieeriesie e 78
B-3-Z.Getling and Setting AQJUSTMENLS........cccoveererieereneeseeee e 78
4 KEY aNd MIOUSE DINGINIGS .+ veeuvereerenseesreseesseseessesssessesssesseesseseessessessesnsens 9
B4 T Vertical RanNge WIAGRLSccveeereerirrieerieseeseeseesseseesseeeesseesesseenens 80
B4 Z Horizontal RaNgE WIAGRLS.ccueveerirreerieseesieseesieseesiesneessesseeseeeneas 8C

| ORI STC=To M O{oTal 71101 =) QRO 73

0.4, LaYOUT CONTAUNIEL.cuveeteesteeereesteesieesseeeseesseessessssessesssesssessssesssesssesssesenns 181
(ST = T 0T LSRR URORTPROSO 83

0. ASPECT FTAITIES ..vevevteveeeeteetetsseseessessessssssssssessessssesssssssesssssssessssssseessessens 185

. Paned WINAOW WGBSceerueerrerreesreesiee e eree e 87
[LO. 8. VIEWPDOTES.eeueeueeueeneeeeeesessessessessessessessessessesresbesbeseesbesbesnesnesnessesnennesneenis 193
MO I _SCIOMEdVWINAQUUS.cvevereeeiesresiesre e 94

IO IS AT [0 = PSS 2723
LT.T. Crealing @ CLISTWIAGEL........coiiieeere e 223
g Y [o (=13) i 0[] = 14 o o S P 223
LT3 WOTKING WITA TITIEIS.ceveveeieeee ettt s 224
LT 4 Manipulating the lISTITS@I..........cooeiiieeeeeeee e 226
LT.5. AAAING TOWS TO TNE TISL.....eevereeierieseesie ettt 228
T.6. Setting text and pixmaps iN the GellS........ccovveiieinincincee 230
[LT.7. STOMNNG OATA POINTRLS....cveeveeeeeteeeesieseesteeeeseeseessesseessesssesseessesseesesssesnes 232
T8, WOTKING WITN SEIECTIONS.ecveeverieeieriee et 233
[LT.9. The signals that Bring iTTOGETNET.......cccovvrererirenerese s 233
LT.TO. A CLISTEXAMPIE. ... eeiieeeieeiesieeee e eeesteeee e eeesseeneesseeeesseensesseessesseeees 234

O LTSI Ao (O T=] TSRS 241
1 R O =T V[o - O =] =PSRRI 241
[Z.Z. Adding and REMOVING NOGES.......ccocereririerirenie s 242

3. SETNG CTTEE ATIIDUIES.veeiveeereeree e 243
(A © 1] (A o I Ao == VTSP 245
[TV Te (o= RO P PSPPSR 226
(G I N O T VT - LI = =S)
(RG2S [0 [0 TS TV o] =Y = SR 247
L33 HandliNg The SEIECTION LlISt.......ccceiirieieeie e 247
L34, T1e€ WIAQET TNIETNALS.....cccvveiieeieeiiie ettt 243

13.2 OIS, ettt nne e 250
327 FuNCioNS aNA MACKOS.ccveruearereerienieriesiessesiesse e sie e ssesaens 750
(R ST W (=T LT LAY 0] =] SO TP 254
(RIS S [0 T =) PSPPSR 255
357 FUNChONS ANA MACKOS.ccverierrireeriesiesiesiessesiesiessesse s sesessessens 751

(G I ST W =T - V] 0= 253

LA, TVIENU WILGET. ... e ueeeeeeeeetee et et ettt e st e e s eebe e e s nneesneeesnneeenneeea 265
T4 T _Manual Meni Creat

4.2 Manual MEeNU EXAMPE.......ccceeiieirieceeceete ettt 269

M. 3. USING TIEMEFACTONY. e veveereeeeereesieeeesiesseesseeeesseeaesseeseesseessesseessesseesssssessees 273

M4, Tiem Factory EXAMIE.....cc.cocieieeceesie ettt 274

LA A/T [0 =) PSRRI 273

5.1, Creating and Configuring @ TeXT DOX.......cccoevieeeviieeccie e 273

(S =Y\ 2T T o TV = | o P 279

5.3 KeYDOArd SNOMCULScciieiieeiecsiee et 281

[SOC I IO Y, [0 i T Ta IS Y aTo T 1ot U | (=SSOSR PRRRRR

5. 32 EdiliNG SNOTTCULS......c.veecitee ettt sre et ere e sree e e e e nane e 282

(I TS =) [=Tou i Ta Ta T aToTi o1 £ S

M54, A GIKTEXT EXAMIPIE....cccvieiteeceiecieeteesiee et esaeeete e e s e eneeeneenneeenee s 283

6. UNAOCUMENTEA WIAGETS. . .ccuveevieireeiieciteesieesteereesieesiee e e sseesressaeese e e e snneenneens 289

0t O O =) = R

(T2 O U TV 7= L

L6, 3 DIAWING ATEA.....cccciteeeeieeeereeesreeeireeestreesiteeessseesaseeessesssseesssessssesessessnsens 789

ONT SEIECTHION DIAIDG ...cvveeveeieeciie et 289

(TS 7= TaaTa P T O T V= SR

(T ST [F-Te =T 789

A - Tol] S USRS 790

6.8, PIUQS @NU SOCKELS......cccieitieiiieieeiteesee e esreesieesee e e sreessessnesseessessraeenns 290

B T PTEVIEWN.vecuveeteeciee e eteeeteesareer e e beesaeesasesabeesbeesasesabeebeesseesnsesnseeaseesrnesnns 290

. Setting Widge FIDUTES.......eeeeeeee e e 291

8. Timeouts, TO and TdI€ FUNCUIONE.........cccceerieeeiiicirieeeeeeeccivreee e e e s eesnrneeeeeeeeenanns 293

(S0t T AT =T o TV 1 £ TSSOSO

1R S A \Y/ (oY1 (o T [T L PR TRPR 293

... 797

. Advanced Event and Signal HanaliNg.........cccoveerreeneeneeiireeseesee e ecneesseessee s 296

(S J S [[= I UL Lo} (o])RR 296

[[9.1.1. Conneciing and Disconnecting Signal Handlers..................... 290

.1L.Z. Blocking and UnbIoCKINg Signal Handlers........c.cccvveeevveennenn. 297

M9. T3 EmItiing and STOPPING SIGRalS.......cccovivieiinciees 298
[9.2. Signal EMISSION and PTOPAGALION.cceeueriereerierieesieeieesieesee e seesseeeas 299
PO MANAGING SEIECTIOMS. . v eeuverueeterueesteseesteeeesieeseesieesseseeessesseessesseesseesessesnsesseenes 307
.. 307
0.2 RETNeVING TNE SEIECTIAN.eeiieeerieeeerieeee e e e eas 307
0.3 SUpPIYING TNE SEIECTION......eeueeieeieerieeiee sttt 305
2 1 o RSP 8T
... BT1
24 Ry B o TV o] VA W] (=T I I P B12
R IS Y 10 Y M] (=0 [B £ R 813
L. Z. MEMOTry ManNagEMEBNL.......ccoviuiiiiiiiiieesieeesreesieeesressiee s snes e snessneeas B1o
.. 316
2 N S S T T I F= Ve o P BI7
7. UTTY aNd EIMOT FUNCTOMS. . .ecivveeeieeesieesieeesereesieesssessneeesssessseessssessnnes 819

B I S ol T =T [T PR 871
PZ T FUNCHONS FOFTCFIIRS.....covieeesieeeeseeseesieeeesieeeesseeneesseeeesseensesneesessneenes 321
B € S ol 1 [T oTd 10 | AP 322
P23 EXAMPIE TC Tl .eeeeiieeiiesieeies ettt B24
- WIItING YOUT OWN WIAGETS]eveverieeiesieesiesiee et 829
A T R O 1Y, = Vi =SS
232 The ANATOMY OF A WIAGEL.....cceeieerereerieeie e siee e e 8329
233 Crealing a COMPOSITE WIDEL.ocuereiriirierieeie e B30
720G SC S I T 1o To [ToN 1 o | o FRNR S P USROS P PR 331
23.3.2. ChOOSING @ PATENT CIASS.....cccvvieiieeeieeiereeeeeereesssireeesssareeessneeees B31

S IO 30 T N A T= N T=Y-To [T i 1= RS 331
Z25.5.4. 1ne get type() TUNCUOM.....ovvierreiiirriiiierni s 3343
2335, The class_init() TUNCTIOM. ..t 335

.2.0. 1Nhe Ini T 1 1 et
... 339
234, Crealing a WidgeT fTOM SCTAtChL.......coceeveriirieeieree e 342
4G S 5 I T 1 10 To [V Tol i o | o AU P U P PR PP 343

P3.4.Z2. Displaying a Widget 0N The SCIEeN.......cccvevereeeere e 343

4.3 The origins of the DIal WIAGeT..........ccooeeieerieeeeeeree e 344

P TRE BASIES....ccveeeteeeitieecteeeetreeeeteeesteessteeesteesnseeesssesenseeesnbeeessneesns 347
23-4.5.gtk_dial_realize() et ——————— B52

B3 4.6, SIZE NEQOTIATIDN....ccveeiieereeteeeee et re e sre e e 353

234, 7.gtk_dial_expose() ettt e B5%

A < I V=T 0 A= Vo | SRS 857

P73 4.9 _Possible Fnhanceme ;

235, LEAMING IMIOTE.....cueeiveereeiteecreereesteesreesaesbeesbeessaesseesseesseesnresnseeaseesseesnns 365
EZ4.Scribble, A Simple Example Drawing PTOGram.........ccccveveereeeveesreeseeseesnseens B67
AT TONEIVIEW.veeeeeeeereeeeieeeeteeeasseesateeessseessesessseesasesesssessasessasseesnsesessessnsenns 367
VENT HANANNG ... veeeveeeiiie et ssre s sre e nsne e 867

3. The DrawingArea Widget, ANA DraWing......ccccceveereeereeneesensieesnsessenns B72

D B Ao [0 [T Yo T [T oW ATV T o) o | ¢ PO 877
E4.4. 1T Enabling extended device iNfTOrmation.........cccccceeveveeveeseesnenn, 878
E4.4.2.0sing extended deViCe iNTOrMatiQm.......c.ccoveerveereesveerreesiensnnanns 380

E4.4.3 Finding out MOTE abOoUT @ AEVICE.....ccceeveerreeree e 383

B4 4.4 Further SOPNISTICATIONS.ccvvevveeeieeereestee et 382

. 11pS For Writing PPICATIONS | ...cvveeciie ettt ettt et ree s 387
6. CONTITDUTING] v vveevveesreesreesseeeseesseessesssseesseessesssssassesssessssssssesssesssessssesssesssessssssnsenns 388
A O 7= o [T < SRR
8. Tutorial Copyright and PErmiSSIONS NOTICE........cceevvevevieeeiieeeiee e e siee e 397
B GTRSIONAIS .ocovveeeeeveeeeeereee et eee e saetee st s e tese s tesestesesesessensssesesssesssestessssssensans 392
AN I 12 ©] o] [T SR 397

AN 1L/ [0 = | O 392

AN T €114 B -1 7 USSR 397

AN S € OL o Tal 7 TTaT =] AU 397
AT C 17 OF- 1 [=TaTo F: | AR 397
...
7 GIKTIDSTOUETY....cvveeeteeeeieeeereeeetteeeiteeesareeeseeessseesseeessseseseeesssesssaeesasessnsnens 399

AN S S 17 O I T AP SURRPRRRR 41010}

A TT GIKIMIENAUSHEN.......coeeeeeee et e e e e e et eeeeneeeeeeeeeeeeeeeeees aoz
AN I € i 7 FoTo] | o = | TR aoz
B T =T TR 7ao3

AN T A TaT TV 1 BT 0] o R 00
N B 1 i (@01 [0S =) [=Tou 1T J TP 206

B 25 GIKSTATISBAL.cciiieieiieesie ettt st e e s e sse e see e es 206

N T 1 i O =Y = ST UPORTPRORO aa7
N A i~ O T V7 S ana7
AN S T 1 a0 [[V (L= AP 408

B GDRTEVENT TYPES. ... eeetieiieteeiee sttt sttt sttt sttt sbe e sbe et e besre e 209
SR O o [l e T 1T] [RS 20
O O T 7= Toi 10 =S A720)

@ 0 U 1T 72 Tox 10 Y=Y | o FO SRR A70

O 07N 11 72 Toi 10T =1 o PSPPSR az2

Ot T J A T=1S3 1 [T OSSR az7

O €114 I) - | S

L OTKAIAIIL . s az8

I 10 L= Y oSSR a31

O TR0 [I (=1 1 o RSOOSR PSPPSR 450
... an2

O I ST o1 0] o] (ST [0T 0] [Y SRR as2

O I T o1 1 0] o] [T [T OV SOOI as7

1S3 AT/ [0 T=3 U SU PR TURUSTPRSOIR 266

10

Chapter 1. Introduction

GTK (GIMP Toolkit) is a library for creating graphical user interfaces. It is licensed
using the LGPL license, so you can develop open software, free software, or even
commercial non-free software using GTK without having to spend anything for
licenses or royalties.

It's called the GIMP toolkit because it was originally written for developing the GNU
Image Manipulation Program (GIMP), but GTK has now been used in a large number
of software projects, including the GNU Network Object Model Environment
(GNOME) project. GTK is built on top of GDK (GIMP Drawing Kit) which is basically

a wrapper around the low-level functions for accessing the underlying windowing
functions (Xlib in the case of the X windows system). The primary authors of GTK are:

- Peter Mattis petm@xcf.berkeley.edu (mailto:petm@xcf.berkeley.edu)
- Spencer Kimball spencer@xcf.berkeley.edu (mailto:spencer@xcf.berkeley.edu)
- Josh MacDonald jmacd@xcf.berkeley.edu (mailto:jmacd@xcf.berkeley.edu)

GTK is essentially an object oriented application programmers interface (API).
Although written completely in C, it is implemented using the idea of classes and
callback functions (pointers to functions).

There is also a third component called GLib which contains a few replacements for
some standard calls, as well as some additional functions for handling linked lists, etc.
The replacement functions are used to increase GTK'’s portability, as some of the
functions implemented here are not available or are nonstandard on other unixes such
as g_strerror(). Some also contain enhancements to the libc versions, such as g_malloc
that has enhanced debugging utilities.

This tutorial describes the C interface to GTK. There are GTK bindings for many other
languages including C++, Guile, Perl, Python, TOM, Ada95, Objective C, Free Pascal,
and Eiffel. If you intend to use another language’s bindings to GTK, look at that
binding’s documentation first. In some cases that documentation may describe some
important conventions (which you should know first) and then refer you back to this

11

Chapter 1. Introduction

12

tutorial. There are also some cross-platform APIs (such as wxWindows and V) which
use GTK as one of their target platforms; again, consult their documentation first.

If you're developing your GTK application in C++, a few extra notes are in order.
There’s a C++ binding to GTK called GTK—, which provides a more C++-like interface
to GTK; you should probably look into this instead. If you don't like that approach for
whatever reason, there are two alternatives for using GTK. First, you can use only the C
subset of C++ when interfacing with GTK and then use the C interface as described in
this tutorial. Second, you can use GTK and C++ together by declaring all callbacks as
static functions in C++ classes, and again calling GTK using its C interface. If you
choose this last approach, you can include as the callback’s data value a pointer to the
object to be manipulated (the so-called "this" value). Selecting between these options is
simply a matter of preference, since in all three approaches you get C++ and GTK.
None of these approaches requires the use of a specialized preprocessor, so no matter
what you choose you can use standard C++ with GTK.

This tutorial is an attempt to document as much as possible of GTK, but it is by no
means complete. This tutorial assumes a good understanding of C, and how to create C
programs. It would be a great benefit for the reader to have previous X programming
experience, but it shouldn’t be necessary. If you are learning GTK as your first widget
set, please comment on how you found this tutorial, and what you had trouble with.
There are also C++, Objective C, ADA, Guile and other language bindings available,

but | don’t follow these.

This document is a "work in progress". Please look for updates on http://www.gtk.org/.

| would very much like to hear of any problems you have learning GTK from this
document, and would appreciate input as to how it may be improved. Please see the
section orjf Contributing for further information.

Chapter 2. Getting Started

The first thing to do, of course, is download the GTK source and install it. You can
always get the latest version from ftp.gtk.org in /pub/gtk. You can also view other
sources of GTK information on http://www.gtk.org/. GTK uses GNU autoconf for
configuration. Once untar’d, type ./configure —help to see a list of options.

The GTK source distribution also contains the complete source to all of the examples
used in this tutorial, along with Makefiles to aid compilation.

To begin our introduction to GTK, we’ll start with the simplest program possible. This
program will create a 200x200 pixel window and has no way of exiting except to be
killed by using the shell.

/* example-start base base.c */
#include <gtk/gtk.h>
int main(int argc,
char *argv[])
{ GtkWidget *window;
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_show (window);

gtk_main ();
return(0);
}

/* example-end */

You can compile the above program with gcc using:

13

Chapter 2. Getting Started

gcc base.c -0 base ‘gtk-config -cflags -libs'

The meaning of the unusual compilation options is explained bel¢w in Compiling
[Hello World.

All programs will of course include gtk/gtk.h which declares the variables, functions,
structures, etc. that will be used in your GTK application.

The next line:
gtk_init (&argc, &argv);

calls the function gtk_init(gint *argc, gchar ***argv) which will be called in all GTK
applications. This sets up a few things for us such as the default visual and color map
and then proceeds to call gdk_init(gint *argc, gchar ***argv). This function initializes

the library for use, sets up default signal handlers, and checks the arguments passed to
your application on the command line, looking for one of the following:

« -gtk-module
- -g-fatal-warnings

« -gtk-debug
« -gtk-no-debug
+ -gdk-debug
« -gdk-no-debug
- -display
-sync
+ -no-xshm
+ -name
» -class

It removes these from the argument list, leaving anything it does not recognize for your
application to parse or ignore. This creates a set of standard arguments accepted by all
GTK applications.

The next two lines of code create and display a window.

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

14

Chapter 2. Getting Started

gtk_widget_show (window);

TheGTK_WINDOW_TOPLEVELgument specifies that we want the window to undergo
window manager decoration and placement. Rather than create a window of 0x0 size, a
window without children is set to 200x200 by default so you can still manipulate it.

The gtk_widget_show() function lets GTK know that we are done setting the attributes
of this widget, and that it can display it.

The last line enters the GTK main processing loop.
gtk_main ();

gtk_main() is another call you will see in every GTK application. When control reaches
this point, GTK will sleep waiting for X events (such as button or key presses),
timeouts, or file 1O notifications to occur. In our simple example, however, events are
ignored.

2.1. Hello World in GTK

Now for a program with a widget (a button). It's the classic hello world a la GTK.

/* example-start helloworld helloworld.c */
#include <gtk/gtk.h>

/* This is a callback function. The data arguments are ignored
* in this example. More on callbacks below. */
void hello(GtkWidget *widget,

gpointer data)

{
g_print ("Hello World\n");

}

gint delete_event(GtkWidget *widget,
GdkEvent *event,

15

Chapter 2. Getting Started

gpointer data)

/* If you return FALSE in the "delete_event" signal handler,
* GTK will emit the "destroy" signal. Returning TRUE means
* you don't want the window to be destroyed.
* This is useful for pop-
ping up ’are you sure you want to quit?’
* type dialogs. */

g_print ("delete event occurred\n");

/* Change TRUE to FALSE and the main window will be de-
stroyed with
* a "delete_event". */

return(TRUE);
}

/* Another callback */
void destroy(GtkWidget *widget,
gpointer data)
{
gtk_main_quit();
}

int main(int argc,
char *argv[])
{
[* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;

/* This is called in all GTK applications. Argu-
ments are parsed

* from the command line and are returned to the applica-
tion. */

gtk_init(&argc, &argv);

16

Chapter 2. Getting Started

[* create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* When the window is given the "delete_event" sig-
nal (this is given

* by the window manager, usually by the "close" op-
tion, or on the

* titlebar), we ask it to call the delete_event () function

* as defined above. The data passed to the callback

* function is NULL and is ignored in the callback func-
tion. */

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (delete_event), NULL);

/* Here we connect the "destroy" event to a signal handler.
* This event oc-
curs when we call gtk_widget_destroy() on the window,
* or if we return FALSE in the "delete_event" callback. */
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (destroy), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Creates a new button with the label "Hello World". */
button = gtk button_new_with_label ("Hello World");

/* When the button receives the "clicked" sig-
nal, it will call the

* function hello() passing it NULL as its argu-
ment. The hello()

* function is defined above. */

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (hello), NULL);

/* This will cause the window to be destroyed by calling

17

Chapter 2. Getting Started

* gtk_widget_destroy(window) when "clicked". Again, the destroy
* signal could come from here, or the window manager. */
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (gtk_widget_destroy),
GTK_OBJECT (window));

[* This packs the button into the window (a gtk con-
tainer). */
gtk_container_add (GTK_CONTAINER (window), button);

/* The final step is to display this newly created wid-
get. */
gtk_widget_show (button);

/* and the window */
gtk_widget_show (window);

/* All GTK applications must have a gtk_main(). Con-
trol ends here

* and waits for an event to occur (like a key press or

* mouse event). */

gtk_main ();

return(0);

}

[* example-end */

2.2. Compiling Hello World

To compile use:

gcc -Wall -g helloworld.c -0 helloworld ‘gtk-config -cflags® \
‘gtk-config -libs'

18

Chapter 2. Getting Started

This uses the progragtk-config , which comes with GTK. This program "knows"
what compiler switches are needed to compile programs that use §&F&anfig

-cflags will output a list of include directories for the compiler to look in, and
gtk-config -libs will output the list of libraries for the compiler to link with and

the directories to find them in. In the above example they could have been combined
into a single instance, such ggk-config -cflags -libs

Note that the type of single quote used in the compile command above is significant.

The libraries that are usually linked in are:

- The GTK library (-Igtk), the widget library, based on top of GDK.
- The GDK library (-Igdk), the Xlib wrapper.
- The gmodule library (-lgmodule), which is used to load run time extensions.

- The GLib library (-Iglib), containing miscellaneous functions; only g_print() is used
in this particular example. GTK is built on top of glib so you will always require this
library. See the section gn GL.ib for details.

« The Xlib library (-1X11) which is used by GDK.

- The Xext library (-IXext). This contains code for shared memory pixmaps and other
X extensions.

- The math library (-Im). This is used by GTK for various purposes.

2.3. Theory of Signals and Callbacks

Before we look in detail abelloworld, we’ll discuss signals and callbacks. GTK is an
event driven toolkit, which means it will sleep in gtk_main until an event occurs and
control is passed to the appropriate function.

This passing of control is done using the idea of "signals”. (Note that these signals are
not the same as the Unix system signals, and are not implemented using them, although
the terminology is almost identical.) When an event occurs, such as the press of a
mouse button, the appropriate signal will be "emitted" by the widget that was pressed.

19

Chapter 2. Getting Started

20

This is how GTK does most of its useful work. There are signals that all widgets
inherit, such as "destroy"”, and there are signals that are widget specific, such as
"toggled” on a toggle button.

To make a button perform an action, we set up a signal handler to catch these signals
and call the appropriate function. This is done by using a function such as:

gint gtk_signal_connect(GtkObject *object,
gchar *name,
GtkSignalFunc func,
gpointer func_data);

where the first argument is the widget which will be emitting the signal, and the second
the name of the signal you wish to catch. The third is the function you wish to be called
when it is caught, and the fourth, the data you wish to have passed to this function.

The function specified in the third argument is called a "callback function”, and should
generally be of the form

void callback func(GtkWidget *widget,
gpointer callback_data);

where the first argument will be a pointer to the widget that emitted the signal, and the
second a pointer to the data given as the last argument to the gtk_signal_connect()
function as shown above.

Note that the above form for a signal callback function declaration is only a general
guide, as some widget specific signals generate different calling parameters. For
example, the CList "select_row" signal provides both row and column parameters.

Another call used in theelloworldexample, is:

gint gtk_signal_connect_object(GtkObject *object,
gchar *name,
GtkSignalFunc func,
GtkObject *slot_object);

gtk_signal_connect_object() is the same as gtk_signal_connect() except that the
callback function only uses one argument, a pointer to a GTK object. So when using

Chapter 2. Getting Started

this function to connect signals, the callback should be of the form

void callback_func(GtkObject *object);

where the object is usually a widget. We usually don’t setup callbacks for
gtk_signal_connect_object however. They are usually used to call a GTK function that
accepts a single widget or object as an argument, as is the casehiellouvorld

example.

The purpose of having two functions to connect signals is simply to allow the callbacks
to have a different number of arguments. Many functions in the GTK library accept
only a single GtkWidget pointer as an argument, so you want to use the
gtk_signal_connect_object() for these, whereas for your functions, you may need to
have additional data supplied to the callbacks.

2.4. Events

In addition to the signal mechanism described above, there is a se¢ofthat reflect
the X event mechanism. Callbacks may also be attached to these events. These events
are:

- event

+ button_press_event
- button_release_event
« motion_notify_event
« delete_event

- destroy_event

« expose_event

« key_press_event

- key release_event

- enter_notify_event

- leave_notify_event

- configure_event

21

Chapter 2. Getting Started

- focus_in_event

- focus_out_event

« map_event

« unmap_event

« property_notify_event

- selection_clear_event

- selection_request_event
- selection_notify _event

« proximity_in_event

« proximity_out_event

- drag_begin_event

- drag_request_event

- drag_end_event

- drop_enter_event

- drop_leave event

- drop_data_available event
- other_event

In order to connect a callback function to one of these events, you use the function
gtk_signal_connect, as described above, using one of the above event names as the
name parameter. The callback function for events has a slightly different form than that
for signals:

void callback_func(GtkWidget *widget,
GdkEvent *event,
gpointer callback_data);

GdkEvent is a GQinion structure whose type will depend upon which of the above
events has occurred. In order for us to tell which event has been issued each of the
possible alternatives hasype parameter which reflects the event being issued. The
other components of the event structure will depend upon the type of the event.
Possible values for the type are:

GDK_NOTHING
GDK_DELETE
GDK_DESTROY

22

Chapter 2. Getting Started

GDK_EXPOSE
GDK_MOTION_NOTIFY
GDK_BUTTON_PRESS
GDK_2BUTTON_PRESS
GDK_3BUTTON_PRESS
GDK_BUTTON_RELEASE
GDK_KEY_PRESS
GDK_KEY_RELEASE
GDK_ENTER_NOTIFY
GDK_LEAVE_NOTIFY
GDK_FOCUS_CHANGE
GDK_CONFIGURE
GDK_MAP

GDK_UNMAP
GDK_PROPERTY_NOTIFY
GDK_SELECTION_CLEAR
GDK_SELECTION_REQUEST
GDK_SELECTION_NOTIFY
GDK_PROXIMITY_IN
GDK_PROXIMITY_OUT
GDK_DRAG_BEGIN
GDK_DRAG_REQUEST
GDK_DROP_ENTER
GDK_DROP_LEAVE
GDK_DROP_DATA_AVAIL
GDK_CLIENT_EVENT
GDK_VISIBILITY_NOTIFY
GDK_NO_EXPOSE
GDK_OTHER_EVENT /* Deprecated, use filters instead */

So, to connect a callback function to one of these events we would use something like:

gtk_signal_connect(GTK_OBJECT(button), "button_press_event",
GTK_SIGNAL_FUNC(button_press_callback),
NULL);

23

Chapter 2. Getting Started

This assumes thautton is a Button widget. Now, when the mouse is over the button
and a mouse button is pressed, the funchioton_press_callback will be called.
This function may be declared as:

static gint button_press_callback(GtkWidget *widget,
GdkEventButton *event,
gpointer data);

Note that we can declare the second argument as@gpEventButton as we know
what type of event will occur for this function to be called.

The value returned from this function indicates whether the event should be propagated
further by the GTK event handling mechanism. Returning TRUE indicates that the
event has been handled, and that it should not propagate further. Returning FALSE
continues the normal event handling. See the sectign on Advanced Event and Sjignal

Handling for more details on this propagation process.

For details on the GdkEvent data types, see the appendix efiitled GDK Event Types.

2.5. Stepping Through Hello World

24

Now that we know the theory behind this, let’s clarify by walking through the example
helloworld program.

Here is the callback function that will be called when the button is "clicked". We ignore
both the widget and the data in this example, but it is not hard to do things with them.
The next example will use the data argument to tell us which button was pressed.

void hello(GtkWidget *widget,
gpointer data)

{
g_print ("Hello World\n");

}

The next callback is a bit special. The "delete_event" occurs when the window manager
sends this event to the application. We have a choice here as to what to do about these

Chapter 2. Getting Started

events. We can ignore them, make some sort of response, or simply quit the application.

The value you return in this callback lets GTK know what action to take. By returning
TRUE, we let it know that we don’t want to have the "destroy" signal emitted, keeping
our application running. By returning FALSE, we ask that "destroy" be emitted, which
in turn will call our "destroy" signal handler.

gint delete_event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

g_print ("delete event occurred\n™);

return (TRUE);
}

Here is another callback function which causes the program to quit by calling
gtk_main_quit(). This function tells GTK that it is to exit from gtk_main when control
is returned to it.

void destroy(GtkWidget *widget,
gpointer data)

{
gtk_main_quit ();

}

| assume you know about the main() function... yes, as with other applications, all GTK
applications will also have one of these.

int main(int argc,
char *argv[])

{

This next part declares pointers to a structure of type GtkWidget. These are used below
to create a window and a button.

GtkWidget *window;
GtkWidget *button;

25

Chapter 2. Getting Started

26

Here is our gtk_init again. As before, this initializes the toolkit, and parses the
arguments found on the command line. Any argument it recognizes from the command
line, it removes from the list, and modifies argc and argv to make it look like they never
existed, allowing your application to parse the remaining arguments.

gtk_init (&argc, &argv);

Create a new window. This is fairly straightforward. Memory is allocated for the
GtkWidget *window structure so it now points to a valid structure. It sets up a new
window, but it is not displayed until we call gtk_widget _show(window) near the end of
our program.

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

Here are two examples of connecting a signal handler to an object, in this case, the
window. Here, the "delete_event" and "destroy" signals are caught. The first is emitted
when we use the window manager to kill the window, or when we use the
gtk_widget_destroy() call passing in the window widget as the object to destroy. The
second is emitted when, in the "delete_event" handler, we return FALSE. The
GTK_OBJECTandGTK_SIGNAL_FUNGre macros that perform type casting and
checking for us, as well as aid the readability of the code.

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (delete_event), NULL);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (destroy), NULL);

This next function is used to set an attribute of a container object. This just sets the
window so it has a blank area along the inside of it 10 pixels wide where no widgets
will go. There are other similar functions which we will look at in the section on
Betting Widget Attributes

And again,GTK_CONTAINERs a macro to perform type casting.

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

Chapter 2. Getting Started

This call creates a new button. It allocates space for a new GtkWidget structure in
memory, initializes it, and makes the button pointer point to it. It will have the label
"Hello World" on it when displayed.

button = gtk button_new_with_label ("Hello World");

Here, we take this button, and make it do something useful. We attach a signal handler
to it so when it emits the "clicked" signal, our hello() function is called. The data is
ignored, so we simply pass in NULL to the hello() callback function. Obviously, the
"clicked" signal is emitted when we click the button with our mouse pointer.

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (hello), NULL);

We are also going to use this button to exit our program. This will illustrate how the
"destroy"” signal may come from either the window manager, or our program. When the
button is "clicked”, same as above, it calls the first hello() callback function, and then
this one in the order they are set up. You may have as many callback functions as you
need, and all will be executed in the order you connected them. Because the
gtk_widget_destroy() function accepts only a GtkWidget *widget as an argument, we
use the gtk_signal_connect_object() function here instead of straight
gtk_signal_connect().

gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (gtk_widget_destroy),
GTK_OBJECT (window));

This is a packing call, which will be explained in depth later ofi in Packing Wigdgets.
But it is fairly easy to understand. It simply tells GTK that the button is to be placed in
the window where it will be displayed. Note that a GTK container can only contain one
widget. There are other widgets, that are described later, which are designed to layout
multiple widgets in various ways.

gtk_container_add (GTK_CONTAINER (window), button);

Now we have everything set up the way we want it to be. With all the signal handlers in

27

Chapter 2. Getting Started

28

place, and the button placed in the window where it should be, we ask GTK to "show"
the widgets on the screen. The window widget is shown last so the whole window will
pop up at once rather than seeing the window pop up, and then the button form inside
of it. Although with such a simple example, you’d never notice.

gtk_widget_show (button);
gtk_widget_show (window);

And of course, we call gtk_main() which waits for events to come from the X server
and will call on the widgets to emit signals when these events come.

gtk_main ();
And the final return. Control returns here after gtk_quit() is called.
return (0);

Now, when we click the mouse button on a GTK button, the widget emits a "clicked"
signal. In order for us to use this information, our program sets up a signal handler to
catch that signal, which dispatches the function of our choice. In our example, when the
button we created is "clicked”, the hello() function is called with a NULL argument,

and then the next handler for this signal is called. This calls the gtk_widget_destroy()
function, passing it the window widget as its argument, destroying the window widget.
This causes the window to emit the "destroy"” signal, which is caught, and calls our
destroy() callback function, which simply exits GTK.

Another course of events is to use the window manager to kill the window, which will
cause the "delete_event" to be emitted. This will call our "delete_event" handler. If we
return TRUE here, the window will be left as is and nothing will happen. Returning
FALSE will cause GTK to emit the "destroy" signal which of course calls the "destroy"
callback, exiting GTK.

Chapter 3. Moving On

3.1. Data Types

There are a few things you probably noticed in the previous examples that need
explaining. The gint, gchar, etc. that you see are typedefs to int and char, respectively,
that are part of the GLIib system. This is done to get around that nasty dependency on
the size of simple data types when doing calculations.

A good example is "gint32" which will be typedef'd to a 32 bit integer for any given
platform, whether it be the 64 bit alpha, or the 32 bit i386. The typedefs are very
straightforward and intuitive. They are all defined in glib/glib.h (which gets included
from gtk.h).

You'll also notice GTK'’s ability to use GtkWidget when the function calls for an
Object. GTK is an object oriented design, and a widget is an object.

3.2. More on Signal Handlers
Lets take another look at the gtk_signal_connect declaration.

gint gtk_signal_connect(GtkObject *object,
gchar *name,
GtkSignalFunc func,
gpointer func_data);

Notice the gint return value? This is a tag that identifies your callback function. As
stated above, you may have as many callbacks per signal and per object as you need,
and each will be executed in turn, in the order they were attached.

This tag allows you to remove this callback from the list by using:

void gtk signal_disconnect(GtkObject *object,

29

Chapter 3. Moving On

gint id);

So, by passing in the widget you wish to remove the handler from, and the tag returned
by one of the signal_connect functions, you can disconnect a signal handler.

You can also temporarily disable signal handlers with the gtk_signal_handler_block()
and gtk_signal_handler_unblock() family of functions.

void gtk_signal_handler_block(GtkObject *object,

guint handler_id);
void gtk_signal_handler_block by func(GtkObject *object,
GtkSignalFunc func,
gpointer data);

void gtk_signal_handler_block by data(GtkObject *object,
gpointer data);

void gtk_signal_handler_unblock(GtkObject *object,

guint handler_id);
void gtk _signal_handler_unblock by func(GtkObject *object,
GtkSignalFunc func,
gpointer data);

void gtk_signal_handler_unblock by data(GtkObject *object,
gpointer data);

3.3. An Upgraded Hello World

Let's take a look at a slightly improvduelloworld with better examples of callbacks.
This will also introduce us to our next topic, packing widgets.

/* example-start helloworld2 helloworld2.c */

30

Chapter 3. Moving On

#include <gtk/gtk.h>

/* Our new improved callback. The data passed to this function
* is printed to stdout. */
void callback(GtkWidget *widget,
gpointer data)
{

g_print ("Hello again - %s was pressed\n”, (char *) data);

}

/* another callback */

gint delete_event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

gtk_main_quit();
return(FALSE);
}

int main(int argc,
char *argv[])
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;
GtkWidget *box1;

/* This is called in all GTK applications. Argu-
ments are parsed

* from the command line and are returned to the applica-
tion. */

gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* This is a new call, which just sets the title of our

31

Chapter 3. Moving On

32

* new window to "Hello Buttons!" */
gtk_window_set_title (GTK_WINDOW (win-
dow), "Hello Buttons!);

/* Here we just set a han-
dler for delete_event that immediately

* exits GTK. */

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (delete_event), NULL);

[* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window),

[* We create a box to pack widgets into. This is de-
scribed in detalil

* in the "packing" section. The box is not really visi-
ble, it

* js just used as a tool to arrange widgets. */

boxl = gtk_hbox_new(FALSE, 0);

/* Put the box into the main window. */
gtk_container_add (GTK_CONTAINER (window), box1);

/* Creates a new button with the label "Button 1". */
button = gtk_button_new_with_label ("Button 1");

/* Now when the button is clicked, we call the "call-
back" function

* with a pointer to "button 1" as its argument */

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (callback), (gpointer) "button 1");

/* Instead of gtk_container_add, we pack this but-
ton into the invisible

* box, which has been packed into the window. */

gtk_box_pack_start(GTK_BOX(box1), button, TRUE, TRUE, 0);

10);

Chapter 3. Moving On

/* Always remember this step, this tells GTK that our prepa-
ration for

* this button is complete, and it can now be displayed. */

gtk_widget_show(button);

/* Do these same steps again to create a second button */
button = gtk_button_new_with_label ("Button 2");

/* Call the same callback function with a differ-
ent argument,

* passing a pointer to "button 2" instead. */

gtk_signal_connect (GTK_OBJECT (button), “clicked",
GTK_SIGNAL_FUNC (callback), (gpointer) "button 2");

gtk_box_pack_start(GTK_BOX(box1), button, TRUE, TRUE, 0);

/* The order in which we show the buttons is not really im-
portant, but |

* recommend showing the win-
dow last, so it all pops up at once. */

gtk_widget_show(button);

gtk_widget_show(box1);
gtk_widget_show (window);

/* Rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return(0);

}

/* example-end */

Compile this program using the same linking arguments as our first example. You'll
notice this time there is no easy way to exit the program, you have to use your window
manager or command line to kill it. A good exercise for the reader would be to insert a
third "Quit" button that will exit the program. You may also wish to play with the

33

Chapter 3. Moving On

options to gtk_box_pack_start() while reading the next section. Try resizing the
window, and observe the behavior.

Just as a side note, there is another useful define for gtk_window_new() -
GTK_WINDOW_DIALQG his interacts with the window manager a little differently and
should be used for transient windows.

34

Chapter 4. Packing Widgets

When creating an application, you'll want to put more than one widget inside a
window. Our firsthelloworld example only used one widget so we could simply use a
gtk_container_add call to "pack” the widget into the window. But when you want to put
more than one widget into a window, how do you control where that widget is
positioned? This is where packing comes in.

4.1. Theory of Packing Boxes

Most packing is done by creating boxes as in the example above. These are invisible
widget containers that we can pack our widgets into which come in two forms, a
horizontal box, and a vertical box. When packing widgets into a horizontal box, the
objects are inserted horizontally from left to right or right to left depending on the call
used. In a vertical box, widgets are packed from top to bottom or vice versa. You may
use any combination of boxes inside or beside other boxes to create the desired effect.

To create a new horizontal box, we use a call to gtk_hbox_new(), and for vertical
boxes, gtk_vbox_new(). The gtk_box_pack_start() and gtk_box_pack_end() functions
are used to place objects inside of these containers. The gtk_box_pack_start() function
will start at the top and work its way down in a vbox, and pack left to right in an hbox.
gtk_box_pack_end() will do the opposite, packing from bottom to top in a vbox, and
right to left in an hbox. Using these functions allows us to right justify or left justify our
widgets and may be mixed in any way to achieve the desired effect. We will use
gtk_box_pack_start() in most of our examples. An object may be another container or a
widget. In fact, many widgets are actually containers themselves, including the button,
but we usually only use a label inside a button.

By using these calls, GTK knows where you want to place your widgets so it can do
automatic resizing and other nifty things. There are also a number of options as to how
your widgets should be packed. As you can imagine, this method gives us a quite a bit
of flexibility when placing and creating widgets.

35

Chapter 4. Packing Widgets

4.2. Details of Boxes

Because of this flexibility, packing boxes in GTK can be confusing at first. There are a
lot of options, and it's not immediately obvious how they all fit together. In the end,
however, there are basically five different styles.

Jpackhox =]

gtk_hbox_new (FALSE, 0;
gik_box_pack| (box, | button, | FaLsE | FaLsE | oy

gik_box_pack| (box,| button, | TRLUE| FALSE,| m

otk_box_pack | box, | buten, | TRUE, | TRUE, | oy
gtk_hbox_new (TRUE, 0); - - - -
gik_box_pack| (hox| button, | TRUE | FaLSE | ﬂi
gik_box_pack] (box, | buton, | TRUE, | TRUE, | m |

Gu

Each line contains one horizontal box (hbox) with several buttons. The call to
gtk_box_pack is shorthand for the call to pack each of the buttons into the hbox. Each
of the buttons is packed into the hbox the same way (i.e., same arguments to the
gtk_box_pack_start() function).

This is the declaration of the gtk_box_pack_start function.

void gtk_box_pack_start(GtkBox *box,
GtkWidget *child,

gint expand,
gint fill,
gint padding);

The first argument is the box you are packing the object into, the second is the object.
The objects will all be buttons for now, so we’ll be packing buttons into boxes.

The expand argument to gtk_box_pack_start() and gtk_box_pack_end() controls
whether the widgets are laid out in the box to fill in all the extra space in the box so the
box is expanded to fill the area allotted to it (TRUE); or the box is shrunk to just fit the
widgets (FALSE). Setting expand to FALSE will allow you to do right and left

36

Chapter 4. Packing Widgets

justification of your widgets. Otherwise, they will all expand to fit into the box, and the
same effect could be achieved by using only one of gtk_box_pack_start or
gtk_box_pack_end.

The fill argument to the gtk_box_pack functions control whether the extra space is
allocated to the objects themselves (TRUE), or as extra padding in the box around these
objects (FALSE). It only has an effect if the expand argument is also TRUE.

When creating a new box, the function looks like this:

GtkWidget *gtk_hbox_new (gint homogeneous,
gint spacing);

The homogeneous argument to gtk_hbox_new (and the same for gtk_vbox_new)
controls whether each object in the box has the same size (i.e., the same width in an
hbox, or the same height in a vbox). If it is set, the gtk_box_pack routines function
essentially as if thexpand argument was always turned on.

What'’s the difference between spacing (set when the box is created) and padding (set
when elements are packed)? Spacing is added between objects, and padding is added
on either side of an object. The following figure should make it clearer:

Jpackhox =]
gtk_hbo=_new (FaLSE, 10%;

qik_box_pack| (box,| bution, | TRUE | FALSE | ﬂi

otk_box_pack | fbox, | buton, | TRUE, | TRUE, | o

gtk_hbox_new (FALSE, 0;
gik_bios_pack| (box,| button,| TRUE | FALSE,| 10|
gik_box_pack | (pox, | bumon, | TRUE, | TRUE, | 1oy |

Here is the code used to create the above images. I've commented it fairly heavily so |
hope you won't have any problems following it. Compile it yourself and play with it.

37

Chapter 4. Packing Widgets

4.3. Packing Demonstration Program

[* example-start packbox packbox.c */

#include <stdio.h>
#include <stdlib.h>
#include "gtk/gtk.h"

gint delete_event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

gtk_main_quit();
return(FALSE);
}

/* Make a new hbox filled with button-labels. Arguments for the
* variables we're interested are passed in to this function.
* We do not show the box, but do show everything inside. */
GtkWidget *make_box(gint homogeneous,
gint spacing,

gint expand,

gint Afill,

gint padding)

GtkWidget *box;
GtkWidget *button;
char padstr[80];

/* Create a new hbox with the appropriate homogeneous
* and spacing settings */
box = gtk_hbox_new (homogeneous, spacing);

[* Create a series of buttons with the appropriate set-

tings */
button = gtk_button_new_with_label ("gtk_box_pack");

38

gtk_box_pack_start (GTK_BOX (box), button, ex-
pand, fill, padding);
gtk_widget_show (button);

button = gtk button_new_with_label ("(box,");

gtk_box_pack_start (GTK_BOX (box), button, ex-
pand, fill, padding);

gtk_widget_show (button);

button = gtk button_new_with_label ("button,");

gtk_box_pack_start (GTK_BOX (box), button, ex-
pand, fill, padding);

gtk_widget_show (button);

Chapter 4. Packing Widgets

/* Create a button with the label depending on the value of

* expand. */

if (expand == TRUE)

button = gtk_button_new_with_label ("TRUE,");
else

button = gtk button_new_with_label ("FALSE,");

gtk_box_pack_start (GTK_BOX (box), button, ex-
pand, fill, padding);
gtk_widget_show (button);

/* This is the same as the button creation for "expand"

* above, but uses the shorthand form. */
but-

ton = gtk_button_new_with_label (fill ? "TRUE," : "FALSE,");

gtk_box_pack_start (GTK_BOX (box), button, ex-
pand, fill, padding);

gtk_widget_show (button);

sprintf (padstr, "%d);", padding);

button = gtk_button_new_with_label (padstr);

39

Chapter 4. Packing Widgets

40

gtk_box_pack_start (GTK_BOX (box), button, ex-
pand, fill, padding);
gtk_widget_show (button);

return box;

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *button;
GtkWidget *box1;
GtkWidget *box2;
GtkWidget *separator;
GtkWidget *label;
GtkWidget *quitbox;
int which;

/* Our init, don’t forget this! :) */
gtk_init (&argc, &argv);

if (argc = 2) {
fprintf (stderr, "usage: pack-
box num, where num is 1, 2, or 3.\n");
/* This just does cleanup in GTK and exits with an exit sta-
tus of 1. */
gtk_exit (1);
}

which = atoi (argv[l]);

/* Create our window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* You should always remember to con-
nect the delete_event signal

Chapter 4. Packing Widgets

* to the main window. This is very impor-
tant for proper intuitive
* behavior */
gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (delete_event), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* We create a vertical box (vbox) to pack the horizon-
tal boxes into.

* This allows us to stack the horizon-
tal boxes filled with buttons one

* on top of the other in this vbox. */

boxl = gtk _vbox new (FALSE, 0);

/* which example to show. These correspond to the pic-
tures above. */

switch (which) {

case 1:
[* create a new label. */
label = gtk label new ("gtk_hbox new (FALSE, 0);");

/* Align the label to the left side. We’ll discuss this func-
tion and

* others in the section on Widget Attributes. */
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);

/* Pack the label into the vertical box (vbox boxl). Remem-
ber that

* wid-

gets added to a vbox will be packed one on top of the other in
* order. */

gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);

/* Show the label */
gtk_widget_show (label);

41

Chapter 4. Packing Widgets

/* Call our make box function -

homogeneous = FALSE, spacing = 0,

* expand = FALSE, fill = FALSE, padding = 0 */

box2 = make_box (FALSE, 0, FALSE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1l), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Call our make box function -

homogeneous = FALSE, spacing = 0,

* expand = TRUE, fill = FALSE, padding = 0 */

box2 = make_box (FALSE, 0, TRUE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 0, TRUE, TRUE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Creates a separator, we’ll learn more about these later,
* but they are quite simple. */
separator = gtk _hseparator_new ();

/* Pack the separator into the vbox. Remem-
ber each of these
* widgets is be-
ing packed into a vbox, so they'll be stacked
* vertically. */
gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

/* Create another new label, and show it. */

label = gtk _label_new ("gtk_hbox_new (TRUE, 0);");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);
gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);
gtk_widget_show (label);

42

Chapter 4. Packing Widgets

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (TRUE, 0, TRUE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (TRUE, 0, TRUE, TRUE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Another new separator. */

separator = gtk _hseparator_new ();

/* The last 3 arguments to gtk _box pack_start are:

* expand, fill, padding. */

gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

break;
case 2:

/* Create a new label, remember boxl is a vbox as created

* near the beginning of main() */

label = gtk label new ("gtk_hbox new (FALSE, 10);");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);
gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);
gtk_widget_show (label);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 10, TRUE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 10, TRUE, TRUE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

43

Chapter 4. Packing Widgets

44

separator = gtk _hseparator_new ();

/* The last 3 arguments to gtk_box_pack_start are:

* expand, fill, padding. */

gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

label = gtk _label_new ("gtk_hbox_new (FALSE, 0);");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);
gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);
gtk_widget_show (label);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 0, TRUE, FALSE, 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 0, TRUE, TRUE, 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

separator = gtk _hseparator_new ();

/* The last 3 arguments to gtk box pack start are: ex-

pand, fill, padding. */

gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

break;

case 3:

[* This demonstrates the abil-
ity to use gtk _box_pack_end() to
* right justify widgets. First, we create a new box as be-
fore. */
box2 = make_box (FALSE, 0, FALSE, FALSE, 0);

Chapter 4. Packing Widgets

/* Create the label that will be put at the end. */

label = gtk _label_new ("end");

/* Pack it using gtk_box_pack_end(), so it is put on the right
* side of the hbox created in the make_box() call. */
gtk_box_pack_end (GTK_BOX (box2), label, FALSE, FALSE, 0);
/* Show the label. */

gtk_widget_show (label);

/* Pack box2 into boxl (the vbox remember ? :) */
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* A separator for the bottom. */
separator = gtk_hseparator_new ();
/* This explicitly sets the separator to 400 pix-
els wide by 5 pixels
* high. This is so the hbox we created will also be 400 pix-
els wide,
* and the "end" label will be separated from the other la-
bels in the
* hbox. Otherwise, all the wid-
gets in the hbox would be packed as
* close together as possible. */
gtk_widget_set _usize (separator, 400, 5);
/* pack the separator into the vbox (box1) cre-
ated near the start
* of main() */
gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);
}
[* Create another new hbox.. remem-
ber we can use as many as we need! */

quitbox = gtk _hbox_new (FALSE, 0);

/* Our quit button. */
button = gtk _button_new_with_label ("Quit");

45

Chapter 4. Packing Widgets

/* Setup the signal to terminate the program when the but-
ton is clicked */
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (gtk_main_quit),
GTK_OBJECT (window));
[* Pack the button into the quitbox.
* The last 3 arguments to gtk _box_pack_start are:
* expand, fill, padding. */
gtk_box_pack_start (GTK_BOX (quitbox), but-
ton, TRUE, FALSE, 0);
/* pack the quitbox into the vbox (box1) */
gtk_box_pack_start (GTK_BOX (box1), quit-
box, FALSE, FALSE, 0);

/* Pack the vbox (box1l) which now contains all our wid-
gets, into the

* main window. */

gtk_container_add (GTK_CONTAINER (window), box1);

/* And show everything left */
gtk_widget_show (button);
gtk_widget_show (quitbox);

gtk_widget_show (box1);

/* Showing the window last so everything pops up at once.

gtk_widget _show (window);

/* And of course, our main function. */
gtk_main ();

/* Control re-
turns here when gtk_main_quit() is called, but not when

* gtk_exit is used. */

return(0);

46

*/

Chapter 4. Packing Widgets

[* example-end */

4.4. Packing Using Tables

Let's take a look at another way of packing - Tables. These can be extremely useful in
certain situations.

Using tables, we create a grid that we can place widgets in. The widgets may take up as
many spaces as we specify.

The first thing to look at, of course, is the gtk_table_new function:

GtkWidget *gtk_table_new(gint rows,
gint columns,
gint homogeneous);

The first argument is the number of rows to make in the table, while the second,
obviously, is the number of columns.

The homogeneous argument has to do with how the table’s boxes are sized. If
homogeneous is TRUE, the table boxes are resized to the size of the largest widget in
the table. If homogeneous is FALSE, the size of a table boxes is dictated by the tallest
widget in its same row, and the widest widget in its column.

The rows and columns are laid out from 0 to n, where n was the number specified in the
call to gtk_table_new. So, if you specify rows = 2 and columns = 2, the layout would
look something like this:

0 1 2
O+------- R — +

I I I
1+-——-- R R +

I I I
A — R — +

a7

Chapter 4. Packing Widgets

48

Note that the coordinate system starts in the upper left hand corner. To place a widget
into a box, use the following function:

void gtk_table_attach(GtkTable *table,
GtkWidget *child,

gint left_attach,
gint right_attach,
gint top_attach,
gint bottom_attach,
gint xoptions,

gint yoptions,

gint xpadding,

gint ypadding);

The first argument ("table") is the table you've created and the second ("child") the
widget you wish to place in the table.

The left and right attach arguments specify where to place the widget, and how many
boxes to use. If you want a button in the lower right table entry of our 2x2 table, and
want it to fill that entry ONLY, left_attach would be = 1, right_attach = 2, top_attach =
1, bottom_attach = 2.

Now, if you wanted a widget to take up the whole top row of our 2x2 table, you'd use
left_attach = 0, right_attach = 2, top_attach = 0, bottom_attach = 1.

The xoptions and yoptions are used to specify packing options and may be bitwise
OR’ed together to allow multiple options.

These options are:

« GTK_FILL - If the table box is larger than the widget, a@@K_FILL is specified, the
widget will expand to use all the room available.

« GTK_SHRINK- If the table widget was allocated less space then was requested
(usually by the user resizing the window), then the widgets would normally just be
pushed off the bottom of the window and disappea&TK_SHRINKis specified, the
widgets will shrink with the table.

Chapter 4. Packing Widgets

« GTK_EXPAND This will cause the table to expand to use up any remaining space in
the window.

Padding is just like in boxes, creating a clear area around the widget specified in pixels.

gtk_table_attach() has a LOT of options. So, there’s a shortcut:

void gtk table attach_defaults(GtkTable *table,
GtkWidget *widget,

gint left_attach,

gint right_attach,

gint top_attach,

gint bottom_attach);

The X and Y options default t6TK_FILL | GTK_EXPAND, and X and Y padding are
set to 0. The rest of the arguments are identical to the previous function.

We also have gtk _table set row_spacing() and gtk _table set col_spacing(). These
places spacing between the rows at the specified row or column.

void gtk table set row_spacing(GtkTable *table,
gint row,
gint spacing);

and

void gtk_table_set _col_spacing (GtkTable *table,
gint column,
gint spacing);

Note that for columns, the space goes to the right of the column, and for rows, the
space goes below the row.

You can also set a consistent spacing of all rows and/or columns with:

void gtk table _set row_spacings(GtkTable *table,
gint spacing);

And,

49

Chapter 4. Packing Widgets

void gtk _table_set_col_spacings(GtkTable *table,
gint spacing);

Note that with these calls, the last row and last column do not get any spacing.

4.5. Table Packing Example

50

Here we make a window with three buttons in a 2x2 table. The first two buttons will be
placed in the upper row. A third, quit button, is placed in the lower row, spanning both
columns. Which means it should look something like this:

~ - - O X
button 1|button 2
Cauit

Here’s the source code:

/* example-start table table.c */
#include <gtk/gtk.h>

/* Our callback.
* The data passed to this function is printed to stdout */
void callback(GtkWidget *widget,
gpointer data)
{

g_print ("Hello again - %s was pressed\n”, (char *) data);

}

/* This callback quits the program */

gint delete_event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

Chapter 4. Packing Widgets

gtk_main_quit ();
return(FALSE);
}

int main(int argc,
char *argv[])
{
GtkWidget *window;
GtkWidget *button;
GtkWidget *table;

gtk_init (&argc, &argv);

[* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

[* Set the window title */
gtk_window_set title (GTK_WINDOW (window), "Table");

/* Set a handler for delete_event that immediately

* exits GTK. */

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (delete_event), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 20);

/* Create a 2x2 table */
table = gtk table_new (2, 2, TRUE);

/* Put the table in the main window */
gtk_container_add (GTK_CONTAINER (window), table);

[* Create first button */
button = gtk_button_new_with_label ("button 1");

51

Chapter 4. Packing Widgets

/* When the button is clicked, we call the "call-
back" function
* with a pointer to "button 1" as its argument */
gtk_signal_connect (GTK_OBJECT (button), “clicked",
GTK_SIGNAL_FUNC (callback), (gpointer) "but-
ton 1");

/* Insert button 1 into the upper left quadrant of the ta-
ble */

gtk_table_attach_defaults (GTK_TABLE(table), but-
ton, 0, 1, 0, 1);

gtk_widget_show (button);
/* Create second button */
button = gtk_button_new_with_label ("button 2");

/* When the button is clicked, we call the "call-
back" function
* with a pointer to "button 2" as its argument */
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (callback), (gpointer) "but-
ton 2");
/* Insert button 2 into the upper right quadrant of the ta-
ble */
gtk_table_attach_defaults (GTK_TABLE(table), but-
ton, 1, 2, 0, 1);

gtk_widget_show (button);

/* Create "Quit" button */
button = gtk button_new_with_label ("Quit");

/* When the but-
ton is clicked, we call the "delete_event" function

52

Chapter 4. Packing Widgets

* and the program exits */
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (delete_event), NULL);

/* Insert the quit button into the both

* lower quadrants of the table */

gtk_table_ attach_defaults (GTK_TABLE(table), but-
ton, 0, 2, 1, 2);

gtk_widget_show (button);

gtk_widget_show (table);
gtk_widget _show (window);

gtk_main ();
return O;

}

[* example-end */

53

Chapter 5. Widget Overview

The general steps to creating a widget in GTK are:

1. gtk_* new - one of various functions to create a new widget. These are all
detailed in this section.

2. Connect all signals and events we wish to use to the appropriate handlers.
3. Set the attributes of the widget.

4. Pack the widget into a container using the appropriate call such as
gtk_container_add() or gtk_box_pack_start().

5. gtk_widget_show() the widget.

gtk_widget_show() lets GTK know that we are done setting the attributes of the widget,
and it is ready to be displayed. You may also use gtk_widget hide to make it disappear
again. The order in which you show the widgets is not important, but | suggest showing
the window last so the whole window pops up at once rather than seeing the individual
widgets come up on the screen as they're formed. The children of a widget (a window
is a widget too) will not be displayed until the window itself is shown using the
gtk_widget_show() function.

5.1. Casting

You'll notice as you go on that GTK uses a type casting system. This is always done
using macros that both test the ability to cast the given item, and perform the cast.
Some common ones you will see are:

GTK_WIDGET(widget)
GTK_OBJECT(object)
GTK_SIGNAL_FUNC(function)
GTK_CONTAINER(container)
GTK_WINDOW/(window)

54

Chapter 5. Widget Overview

GTK_BOX(box)

These are all used to cast arguments in functions. You'll see them in the examples, and
can usually tell when to use them simply by looking at the function’s declaration.

As you can see below in the class hierarchy, all GtkWidgets are derived from the Object
base class. This means you can use a widget in any place the function asks for an object
- simply use the&sTK_OBJECT() macro.

For example:

gtk_signal_connect(GTK_OBJECT(button), "clicked",
GTK_SIGNAL_FUNC(callback_function), call-
back_data);

This casts the button into an object, and provides a cast for the function pointer to the
callback.

Many widgets are also containers. If you look in the class hierarchy below, you'll notice
that many widgets derive from the Container class. Any one of these widgets may be
used with theGTK_CONTAINERnacro to pass them to functions that ask for containers.

Unfortunately, these macros are not extensively covered in the tutorial, but |
recommend taking a look through the GTK header files. It can be very educational. In
fact, it's not difficult to learn how a widget works just by looking at the function
declarations.

5.2. Widget Hierarchy

For your reference, here is the class hierarchy tree used to implement widgets.

GtkObject
+GtkWidget

| +GtkMisc

| | +GtkLabel

| | | +GtkAccelLabel

95

Chapter 5. Widget Overview

56

I
I
|
|
+
I
|
|
I
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
I
|
I
|
|
|
|
I
|
|
I

I
+

+
|
I
I

‘GtkTipsQuery

GtkArrow
+Gtklmage
‘GtkPixmap

GtkContainer
+GtkBin

+GtkAlignment
+GtkFrame

| ‘GtkAspectFrame
+GtkButton

| +GtkToggleButton

| | ‘GtkCheckButton

| | ‘GtkRadioButton

| ‘GtkOptionMenu
+Gtkltem

| +GtkMenultem

| | +GtkCheckMenultem
| | | ‘GtkRadioMenultem
| | ‘GtkTearoffMenultem
| +GtkListltem

| ‘GtkTreeltem
+GtkWindow

| +GtkColorSelectionDialog
| +GtkDialog

| | ‘GtkinputDialog

| +GtkDrawWindow

| +GtkFileSelection

| +GtkFontSelectionDialog
| ‘GtkPlug
+GtkEventBox
+GtkHandleBox
+GtkScrolledWindow
‘GtkViewport

GtkBox

+GtkButtonBox
| +GtkHButtonBox
| ‘GtkVButtonBox

| | +GtkvVBox

| | | +GtkColorSelection
| | | ‘GtkGammaCurve
| | ‘GtkHBoOX

|] +GtkCombo
|] ‘GtkStatusbar
| +GtkCList

| | ‘GtkCTree

| +GtkFixed

| +GtkNotebook

| | ‘GtkFontSelection
| +GtkPaned

| | +GtkHPaned

| | ‘GtkvVPaned

| +GtkLayout

| +GtkList

| +GtkMenuShell

| | +GtkMenuBar

| | ‘GtkMenu

| +GtkPacker

| +GtkSocket

| +GtkTable

| +GtkToolbar

| ‘GtkTree
+GtkCalendar
+GtkDrawingArea

| ‘GtkCurve
+GtkEditable

| +GtkEntry

| | ‘GtkSpinButton
| ‘GtkText
+GtkRuler

| +GtkHRuler

| ‘GtkVRuler
+GtkRange

| +GtkScale

| | +GtkHScale

Chapter 5. Widget Overview

57

Chapter 5. Widget Overview

| | | ‘GtkVScale

| | ‘GtkScrollbar

| | +GtkHScrollbar
| | ‘GtkVScrollbar
| +GtkSeparator

| | +GtkHSeparator
| | ‘GtkVSeparator
| +GtkPreview

| ‘GtkProgress

| ‘GtkProgressBar
+GtkData

| +GtkAdjustment

| ‘GtkTooltips
‘GtkltemFactory

5.3. Widgets Without Windows

The following widgets do not have an associated window. If you want to capture
events, you'll have to use the EventBox. See the section gn the EvéntBox widget.

GtkAlignment
GtkArrow

GtkBin

GtkBox
Gtklmage
Gtkltem
GtkLabel
GtkPixmap
GtkScrolledWindow
GtkSeparator
GtkTable
GtkAspectFrame
GtkFrame
GtkVBox
GtkHBox

58

Chapter 5. Widget Overview

GtkVSeparator
GtkHSeparator

We'll further our exploration of GTK by examining each widget in turn, creating a few
simple functions to display them. Another good source is the testgtk.c program that
comes with GTK. It can be found in gtk/testgtk.c.

59

Chapter 6. The Button Widget

6.1. Normal Buttons

We've almost seen all there is to see of the button widget. It's pretty simple. There are
however two ways to create a button. You can use the gtk_button_new_with_label() to
create a button with a label, or use gtk_button_new() to create a blank button. It's then
up to you to pack a label or pixmap into this new button. To do this, create a new box,
and then pack your objects into this box using the usual gtk_box_pack_start, and then
use gtk_container_add to pack the box into the button.

Here’s an example of using gtk_button_new to create a button with a picture and a label
in it. I've broken up the code to create a box from the rest so you can use it in your
programs. There are further examples of using pixmaps later in the tutorial.

/* example-start buttons buttons.c */
#include <gtk/gtk.h>

/* Create a new hbox with an image and a label packed into it
* and return the box. */

GtkWidget *xpm_label_box(GtkWidget *parent,
gchar *xpm_filename,
gchar *label_text)

GtkWidget *box1;
GtkWidget *label;
GtkWidget *pixmapwid;
GdkPixmap *pixmap;
GdkBitmap *mask;
GtkStyle *style;

/* Create box for xpm and label */

60

Chapter 6. The Button Widget

boxl = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (box1), 2);

[* Get the style of the button to get the
* background color. */
style = gtk_widget_get_style(parent);

/* Now on to the xpm stuff */

pixmap = gdk pixmap_create_from_xpm (parent->window, &mask,
&style->bg[GTK_STATE_NORMAL],
xpm_filename);

pixmapwid = gtk _pixmap_new (pixmap, mask);

/* Create a label for the button */
label = gtk_label_new (label_text);

/* Pack the pixmap and label into the box */
gtk_box_pack_start (GTK_BOX (box1),
pixmapwid, FALSE, FALSE, 3);

gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 3);

gtk_widget_show(pixmapwid);
gtk_widget_show(label);

return(box1);

}

/* Our usual callback function */
void callback(GtkWidget *widget,
gpointer data)

{

g_print ("Hello again - %s was pressed\n”, (char *) data);

}

int main(int argc,
char *argv[])

61

Chapter 6. The Button Widget

/* GtkWidget is the storage type for widgets */
GtkWidget *window;

GtkWidget *button;

GtkWidget *box1;

gtk_init (&argc, &argv),

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (win-
dow), "Pixmap’d Buttons!");

[* It's a good idea to do this for all windows. */
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

[* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
gtk_widget_realize(window);

/* Create a new button */
button = gtk _button_new ();

/* Connect the "clicked" signal of the button to our call-
back */

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (callback), (gpointer) "cool button®);

/* This calls our box creating function */
boxl = xpm_label_box(window, "info.xpm", "cool button");

/* Pack and show all our widgets */

62

Chapter 6. The Button Widget

gtk_widget_show(box1);

gtk_container_add (GTK_CONTAINER (button), box1);
gtk_widget_show(button);

gtk_container_add (GTK_CONTAINER (window), button);
gtk_widget_show (window);

/* Rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return(0);

}

[* example-end */

The xpm_label_box function could be used to pack xpm’s and labels into any widget
that can be a container.

Notice inxpm_label_box how there is a call tgtk_widget_get_style . Every

widget has a "style", consisting of foreground and background colors for a variety of
situations, font selection, and other graphics data relevant to a widget. These style
values are defaulted in each widget, and are required by many GDK function calls,
such agydk_pixmap_create_from_xpm , Which here is given the "normal”
background color. The style data of widgets may be customized, using GTKS|rc files.

Also notice the call tgytk_widget_realize after setting the window’s border width.
This function uses GDK to create the X windows related to the widget. The function is
automatically called when you invokgk widget_ show for a widget, and so has not
been shown in earlier examples. But the caljd& pixmap_create_from_xpm

requires that itsvindow argument refer to a real X window, so it is necessary to realize
the widget before this GDK call.

The Button widget has the following signals:

- pressed -emitted when pointer button is pressed within Button widget

63

Chapter 6. The Button Widget

- released - emitted when pointer button is released within Button widget

. clicked - emitted when pointer button is pressed and then released within Button
widget

- enter - emitted when pointer enters Button widget

. leave - emitted when pointer leaves Button widget

6.2. Toggle Buttons

64

Toggle buttons are derived from normal buttons and are very similar, except they will
always be in one of two states, alternated by a click. They may be depressed, and when
you click again, they will pop back up. Click again, and they will pop back down.

Toggle buttons are the basis for check buttons and radio buttons, as such, many of the
calls used for toggle buttons are inherited by radio and check buttons. | will point these
out when we come to them.

Creating a new toggle button:
GtkWidget *gtk toggle button_new(void);
GtkWidget *gtk_toggle_button_new_with_label(gchar *label);

As you can imagine, these work identically to the normal button widget calls. The first
creates a blank toggle button, and the second, a button with a label widget already
packed into it.

To retrieve the state of the toggle widget, including radio and check buttons, we use a
construct as shown in our example below. This tests the state of the toggle, by
accessing thective field of the toggle widget’s structure, after first using the
GTK_TOGGLE_BUTTQNacro to cast the widget pointer into a toggle widget pointer.

The signal of interest to us emitted by toggle buttons (the toggle button, check button,
and radio button widgets) is the "toggled" signal. To check the state of these buttons,

set up a signal handler to catch the toggled signal, and access the structure to determine
its state. The callback will look something like:

Chapter 6. The Button Widget

void toggle_button_callback (GtkWidget *widget, gpointer data)

{
if (GTK_TOGGLE_BUTTON (widget)->active)
{
/* If control reaches here, the toggle button is down */
} else {
/* If control reaches here, the toggle button is up */
}
}

To force the state of a toggle button, and its children, the radio and check buttons, use
this function:

void gtk toggle button_set_active(GtkToggleButton *tog-
gle_button,
gint state);

The above call can be used to set the state of the toggle button, and its children the
radio and check buttons. Passing in your created button as the first argument, and a
TRUE or FALSE for the second state argument to specify whether it should be down
(depressed) or up (released). Default is up, or FALSE.

Note that when you use the gtk_toggle button_set_active() function, and the state is
actually changed, it causes the "clicked" signal to be emitted from the button.

void gtk toggle button_toggled (GtkToggleButton *toggle button);

This simply toggles the button, and emits the "toggled"” signal.

6.3. Check Buttons

Check buttons inherit many properties and functions from the the toggle buttons above,
but look a little different. Rather than being buttons with text inside them, they are

65

Chapter 6. The Button Widget

small squares with the text to the right of them. These are often used for toggling
options on and off in applications.

The two creation functions are similar to those of the normal button.
GtkWidget *gtk_check button_new(void);
GtkWidget *gtk_check_button_new_with_label (gchar *label);

The new_with_label function creates a check button with a label beside it.

Checking the state of the check button is identical to that of the toggle button.

6.4. Radio Buttons

66

Radio buttons are similar to check buttons except they are grouped so that only one
may be selected/depressed at a time. This is good for places in your application where
you need to select from a short list of options.

Creating a new radio button is done with one of these calls:
GtkWidget *gtk radio_button_new(GSList *group);

GtkWidget *gtk_radio_button_new_with_label(GSList *group,
gchar *label);

You'll notice the extra argument to these calls. They require a group to perform their
duty properly. The first call to gtk_radio_button_new_with_label or
gtk_radio_button_new_with_label should pass NULL as the first argument. Then
create a group using:

GSList *gtk_radio_button_group(GtkRadioButton *radio_button);

The important thing to remember is that gtk_radio_button_group must be called for
each new button added to the group, with the previous button passed in as an argument.
The result is then passed into the next call to gtk_radio_button_new or

Chapter 6. The Button Widget

gtk_radio_button_new_with_label. This allows a chain of buttons to be established.
The example below should make this clear.

You can shorten this slightly by using the following syntax, which removes the need for
a variable to hold the list of buttons. This form is used in the example to create the third
button:

button2 = gtk _radio_button_new_with_label(
gtk_radio_button_group (GTK_RADIO_BUTTON (buttonl)),
"button2");

It is also a good idea to explicitly set which button should be the default depressed
button with:

void gtk_toggle button_set_active(GtkToggleButton *tog-
gle_button,
gint state);

This is described in the section on toggle buttons, and works in exactly the same way.
Once the radio buttons are grouped together, only one of the group may be active at a
time. If the user clicks on one radio button, and then on another, the first radio button
will first emit a "toggled" signal (to report becoming inactive), and then the second will
emit its "toggled" signal (to report becoming active).

The following example creates a radio button group with three buttons.

/* example-start radiobuttons radiobuttons.c */

#include <gtk/gtk.h>
#include <glib.h>

gint close_application(GtkWidget *widget,
GdkEvent *event,
gpointer data)
{
gtk_main_quit();
return(FALSE);
}

67

Chapter 6. The Button Widget

68

int main(int argc,

{

char *argv[])

GtkWidget *window = NULL;
GtkWidget *box1;

GtkWidget *box2;

GtkWidget *button;
GtkWidget *separator;

GSList *group;
gtk_init(&argc,&argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC(close_application),
NULL);

gtk_window_set title (GTK_WINDOW (window), "radio buttons");
gtk_container_set_border_width (GTK_CONTAINER (window), 0);

boxl = gtk _vbox _new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), box1);
gtk_widget_show (box1);

box2 = gtk _vbox _new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

button = gtk _radio_button_new_with_label (NULL, "buttonl");
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

group = gtk _radio_button_group (GTK_RADIO_BUTTON (button));
button = gtk _radio_button_new_with_label(group, "button2");

Chapter 6. The Button Widget

gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (but-
ton), TRUE);

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);

gtk_widget_show (button);

button = gtk radio_button_new_with_label(
gtk_radio_button_group (GTK_RADIO_BUTTON (button)),
"button3");
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

separator = gtk _hseparator_new ();

gtk_box_pack_start (GTK_BOX (boxl), separa-
tor, FALSE, TRUE, 0);

gtk_widget_show (separator);

box2 = gtk _vbox new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (boxl), box2, FALSE, TRUE, 0);
gtk_widget _show (box2);

button = gtk_button_new_with_label ("close™);

gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC(close_application),
GTK_OBJECT (window));

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);

GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);

gtk_widget _grab_default (button);

gtk_widget_show (button);

gtk_widget_show (window);

gtk_main();
return(0);

}

[* example-end */

69

Chapter 7. Adjustments

GTK has various widgets that can be visually adjusted by the user using the mouse or
the keyboard, such as the range widgets, described [n the Range Widgets section. There
are also a few widgets that display some adjustable portion of a larger area of data, such
as the text widget and the viewport widget.

Obviously, an application needs to be able to react to changes the user makes in range
widgets. One way to do this would be to have each widget emit its own type of signal
when its adjustment changes, and either pass the new value to the signal handler, or
require it to look inside the widget’s data structure in order to ascertain the value. But
you may also want to connect the adjustments of several widgets together, so that
adjusting one adjusts the others. The most obvious example of this is connecting a
scrollbar to a panning viewport or a scrolling text area. If each widget has its own way
of setting or getting the adjustment value, then the programmer may have to write their
own signal handlers to translate between the output of one widget's signal and the
"input” of another’s adjustment setting function.

GTK solves this problem using the Adjustment object, which is not a widget but a way
for widgets to store and pass adjustment information in an abstract and flexible form.
The most obvious use of Adjustment is to store the configuration parameters and values
of range widgets, such as scrollbars and scale controls. However, since Adjustments are
derived from Object, they have some special powers beyond those of normal data
structures. Most importantly, they can emit signals, just like widgets, and these signals
can be used not only to allow your program to react to user input on adjustable widgets,
but also to propagate adjustment values transparently between adjustable widgets.

You will see how adjustments fit in when you see the other widgets that incorporate
them:[Progress Barg, Viewpgr[s, Scrolled Windows, and others.

7.1. Creating an Adjustment

Many of the widgets which use adjustment objects do so automatically, but some cases
will be shown in later examples where you may need to create one yourself. You create

70

Chapter 7. Adjustments

an adjustment using:

GtkObject *gtk_adjustment_new(gfloat value,
gfloat lower,
gfloat upper,
gfloat step_increment,
gfloat page_increment,
gfloat page_size);

Thevalue argument is the initial value you want to give to the adjustment, usually
corresponding to the topmost or leftmost position of an adjustable widgetowbe
argument specifies the lowest value which the adjustment can hold. The
step_increment argument specifies the "smaller” of the two increments by which the
user can change the value, while tlage_increment is the "larger” one. The

page_size argument usually corresponds somehow to the visible area of a panning
widget. Theupper argument is used to represent the bottom most or right most
coordinate in a panning widget’s child. Therefore ih@ always the largest number
thatvalue can take, since thgage _size of such widgets is usually non-zero.

7.2. Using Adjustments the Easy Way

The adjustable widgets can be roughly divided into those which use and require
specific units for these values and those which treat them as arbitrary numbers. The
group which treats the values as arbitrary numbers includes the range widgets
(scrollbars and scales, the progress bar widget, and the spin button widget). These
widgets are all the widgets which are typically "adjusted" directly by the user with the
mouse or keyboard. They will treat thwver andupper values of an adjustment as a
range within which the user can manipulate the adjustmealte . By default, they

will only modify thevalue of an adjustment.

The other group includes the text widget, the viewport widget, the compound list
widget, and the scrolled window widget. All of these widgets use pixel values for their
adjustments. These are also all widgets which are typically "adjusted" indirectly using
scrollbars. While all widgets which use adjustments can either create their own

71

Chapter 7. Adjustments

adjustments or use ones you supply, you'll generally want to let this particular category
of widgets create its own adjustments. Usually, they will eventually override all the
values except thealue itself in whatever adjustments you give them, but the results

are, in general, undefined (meaning, you'll have to read the source code to find out, and
it may be different from widget to widget).

Now, you're probably thinking, since text widgets and viewports insist on setting
everything except thealue of their adjustments, while scrollbars wilhly touch the
adjustment'sralue , if you sharean adjustment object between a scrollbar and a text
widget, manipulating the scrollbar will automagically adjust the text widget? Of course
it will! Just like this:

[* creates its own adjustments */
text = gtk _text new (NULL, NULL);
[* uses the newly-
created adjustment for the scrollbar as well */
vscrollbar = gtk_vscrollbar_new (GTK_TEXT(text)->vad));

7.3. Adjustment Internals

72

Ok, you say, that’s nice, but what if | want to create my own handlers to respond when
the user adjusts a range widget or a spin button, and how do | get at the value of the
adjustment in these handlers? To answer these questions and more, let’s start by taking
a look atstruct _GtkAdjustment itself:

struct _GtkAdjustment

{
GtkData data;

gfloat lower;
gfloat upper;
gfloat value;
gfloat step_increment;
gfloat page_increment;

Chapter 7. Adjustments

ofloat page_size;

I3

The first thing you should know is that there aren’t any handy-dandy macros or
accessor functions for getting thelue out of an Adjustment, so you'll have to

(horror of horrors) do it like aeal C programmer. Don’t worry - the TK_ADJUSTMENT
(Object) macro does run-time type checking (as do all the GTK type-casting macros,
actually).

Since, when you set thalue of an adjustment, you generally want the change to be
reflected by every widget that uses this adjustment, GTK provides this convenience
function to do this:

void gtk_adjustment_set value(GtkAdjustment *adjustment,
gfloat value);

As mentioned earlier, Adjustment is a subclass of Object just like all the various
widgets, and thus it is able to emit signals. This is, of course, why updates happen
automagically when you share an adjustment object between a scrollbar and another
adjustable widget; all adjustable widgets connect signal handlers to their adjustment’s
value_changed signal, as can your program. Here’s the definition of this signal in
struct _GtkAdjustmentClass

void (* value_changed) (GtkAdjustment *adjustment);

The various widgets that use the Adjustment object will emit this signal on an
adjustment whenever they change its value. This happens both when user input causes
the slider to move on a range widget, as well as when the program explicitly changes
the value withgtk_adjustment_set_value() . So, for example, if you have a scale
widget, and you want to change the rotation of a picture whenever its value changes,
you would create a callback like this:

void cb_rotate_picture (GtkAdjustment *adj, GtkWidget *picture)
{

set_picture_rotation (picture, adj->value);

73

Chapter 7. Adjustments

74

and connect it to the scale widget’s adjustment like this:

gtk_signal_connect (GTK_OBJECT (adj), "value_changed",
GTK_SIGNAL_FUNC (cb_rotate picture), picture);

What about when a widget reconfigures tipper orlower fields of its adjustment,
such as when a user adds more text to a text widget? In this case, it emitatiged
signal, which looks like this:

void (* changed) (GtkAdjustment *adjustment);

Range widgets typically connect a handler to this signal, which changes their
appearance to reflect the change - for example, the size of the slider in a scrollbar will
grow or shrink in inverse proportion to the difference betweeridiwer andupper

values of its adjustment.

You probably won’t ever need to attach a handler to this signal, unless you're writing a
new type of range widget. However, if you change any of the values in a Adjustment
directly, you should emit this signal on it to reconfigure whatever widgets are using it,
like this:

gtk_signal_emit_by name (GTK_OBJECT (adjustment), "changed");

Now go forth and adjust!

Chapter 8. Range Widgets

The category of range widgets includes the ubiquitous scrollbar widget and the less
common "scale" widget. Though these two types of widgets are generally used for
different purposes, they are quite similar in function and implementation. All range
widgets share a set of common graphic elements, each of which has its own X window
and receives events. They all contain a "trough” and a "slider" (what is sometimes
called a "thumbwheel" in other GUI environments). Dragging the slider with the

pointer moves it back and forth within the trough, while clicking in the trough advances
the slider towards the location of the click, either completely, or by a designated
amount, depending on which mouse button is used.

As mentioned il Adjustments above, all range widgets are associated with an
adjustment object, from which they calculate the length of the slider and its position
within the trough. When the user manipulates the slider, the range widget will change
the value of the adjustment.

8.1. Scrollbar Widgets

These are your standard, run-of-the-mill scrollbars. These should be used only for
scrolling some other widget, such as a list, a text box, or a viewport (and it's generally
easier to use the scrolled window widget in most cases). For other purposes, you should
use scale widgets, as they are friendlier and more featureful.

There are separate types for horizontal and vertical scrollbars. There really isn’'t much
to say about these. You create them with the following functions, defined in
<gtk/gtkhscrollbar.h> and<gtk/gtkvscrollbar.h>

GtkWidget *gtk_hscrollbar_new(GtkAdjustment *adjustment);
GtkWidget *gtk_vscrollbar_new(GtkAdjustment *adjustment);

and that's about it (if you don’t believe me, look in the header files!). ddjestment
argument can either be a pointer to an existing Adjustment, or NULL, in which case

75

Chapter 8. Range Widgets

one will be created for you. Specifying NULL might actually be useful in this case, if
you wish to pass the newly-created adjustment to the constructor function of some
other widget which will configure it for you, such as a text widget.

8.2. Scale Widgets

8.2.1.

76

Scale widgets are used to allow the user to visually select and manipulate a value
within a specific range. You might want to use a scale widget, for example, to adjust the
magnification level on a zoomed preview of a picture, or to control the brightness of a
color, or to specify the number of minutes of inactivity before a screensaver takes over
the screen.

Creating a Scale Widget

As with scrollbars, there are separate widget types for horizontal and vertical scale
widgets. (Most programmers seem to favour horizontal scale widgets.) Since they work
essentially the same way, there’s no need to treat them separately here. The following
functions, defined irgtk/gtkvscale.h> and<gtk/gtkhscale.h> , Create vertical

and horizontal scale widgets, respectively:

GtkWidget *gtk_vscale_new(GtkAdjustment *adjustment);
GtkWidget *gtk_hscale_new(GtkAdjustment *adjustment);

Theadjustment argument can either be an adjustment which has already been
created withgtk_adjustment_new() , Or NULL, in which case, an anonymous
Adjustment is created with all of its values sett0 (which isn’t very useful in this
case). In order to avoid confusing yourself, you probably want to create your
adjustment with @age_size 0f 0.0 so that itsupper value actually corresponds to
the highest value the user can select. (If yoaleadythoroughly confused, read the
section orf Adjusiments again for an explanation of what exactly adjustments do and
how to create and manipulate them.)

Chapter 8. Range Widgets

8.2.2. Functions and Signals (well, functions, at least)

Scale widgets can display their current value as a number beside the trough. The
default behaviour is to show the value, but you can change this with this function:

void gtk scale_set draw_value(GtkScale *scale,
gint draw_value);

As you might have guesseditaw_value is eitherTRUEOr FALSE, with predictable
consequences for either one.

The value displayed by a scale widget is rounded to one decimal point by default, as is
thevalue field in its GtkAdjustment. You can change this with:

void gtk scale set digits(GtkScale *scale,
gint digits);

wheredigits is the number of decimal places you want. You caniggts to
anything you like, but no more than 13 decimal places will actually be drawn on screen.

Finally, the value can be drawn in different positions relative to the trough:

void gtk_scale_set _value_pos(GtkScale *scale,
GtkPositionType pos);

The argumenpos is of typeGtkPositionType , which is defined in
<gtk/gtkenums.h> , and can take one of the following values:

GTK_POS_LEFT
GTK_POS_RIGHT
GTK_POS_TOP
GTK_POS_BOTTOM

If you position the value on the "side" of the trough (e.g., on the top or bottom of a
horizontal scale widget), then it will follow the slider up and down the trough.

All the preceding functions are defined<ptk/gtkscale.h> . The header files for all
GTK widgets are automatically included when you includek/gtk.n> . But you
should look over the header files of all widgets that interest you,

1

Chapter 8. Range Widgets

8.3. Common Range Functions

8.3.1.

78

The Range widget class is fairly complicated internally, but, like all the "base class"
widgets, most of its complexity is only interesting if you want to hack on it. Also,
almost all of the functions and signals it defines are only really used in writing derived
widgets. There are, however, a few useful functions that are defined in
<gtk/gtkrange.h> and will work on all range widgets.

Setting the Update Policy

The "update policy" of a range widget defines at what points during user interaction it
will change thevalue field of its Adjustment and emit the "value_changed" signal on
this Adjustment. The update policies, definedgtk/gtkenums.h> as typeenum
GtkUpdateType , are:

« GTK_UPDATE_POLICY_CONTINUOUS - This is the default. The
"value_changed" signal is emitted continuously, i.e., whenever the slider is moved by
even the tiniest amount.

« GTK_UPDATE_POLICY_DISCONTINUOUS - The "value_changed" signal is
only emitted once the slider has stopped moving and the user has released the mouse
button.

« GTK_UPDATE_POLICY_DELAYED - The "value_changed" signal is emitted
when the user releases the mouse button, or if the slider stops moving for a short
period of time.

The update policy of a range widget can be set by casting it usin@QTReRANGE
(Widget) macro and passing it to this function:

void gtk_range_set_update_policy(GtkRange *range,
GtkUpdateType policy);

Chapter 8. Range Widgets

8.3.2. Getting and Setting Adjustments

Getting and setting the adjustment for a range widget "on the fly" is done, predictably,
with:

GtkAdjustment* gtk_range_get adjustment(GtkRange *range);

void gtk_range_set_adjustment(GtkRange *range,
GtkAdjustment *adjustment);

gtk_range_get_adjustment() returns a pointer to the adjustment to whiahge
is connected.

gtk_range_set_adjustment() does absolutely nothing if you pass it the

adjustment thatange is already using, regardless of whether you changed any of its
fields or not. If you pass it a new Adjustment, it will unreference the old one if it exists
(possibly destroying it), connect the appropriate signals to the new one, and call the
private functiongtk_range_adjustment_changed() , Which will (or at least, is

supposed to...) recalculate the size and/or position of the slider and redraw if necessary.
As mentioned in the section on adjustments, if you wish to reuse the same Adjustment,
when you modify its values directly, you should emit the "changed" signal on it, like

this:

gtk_signal_emit_by name (GTK_OBJECT (adjustment), "changed");

8.4. Key and Mouse bindings

All of the GTK range widgets react to mouse clicks in more or less the same way.
Clicking button-1 in the trough will cause its adjustmemiége_increment to be

added or subtracted from walue , and the slider to be moved accordingly. Clicking
mouse button-2 in the trough will jump the slider to the point at which the button was
clicked. Clicking any button on a scrollbar’s arrows will cause its adjustment’s value to
changestep_increment at a time.

79

Chapter 8. Range Widgets

8.4.1.

8.4.2.

80

It may take a little while to get used to, but by default, scrollbars as well as scale
widgets can take the keyboard focus in GTK. If you think your users will find this too
confusing, you can always disable this by unsetting@dm&_CAN_FOCUffag on the
scrollbar, like this:

GTK_WIDGET_UNSET_FLAGS (scrollbar, GTK_CAN_FOCUS);

The key bindings (which are, of course, only active when the widget has focus) are
slightly different between horizontal and vertical range widgets, for obvious reasons.
They are also not quite the same for scale widgets as they are for scrollbars, for
somewhat less obvious reasons (possibly to avoid confusion between the keys for
horizontal and vertical scrollbars in scrolled windows, where both operate on the same
area).

Vertical Range Widgets

All vertical range widgets can be operated with the up and down arrow keys, as well as
with thePage Up andPage Downkeys. The arrows move the slider up and down by
step_increment , while Page Up andPage Down move it bypage_increment

The user can also move the slider all the way to one end or the other of the trough using
the keyboard. With the VScale widget, this is done withitoeneandEnd keys,

whereas with the VScrollbar widget, this is done by typGuntrol-Page Up and
Control-Page Down

Horizontal Range Widgets

The left and right arrow keys work as you might expect in these widgets, moving the
slider back and forth bytep_increment . TheHomeandEnd keys move the slider to
the ends of the trough. For the HScale widget, moving the slidgabg_increment

is accomplished witlControl-Left andControl-Right , while for HScrollbar, it's
done withControl-Home andControl-End

Chapter 8. Range Widgets

8.5. Example

This example is a somewhat modified version of the "range controls" test from

testgtk.c . It basically puts up a window with three range widgets all connected to

the same adjustment, and a couple of controls for adjusting some of the parameters
mentioned above and in the section on adjustments, so you can see how they affect the
way these widgets work for the user.

/* example-start rangewidgets rangewidgets.c */
#include <gtk/gtk.h>

GtkWidget *hscale, *vscale;

void cb_pos_menu_select(GtkWidget *jitem,
GtkPositionType pos)

{
/* Set the value position on both scale widgets */
gtk_scale_set_value_pos (GTK_SCALE (hscale), pos);
gtk _scale_set value_pos (GTK_SCALE (vscale), pos);

}

void cb_update_menu_select(GtkWidget *jitem,

GtkUpdateType policy)

{
/* Set the update policy for both scale widgets */
gtk_range_set _update policy (GTK_RANGE (hscale), policy);
gtk_range_set_update_policy (GTK_RANGE (vscale), policy);

}

void cb_digits_scale(GtkAdjustment *adj)
{

/* Set the number of decimal places to which adj-
>value is rounded */

gtk_scale_set _digits (GTK_SCALE (hscale), (gint) adj-
>value);

81

Chapter 8. Range Widgets

82

gtk_scale_set_digits (GTK_SCALE (vscale), (gint) adj-
>value);

}

void cb_page_size(GtkAdjustment *get,
GtkAdjustment *set)
{
[* Set the page size and page increment size of the sample
* adjustment to the value speci-
fied by the "Page Size" scale */
set->page_size = get->value;
set->page_increment = get->value;
/* Now emit the "changed" signal to reconfigure all the wid-
gets that
* are attached to this adjustment */
gtk_signal_emit_by name (GTK_OBJECT (set), "changed");
}

void cb_draw_value(GtkToggleButton *button)
{

/* Turn the value display on the scale wid-
gets off or on depending

* on the state of the checkbutton */

gtk _scale_set draw_value (GTK_SCALE (hscale), button-
>active);

gtk_scale_set_draw_value (GTK_SCALE (vscale), button-
>active);

}

[* Convenience functions */
GtkWidget *make_menu_item(gchar *name,
GtkSignalFunc callback,
gpointer data)

GtkWidget *item;

Chapter 8. Range Widgets

item = gtk_menu_item_new_with_label (name);
gtk_signal_connect (GTK_OBJECT (item), "activate",

callback, data);
gtk_widget_show (item);

return(item);

}

void scale_set default_values(GtkScale *scale)

{
gtk_range_set_update_policy (GTK_RANGE (scale),

GTK_UPDATE_CONTINUOUS);

gtk _scale_set digits (scale, 1);
gtk_scale_set value _pos (scale, GTK_POS_TOP);
gtk_scale_set_draw_value (scale, TRUE);

}

/* makes the sample window */

void create_range_controls(void)
{
GtkWidget *window;
GtkWidget *box1, *box2, *box3;
GtkWidget *button;
GtkWidget *scrollbar;
GtkWidget *separator;
GtkWidget *opt, *menu, *item;
GtkWidget *label;
GtkWidget *scale;
GtkObject *adjl, *adj2;

/* Standard window-creating stuff */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC(gtk_main_quit),
NULL);

83

Chapter 8. Range Widgets

84

gtk_window_set_title (GTK_WINDOW (win-

dow), "range controls");

boxl = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), box1);
gtk_widget _show (box1);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

/* value, lower, up-

per, step_increment, page_increment, page_size */

/* Note that the page_size value only makes a difference for
* scrollbar widgets, and the high-

est value you'll get is actually

* (upper - page_size). */
adjl = gtk_adjustment_new (0.0, 0.0, 101.0, 0.1, 1.0, 1.0);

vscale = gtk _vscale_new (GTK_ADJUSTMENT (adjl));
scale_set_default_values (GTK_SCALE (vscale));
gtk_box_pack_start (GTK_BOX (box2), vscale, TRUE, TRUE, 0);
gtk_widget_show (vscale);

box3 = gtk_vbox_new (FALSE, 10);
gtk_box_pack_start (GTK_BOX (box2), box3, TRUE, TRUE, 0);
gtk_widget_show (box3);

/* Reuse the same adjustment */

hscale = gtk hscale_new (GTK_ADJUSTMENT (adjl));
gtk_widget_set_usize (GTK_WIDGET (hscale), 200, 30);
scale_set_default_values (GTK_SCALE (hscale));
gtk_box_pack_start (GTK_BOX (box3), hscale, TRUE, TRUE, 0);
gtk_widget_show (hscale);

/* Reuse the same adjustment again */

Chapter 8. Range Widgets

scrollbar = gtk_hscrollbar_new (GTK_ADJUSTMENT (adjl));
/* Notice how this causes the scales to always be updated
* continuously when the scrollbar is moved */
gtk_range_set_update_policy (GTK_RANGE (scrollbar),
GTK_UPDATE_CONTINUOUS);

gtk_box_pack_start (GTK_BOX (box3), scroll-

bar, TRUE, TRUE, 0);
gtk_widget_show (scrollbar);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget _show (box2);

/* A checkbutton to control whether the value is dis-

played or not */
but-

ton = gtk_check_button_new_with_label("Display value on scale widgets");
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (but-

ton), TRUE);
gtk_signal_connect (GTK_OBJECT (button), "toggled",

GTK_SIGNAL_FUNC(cb_draw_value), NULL);

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* An option menu to change the position of the value */

label = gtk label new ("Scale Value Position:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

opt = gtk_option_menu_new();
menu = gtk_menu_new();

item = make_menu_item ("Top",

85

Chapter 8. Range Widgets

GTK_SIGNAL_FUNC(cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_TOP));
gtk_menu_append (GTK_MENU (menu), item);

item = make_menu_item ("Bot-
tom", GTK_SIGNAL_FUNC (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_BOTTOM));
gtk_menu_append (GTK_MENU (menu), item);

item = make_menu_item ("Left", GTK_SIGNAL _FUNC (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_LEFT));
gtk_menu_append (GTK_MENU (menu), item);

item = make_menu_item ("Right", GTK_SIGNAL_FUNC (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_RIGHT));
gtk_menu_append (GTK_MENU (menu), item);

gtk_option_menu_set_menu (GTK_OPTION_MENU (opt), menu);
gtk_box_pack_start (GTK_BOX (box2), opt, TRUE, TRUE, 0);
gtk_widget _show (opt);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget _show (box2);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* Yet another option menu, this time for the update pol-

icy of the
* scale widgets */
label = gtk label new ("Scale Update Policy:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

opt = gtk_option_menu_new();
menu = gtk_menu_new();

86

Chapter 8. Range Widgets

item = make_menu_item ("Continuous",
GTK_SIGNAL_FUNC (cb_update_menu_select),
GINT_TO_POINTER (GTK_UPDATE_CONTINUOUS));
gtk_menu_append (GTK_MENU (menu), item);

item = make_menu_item ("Discontinuous",
GTK_SIGNAL_FUNC (cb_update_menu_select),
GINT_TO_POINTER (GTK_UPDATE_DISCONTINUOUS)):
gtk_menu_append (GTK_MENU (menu), item);

item = make_menu_item ("Delayed",
GTK_SIGNAL_FUNC (cb_update_menu_select),
GINT_TO_POINTER (GTK_UPDATE_DELAYED));
gtk_menu_append (GTK_MENU (menu), item);

gtk_option_menu_set_ menu (GTK_OPTION_MENU (opt), menu);
gtk_box_pack_start (GTK_BOX (box2), opt, TRUE, TRUE, 0);
gtk_widget_show (opt);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* An HScale widget for adjusting the number of dig-
its on the
* sample scales. */
label = gtk _label_new ("Scale Digits:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

adj2 = gtk_adjustment_new (1.0, 0.0, 5.0, 1.0, 1.0, 0.0);
gtk_signal_connect (GTK_OBJECT (adj2), "value_changed",

GTK_SIGNAL_FUNC (cb_digits_scale), NULL);
scale = gtk_hscale_new (GTK_ADJUSTMENT (adj2));
gtk_scale_set_digits (GTK_SCALE (scale), 0);

87

Chapter 8. Range Widgets

88

gtk_box_pack_start (GTK_BOX (box2), scale, TRUE, TRUE, 0);
gtk_widget_show (scale);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* And, one last HScale widget for adjust-

ing the page size of the

* scrollbar. */

label = gtk label new ("Scrollbar Page Size:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

adj2 = gtk_adjustment_new (1.0, 1.0, 101.0, 1.0, 1.0, 0.0);

gtk_signal_connect (GTK_OBJECT (adj2), "value_changed",
GTK_SIGNAL_FUNC (cb_page_size), adjl);

scale = gtk_hscale_new (GTK_ADJUSTMENT (adj2));

gtk_scale_set digits (GTK_SCALE (scale), 0);

gtk_box_pack_start (GTK_BOX (box2), scale, TRUE, TRUE, 0);

gtk_widget_show (scale);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

separator = gtk_hseparator_new ();
gtk_box_pack_start (GTK_BOX (box1), separa-

tor, FALSE, TRUE, 0);

gtk_widget_show (separator);

box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0);
gtk_widget_show (box2);

Chapter 8. Range Widgets

button = gtk_button_new_with_label ("Quit");

gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC(gtk_main_quit),
NULL);

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);

GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);

gtk_widget_grab_default (button);

gtk_widget_show (button);

gtk_widget_show (window);

}

int main(int argc,
char *argv[])

{ gtk_init(&argc, &argv);
create_range_controls();
gtk_main();
return(0);

}

/* example-end */

You will notice that the program does not cgik_signal_connect for the
"delete_event”, but only for the "destroy" signal. This will still perform the desired
function, because an unhandled "delete_event" will result in a "destroy" signal being
given to the window.

89

Chapter 9. Miscellaneous Widgets

9.1. Labels

Labels are used a lot in GTK, and are relatively simple. Labels emit no signals as they
do not have an associated X window. If you need to catch signals, or do clipping, place

it inside a[EventBdx widget or a Button widget.

To create a new label, use:
GtkWidget *gtk_label_new(char *str);

The sole argument is the string you wish the label to display.

To change the label’s text after creation, use the function:

void gtk_label_set_text(GtkLabel *label,
char *str);

The first argument is the label you created previously (cast usinGTkeLABEL()
macro), and the second is the new string.

The space needed for the new string will be automatically adjusted if needed. You can
produce multi-line labels by putting line breaks in the label string.

To retrieve the current string, use:

void gtk label get(GtkLabel *label,
char **str);

The first argument is the label you've created, and the second, the return for the string.
Do not free the return string, as it is used internally by GTK.

The label text can be justified using:

void gtk_label_set_justify(GtkLabel *|label,
GtkJustification jtype);

90

Chapter 9. Miscellaneous Widgets

Values forjtype are:

GTK_JUSTIFY_LEFT
GTK_JUSTIFY_RIGHT
GTK_JUSTIFY_CENTER (the default)
GTK_JUSTIFY_FILL

The label widget is also capable of line wrapping the text automatically. This can be
activated using:

void gtk label _set line_wrap (GtkLabel *label,

gboolean wrap);

Thewrap argument takes a TRUE or FALSE value.

If you want your label underlined, then you can set a pattern on the label:

void gtk_label_set_pattern (GtkLabel *label,

const gchar *pattern);

The pattern argument indicates how the underlining should look. It consists of a string
of underscore and space characters. An underscore indicates that the corresponding
character in the label should be underlined. For example, the string " would
underline the first two characters and eight and ninth characters.

Below is a short example to illustrate these functions. This example makes use of the
Frame widget to better demonstrate the label styles. You can ignore this for now as the
widget is explained later on.

/* example-start label label.c */

int main(int argc,

{

char *argv[])

static GtkWidget *window = NULL;
GtkWidget *hbox;
GtkWidget *vbox;
GtkWidget *frame;

91

Chapter 9. Miscellaneous Widgets

GtkWidget *label;

[* Initialise GTK */
gtk_init(&argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_signal _connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC(gtk_main_quit),
NULL);

gtk_window_set_title (GTK_WINDOW (window), “"Label");

vbox = gtk_vbox_new (FALSE, 5);

hbox = gtk_hbox new (FALSE, 5);

gtk_container_add (GTK_CONTAINER (window), hbox);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (window), 5);

frame = gtk_frame_new ("Normal Label),

label = gtk label_new ("This is a Normal label);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk frame_new ("Multi-line Label);
label = gtk label new ("This is a Multi-
line label.\nSecond line\n" \
"Third line");
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk frame_new ("Left Justified Label);

label = gtk label new ("This is a Left-Justified\n" \

"Multi-line label\nThird line");

gtk _label_set justify (GTK_LABEL (label), GTK_JUSTIFY_LEFT);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk frame_new ("Right Justified Label");

92

Chapter 9. Miscellaneous Widgets

label = gtk _label_new ("This is a Right-Justified\nMulti-

line label.\n" \

"Fourth line, (j/k)");
gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_RIGHT);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

vbox = gtk_vbox_new (FALSE, 5);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
frame = gtk frame_new ("Line wrapped label");
label = gtk _label_new ("This is an example of a line-
wrapped label. It "\
"should not be taking up the en-

tire " [* big space to test spacing *N\
"width allocated to it, but automatically " \
"wraps the words to fit. "\

"The time has come, for all good men, to come to " \

"the aid of their party. "\

"The sixth sheik’s six sheep’s sick.\n" \

" It supports multiple paragraphs correctly, " \

"and correctly adds "\

"many extra spaces. ");

gtk label_set line_wrap (GTK_LABEL (label), TRUE);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk frame_new ("Filled, wrapped label");

label = gtk _label_new ("This is an example of a line-
wrapped, filled label. "\

"It should be taking "\

"up the entire width allocated to it. "\
"Here is a sentence to prove "\

"my point. Here is another sentence. "\

"Here comes the sun, do de do de do.\n"™\

" This is a new paragraph.\n™\
This is another newer, longer, better " \
"paragraph. It is coming to an end, "\

93

Chapter 9. Miscellaneous Widgets

}

"unfortunately.");

gtk_label_set justify (GTK_LABEL (label), GTK_JUSTIFY_FILL);
gtk_label_set_line_wrap (GTK_LABEL (label), TRUE);
gtk_container_add (GTK_CONTAINER (frame), label);

gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk _frame_new ("Underlined label);

label = gtk _label_new ("This label is underlined\n"

"This one is underlined in quite a funky fashion");

gtk _label_set justify (GTK_LABEL (label), GTK JUSTIFY_LEFT);
gtk_label_set_pattern (GTK_LABEL (label),

gtk _container_add (GTK_CONT_AINER (framej, label);

gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

gtk_widget_show_all (window);
gtk_main ();

return(0);

/* example-end */

9.2. Arrows

The Arrow widget draws an arrowhead, facing in a number of possible directions and
having a number of possible styles. It can be very useful when placed on a button in
many applications. Like the Label widget, it emits no signals.

94

There are only two functions for manipulating an Arrow widget:

GtkWidget *gtk_arrow_new(GtkArrowType arrow_type,

GtkShadowType shadow_type);

void gtk_arrow_set(GtkArrow *arrow,

Chapter 9. Miscellaneous Widgets

GtkArrowType arrow_type,
GtkShadowType shadow_type);

The first creates a new arrow widget with the indicated type and appearance. The
second allows these values to be altered retrospectivelyarftwe _type argument
may take one of the following values:

GTK_ARROW_UP
GTK_ARROW_DOWN
GTK_ARROW_LEFT

GTK_ARROW_RIGHT

These values obviously indicate the direction in which the arrow will point. The
shadow_type argument may take one of these values:

GTK_SHADOW._IN
GTK_SHADOW_OUT (the default)
GTK_SHADOW_ETCHED_IN
GTK_SHADOW_ETCHED_OUT

Here’s a brief example to illustrate their use.

[* example-start arrow arrow.c */
#include <gtk/gtk.h>

/* Create an Arrow widget with the specified parameters
* and pack it into a button */
GtkWidget *create_arrow_button(GtkArrowType arrow_type,
GtkShadowType shadow_type)
{
GtkWidget *button;
GtkWidget *arrow;

button = gtk_button_new();
arrow = gtk_arrow_new (arrow_type, shadow_type);

gtk_container_add (GTK_CONTAINER (button), arrow);

95

Chapter 9. Miscellaneous Widgets

gtk_widget_show(button);
gtk_widget_show(arrow);

return(button);

}

int main(int argc,
char *argv[])
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;
GtkWidget *box;

/* Initialize the toolkit */
gtk_init (&argc, &argv);

/* Create a new window */
window = gtk _window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Arrow Buttons");

[* It's a good idea to do this for all windows. */
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit), NULL);

[* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a box to hold the arrows/buttons */

box = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (box), 2);
gtk_container_add (GTK_CONTAINER (window), box);

/* Pack and show all our widgets */
gtk_widget_show(box);

96

Chapter 9. Miscellaneous Widgets

button = create_arrow_button(GTK_ARROW_UP, GTK_SHADOW_IN);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

button = create_arrow_button(GTK_ARROW_DOWN, GTK_SHADOW_OUT);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

button = cre-
ate_arrow_button(GTK_ARROW_LEFT, GTK_SHADOW_ETCHED_IN);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

button = cre-
ate_arrow_button(GTK_ARROW_RIGHT, GTK_SHADOW_ETCHED_OUT);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

gtk_widget_show (window);

/* Rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return(0);

}

[* example-end */

9.3. The Tooltips Object

These are the little text strings that pop up when you leave your pointer over a button or
other widget for a few seconds. They are easy to use, so | will just explain them without
giving an example. If you want to see some code, take a look at the testgtk.c program
distributed with GTK.

Widgets that do not receive events (widgets that do not have their own window) will not
work with tooltips.

97

Chapter 9. Miscellaneous Widgets

98

The first call you will use creates a new tooltip. You only need to do this once for a set
of tooltips as thestkTooltips ~ object this function returns can be used to create
multiple tooltips.

GtkTooltips *gtk_tooltips_new(void);

Once you have created a new tooltip, and the widget you wish to use it on, simply use
this call to set it:

void gtk _tooltips_set_tip(GtkTooltips *tooltips,
GtkWidget *widget,
const gchar *tip_text,
const gchar *tip_private);

The first argument is the tooltip you've already created, followed by the widget you
wish to have this tooltip pop up for, and the text you wish it to say. The last argument is
a text string that can be used as an identifier when using GtkTipsQuery to implement
context sensitive help. For now, you can set it to NULL.

Here’s a short example:

GtkTooltips *tooltips;
GtkWidget *button;

tooltips = gtk_tooltips_new ();
button = gtk button_new_with_label ("button 1");

gtk _tooltips_set_tip (tooltips, button, "This is but-
ton 1", NULL);

There are other calls that can be used with tooltips. | will just list them with a brief
description of what they do.

void gtk_tooltips_enable(GtkTooltips *tooltips);

Chapter 9. Miscellaneous Widgets

Enable a disabled set of tooltips.
void gtk tooltips_disable(GtkTooltips *tooltips);
Disable an enabled set of tooltips.

void gtk_tooltips_set_delay(GtkTooltips *tooltips,
gint delay);

Sets how many milliseconds you have to hold your pointer over the widget before the
tooltip will pop up. The default is 500 milliseconds (half a second).

void gtk tooltips_set colors(GtkTooltips *tooltips,
GdkColor *background,
GdkColor *foreground);
Set the foreground and background color of the tooltips.

And that’s all the functions associated with tooltips. More than you'll ever want to
know :-)

9.4. Progress Bars

Progress bars are used to show the status of an operation. They are pretty easy to use, as
you will see with the code below. But first lets start out with the calls to create a new
progress bar.

There are two ways to create a progress bar, one simple that takes no arguments, and
one that takes an Adjustment object as an argument. If the former is used, the progress
bar creates its own adjustment object.

GtkWidget *gtk_progress_bar_new(void);

GtkWidget *gtk_progress_bar_new_with_adjustment(GtkAdjust-
ment *adjustment);

99

Chapter 9. Miscellaneous Widgets

100

The second method has the advantage that we can use the adjustment object to specify
our own range parameters for the progress bar.

The adjustment of a progress object can be changed dynamically using:

void gtk progress_set adjustment(GtkProgress *progress,
GtkAdjustment *adjustment);

Now that the progress bar has been created we can use it.

void gtk progress_bar _update(GtkProgressBar *pbar,
gfloat percentage);

The first argument is the progress bar you wish to operate on, and the second argument
is the amount "completed"”, meaning the amount the progress bar has been filled from
0-100%. This is passed to the function as a real number ranging from O to 1.

GTK v1.2 has added new functionality to the progress bar that enables it to display its
value in different ways, and to inform the user of its current value and its range.

A progress bar may be set to one of a number of orientations using the function

void gtk_progress_bar_set_orientation(GtkProgressBar *pbar,
GtkProgressBarOrienta-
tion orientation);

Theorientation argument may take one of the following values to indicate the
direction in which the progress bar moves:

GTK_PROGRESS_LEFT_TO_RIGHT
GTK_PROGRESS_RIGHT_TO_LEFT
GTK_PROGRESS_BOTTOM_TO_TOP
GTK_PROGRESS_TOP_TO_BOTTOM

When used as a measure of how far a process has progressed, the ProgressBar can be
set to display its value in either a continuous or discrete mode. In continuous mode, the

progress bar is updated for each value. In discrete mode, the progress bar is updated in
a number of discrete blocks. The number of blocks is also configurable.

Chapter 9. Miscellaneous Widgets

The style of a progress bar can be set using the following function.

void gtk progress_bar_set bar_style(GtkProgressBar *pbar,
GtkProgress-
BarStyle style);

Thestyle parameter can take one of two values:

GTK_PROGRESS_CONTINUOUS
GTK_PROGRESS_DISCRETE

The number of discrete blocks can be set by calling

void gtk _progress_bar_set_discrete_blocks(GtkProgressBar *pbar,
guint blocks);

As well as indicating the amount of progress that has occured, the progress bar may be
set to just indicate that there is some activity. This can be useful in situations where
progress cannot be measured against a value range. Activity mode is not effected by the
bar style that is described above, and overrides it. This mode is either TRUE or FALSE,
and is selected by the following function.

void gtk progress_set_activity_mode(GtkProgress *progress,
guint activ-

ity_mode);

The step size of the activity indicator, and the number of blocks are set using the
following functions.

void gtk _progress_bar_set_activity step(GtkProgressBar *pbar,
guint step);

void gtk progress_bar_set_activity blocks(GtkProgressBar *pbar,
guint blocks);

When in continuous mode, the progress bar can also display a configurable text string
within its trough, using the following function.

101

Chapter 9. Miscellaneous Widgets

102

void gtk_progress_set _format_string(GtkProgress *progress,
gchar *format);

Theformat argument is similiar to one that would be used in prigtf ~ statement.
The following directives may be used within the format string:

+ %p - percentage

%v - value
+ %I - lower range value
« %u - upper range value

The displaying of this text string can be toggled using:

void gtk_progress_set_show_text(GtkProgress *progress,
gint show_text);

Theshow_text argument is a boolean TRUE/FALSE value. The appearance of the
text can be modified further using:

void gtk progress_set text alignment(GtkProgress *progress,
gfloat x_align,
gfloat y_align);

Thex_align andy_align arguments take values between 0.0 and 1.0. Their values
indicate the position of the text string within the trough. Values of 0.0 for both would
place the string in the top left hand corner; values of 0.5 (the default) centres the text,
and values of 1.0 places the text in the lower right hand corner.

The current text setting of a progress object can be retrieved using the current or a
specified adjustment value using the following two functions. The character string
returned by these functions should be freed by the application (using the g_free()
function). These functions return the formatted string that would be displayed within
the trough.

gchar *gtk_progress_get_current_text(GtkProgress *progress);

Chapter 9. Miscellaneous Widgets

gchar *gtk_progress_get_text from_value(GtkProgress *progress,
gfloat value);

There is yet another way to change the range and value of a progress object using the
following function:

void gtk_progress_configure(GtkProgress *progress,

gfloat value,
gfloat min,
gfloat max);

This function provides quite a simple interface to the range and value of a progress
object.

The remaining functions can be used to get and set the current value of a progess object
in various types and formats:

void gtk progress_set percentage(GtkProgress *progress,
gfloat percentage);

void gtk progress_set value(GtkProgress *progress,
gfloat value);

gfloat gtk _progress_get value(GtkProgress *progress);
gfloat gtk progress_get current_percentage(GtkProgress *progress);

gfloat gtk _progress_get percentage from_value(GtkProgress *progress,
gfloat value);

These functions are pretty self explanatory. The last function uses the the adjustment of
the specified progess object to compute the percentage value of the given range value.

Progress Bars are usually used with timeouts or other such functions (see section on
[Timeouts, 17O and Tdle Functigns) to give the illusion of multitasking. All will employ
the gtk_progress_bar_update function in the same manner.

103

Chapter 9. Miscellaneous Widgets

Here is an example of the progress bar, updated using timeouts. This code also shows
you how to reset the Progress Bar.

[* example-start progressbar progressbar.c */
#include <gtk/gtk.h>

typedef struct _ProgressData {
GtkWidget *window;
GtkWidget *pbar;
int timer;

} ProgressData;

/* Update the value of the progress bar so that we get
* some movement */
gint progress_timeout(gpointer data)
{
gfloat new_val;
GtkAdjustment *ad;j;

[* Calculate the value of the progress bar using the
* value range set in the adjustment object */

new_val = gtk_progress_get value(GTK_PROGRESS(data)) + 1;
adj = GTK_PROGRESS (data)->adjustment;
if (new_val > adj->upper)

new_val = adj->lower;

/* Set the new value */
gtk_progress_set_value (GTK_PROGRESS (data), new_val);

/* As this is a timeout function, return TRUE so that it

* continues to get called */
return(TRUE);

104

Chapter 9. Miscellaneous Widgets

/* Callback that toggles the text display within the progress
* bar trough */
void toggle_show_text(GtkWidget *widget,

ProgressData *pdata)

{
gtk_progress_set_show_text (GTK_PROGRESS (pdata->pbar),
GTK_TOGGLE_BUTTON (widget)-
>active);
}

/* Callback that toggles the activity mode of the progress

* bar */

void toggle activity mode(GtkWidget *widget,
ProgressData *pdata)

{
gtk_progress_set_activity mode (GTK_PROGRESS (pdata->pbar),
GTK_TOGGLE_BUTTON (widget)-
>active);
}
/* Callback that toggles the continuous mode of the progress
* bar */
void set_continuous_mode(GtkWidget *widget,
ProgressData *pdata)
{

gtk_progress_bar_set_bar_style (GTK_PROGRESS_BAR (pdata-
>pbar),
GTK_PROGRESS_CONTINUOUS);
}

/* Callback that toggles the discrete mode of the progress
* bar */
void set_discrete_mode(GtkWidget *widget,
ProgressData *pdata)
{
gtk_progress_bar_set_bar_style (GTK_PROGRESS_BAR (pdata-
>pbar),

105

Chapter 9. Miscellaneous Widgets

GTK_PROGRESS_DISCRETE);
}

/* Clean up allocated memory and remove the timer */
void destroy_progress(GtkWidget *widget,
ProgressData *pdata)

{
gtk_timeout_remove (pdata->timer);
pdata->timer = 0;
pdata->window = NULL;
g_free(pdata);
gtk_main_quit();

}

int main(int argc,
char *argv[])

{
ProgressData *pdata;
GtkWidget *align;
GtkWidget *separator;
GtkWidget *table;
GtkAdjustment *adj;
GtkWidget *button;
GtkWidget *check;
GtkWidget *vbox;

gtk_init (&argc, &argv);
/* Allocate memory for the data that is passwd to the call-
backs */
pdata = g _malloc(sizeof(ProgressData));
pdata->window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_policy (GTK_WINDOW (pdata-
>window), FALSE, FALSE, TRUE);

gtk_signal_connect (GTK_OBJECT (pdata->window), "destroy",

106

Chapter 9. Miscellaneous Widgets

GTK_SIGNAL_FUNC (destroy_progress),
pdata);
gtk_window_set _title (GTK_WINDOW (pdata-
>window), "GtkProgressBar");
gtk_container_set_border_width (GTK_CONTAINER (pdata-
>window), 0);

vbox = gtk_vbox_new (FALSE, 5);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 10);
gtk_container_add (GTK_CONTAINER (pdata->window), vbox);
gtk_widget_show(vbox);

[* Create a centering alignment object */

align = gtk_alignment_new (0.5, 0.5, 0, 0);

gtk_box_pack_start (GTK_BOX (vbox), align, FALSE, FALSE, 5);
gtk_widget_show(align);

/* Create a Adjusment object to hold the range of the
* progress bar */
adj = (GtkAdjust-

ment *) gtk_adjustment_new (0, 1, 150, 0, 0, 0);

[* Create the GtkProgressBar using the adjustment */
pdata->pbar = gtk_progress_bar_new_with_adjustment (adj);

/* Set the format of the string that can be displayed in the

* trough of the progress bar:

* %p - percentage

* %v - value

* %l - lower range value

* O6u - upper range value */

gtk_progress_set_format_string (GTK_PROGRESS (pdata->pbar),
"%v from [%l-%u] (=%p%%)");

gtk_container_add (GTK_CONTAINER (align), pdata->pbar);

gtk_widget_show(pdata->pbar);

107

Chapter 9. Miscellaneous Widgets

/* Add a timer callback to up-
date the value of the progress bar */
pdata-
>timer = gtk_timeout_add (100, progress_timeout, pdata->pbar);

separator = gtk _hseparator_new ();

gtk_box_pack_start (GTK_BOX (vbox), separa-
tor, FALSE, FALSE, 0);

gtk_widget_show(separator);

/* rows, columns, homogeneous */

table = gtk table_new (2, 3, FALSE);

gtk_box_pack_start (GTK_BOX (vbox), table, FALSE, TRUE, 0);
gtk_widget_show(table);

/* Add a check button to select display-
ing of the trough text */
check = gtk_check_button_new_with_label ("Show text");
gtk_table_attach (GTK_TABLE (table), check, 0, 1, 0, 1,
GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);
gtk_signal_connect (GTK_OBJECT (check), "clicked",
GTK_SIGNAL_FUNC (toggle_show_text),
pdata);
gtk_widget_show(check);

/* Add a check button to toggle activity mode */
check = gtk_check_button_new_with_label ("Activity mode");
gtk_table_attach (GTK_TABLE (table), check, 0, 1, 1, 2,
GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);
gtk_signal_connect (GTK_OBJECT (check), "clicked",
GTK_SIGNAL_FUNC (toggle_activity_mode),
pdata);
gtk_widget_show(check);

separator = gtk _vseparator_new ();

108

Chapter 9. Miscellaneous Widgets

gtk_table_attach (GTK_TABLE (table), separator, 1, 2, 0, 2,
GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);

gtk_widget_show(separator);

/* Add a radio button to select continuous display mode */
but-
ton = gtk _radio_button_new_with_label (NULL, "Continuous");
gtk_table_attach (GTK_TABLE (table), button, 2, 3, 0, 1,
GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (set_continuous_mode),
pdata);
gtk_widget_show (button);

/* Add a radio button to select discrete display mode */
button = gtk_radio_button_new_with_label(
gtk_radio_button_group (GTK_RADIO_BUTTON (button)),
"Discrete™;
gtk_table_attach (GTK_TABLE (table), button, 2, 3, 1, 2,
GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (set_discrete_mode),
pdata);
gtk_widget_show (button);

separator = gtk_hseparator_new ();

gtk_box_pack_start (GTK_BOX (vbox), separa-
tor, FALSE, FALSE, 0);

gtk_widget_show(separator);

/* Add a button to exit the program */

button = gtk button_new_with_label ("close");
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",

109

Chapter 9. Miscellaneous Widgets

(GtkSignal-
Func) gtk _widget_destroy,
GTK_OBJECT (pdata->window));
gtk_box_pack_start (GTK_BOX (vbox), but-
ton, FALSE, FALSE, 0);

/* This makes it so the button is the default. */
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);

/* This grabs this button to be the default button. Sim-
ply hitting

* the "Enter" key will cause this button to activate. */

gtk_widget _grab_default (button);

gtk_widget_show(button);

gtk_widget_show (pdata->window);
gtk_main ();
return(0);

}

/* example-end */

9.5. Dialogs

The Dialog widget is very simple, and is actually just a window with a few things
pre-packed into it for you. The structure for a Dialog is:

struct GtkDialog

{
GtkWindow window;
GtkWidget *vbox;
GtkWidget *action_area,;
2

110

Chapter 9. Miscellaneous Widgets

So you see, it simply creates a window, and then packs a vbox into the top, which
contains a separator and then an hbox called the "action_area".

The Dialog widget can be used for pop-up messages to the user, and other similar tasks.
It is really basic, and there is only one function for the dialog box, which is:

GtkWidget *gtk dialog_new(void);
So to create a new dialog box, use,

GtkWidget *window;
window = gtk _dialog_new ();

This will create the dialog box, and it is now up to you to use it. You could pack a
button in the action_area by doing something like this:

button = ...
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)-
>action_area),
button, TRUE, TRUE, 0);
gtk_widget_show (button);

And you could add to the vbox area by packing, for instance, a label in it, try something
like this:

label = gtk label new ("Dialogs are groovy";
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->vbox),

label, TRUE, TRUE, 0);
gtk_widget_show (label);

As an example in using the dialog box, you could put two buttons in the action_area, a
Cancel button and an Ok button, and a label in the vbox area, asking the user a question
or giving an error etc. Then you could attach a different signal to each of the buttons

and perform the operation the user selects.

If the simple functionality provided by the default vertical and horizontal boxes in the
two areas doesn't give you enough control for your application, then you can simply

111

Chapter 9. Miscellaneous Widgets

pack another layout widget into the boxes provided. For example, you could pack a
table into the vertical box.

9.6. Pixmaps

Pixmaps are data structures that contain pictures. These pictures can be used in various
places, but most commonly as icons on the X desktop, or as cursors.

A pixmap which only has 2 colors is called a bitmap, and there are a few additional
routines for handling this common special case.

To understand pixmaps, it would help to understand how X window system works.
Under X, applications do not need to be running on the same computer that is
interacting with the user. Instead, the various applications, called "clients", all
communicate with a program which displays the graphics and handles the keyboard
and mouse. This program which interacts directly with the user is called a "display
server" or "X server." Since the communication might take place over a network, it’s
important to keep some information with the X server. Pixmaps, for example, are stored
in the memory of the X server. This means that once pixmap values are set, they don’t
need to keep getting transmitted over the network; instead a command is sent to
"display pixmap number XYZ here." Even if you aren’t using X with GTK currently,
using constructs such as Pixmaps will make your programs work acceptably under X.

To use pixmaps in GTK, we must first build a GdkPixmap structure using routines from
the GDK layer. Pixmaps can either be created from in-memory data, or from data read
from a file. We’ll go through each of the calls to create a pixmap.

GdkPixmap *gdk_bitmap_create from_data(GdkWindow *window,

gchar *data,
gint width,
gint height);

This routine is used to create a single-plane pixmap (2 colors) from data in memory.
Each bit of the data represents whether that pixel is off or on. Width and height are in

112

Chapter 9. Miscellaneous Widgets

pixels. The GdkWindow pointer is to the current window, since a pixmap’s resources
are meaningful only in the context of the screen where it is to be displayed.

GdkPixmap *gdk_pixmap_create_from_data(GdkWindow *window,

gchar *data,
gint width,
gint height,
gint depth,

GdkColor *fg,
GdkColor *bg);

This is used to create a pixmap of the given depth (number of colors) from the bitmap
data specifiedg andbg are the foreground and background color to use.

GdkPixmap *gdk_pixmap_create_from_xpm(GdkWindow *window,
GdkBitmap **mask,
Gdk-

Color *tfransparent_color,
const gchar *filename);

XPM format is a readable pixmap representation for the X Window System. It is
widely used and many different utilities are available for creating image files in this
format. The file specified by filename must contain an image in that format and it is
loaded into the pixmap structure. The mask specifies which bits of the pixmap are
opaque. All other bits are colored using the color specified by transparent_color. An
example using this follows below.

GdkPixmap *gdk_pixmap_create_from_xpm_d(GdkWindow *window,
GdkBitmap **mask,
Gdk-

Color *transparent_color,
gchar **data);

Small images can be incorporated into a program as data in the XPM format. A pixmap
is created using this data, instead of reading it from a file. An example of such data is

* XPM */

113

Chapter 9. Miscellaneous Widgets

114

static const char * xpm_data[] = {
"16 16 3 1",

" ¢ None",

¢ #000000000000",

"X ¢ #FFFFFFFFFFFF",

" XXX XX. "
" XXX XXX "

HKXXXXXX. "
" HXXXXXXX. "
" XXXXXXX. "
" XXXXXXX. "
" HKXXXXXX. "
" XXXXXXX. "
" XXXXXXX. "

When we’re done using a pixmap and not likely to reuse it again soon, it is a good idea
to release the resource using gdk_pixmap_unref(). Pixmaps should be considered a
precious resource, because they take up memory in the end-user’s X server process.
Even though the X client you write may run on a powerful "server" computer, the user
may be running the X server on a small personal computer.

Once we've created a pixmap, we can display it as a GTK widget. We must create a
GTK pixmap widget to contain the GDK pixmap. This is done using

GtkWidget *gtk_pixmap_new(GdkPixmap *pixmap,
GdkBitmap *mask);

The other pixmap widget calls are

guint gtk_pixmap_get_type(void);

Chapter 9. Miscellaneous Widgets

void gtk _pixmap_set(GtkPixmap *pixmap,
GdkPixmap *val,
GdkBitmap *mask);

void gtk_pixmap_get(GtkPixmap *pixmap,
GdkPixmap **val,
GdkBitmap **mask);

gtk_pixmap_set is used to change the pixmap that the widget is currently managing.
Val is the pixmap created using GDK.

The following is an example of using a pixmap in a button.
/* example-start pixmap pixmap.c */

#include <gtk/gtk.h>

/* XPM data of Open-File icon */
static const char * xpm_data[] = {
"16 16 3 1"
' ¢ None",

¢ #000000000000",
"X ¢ #FFFFFFFFFFFF",

" XXXXXXX. "
" XXXXXXX. "
" HKXXXXXX. "
" XXXXXXX. "
" XXXXXXX. "
" XXXXXXX. "
" HKXXXXXX. "

115

Chapter 9. Miscellaneous Widgets

! '}

/* when invoked (via signal delete_event), termi-

nates the application.

*/

gint close_application(GtkWidget *widget,
GdkEvent *event,
gpointer data)

gtk_main_quit();
return(FALSE);

/* is invoked when the but-
ton is clicked. It just prints a message.
*/
void button_clicked(GtkWidget *widget,
gpointer data) {
g_print("button clicked\n");

}

int main(int argc,
char *argv[])
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window, *pixmapwid, *button;
GdkPixmap *pixmap;
GdkBitmap *mask;
GtkStyle *style;

/* create the main window, and attach delete_event sig-
nal to terminating
the application */
gtk_init(&argc, &argv);

116

Chapter 9. Miscellaneous Widgets

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_signal_connect(GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (close_application), NULL);
gtk_container_set_border_width(GTK_CONTAINER (win-
dow), 10);
gtk_widget_show(window);

/* now for the pixmap from gdk */
style = gtk_widget_get_style(window);
pixmap = gdk_pixmap_create_from_xpm_d(window-
>window, &mask,
&style-
>hg[GTK_STATE_NORMAL],
(gchar **)xpm_data);

[* a pixmap widget to contain the pixmap */
pixmapwid = gtk pixmap_new(pixmap, mask);
gtk_widget_show(pixmapwid);

/* a button to contain the pixmap widget */

button = gtk_button_new();

gtk_container_add(GTK_CONTAINER(button), pixmapwid);
gtk_container_add(GTK_CONTAINER(window), button);
gtk_widget _show(button);

gtk_signal_connect(GTK_OBJECT(button), "clicked",
GTK_SIGNAL_FUNC(button_clicked), NULL);

/* show the window */
gtk_main ();

return O;
}

/* example-end */

To load a file from an XPM data file called icon0.xpm in the current directory, we
would have created the pixmap thus

117

Chapter 9. Miscellaneous Widgets

118

/* load a pixmap from a file */
pixmap = gdk_pixmap_create_from_xpm(window->window, &mask,
&style-
>bg[GTK_STATE_NORMAL],
"Jicon0.xpm");
pixmapwid = gtk pixmap_new(pixmap, mask);
gtk_widget_show(pixmapwid);
gtk_container_add(GTK_CONTAINER(window), pixmapwid);

A disadvantage of using pixmaps is that the displayed object is always rectangular,
regardless of the image. We would like to create desktops and applications with icons
that have more natural shapes. For example, for a game interface, we would like to have
round buttons to push. The way to do this is using shaped windows.

A shaped window is simply a pixmap where the background pixels are transparent.
This way, when the background image is multi-colored, we don’t overwrite it with a
rectangular, non-matching border around our icon. The following example displays a
full wheelbarrow image on the desktop.

/* example-start wheelbarrow wheelbarrow.c */

#include <gtk/gtk.h>

¥ XPM */
static char * WheelbarrowFull_xpm[] = {
"48 48 64 1",
" ¢ None",

¢ #DF7DCF3CC71B",
"X Cc #965875D669A6",
"o c #71C671C671C6",
"O c #AB699A289A699",
"+ c #965892489658",
"@ c #8E38410330C2",
"# ¢ #D75C7DF769A6",
"$ ¢ #F7DECF3CC71B",
"% c #96588A288E38",
"& c #A69992489E79",

SO Foguneg”g <~ < 0o <sa

N' —_— x‘_‘.

c #8E3886178E38",
c #104008200820",
c #596510401040",
c #C71B30C230C2",
c #C71B9A699658",
C #618561856185",
c #20811C712081",
#104000000000",
#861720812081",
#DF7D4D344103",
H#79E769A671C6",
#861782078617",
#41033CF34103",
#000000000000",
#49241C711040",
#492445144924",
#082008200820",
#69A618611861",
#B6DA71C65144",
Cc #410330C238E3",
¢ #CF3CBAEABGDA",
Cc #71C6451430C2",
¢ #EFBEDBG6CD75C",
c #28A208200820",
c #186110401040",
Cc #596528A21861",
Cc #71C661855965",
c #A69996589658",
c #30C228A230C2",
c #BEFBA289AEBA",
C #596545145144",
c #30C230C230C2",
c #8E3882078617",
Cc #208118612081",
c #38E30C300820",
c #30C2208128A2",
Cc #38E328A238E3",

O 0O O 0O O 0O 0O 0O 0O 0O 0O 0

Chapter 9. Miscellaneous Widgets

119

Chapter 9. Miscellaneous Widgets

120

"X c #514438E34924",
"c Cc #618555555965",
v c #30C2208130C2",
"b c #38E328A230C2",
"n C #28A228A228A2",
"m c #41032CB228A2",
"M c #104010401040",
"N Cc #492438E34103",
"B C #28A2208128A2",
"V c #A699596538E3",
"C c #30C21C711040",
"Z c #30C218611040",
"A C #965865955965",
"S c #618534D32081",
"D c #38E31C711040",
"F ¢ #082000000820",
" .X0o0O
+@#$%0&
" *=-ff0+
" > <12#:34
" 45671#:X3
" +89<02qwo
"e* > 67;ro
"ty> 459@>+&&
"$2u+ ><ipas8*
"%6%;=* *3:.Xa.dfg>
"Ohs$;ya *3d.a8j,Xe.d3g8+ "
" Oh$ka *3d%a8lz,xxc:.e3g54
" Oh$;kO *pd$%svbzz,sxxxxfX..&wn>

Oh$@mO *3dthwisslszjzxxxxxxx3:td8M4 "
Oh$@g& *3d$XNIvwvilim,mNwxxxxxxxfa.:,B*
Oh$@,0d.czllllizZImmgV@V#V @fxxxxxxxf:%j5&
Oh$1hd5llISIICCZrV#r#:#2 AXXXXXXXxxcdwM* ",
0OXg6c¢.%8vwIlZZiggApA:mg:Xxcpexxxxxfdco* ",
2r<6gde3bliZZrVi7TS@SV7TA::gApxxxxxxfdcM ",
5,g-6MN.dfmZZrrSS:#rirDSAX@ AfS5xxxxxfevo",

Chapter 9. Miscellaneous Widgets

+A26jguXtAZZZC7iDiICCrVVii7Cmmmxxxxxx%3g",
" *#16jszN..3DZZZZrCVSA2rZrV7Dmmwxxxx&en",
" p2yFvzssXe:fCZZCiiD7iiZDiDSSZwwxx8e*>",
" OAl<jzxwwc:$d%NDZZZZCCCZCCZZCmxxfd.B ",
" 3206Bwxxszx%et.eaAp77m77mmmf3&eeeg* ",
" @26MvzxNzvibwfpdettttttttttt.c,n& ",
*:16=IsNwwNwgsvslbwwvccc3pcfu<o ,
p;<69BvwwsszsllIbBIllNu<5+
" OS0y6FBlvvvzvzss,u=Blllj=54
" c1-699BIvlllllu7k96MMMg4
" *10y8n6FjvlliIB<166668
" S-kg+>666<M<996-y6n<8*
" p71=4 m69996kD8Z-66698&&
" &i0ycm6n4 ogkl7,0<66669g

" N-k-<> >=01-kuu666>

" ,6ky& &46-10ul,66,

" Ou0<> 066y<ulw<66&
" *kk5 >66By7=xu664

" «M4 466lj<Mxu660 "

" *yy +66uv,ZN666*

" 566,xxj669

" 4666FF666>
" >966666M
" oM6668+

n *4 n,

/* When invoked (via signal delete_event), terminates the appli-
cation */
gint close_application(GtkWidget *widget,

GdkEvent *event,

gpointer data)

gtk_main_quit();
return(FALSE);

121

Chapter 9. Miscellaneous Widgets

}

int main (int argc,
char *argv[])
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window, *pixmap, *fixed;
GdkPixmap *gdk_pixmap;
GdkBitmap *mask;
GtkStyle *style;
GdkGC *gc;

/* Create the main window, and attach delete event sig-
nal to terminate
* the application. Note that the main win-
dow will not have a titlebar
* since we're making it a popup. */
gtk_init (&argc, &argv);
window = gtk_window_new(GTK_WINDOW_POPUP);
gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (close_application), NULL);
gtk_widget_show (window);

/* Now for the pixmap and the pixmap widget */
style = gtk_widget_get_default_style();
gc = style->black_gc;
gdk _pixmap = gdk_pixmap_create_from_xpm_d(window-
>window, &mask,
&style-
>hbg[GTK_STATE_NORMAL],
Wheelbarrow-
Full_xpm);
pixmap = gtk_pixmap_new(gdk_pixmap, mask);
gtk_widget_show(pixmap);

/* To display the pixmap, we use a fixed wid-
get to place the pixmap */

122

Chapter 9. Miscellaneous Widgets

fixed = gtk_fixed_new();

gtk_widget_set_usize(fixed, 200, 200);

gtk_fixed_put(GTK_FIXED(fixed), pixmap, 0, 0);
gtk_container_add(GTK_CONTAINER(window), fixed);
gtk_widget_show(fixed);

/* This masks out everything except for the image itself */
gtk_widget_shape_combine_mask(window, mask, 0, 0);

/* show the window */
gtk_widget_set_uposition(window, 20, 400);
gtk_widget_show(window);

gtk_main ();

return(0);
}

/* example-end */

To make the wheelbarrow image sensitive, we could attach the button press event signal
to make it do something. The following few lines would make the picture sensitive to a
mouse button being pressed which makes the application terminate.

gtk_widget_set_events(window,
gtk_widget_get_events(window) |
GDK_BUTTON_PRESS_MASK);

gtk_signal_connect(GTK_OBJECT(window), "button_press_event",
GTK_SIGNAL_FUNC(close_application), NULL);

9.7. Rulers

Ruler widgets are used to indicate the location of the mouse pointer in a given window.
A window can have a vertical ruler spanning across the width and a horizontal ruler

123

Chapter 9. Miscellaneous Widgets

124

spanning down the height. A small triangular indicator on the ruler shows the exact
location of the pointer relative to the ruler.

A ruler must first be created. Horizontal and vertical rulers are created using
GtkWidget *gtk_hruler_new(void); /* horizontal ruler */
GtkWidget *gtk_vruler_new(void); /* vertical ruler */

Once aruler is created, we can define the unit of measurement. Units of measure for
rulers can b6 TK_PIXELS, GTK_INCHESor GTK_CENTIMETERSThis is set using

void gtk _ruler_set_metric(GtkRuler *ruler,
GtkMetricType metric);

The default measure GTK_PIXELS.
gtk _ruler_set_metric(GTK_RULER(ruler), GTK_PIXELS);

Other important characteristics of a ruler are how to mark the units of scale and where
the position indicator is initially placed. These are set for a ruler using

void gtk_ruler_set_range(GtkRuler *ruler,

gfloat lower,

gfloat upper,
gfloat position,
gfloat max_size);

The lower and upper arguments define the extent of the ruler, and max_size is the
largest possible number that will be displayed. Position defines the initial position of
the pointer indicator within the ruler.

A vertical ruler can span an 800 pixel wide window thus
gtk_ruler_set_range(GTK_RULER(vruler), 0, 800, 0, 800);

The markings displayed on the ruler will be from 0 to 800, with a number for every 100
pixels. If instead we wanted the ruler to range from 7 to 16, we would code

Chapter 9. Miscellaneous Widgets

gtk _ruler_set_range(GTK_RULER(vruler), 7, 16, 0, 20);

The indicator on the ruler is a small triangular mark that indicates the position of the
pointer relative to the ruler. If the ruler is used to follow the mouse pointer, the
motion_notify _event signal should be connected to the motion_notify _event method of
the ruler. To follow all mouse movements within a window area, we would use

#define EVENT_METHOD(i, x) GTK_WIDGET_CLASS(GTK_OBJECT(i)-
>klass)->x

gtk_signal_connect_object(GTK_OBJECT(area), "motion_notify_event”,
(GtkSignal-
Func)EVENT_METHOD(ruler, motion_notify_event),
GTK_OBJECT(ruler));

The following example creates a drawing area with a horizontal ruler above it and a
vertical ruler to the left of it. The size of the drawing area is 600 pixels wide by 400
pixels high. The horizontal ruler spans from 7 to 13 with a mark every 100 pixels, while
the vertical ruler spans from 0 to 400 with a mark every 100 pixels. Placement of the
drawing area and the rulers is done using a table.

[* example-start rulers rulers.c */
#include <gtk/gtk.h>

#define EVENT_METHOD(i, x) GTK_WIDGET_CLASS(GTK_OBJECT(i)-
>klass)->x

#define XSIZE 600
#define YSIZE 400

/* This routine gets control when the close button is clicked */
gint close_application(GtkWidget *widget,

GdkEvent *event,

gpointer data)

gtk_main_quit();

125

Chapter 9. Miscellaneous Widgets

return(FALSE);
}

/* The main routine */
int main(int argc,
char *argv[]) {
GtkWidget *window, *table, *area, *hrule, *vrule;

/* Initialize GTK and create the main window */
gtk_init(&argc, &argv);

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC(close_application), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a table for placing the ruler and the draw-
ing area */

table = gtk table_new(3, 2, FALSE);

gtk_container_add(GTK_CONTAINER(window), table);

area = gtk_drawing_area_new();
gtk_drawing_area_size((Gtk-
DrawingArea *)area, XSIZE, YSIZE);
gtk_table_attach(GTK_TABLE(table), area, 1, 2, 1, 2,
GTK_EXPAND|GTK_FILL, GTK_FILL, 0, 0);
gtk_widget_set_events(area, GDK_POINTER_MOTION_MASK |
GDK_POINTER_MOTION_HINT_MASK);

/* The horizon-
tal ruler goes on top. As the mouse moves across the
* drawing area, a motion_notify_event is passed to the
* appropriate event handler for the ruler. */
hrule = gtk_hruler_new();
gtk_ruler_set_metric(GTK_RULER(hrule), GTK_PIXELS);
gtk_ruler_set_range(GTK_RULER(hrule), 7, 13, 0, 20);
gtk_signal_connect_object(GTK_OBJECT(area), "motion_notify_event",

126

Chapter 9. Miscellaneous Widgets

(GtkSignalFunc)EVENT_METHOD(hrule,
motion_notify_event),
GTK_OBJECT(hrule));
I* GTK_WIDGET_CLASS(GTK_OBJECT(hrule)->klass)-
>motion_notify_event, */
gtk table_attach(GTK_TABLE(table), hrule, 1, 2, 0, 1,
GTK_EXPAND|GTK_SHRINK|GTK_FILL, GTK_FILL, 0, 0);

/* The verti-
cal ruler goes on the left. As the mouse moves across
* the drawing area, a motion_notify_event is passed to the
* appropriate event handler for the ruler. */
vrule = gtk vruler_new();
gtk_ruler_set_metric(GTK_RULER(vrule), GTK_PIXELS);
gtk _ruler_set_range(GTK_RULER(vrule), 0, YSIZE, 10, YSIZE);
gtk_signal_connect_object(GTK_OBJECT(area), "motion_notify event",
(GtkSignalFunc)
GTK_WIDGET_CLASS(GTK_OBJECT(vrule)-
>klass)->
motion_notify _event,
GTK_OBJECT((vrule));
gtk_table_attach(GTK_TABLE(table), vrule, 0, 1, 1, 2,
GTK_FILL, GTK_EXPAND|GTK_SHRINK|GTK_FILL, 0, 0);

/* Now show everything */
gtk_widget_show(area);
gtk_widget_show(hrule);
gtk_widget_show(vrule);
gtk_widget_show(table);
gtk_widget_show(window);
gtk_main();

return(0);

}

/* example-end */

127

Chapter 9. Miscellaneous Widgets

9.8. Statusbars

128

Statusbars are simple widgets used to display a text message. They keep a stack of the
messages pushed onto them, so that popping the current message will re-display the
previous text message.

In order to allow different parts of an application to use the same statusbar to display
messages, the statusbar widget issues Context Identifiers which are used to identify
different "users". The message on top of the stack is the one displayed, no matter what
context it is in. Messages are stacked in last-in-first-out order, not context identifier
order.

A statusbar is created with a call to:
GtkWidget *gtk_statusbar_new(void);

A new Context Identifier is requested using a call to the following function with a short
textual description of the context:

guint gtk _statusbar_get context id(GtkStatusbar *statusbar,
const gchar *con-
text_description);

There are three functions that can operate on statusbars:

guint gtk_statusbar_push(GtkStatusbar *statusbar,
guint context_id,
gchar *text);

void gtk_statusbar_pop(GtkStatusbar *statusbar)
guint context_id);

void gtk_statusbar_remove(GtkStatusbar *statusbar,
guint context_id,
guint message_id);

The first, gtk_statusbar_push, is used to add a new message to the statusbar. It returns a
Message Identifier, which can be passed later to the function gtk_statusbar_remove to

Chapter 9. Miscellaneous Widgets

remove the message with the given Message and Context Identifiers from the
statusbar’s stack.

The function gtk_statusbar_pop removes the message highest in the stack with the
given Context Identifier.

The following example creates a statusbar and two buttons, one for pushing items onto
the statusbar, and one for popping the last item back off.

[* example-start statusbar statusbar.c */

#include <gtk/gtk.h>
#include <glib.h>

GtkWidget *status_bar;

void push_item(GtkWidget *widget,
gpointer data)
{

static int count = 1;
char buff[20];

g_snprintf(buff, 20, "ltem %d", count++);
gtk_statusbar_push(GTK_STATUSBAR(status_bar), GPOINTER_TO_INT(data), buff);

return;

}

void pop_item(GtkWidget *widget,
gpointer data)

{
gtk_statusbar_pop(GTK_STATUSBAR(status_bar), GPOINTER_TO_INT(data));

return;

}

int main(int argc,
char *argv[])

{

129

Chapter 9. Miscellaneous Widgets

GtkWidget *window;
GtkWidget *vbox;
GtkWidget *button;

gint context_id;
gtk_init (&argc, &argv);

/* create a new window */
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_widget_set_usize(GTK_WIDGET (window), 200, 100);
gtk_window_set_title(GTK_WINDOW (window), "GTK Status-
bar Example");
gtk_signal_connect(GTK_OBJECT (window), "delete_event",
(GtkSignalFunc) gtk _exit, NULL);

vbox = gtk_vbox_new(FALSE, 1);
gtk_container_add(GTK_CONTAINER(window), vbox);
gtk_widget_show(vbox);

status_bar = gtk_statusbar_new();

gtk_box_pack_start (GTK_BOX (vbox), sta-
tus_bar, TRUE, TRUE, 0);

gtk_widget_show (status_bar);

context_id = gtk_statusbar_get context_id(
GTK_STATUSBAR(status_bar), "Status-
bar example™);

button = gtk button_new_with_label("push item");
gtk_signal_connect(GTK_OBJECT (button), "clicked",

GTK_SIGNAL_FUNC (push_item), GINT_TO_POINTER(context_id));
gtk_box_pack_start(GTK_BOX(vbox), button, TRUE, TRUE, 2);
gtk_widget_show(button);

button = gtk button_new_with_label("pop last item");

130

Chapter 9. Miscellaneous Widgets

gtk_signal_connect(GTK_OBJECT (button), "clicked",

GTK_SIGNAL_FUNC (pop_item), GINT_TO_POINTER(context_id));
gtk_box_pack_start(GTK_BOX(vbox), button, TRUE, TRUE, 2);
gtk_widget_show(button);

/* always display the win-

dow as the last step so it all splashes on
* the screen at once. */
gtk_widget_show(window);

gtk_main ();

return O;

}

[* example-end */

9.9. Text Entries

The Entry widget allows text to be typed and displayed in a single line text box. The
text may be set with function calls that allow new text to replace, prepend or append the
current contents of the Entry widget.

There are two functions for creating Entry widgets:
GtkWidget *gtk_entry_new(void);
GtkWidget *gtk_entry_new_with_max_length(guintl6 max);

The first just creates a new Entry widget, whilst the second creates a new Entry and sets
a limit on the length of the text within the Entry.

There are several functions for altering the text which is currently within the Entry
widget.

void gtk _entry set text(GtkEntry *entry,
const gchar *text);

131

Chapter 9. Miscellaneous Widgets

132

void gtk _entry append_text(GtkEntry *entry,
const gchar *text);

void gtk_entry prepend_text(GtkEntry *entry,
const gchar *text);

The function gtk_entry_set_text sets the contents of the Entry widget, replacing the
current contents. The functions gtk_entry_append_text and gtk_entry_prepend_text
allow the current contents to be appended and prepended to.

The next function allows the current insertion point to be set.

void gtk_entry set position(GtkEntry *entry,
gint position);

The contents of the Entry can be retrieved by using a call to the following function.
This is useful in the callback functions described below.

gchar *gtk_entry get_text(GtkEntry *entry);

The value returned by this function is used internally, and must not be freed using
either free() or g_free()

If we don’t want the contents of the Entry to be changed by someone typing into it, we
can change its editable state.

void gtk_entry_set_editable(GtkEntry *entry,
ghoolean editable);

The function above allows us to toggle the editable state of the Entry widget by passing
in a TRUE or FALSE value for theditable argument.

If we are using the Entry where we don’t want the text entered to be visible, for
example when a password is being entered, we can use the following function, which
also takes a boolean flag.

void gtk_entry _set visibility(GtkEntry *entry,
gboolean visible);

Chapter 9. Miscellaneous Widgets

A region of the text may be set as selected by using the following function. This would
most often be used after setting some default text in an Entry, making it easy for the
user to remove it.

void gtk_entry_select_region(GtkEntry *entry,
gint start,
gint end);

If we want to catch when the user has entered text, we can connectdctittaee or
changed signal. Activate is raised when the user hits the enter key within the Entry
widget. Changed is raised when the text changes at all, e.g., for every character entered
or removed.

The following code is an example of using an Entry widget.

[* example-start entry entry.c */

#include <stdio.h>
#include <gtk/gtk.h>

void enter_callback(GtkWidget *widget,
GtkWidget *entry)
{
gchar *entry_text;
entry text = gtk_entry_get_text(GTK_ENTRY(entry));
printf("Entry contents: %s\n", entry_text);

}

void entry toggle_editable(GtkWidget *checkbutton,
Gtkwidget *entry)
{
gtk_entry_set_editable(GTK_ENTRY (entry),
GTK_TOGGLE_BUTTON(checkbutton)->active);

}

void entry_toggle visibility(GtkWidget *checkbutton,
GtkWidget *entry)

{

133

Chapter 9. Miscellaneous Widgets

134

}

gtk_entry_set_visibility(GTK_ENTRY (entry),
GTK_TOGGLE_BUTTON(checkbutton)->active);

int main(int argc,

{

char *argv[])

GtkWidget *window;
GtkWidget *vbox, *hbox;
GtkWidget *entry;
GtkWidget *button;
GtkWidget *check;

gtk_init (&argc, &argv);

[* create a new window */

window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

gtk_widget_set_usize(GTK_WIDGET (window), 200, 100);

gtk_window_set_title(GTK_WINDOW (window), "GTK Entry");

gtk_signal_connect(GTK_OBJECT (window), "delete_event",
(GtkSignalFunc) gtk_exit, NULL);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

entry = gtk_entry_new_with_max_length (50);
gtk_signal_connect(GTK_OBJECT(entry), "activate",
GTK_SIGNAL_FUNC(enter_callback),
entry);
gtk_entry_set_text (GTK_ENTRY (entry), "hello");
gtk_entry_append_text (GTK_ENTRY (entry), " world");
gtk_entry_select_region (GTK_ENTRY (entry),
0, GTK_ENTRY(entry)->text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE,
gtk_widget_show (entry);

0);

Chapter 9. Miscellaneous Widgets

hbox = gtk_hbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (vbox), hbox);
gtk_widget_show (hbox);

check = gtk_check_button_new_with_label("Editable");

gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, O0);

gtk_signal_connect (GTK_OBJECT(check), "toggled",
GTK_SIGNAL_FUNC(entry_toggle_editable), entry);

gtk_toggle_button_set active(GTK_TOGGLE_BUTTON(check), TRUE);

gtk_widget_show (check);

check = gtk_check_button_new_with_label("Visible");

gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, O0);

gtk_signal_connect (GTK_OBJECT(check), "toggled",
GTK_SIGNAL_FUNC(entry_toggle_visibility), entry);

gtk _toggle_button_set active(GTK_TOGGLE_BUTTON(check), TRUE);

gtk_widget_show (check);

button = gtk button_new_with_label ("Close");
gtk_signal_connect_object (GTK_OBJECT (button), “clicked",
GTK_SIGNAL_FUNC(gtk_exit),
GTK_OBJECT (window));
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show(window);
gtk_main();

return(0);

}

/* example-end */

135

Chapter 9. Miscellaneous Widgets

9.10. Spin Buttons

136

The Spin Button widget is generally used to allow the user to select a value from a
range of numeric values. It consists of a text entry box with up and down arrow buttons
attached to the side. Selecting one of the buttons causes the value to "spin" up and
down the range of possible values. The entry box may also be edited directly to enter a
specific value.

The Spin Button allows the value to have zero or a number of decimal places and to be
incremented/decremented in configurable steps. The action of holding down one of the
buttons optionally results in an acceleration of change in the value according to how
long it is depressed.

The Spin Button uses an Adjusiment object to hold information about the range of
values that the spin button can take. This makes for a powerful Spin Button widget.

Recall that an adjustment widget is created with the following function, which
illustrates the information that it holds:

GtkObject *gtk_adjustment_new(gfloat value,
gfloat lower,
gfloat upper,
gfloat step_increment,
gfloat page_increment,
ofloat page_size);

These attributes of an Adjustment are used by the Spin Button in the following way:

- value : initial value for the Spin Button
 lower :lower range value
« upper : upper range value

- step_increment :value to increment/decrement when pressing mouse button 1 on
a button

« page_increment :Vvalue to increment/decrement when pressing mouse button 2 on
a button

Chapter 9. Miscellaneous Widgets

« page_size :unused

Additionally, mouse button 3 can be used to jump directly tougyeer or lower
values when used to select one of the buttons. Lets look at how to create a Spin Button:

GtkWidget *gtk_spin_button_new(GtkAdjustment *adjustment,
gfloat climb_rate,
guint digits);

Theclimb_rate argument take a value between 0.0 and 1.0 and indicates the amount
of acceleration that the Spin Button has. ™igts argument specifies the number of
decimal places to which the value will be displayed.

A Spin Button can be reconfigured after creation using the following function:

void gtk_spin_button_configure(GtkSpinButton *spin_button,
GtkAdjustment *adjustment,
gfloat climb_rate,
guint digits);

Thespin_button argument specifies the Spin Button widget that is to be
reconfigured. The other arguments are as specified above.

The adjustment can be set and retrieved independantly using the following two
functions:

void gtk_spin_button_set_adjustment(GtkSpinBut-
ton *spin_button,

GtkAdjustment *adjust-
ment);

GtkAdjustment *gtk_spin_button_get_adjustment(GtkSpinBut-
ton *spin_button);

The number of decimal places can also be altered using:

void gtk_spin_button_set_digits(GtkSpinButton *spin_button,
guint digits) ;

137

Chapter 9. Miscellaneous Widgets

The value that a Spin Button is currently displaying can be changed using the following
function:

void gtk_spin_button_set_value(GtkSpinButton *spin_button,
ofloat value);

The current value of a Spin Button can be retrieved as either a floating point or integer
value with the following functions:

gfloat gtk spin_button_get value as_float(GtkSpinBut-
ton *spin_button);

gint gtk _spin_button_get value_as_int(GtkSpinBut-
ton *spin_button);

If you want to alter the value of a Spin Value relative to its current value, then the
following function can be used:

void gtk _spin_button_spin(GtkSpinButton *spin_button,
GtkSpinType direction,
gfloat increment);

Thedirection ~ parameter can take one of the following values:

GTK_SPIN_STEP_FORWARD
GTK_SPIN_STEP_BACKWARD
GTK_SPIN_PAGE_FORWARD
GTK_SPIN_PAGE_BACKWARD
GTK_SPIN_HOME
GTK_SPIN_END
GTK_SPIN_USER_DEFINED

This function packs in quite a bit of functionality, which I will attempt to clearly
explain. Many of these settings use values from the Adjustment object that is associated
with a Spin Button.

138

Chapter 9. Miscellaneous Widgets

GTK_SPIN_STEP_FORWARINAGTK_SPIN_STEP_BACKWARIhange the value of the
Spin Button by the amount specified ingrement , unlessncrement is equal to O,
in which case the value is changed by the valugteg_increment in theAdjustment.

GTK_SPIN_PAGE_FORWARIDJGTK_SPIN_PAGE_BACKWARIMply alter the value
of the Spin Button byncrement

GTK_SPIN_HOMBets the value of the Spin Button to the bottom of the Adjustments
range.

GTK_SPIN_ENDsets the value of the Spin Button to the top of the Adjustments range.

GTK_SPIN_USER_DEFINEimply alters the value of the Spin Button by the specified
amount.

We move away from functions for setting and retreving the range attributes of the Spin
Button now, and move onto functions that effect the appearance and behaviour of the
Spin Button widget itself.

The first of these functions is used to constrain the text box of the Spin Button such that
it may only contain a numeric value. This prevents a user from typing anything other
than numeric values into the text box of a Spin Button:

void gtk_spin_button_set_numeric(GtkSpinButton *spin_button,
gboolean numeric);

You can set whether a Spin Button will wrap around between the upper and lower
range values with the following function:

void gtk_spin_button_set_wrap(GtkSpinButton *spin_button,
gboolean wrap);

You can set a Spin Button to round the value to the neatestincrement , which is
set within the Adjustment object used with the Spin Button. This is accomplished with
the following function:

void gtk spin_button_set_snap_to_ticks(GtkSpinBut-

ton *spin_button,
gboolean snap_to_ticks);

139

Chapter 9. Miscellaneous Widgets

140

The update policy of a Spin Button can be changed with the following function:

void gtk spin_button_set_update_policy(GtkSpinBut-
ton *spin_button,

GtkSpinButtonUpdatePol-
icy policy);

The possible values giolicy are eitheiIGTK_UPDATE_ALWAYS
GTK_UPDATE_IF_VALID.

These policies affect the behavior of a Spin Button when parsing inserted text and
syncing its value with the values of the Adjustment.

In the case oGTK_UPDATE_IF_VALIDthe Spin Button only value gets changed if the
text input is a numeric value that is within the range specified by the Adjustment.
Otherwise the text is reset to the current value.

In case oiGTK_UPDATE_ALWAM8e ignore errors while converting text into a numeric
value.

The appearance of the buttons used in a Spin Button can be changed using the
following function:

void gtk_spin_button_set_shadow_type(GtkSpinBut-
ton *spin_button,

GtkShadow-
Type shadow_type);

As usual, theshadow_type can be one of:

GTK_SHADOW_IN
GTK_SHADOW_OUT
GTK_SHADOW_ETCHED_IN
GTK_SHADOW_ETCHED_OUT

Finally, you can explicitly request that a Spin Button update itself:

void gtk_spin_button_update(GtkSpinButton *spin_button);

Chapter 9. Miscellaneous Widgets

It's example time again.

[* example-start spinbutton spinbutton.c */

#include <stdio.h>
#include <gtk/gtk.h>

static GtkWidget *spinnerl,

void toggle snap(GtkWidget *widget,

GtkSpinButton *spin)
{

gtk_spin_button_set_snap_to_ticks (spin, GTK_TOGGLE_BUTTON (widget)-
>active);

}

void toggle numeric(GtkWidget *widget,
GtkSpinButton *spin)
{
gtk_spin_button_set_numeric (spin, GTK_TOGGLE_BUTTON (widget)-
>active);

}

void change_digits(GtkWidget *widget,
GtkSpinButton *spin)
{
gtk_spin_button_set_digits (GTK_SPIN_BUTTON (spinnerl),
gtk_spin_button_get_value_as_int (spin));

}

void get value(GtkWidget *widget,
gpointer data)

{
gchar buf[32];

GtkLabel *label,
GtkSpinButton *spin;

spin = GTK_SPIN_BUTTON (spinnerl);

141

Chapter 9. Miscellaneous Widgets

la-
bel = GTK_LABEL (gtk _object _get user _data (GTK_OBJECT (widget)));
if (GPOINTER_TO_INT (data) == 1)
sprintf (buf, "%d", gtk_spin_button_get_value_as_int (spin));
else
sprintf (buf, "%0.*f", spin->digits,
gtk_spin_button_get_value_as_float (spin));
gtk_label_set_text (label, buf);
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *hbox;
GtkWidget *main_vbox;
GtkWidget *vbox;
GtkWidget *vbox2;
GtkWidget *spinner2;
GtkWidget *spinner;
GtkWidget *button;
GtkWidget *label;
GtkWidget *val_label;
GtkAdjustment *ad;j;

[* Initialise GTK */
gtk_init(&argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit),
NULL);

gtk_window_set _title (GTK_WINDOW (window), "Spin Button");

142

Chapter 9. Miscellaneous Widgets

main_vbox = gtk vbox _new (FALSE, 5);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 10);
gtk_container_add (GTK_CONTAINER (window), main_vbox);

frame = gtk frame_new ("Not accelerated");
gtk_box_pack_start (GTK_BOX (main_vbox), frame, TRUE, TRUE, O0);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 5);
gtk_container_add (GTK_CONTAINER (frame), vbox);

/* Day, month, year spinners */

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, TRUE, TRUE, 5);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk _label_new ("Day :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjust-

ment *) gtk_adjustment_new (1.0, 1.0, 31.0, 1.0,

5.0, 0.0);

spinner = gtk_spin_button_new (adj, 0, 0);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), TRUE);
gtk_spin_button_set_shadow_type (GTK_SPIN_BUTTON (spinner),
GTK_SHADOW_OUT);
gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Month :");

143

Chapter 9. Miscellaneous Widgets

144

gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjust-

ment *) gtk_adjustment_new (1.0, 1.0, 12.0, 1.0,

5.0, 0.0);
spinner = gtk_spin_button_new (adj, 0, 0);
gtk_spin_button_set wrap (GTK_SPIN_BUTTON (spinner), TRUE);
gtk_spin_button_set _shadow_type (GTK_SPIN_BUTTON (spinner),
GTK_SHADOW_ETCHED_IN);
gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0);

vbox2 = gtk vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk label new ("Year :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjust-

ment *) gtk_adjustment_new (1998.0, 0.0, 2100.0,

1.0, 100.0, 0.0);
spinner = gtk_spin_button_new (adj, 0, 0);
gtk_spin_button_set wrap (GTK_SPIN_BUTTON (spinner), FALSE);
gtk_spin_button_set_shadow_type (GTK_SPIN_BUTTON (spinner),
GTK_SHADOW_IN);
gtk_widget_set_usize (spinner, 55, 0);
gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0);

frame = gtk frame_new ("Accelerated");
gtk_box_pack_start (GTK_BOX (main_vbox), frame, TRUE, TRUE, 0);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 5);
gtk_container_add (GTK_CONTAINER (frame), vbox);

hbox = gtk_hbox_new (FALSE, 0);

Chapter 9. Miscellaneous Widgets

gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk label new ("Value :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (0.0, -
10000.0, 10000.0,
0.5, 100.0, 0.0);
spinnerl = gtk spin_button_new (adj, 1.0, 2);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinnerl), TRUE);
gtk_widget_set_usize (spinnerl, 100, 0);
gtk_box_pack_start (GTK_BOX (vbox2), spin-
nerl, FALSE, TRUE, 0);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Digits :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (2, 1, 5, 1, 1, 0);
spinner2 = gtk _spin_button_new (adj, 0.0, 0);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner2), TRUE);
gtk_signal_connect (GTK_OBJECT (adj), "value_changed",
GTK_SIGNAL_FUNC (change_digits),
(gpointer) spinner2);
gtk_box_pack_start (GTK_BOX (vbox2), spin-
ner2, FALSE, TRUE, 0);

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5);

145

Chapter 9. Miscellaneous Widgets

146

button = gtk _check_button_new_with_label ("Snap to 0.5-
ticks");
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (toggle_snap),
spinnerl);
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (but-
ton), TRUE);

button = gtk _check button_new_with_label ("Numeric only in-
put mode");
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (toggle_numeric),
spinnerl);
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (but-
ton), TRUE);

val_label = gtk label_new ("™);

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5);
button = gtk _button_new_with_label ("Value as Int");
gtk _object_set user_data (GTK_OBJECT (button), val_label);
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (get_value),
GINT_TO_POINTER (1));
gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5);

button = gtk button_new_with_label ("Value as Float");
gtk _object_set user_data (GTK_OBJECT (button), val_label);
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (get_value),
GINT_TO_POINTER (2));
gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (vbox), val_label, TRUE, TRUE, 0);

Chapter 9. Miscellaneous Widgets

gtk_label_set text (GTK_LABEL (val_label), "0");

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (main_vbox), hbox, FALSE, TRUE, 0);

button = gtk _button_new_with_label ("Close";
gtk_signal_connect_object (GTK_OBJECT (button), “clicked",
GTK_SIGNAL_FUNC (gtk_widget_destroy),
GTK_OBJECT (window));
gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5);

gtk_widget_show_all (window);

/* Enter the event loop */
gtk_main ();

return(0);

}

[* example-end */

9.11. Combo Box

The combo box is another fairly simple widget that is really just a collection of other
widgets. From the user’s point of view, the widget consists of a text entry box and a
pull down menu from which the user can select one of a set of predefined entries.
Alternatively, the user can type a different option directly into the text box.

The following extract from the structure that defines a Combo Box identifies several of
the components:

struct _GtkCombo {
GtkHBox hbox;
GtkWidget *entry;
GtkWidget *button;
GtkWidget *popup;

147

Chapter 9. Miscellaneous Widgets

148

GtkWidget *popwin;
GtkWidget *list;
2

As you can see, the Combo Box has two principal parts that you really care about: an
entry and a list.

First off, to create a combo box, use:
GtkWidget *gtk_combo_new(void);

Now, if you want to set the string in the entry section of the combo box, this is done by
manipulating theentry widget directly:

gtk_entry_set_text(GTK_ENTRY(GTK_COMBO(combo)-
>entry), "My String.");

To set the values in the popdown list, one uses the function:

void gtk_combo_set_popdown_strings(GtkCombo *combo,
GList *strings);

Before you can do this, you have to assemble a GList of the strings that you want.
GList is a linked list implementation that is part[of GLib, a library supporing GTK. For
the moment, the quick and dirty explanation is that you need to set up a GList pointer,
set it equal to NULL, then append strings to it with

GList *g_list_append(GList *glist,
gpointer data);

It is important that you set the initial GList pointer to NULL. The value returned from
the g_list_append function must be used as the new pointer to the GList.

Here’s a typical code segment for creating a set of options:
GList *glist=NULL;

glist = g_list_append(glist, "String 1");
glist = g_list append(glist, "String 2");

Chapter 9. Miscellaneous Widgets

glist = g_list_append(glist, "String 3");
glist = g_list_append(glist, "String 4");

gtk_combo_set_popdown_strings(GTK_COMBO(combo), glist) ;

The combo widget makes a copy of the strings passed to it in the glist structure. As a
result, you need to make sure you free the memory used by the list if that is appropriate
for your application.

At this point you have a working combo box that has been set up. There are a few
aspects of its behavior that you can change. These are accomplished with the functions:

void gtk_combo_set use_arrows(GtkCombo *combo,
gint val);

void gtk_combo_set_use_arrows_always(GtkCombo *combo,
gint val);

void gtk_combo_set_case_sensitive(GtkCombo *combo,
gint val);

gtk_combo_set_use_arrows() lets the user change the value in the entry using the
up/down arrow keys. This doesn't bring up the list, but rather replaces the current text
in the entry with the next list entry (up or down, as your key choice indicates). It does
this by searching in the list for the item corresponding to the current value in the entry
and selecting the previous/next item accordingly. Usually in an entry the arrow keys are
used to change focus (you can do that anyway using TAB). Note that when the current
item is the last of the list and you press arrow-down it changes the focus (the same
applies with the first item and arrow-up).

If the current value in the entry is not in the list, then the function of
gtk_combo_set_use_arrows() is disabled.

gtk_combo_set_use_arrows_always() similarly allows the use the the up/down
arrow keys to cycle through the choices in the dropdown list, except that it wraps
around the values in the list, completely disabling the use of the up and down arrow
keys for changing focus.

149

Chapter 9. Miscellaneous Widgets

150

gtk_combo_set_case_sensitive() toggles whether or not GTK searches for

entries in a case sensitive manner. This is used when the Combo widget is asked to find
a value from the list using the current entry in the text box. This completion can be
performed in either a case sensitive or insensitive manner, depending upon the use of
this function. The Combo widget can also simply complete the current entry if the user
presses the key combination MOD-1 and "Tab". MOD-1 is often mapped to the "Alt"
key, by thexmodmap utility. Note, however that some window managers also use this

key combination, which will override its use within GTK.

Now that we have a combo box, tailored to look and act how we want it, all that
remains is being able to get data from the combo box. This is relatively straightforward.
The majority of the time, all you are going to care about getting data from is the entry.
The entry is accessed simply BTK_ENTRY(GTK_COMBO(combo)->entry) . The

two principal things that you are going to want to do with it are attach to the activate
signal, which indicates that the user has pressed the Return or Enter key, and read the
text. The first is accomplished using something like:

gtk_signal_connect(GTK_OBJECT(GTK_COMB(combo)-
>entry), "activate",
GTK_SIGNAL_FUNC (my_callback_function), my_data);

Getting the text at any arbitrary time is accomplished by simply using the entry
function:

gchar *gtk_entry_get_text(GtkEntry *entry);
Such as:
char *string;

string = gtk_entry _get_text(GTK_ENTRY(GTK_COMBO(combo)-
>entry));

That's about all there is to it. There is a function

void gtk_combo_disable_activate(GtkCombo *combo);

Chapter 9. Miscellaneous Widgets

that will disable the activate signal on the entry widget in the combo box. Personally, |
can't think of why you’d want to use it, but it does exist.

9.12. Calendar

The Calendar widget is an effective way to display and retrieve monthly date related
information. It is a very simple widget to create and work with.

Creating a GtkCalendar widget is a simple as:

GtkWidget *gtk_calendar_new();

There might be times where you need to change a lot of information within this widget
and the following functions allow you to make multiple change to a Calendar widget
without the user seeing multiple on-screen updates.

void gtk calendar_freeze(GtkCalendar *Calendar);
void gtk_calendar_thaw (GtkCalendar *Calendar);

They work just like the freeze/thaw functions of every other widget.

The Calendar widget has a few options that allow you to change the way the widget
both looks and operates by using the function

void gtk calendar_display_options(GtkCalen-
dar *calendar,

GtkCalendarDisplayOp-
tions flags);

Theflags argument can be formed by combining either of the following five options
using the logical bitwise OR (|) operation:

« GTK_CALENDAR_SHOW_HEADING - this option specifies that the month and
year should be shown when drawing the calendar.

151

Chapter 9. Miscellaneous Widgets

152

- GTK_CALENDAR_SHOW_DAY_NAMES - this option specifies that the three
letter descriptions should be displayed for each day (eg Mon, Tue, etc.).

« GTK_CALENDAR_NO_MONTH_CHANGE - this option states that the user
should not and can not change the currently displayed month. This can be good if
you only need to display a particular month such as if you are displaying 12 calendar
widgets for every month in a particular year.

« GTK_CALENDAR_SHOW_WEEK_NUMBERS - this option specifies that the
number for each week should be displayed down the left side of the calendar. (eg.
Jan 1 = Week 1,Dec 31 = Week 52).

« GTK_CALENDAR_WEEK_START_MONDAY - this option states that the
calander week will start on Monday instead of Sunday which is the default. This
only affects the order in which days are displayed from left to right.

The following functions are used to set the the currently displayed date:

gint gtk_calendar_select_month(GtkCalendar *calendar,
guint month,
guint year);

void gtk _calendar_select_day(GtkCalendar *calendar,
guint day);

The return value frongtk_calendar_select_month() is a boolean value
indicating whether the selection was successful.

With gtk_calendar_select_day() the specified day number is selected within the
current month, if that is possible. day value of O will deselect any current selection.

In addition to having a day selected, any number of days in the month may be
"marked". A marked day is highlighted within the calendar display. The following
functions are provided to manipulate marked days:

gint gtk _calendar_mark_day(GtkCalendar *calendar,
guint day);

gint gtk _calendar_unmark_day(GtkCalendar *calendar,

Chapter 9. Miscellaneous Widgets

guint day);
void gtk _calendar_clear_marks(GtkCalendar *calendar);

The currently marked days are stored within an array within the GtkCalendar structure.
This array is 31 elements long so to test whether a particular day is currently marked,
you need to access the corresponding element of the array (don’t forget in C that array
elements are numbered 0 to n-1). For example:

GtkCalendar *calendar;
calendar = gtk_calendar_new();

[* Is day 7 marked? */
if (calendar->marked_date[7-1])
/* day is marked */
Note that marks are persistent across month and year changes.

The final Calendar widget function is used to retrieve the currently selected date, month
and/or year.

void gtk calendar_get date(GtkCalendar *calendar,

guint *year,
guint *month,
guint *day);

This function requires you to pass the addressegiof variables, into which the
result will be placed. PassimgULL as a value will result in the corresponding value not
being returned.

The Calendar widget can generate a number of signals indicating date selection and
change. The names of these signals are self explanatory, and are:

« month_changed

- day_selected

153

Chapter 9. Miscellaneous Widgets

- day_selected_double_click
« prev_month

« next_month

s prev_year

+ next_year

That just leaves us with the need to put all of this together into example code.

/* example-start calendar calendar.c */

/*

* Copyright (C) 1998 Cesar Miquel, Shawn T. Amundson, Mat-
tias Gronlund

* Copyright (C) 2000 Tony Gale

*

* This program is free software; you can redis-

tribute it and/or modify

* it under the terms of the GNU General Public License as pub-
lished by

* the Free Software Foundation; either version 2 of the Li-
cense, or

* (at your option) any later version.

*

* This program is dis-

tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Pub-
lic License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include <gtk/gtk.h>

154

#include <stdio.h>
#include <string.h>
#include <time.h>

#define DEF_PAD 10
#define DEF_PAD_SMALL 5

#define TM_YEAR_BASE 1900

typedef struct _CalendarData {
GtkWidget *flag_checkboxes|[5];
gboolean settings[5];
gchar *font;
GtkWidget *font_dialog;
GtkWidget *window;
GtkWidget *prev2_sig;
GtkWidget *prev_sig;
GtkWidget *last_sig;
GtkWidget *month;

} CalendarData;

enum {
calendar_show_header,
calendar_show_days,
calendar_month_change,
calendar_show_week,
calendar_monday_first

h

/*
* GtkCalendar
*/

void calendar_date to_string(CalendarData *data,

char *buffer,
gint buff_len)

Chapter 9. Miscellaneous Widgets

155

Chapter 9. Miscellaneous Widgets

156

struct tm tm;
time_t time;

memset (&tm, 0, sizeof (tm));

gtk_calendar_get_date (GTK_CALENDAR(data->window),
&tm.tm_year, &tm.tm_mon, &tm.tm_mday);

tm.tm_year -= TM_YEAR_BASE;

time = mktime(&tm);

stritime (buffer, buff_len-1, "%x", gmtime(&time));

}

void calendar_set_signal_strings(char *sig_str,
CalendarData *data)

{

gchar *prev_sig;

gtk_label_get (GTK_LABEL (data->prev_sig), &prev_sig):
gtk_label_set (GTK_LABEL (data->prev2_sig), prev_sig);

gtk_label_get (GTK_LABEL (data->last_sig), &prev_sig);
gtk_label_set (GTK_LABEL (data->prev_sig), prev_sig);
gtk_label_set (GTK_LABEL (data->last_sig), sig_str);

}

void calendar_month_changed(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "month_changed: ";

calendar_date_to_string (data, buffer+15, 256-15);
calendar_set_signal_strings (buffer, data);

}

void calendar_day_selected(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "day_selected: *;

Chapter 9. Miscellaneous Widgets

calendar_date_to_string (data, buffer+14, 256-14);
calendar_set_signal_strings (buffer, data);

}

void calendar_day_selected_double_click(GtkWidget *widget,
CalendarData *data)
{
struct tm tm;
char buffer[256] = "day_selected_double_click: ";

calendar_date_to_string (data, buffer+27, 256-27);
calendar_set_signal_strings (buffer, data);

memset (&tm, 0, sizeof (tm));

gtk _calendar_get_date (GTK_CALENDAR(data->window),
&tm.tm_year, &tm.tm_mon, &tm.tm_mday);

tm.tm_year -= TM_YEAR_BASE;

if(GTK_CALENDAR(data->window)->marked_date[tm.tm_mday-
1] == 0) {
gtk_calendar_mark_day(GTK_CALENDAR(data-
>window),tm.tm_mday);
} else {
gtk_calendar_unmark_day(GTK_CALENDAR(data-
>window),tm.tm_mday);
}
}

void calendar_prev_month(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "prev_month: ";

calendar_date _to_string (data, buffer+12, 256-12);
calendar_set_signal_strings (buffer, data);

}

157

Chapter 9. Miscellaneous Widgets

void calendar_next_month(GtkWidget *widget,
CalendarData *data)

{

char buffer[256] = "next_month: ";

calendar_date_to_string (data, buffer+12, 256-12);
calendar_set_signal_strings (buffer, data);

}

void calendar_prev_year(GtkWidget *widget,
CalendarData *data)
{
char buffer[256] = "prev_year: ";

calendar_date_to_string (data, buffer+11, 256-11);
calendar_set_signal_strings (buffer, data);

}

void calendar_next year(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "next_year: ";

calendar_date_to_string (data, buffer+11, 256-11);
calendar_set_signal_strings (buffer, data);

}

void calendar_set _flags(CalendarData *calendar)
{
gint i
gint options=0;
for (i=0;i<5;i++)
if (calendar-<settings][i])
{

options=options + (1«i);

158

Chapter 9. Miscellaneous Widgets

}

if (calendar-<window)
gtk_calendar_display_options (GTK_CALENDAR (calendar-
>window), options);

}

void calendar_toggle flag(GtkWidget *toggle,
CalendarData *calendar)

{
gint i
gint j;
=0;
for (i=0; i<5; i++)
if (calendar->flag_checkboxes[i] == toggle)

=

calendar->settings[j]=!calendar->settings|[j];
calendar_set_flags(calendar);

}

void calendar_font_selection_ok(GtkWidget *pbutton,
CalendarData *calendar)

{

GtkStyle *style;
GdkFont *font;

calendar->font = gtk _font_selection_dialog_get font_name(
GTK_FONT_SELECTION_DIALOG (calendar->font_dialog));
if (calendar->window)
{
font = gtk_font_selection_dialog_get_font(GTK_FONT_SELECTION_DIALOG(calendar-
>font_dialog));
if (font)
{
style = gtk_style_copy (gtk_widget_get style (calendar-
>window));

159

Chapter 9. Miscellaneous Widgets

gdk_font_unref (style->font);
style->font = font;
gdk_font_ref (style->font);
gtk_widget_set_style (calendar->window, style);
}
}
}

void calendar_select font(GtkWidget *pbutton,
CalendarData *calendar)

{
GtkWidget *window;

if (Icalendar->font_dialog) {
window = gtk _font_selection_dialog_new ("Font Selec-
tion Dialog");
g_return_if fail(GTK_IS_FONT_SELECTION_DIALOG(window));
calendar->font_dialog = window;

gtk_window_position (GTK_WINDOW (win-
dow), GTK_WIN_POS_MOUSE);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_widget_destroyed),
&calendar->font_dialog);

gtk_signal_connect (GTK_OBJECT (GTK_FONT_SELECTION_DIALOG (window)-
>0k_button),
"clicked", GTK_SIGNAL_FUNC(calendar_font_selection_ok),
calendar);
gtk_signal_connect_object (GTK_OBJECT (GTK_FONT_SELECTION_DIALOG (window)-
>cancel_button),
"clicked",
GTK_SIGNAL_FUNC (gtk_widget_destroy),
GTK_OBJECT (calendar->font_dialog));
}

window=calendar->font_dialog;

160

}

if IGTK_WIDGET_VISIBLE (window))
gtk_widget_show (window);

else
gtk_widget_destroy (window);

void create_calendar()

{

GtkWidget *window;

GtkWidget *vbox, *vbox2, *vbox3;
GtkWidget *hbox;

GtkWidget *hbbox;

GtkWidget *calendar;

GtkWidget *toggle;

GtkWidget *button;

GtkWidget *frame;

GtkWidget *separator;

GtkWidget *label;

GtkWidget *bbox;

static CalendarData calendar_data;
gint i;

struct {
char *label;
} flags[] =
{
{ "Show Heading" },
{ "Show Day Names" },
{ "No Month Change" },
{ "Show Week Numbers" },
{ "Week Start Monday" }

calendar_data.window = NULL,;
calendar_data.font = NULL;

Chapter 9. Miscellaneous Widgets

161

Chapter 9. Miscellaneous Widgets

calendar_data.font_dialog = NULL;

for (i=0; i<5; i++) {
calendar_data.settings][i]=0;

}

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW!(window), "GtkCalen-
dar Example");
gtk_container_border_width (GTK_CONTAINER (window), 5);
gtk_signal_connect(GTK_OBJECT(window), "destroy",
GTK_SIGNAL_FUNC(gtk_main_quit),
NULL);
gtk_signal_connect(GTK_OBJECT(window), "delete-event”,
GTK_SIGNAL_FUNC(gtk_false),
NULL);

gtk_window_set_policy(GTK_WINDOW(window), FALSE, FALSE, TRUE);

vbox = gtk _vbox_new(FALSE, DEF_PAD);
gtk_container_add (GTK_CONTAINER (window), vbox);

/*
* The top part of the window, Calendar, flags and fontsel.
*/

hbox = gtk _hbox new(FALSE, DEF_PAD);
gtk_box_pack_start (GTK_BOX(vbox), hbox, TRUE, TRUE, DEF_PAD);
hbbox = gtk_hbutton_box_new();
gtk_box_pack_start(GTK_BOX(hbox), hb-

box, FALSE, FALSE, DEF_PAD);
gtk_button_box_set_layout(GTK_BUTTON_BOX(hbbox), GTK_BUTTONBOX_SPREAD);
gtk_button_box_set_spacing(GTK_BUTTON_BOX(hbbox), 5);

/* Calendar widget */

frame = gtk _frame_new("Calendar");
gtk_box_pack_start(GTK_BOX(hbbox), frame, FALSE, TRUE, DEF_PAD);

162

Chapter 9. Miscellaneous Widgets

calendar=gtk_calendar_new();
calendar_data.window = calendar;
calendar_set_flags(&calendar_data);
gtk_calendar_mark_day (GTK_CALENDAR(calendar), 19);
gtk_container_add(GTK_CONTAINER(frame), calendar);
gtk_signal_connect (GTK_OBJECT (calendar), "month_changed",
GTK_SIGNAL_FUNC (calendar_month_changed),
&calendar_data);
gtk_signal_connect (GTK_OBJECT (calendar), "day_selected",
GTK_SIGNAL_FUNC (calendar_day_selected),
&calendar_data);
gtk_signal_connect (GTK_OBJECT (calen-
dar), "day_selected_double_click",
GTK_SIGNAL_FUNC (calendar_day_selected_double_click),
&calendar_data);
gtk_signal_connect (GTK_OBJECT (calendar), "prev_month",
GTK_SIGNAL_FUNC (calendar_prev_month),
&calendar_data);
gtk_signal_connect (GTK_OBJECT (calendar), "next_month",
GTK_SIGNAL_FUNC (calendar_next_month),
&calendar_data);
gtk_signal_connect (GTK_OBJECT (calendar), "prev_year",
GTK_SIGNAL_FUNC (calendar_prev_year),
&calendar_data);
gtk_signal_connect (GTK_OBJECT (calendar), "next_year",
GTK_SIGNAL_FUNC (calendar_next_year),
&calendar_data);

separator = gtk _vseparator_new ();
gtk_box_pack_start (GTK_BOX (hbox), separa-
tor, FALSE, TRUE, 0);

vbox2 = gtk _vbox_new(FALSE, DEF_PAD);
gtk_box_pack_start(GTK_BOX(hbox), vbox2, FALSE, FALSE, DEF_PAD);

/* Build the Right frame with the flags in */

163

Chapter 9. Miscellaneous Widgets

frame = gtk frame_new("Flags");

gtk_box_pack_start(GTK_BOX(vbox2), frame, TRUE, TRUE, DEF_PAD);
vbox3 = gtk_vbox_new(TRUE, DEF_PAD_SMALL);
gtk_container_add(GTK_CONTAINER(frame), vbox3);

for (i = 0; i < 5; i++4)
{
toggle = gtk _check button_new_with_label(flags]i].label);
gtk_signal_connect (GTK_OBJECT (toggle),
"toggled”,
GTK_SIGNAL_FUNC(calendar_toggle_flag),
&calendar_data);
gtk_box_pack_start (GTK_BOX (vbox3), tog-
gle, TRUE, TRUE, 0);
calendar_data.flag_checkboxes[i]=toggle;
}
/* Build the right font-button */
button = gtk button_new_with_label("Font...");
gtk_signal_connect (GTK_OBJECT (button),
"clicked",
GTK_SIGNAL_FUNC(calendar_select_font),
&calendar_data);
gtk_box_pack_start (GTK_BOX (vbox2), button, FALSE, FALSE, 0);

/*
* Build the Signal-event part.
*/

frame = gtk frame_new("Signal events");
gtk_box_pack_start(GTK_BOX(vbox), frame, TRUE, TRUE, DEF_PAD);

vbox2 = gtk_vbox_new(TRUE, DEF_PAD_SMALL);
gtk_container_add(GTK_CONTAINER(frame), vbox2);

hbox = gtk_hbox_new (FALSE, 3);
gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0);

164

Chapter 9. Miscellaneous Widgets

label = gtk _label_new ("Signal:");
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0);
calendar_data.last_sig = gtk_label_new (");
gtk_box_pack_start (GTK_BOX (hbox), calen-
dar_data.last_sig, FALSE, TRUE, 0);

hbox = gtk_hbox_new (FALSE, 3);
gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0);
label = gtk label new ("Previous signal:");
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0);
calendar_data.prev_sig = gtk_label_new (™);
gtk_box_pack_start (GTK_BOX (hbox), calen-

dar_data.prev_sig, FALSE, TRUE, 0);

hbox = gtk_hbox_new (FALSE, 3);
gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0);
label = gtk label new ("Second previous signal:");
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0);
calendar_data.prev2_sig = gtk label_new ("™);
gtk_box_pack_start (GTK_BOX (hbox), calen-

dar_data.prev2_sig, FALSE, TRUE, 0);

bbox = gtk_hbutton_box_new ();
gtk_box_pack_start (GTK_BOX (vbox), bbox, FALSE, FALSE, 0);
gtk_button_box_set_layout(GTK_BUTTON_BOX(bbox), GTK_BUTTONBOX_END);

button = gtk button_new_with_label ("Close");
gtk_signal _connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (gtk_main_quit),
NULL);
gtk_container_add (GTK_CONTAINER (bbox), button);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);

gtk_widget_show_all(window);

165

Chapter 9. Miscellaneous Widgets

9.13.

166

int main(int argc,
char *argv[])

{

gtk_set_locale ();
gtk_init (&argc, &argv);

create_calendar();
gtk_main();

return(0);

}

/* example-end */

Color Selection

The color selection widget is, not surprisingly, a widget for interactive selection of
colors. This composite widget lets the user select a color by manipulating RGB (Red,
Green, Blue) and HSV (Hue, Saturation, Value) triples. This is done either by adjusting
single values with sliders or entries, or by picking the desired color from a
hue-saturation wheel/value bar. Optionally, the opacity of the color can also be set.

The color selection widget currently emits only one signal, "color_changed", which is
emitted whenever the current color in the widget changes, either when the user changes
it or if it's set explicitly through gtk_color_selection_set_color().

Lets have a look at what the color selection widget has to offer us. The widget comes in
two flavours: gtk_color_selection and gtk_color_selection_dialog.

GtkWidget *gtk color_selection_new(void);

You'll probably not be using this constructor directly. It creates an orphan
ColorSelection widget which you’ll have to parent yourself. The ColorSelection widget
inherits from the VBox widget.

Chapter 9. Miscellaneous Widgets

GtkWidget *gtk_color_selection_dialog_new(const gchar *title);

This is the most common color selection constructor. It creates a ColorSelectionDialog.
It consists of a Frame containing a ColorSelection widget, an HSeparator and an HBox
with three buttons, "Ok", "Cancel" and "Help". You can reach these buttons by
accessing the "ok_button", "cancel_button" and "help_button" widgets in the
ColorSelectionDialog structure, (i.e.,
GTK_COLOR_SELECTION_DIALOG(colorseldialog)->ok_button).

void gtk _color_selection_set update policy(GtkColorSelec-
tion *colorsel,
GtkUpdate-

Type policy);

This function sets the update policy. The default policg¥<_UPDATE_CONTINUOUS
which means that the current color is updated continuously when the user drags the
sliders or presses the mouse and drags in the hue-saturation wheel or value bar. If you
experience performance problems, you may want to set the policy to
GTK_UPDATE_DISCONTINUOUS GTK_UPDATE_DELAYED

void gtk_color_selection_set_opacity(GtkColorSelection *col-
orsel,
gint use_opacity);

The color selection widget supports adjusting the opacity of a color (also known as the
alpha channel). This is disabled by default. Calling this function with use_opacity set to
TRUE enables opacity. Likewise, use_opacity set to FALSE will disable opacity.

void gtk_color_selection_set_color(GtkColorSelection *colorsel,
gdouble *color);

You can set the current color explicitly by calling this function with a pointer to an

array of colors (gdouble). The length of the array depends on whether opacity is
enabled or not. Position 0 contains the red component, 1 is green, 2 is blue and opacity
is at position 3 (only if opacity is enabled, see gtk_color_selection_set_opacity()). All
values are between 0.0 and 1.0.

167

Chapter 9. Miscellaneous Widgets

168

void gtk_color_selection_get_color(GtkColorSelection *colorsel,
gdouble *color);

When you need to query the current color, typically when you've received a
"color_changed" signal, you use this function. Color is a pointer to the array of colors to
fillin. See the gtk_color_selection_set_color() function for the description of this array.

Here’s a simple example demonstrating the use of the ColorSelectionDialog. The
program displays a window containing a drawing area. Clicking on it opens a color
selection dialog, and changing the color in the color selection dialog changes the
background color.

/* example-start colorsel colorsel.c */
#include <glib.h>

#include <gdk/gdk.h>

#include <gtk/gtk.h>

GtkWidget *colorseldlg = NULL;
GtkWidget *drawingarea = NULL,;

/* Color changed handler */
void color_changed_cb(GtkWidget *widget,

GtkColorSelection *colorsel)

{
gdouble color[3];

GdkColor gdk_color;

GdkColormap *colormap;

/* Get drawingarea colormap */

colormap = gdk_window_get_colormap (drawingarea->window);

/* Get current color */

gtk_color_selection_get_color (colorsel,color);

Chapter 9. Miscellaneous Widgets

/* Fit to a unsigned 16 bit integer (0..65535) and
* insert into the GdkColor structure */

gdk_color.red = (guintl6)(color[0]*65535.0);

gdk_color.green = (guintl6)(color[1]*65535.0);

gdk_color.blue = (guintl16)(color[2]*65535.0);

/* Allocate color */

gdk_color_alloc (colormap, &gdk_color);

/* Set window background color */
gdk_window_set_background (drawingarea->window, &gdk_color);

/* Clear window */

gdk_window_clear (drawingarea->window);

}

/* Drawingarea event handler */

gint area_event(GtkWidget *widget,
GdkEvent *event,
gpointer client_data)

gint handled = FALSE;
GtkWidget *colorsel;

/* Check if we've received a button pressed event */
if (event->type == GDK_BUTTON_PRESS && colorseldlg == NULL)

{

/* Yes, we have an event and there's no col-
orseldlg yet! */

169

Chapter 9. Miscellaneous Widgets

handled = TRUE;
/* Create color selection dialog */

colorseldlg = gtk _color_selection_dialog_new("Select back-
ground color");

[* Get the ColorSelection widget */

colorsel = GTK_COLOR_SELECTION_DIALOG(colorseldlg)-
>colorsel;

/* Connect to the "color_changed" signal, set the client-

data
* to the colorsel widget */
gtk_signal_connect(GTK_OBJECT(colorsel), "color_changed",
(GtkSignalFunc)color_changed_cb, (gpointer)colorsel);
/* Show the dialog */
gtk_widget_show(colorseldlg);
}

return handled;

}

/* Close down and exit handler */

gint destroy_window(GtkWidget *widget,
GdkEvent *event,
gpointer client_data)
{
gtk_main_quit ();
return(TRUE);
}

170

Chapter 9. Miscellaneous Widgets

/* Main */
gint main(gint argc,
gchar *argv[])
{
GtkWidget *window;

/* Initialize the toolkit, remove gtk-
related commandline stuff */

gtk_init (&argc,&argv);

/* Create toplevel window, set title and policies */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set _title (GTK_WINDOW(window), "Color selec-
tion test");

gtk_window_set_policy (GTK_WINDOW(window), TRUE, TRUE, TRUE);

[* Attach to the "delete" and "de-
stroy” events so we can exit */

gtk_signal_connect (GTK_OBJECT(window), "delete_event",
(GtkSignalFunc)destroy _window, (gpointer)window);

/* Create drawingarea, set size and catch button events */
drawingarea = gtk_drawing_area new ();

gtk_drawing_area_size (GTK_DRAWING_AREA(drawingarea), 200, 200);
gtk_widget_set_events (drawingarea, GDK_BUTTON_PRESS_MASK);

gtk_signal_connect (GTK_OBJECT(drawingarea), "event",
(GtkSignalFunc)area_event, (gpointer)drawingarea);

/* Add drawingarea to window, then show them both */

171

Chapter 9. Miscellaneous Widgets

gtk_container_add (GTK_CONTAINER(window), drawingarea);

gtk_widget_show (drawingarea);
gtk_widget_show (window);

/* Enter the gtk main loop (this never returns) */
gtk_main ();

[* Satisfy grumpy compilers */

return(0);

}

[* example-end */

9.14. File Selections

172

The file selection widget is a quick and simple way to display a File dialog box. It
comes complete with Ok, Cancel, and Help buttons, a great way to cut down on
programming time.

To create a new file selection box use:
GtkWidget *gtk_file_selection_new(gchar *title);

To set the filename, for example to bring up a specific directory, or give a default
filename, use this function:

void gtk file_selection_set filename(GtkFileSelection *filesel,
gchar *file-

name);

To grab the text that the user has entered or clicked on, use this function:

Chapter 9. Miscellaneous Widgets

gchar *gtk_file_selection_get_filename(GtkFileSelection *file-
sel);

There are also pointers to the widgets contained within the file selection widget. These
are:

dir_list

file_list
selection_entry
selection_text
main_vbox
ok_button
cancel_button
help_button

Most likely you will want to use the ok_button, cancel_button, and help_button
pointers in signaling their use.

Included here is an example stolen from testgtk.c, modified to run on its own. As you
will see, there is nothing much to creating a file selection widget. While in this example
the Help button appears on the screen, it does nothing as there is not a signal attached
to it.

[* example-start filesel filesel.c */
#include <gtk/gtk.h>

/* Get the selected filename and print it to the console */
void file_ok_sel(GtkWidget *w,
GtkFileSelection *fs)

{
g_print ("%s\n", gtk file_selection_get filename (GTK_FILE_SELECTION (fs)));

}

void destroy(GtkWidget *widget,
gpointer data)

{
gtk_main_quit ();

173

Chapter 9. Miscellaneous Widgets

174

}

int main(int argc,
char *argv[])

{
GtkWidget *filew;

gtk_init (&argc, &argv);

/* Create a new file selection widget */
filew = gtk file_selection_new ("File selection");

gtk_signal_connect (GTK_OBJECT (filew), "destroy",
(GtkSignalFunc) destroy, &filew);

/* Connect the ok button to file ok _sel function */

gtk_signal_connect (GTK_OBJECT (GTK_FILE_SELECTION (filew)-
>0k_button),
“clicked", (GtkSignalFunc) file_ok_sel, filew);

/* Connect the cancel_button to destroy the widget */
gtk_signal_connect_object (GTK_OBJECT (GTK_FILE_SELECTION
(filew)-
>cancel_button),
"clicked", (GtkSignalFunc) gtk_widget_destroy,
GTK_OBJECT (filew));

/* Lets set the filename, as if this were a save dia-
log, and we are giving
a default filename */
gtk _file_selection_set_filename (GTK_FILE_SELECTION(filew),

"penguin.png");

gtk_widget_show(filew);
gtk_main ();
return O;

}

[* example-end */

Chapter 10. Container Widgets

10.1. The EventBox

Some GTK widgets don't have associated X windows, so they just draw on their
parents. Because of this, they cannot receive events and if they are incorrectly sized,
they don't clip so you can get messy overwriting, etc. If you require more from these
widgets, the EventBox is for you.

At first glance, the EventBox widget might appear to be totally useless. It draws
nothing on the screen and responds to no events. However, it does serve a function - it
provides an X window for its child widget. This is important as many GTK widgets do
not have an associated X window. Not having an X window saves memory and
improves performance, but also has some drawbacks. A widget without an X window
cannot receive events, and does not perform any clipping on its contents. Although the
nameEventBoxemphasizes the event-handling function, the widget can also be used
for clipping. (and more, see the example below).

To create a new EventBox widget, use:

GtkWidget *gtk_event_box_new(void);

A child widget can then be added to this EventBox:
gtk_container_add(GTK_CONTAINER(event_box), child_widget);

The following example demonstrates both uses of an EventBox - a label is created that
is clipped to a small box, and set up so that a mouse-click on the label causes the
program to exit. Resizing the window reveals varying amounts of the label.

/* example-start eventbox eventbox.c */
#include <gtk/gtk.h>

int main(int argc,

175

Chapter 10. Container Widgets

char *argv[])
GtkWidget *window;
GtkWidget *event_box;
GtkWidget *label;
gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Event Box");

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);
/* Create an EventBox and add it to our toplevel window */

event_box = gtk event box_new ();
gtk_container_add (GTK_CONTAINER(window), event box);
gtk_widget_show (event_box);

/* Create a long label */

la-

bel = gtk _label new ("Click here to quit, quit, quit, quit, quit");
gtk_container_add (GTK_CONTAINER (event box), label);
gtk_widget_show (label);

/* Clip it short. */
gtk_widget_set_usize (label, 110, 20);

/* And bind an action to it */

gtk_widget_set_events (event_box, GDK_BUTTON_PRESS_MASK);

gtk_signal_connect (GTK_OBJECT(event_box), "button_press_event",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

176

10.2.

Chapter 10. Container Widgets

/* Yet one more thing you need an X window for ... */

gtk_widget_realize (event_box);
gdk_window_set_cursor (event_box-
>window, gdk cursor_new (GDK_HAND1));

gtk_widget_show (window);
gtk_main ();

return(0);

}

/* example-end */

The Alignment widget

The alignment widget allows you to place a widget within its window at a position and
size relative to the size of the Alignment widget itself. For example, it can be very
useful for centering a widget within the window.

There are only two functions associated with the Alignment widget:
GtkWidget* gtk _alignment_new(gfloat xalign,
gfloat yalign,

gfloat xscale,
gfloat yscale);

void gtk _alignment_set(GtkAlignment *alignment,

gfloat xalign,
gfloat yalign,
ofloat xscale,
gfloat yscale);

177

Chapter 10. Container Widgets

The first function creates a new Alignment widget with the specified parameters. The
second function allows the alignment paramters of an exisiting Alignment widget to be
altered.

All four alignment parameters are floating point numbers which can range from 0.0 to
1.0. Thexalign andyalign arguments affect the position of the widget placed within
the Alignment widget. Thescale andyscale arguments effect the amount of space
allocated to the widget.

A child widget can be added to this Alignment widget using:

gtk_container_add(GTK_CONTAINER(alignment), child_widget);

For an example of using an Alignment widget, refer to the example fdr the Progress

[Bar widget.

10.3. Fixed Container

178

The Fixed container allows you to place widgets at a fixed position within it's window,
relative to it's upper left hand corner. The position of the widgets can be changed
dynamically.

There are only three functions associated with the fixed widget:
GtkWidget* gtk_fixed_new(void);

void gtk fixed put(GtkFixed *fixed,
GtkWidget *widget,
gint16 X,
gintl6 vy);

void gtk_fixed_move(GtkFixed *fixed,
GtkWidget *widget,
gintl6 X,
gint16 y)

Chapter 10. Container Widgets

The functiongtk_fixed_new allows you to create a new Fixed container.

gtk_fixed_put placeswidget in the containefixed at the position specified by
andy.

gtk_fixed_move allows the specified widget to be moved to a new position.

The following example illustrates how to use the Fixed Container.

[* example-start fixed fixed.c */
#include <gtk/gtk.h>

/* I'm going to be lazy and use some global variables to
* store the position of the widget within the fixed

* container */

gint x=50;

gint y=50;

/* This callback function moves the button to a new position
* in the Fixed container. */
void move_bhutton(GtkWidget *widget,

GtkWidget *fixed)

{

X = (x+30)%300;

y = (y+50)%300;

gtk_fixed_move(GTK_FIXED(fixed), widget, X, y);
}

int main(int argc,
char *argv[])
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *fixed;
GtkWidget *button;
gint i

/* Initialise GTK */

179

Chapter 10. Container Widgets

gtk_init(&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW(window), "Fixed Container");

/* Here we connect the "destroy" event to a signal handler */
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a Fixed Container */

fixed = gtk_fixed_new();
gtk_container_add(GTK_CONTAINER(window), fixed);
gtk_widget_show(fixed);

for i =1;i<=3; i++) {
/* Creates a new button with the label "Press me" */
button = gtk _button_new_with_label ("Press me");

/* When the button receives the "clicked" sig-
nal, it will call the

* function move_button() passing it the Fixed Con-
tainer as its

* argument. */

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (move_button), fixed);

/* This packs the button into the fixed containers win-
dow. */
gtk_fixed_put (GTK_FIXED (fixed), button, i*50, i*50);

/* The final step is to display this newly created wid-

get. */
gtk_widget_show (button);

180

10.4.

Chapter 10. Container Widgets

}

/* Display the window */
gtk_widget_show (window);

/* Enter the event loop */
gtk_main ();

return(0);

}

[* example-end */

Layout Container

The Layout container is similar to the Fixed container except that it implements an
infinite (where infinity is less than 2732) scrolling area. The X window system has a
limitation where windows can be at most 32767 pixels wide or tall. The Layout
container gets around this limitation by doing some exotic stuff using window and bit
gravities, so that you can have smooth scrolling even when you have many child
widgets in your scrolling area.

A Layout container is created using:

GtkWidget *gtk_layout_new(GtkAdjustment *hadjustment,
GtkAdjustment *vadjustment);

As you can see, you can optionally specify the Adjustment objects that the Layout
widget will use for its scrolling.

You can add and move widgets in the Layout container using the following two
functions:

void gtk layout put(GtkLayout *layout,
GtkWidget *widget,
gint X,

181

Chapter 10. Container Widgets

182

gint y)

void gtk _layout_move(GtkLayout *layout,
GtkWidget *widget,
gint X,
gint y)

The size of the Layout container can be set using the next function:
void gtk layout_set size(GtkLayout *layout,

guint width,

guint height);

Layout containers are one of the very few widgets in the GTK widget set that actively
repaint themselves on screen as they are changed using the above functions (the vast
majority of widgets queue requests which are then processed when control returns to
thegtk_main() function).

When you want to make a large number of changes to a Layout container, you can use
the following two functions to disable and re-enable this repainting functionality:

void gtk _layout_freeze(GtkLayout *layout);
void gtk _layout_thaw(GtkLayout *layout);

The final four functions for use with Layout widgets are for manipulating the horizontal
and vertical adjustment widgets:

GtkAdjustment* gtk_layout_get hadjustment(GtkLayout *layout);
GtkAdjustment* gtk_layout_get vadjustment(GtkLayout *layout);

void gtk layout_set hadjustment(GtkLayout *layout,
GtkAdjustment *adjustment);

void gtk _layout_set_vadjustment(GtkLayout *layout,
GtkAdjustment *adjustment);

Chapter 10. Container Widgets

10.5. Frames

Frames can be used to enclose one or a group of widgets with a box which can
optionally be labelled. The position of the label and the style of the box can be altered
to suit.

A Frame can be created with the following function:

GtkWidget *gtk frame_new(const gchar *label);

The label is by default placed in the upper left hand corner of the frame. A value of
NULL for the label argument will result in no label being displayed. The text of the
label can be changed using the next function.

void gtk frame_set label(GtkFrame *frame,
const gchar *label);

The position of the label can be changed using this function:

void gtk_frame_set_label_align(GtkFrame *frame,
gfloat xalign,
ofloat yalign);

xalign andyalign take values between 0.0 and Ixflign indicates the position of
the label along the top horizontal of the framelign is not currently used. The
default value of xalign is 0.0 which places the label at the left hand end of the frame.

The next function alters the style of the box that is used to outline the frame.

void gtk_frame_set_shadow_type(GtkFrame *frame,
GtkShadowType type);

Thetype argument can take one of the following values:

GTK_SHADOW_NONE
GTK_SHADOW_IN

GTK_SHADOW_OUT
GTK_SHADOW_ETCHED_IN (the default)

183

Chapter 10. Container Widgets

184

GTK_SHADOW_ETCHED_OUT

The following code example illustrates the use of the Frame widget.

/* example-start frame frame.c */

#include <gtk/gtk.h>

int main(int argc,

{

char *argv[])

/* GtkWidget is the storage type for widgets */
GtkWidget *window;

GtkWidget *frame;

GtkWidget *button;

gint i

[* Initialise GTK */
gtk_init(&argc, &argv);

/* Create a new window */
window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW(window), "Frame Example");

/* Here we connect the "destroy" event to a signal handler */
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit), NULL);

gtk_widget_set_usize(window, 300, 300);
/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a Frame */
frame = gtk_frame_new(NULL);
gtk_container_add(GTK_CONTAINER(window), frame);

[* Set the frame’s label */
gtk_frame_set_label(GTK_FRAME(frame), "GTK Frame Widget");

10.6.

Chapter 10. Container Widgets

/* Align the label at the right of the frame */
gtk_frame_set_label_align(GTK_FRAME(frame), 1.0, 0.0);

/* Set the style of the frame */
gtk frame_set shadow_type(GTK_FRAME(frame), GTK_SHADOW_ETCHED_OUT);

gtk_widget_show(frame);

/* Display the window */
gtk_widget_show (windowy);

/* Enter the event loop */
gtk_main ();

return(0);

}

/* example-end */

Aspect Frames

The aspect frame widget is like a frame widget, except that it also enforces the aspect
ratio (that is, the ratio of the width to the height) of the child widget to have a certain
value, adding extra space if necessary. This is useful, for instance, if you want to
preview a larger image. The size of the preview should vary when the user resizes the
window, but the aspect ratio needs to always match the original image.

To create a new aspect frame use:

GtkWidget *gtk_aspect _frame_new(const gchar *label,

gfloat xalign,

gfloat yalign,

gfloat ratio,

gint obey_child);

185

Chapter 10. Container Widgets

186

xalign andyalign specify alignment as with Alignment widgets.difiey child is
true, the aspect ratio of a child widget will match the aspect ratio of the ideal size it
requests. Otherwise, it is given bgtio

To change the options of an existing aspect frame, you can use:

void gtk _aspect_frame_set(GtkAspectFrame *aspect_frame,

gfloat xalign,

gfloat yalign,

gfloat ratio,

gint obey_child);

As an example, the following program uses an AspectFrame to present a drawing area
whose aspect ratio will always be 2:1, no matter how the user resizes the top-level
window.

/* example-start aspectframe aspectframe.c */
#include <gtk/gtk.h>

int main(int argc,
char *argv[])
{
GtkWidget *window;
GtkWidget *aspect_frame;
GtkWidget *drawing_area;
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set _title (GTK_WINDOW (window), "Aspect Frame");
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create an aspect frame and add it to our toplevel win-
dow */

aspect_frame = gtk_aspect frame _new ("2x1", /* label */

10.7.

Chapter 10. Container Widgets

0.5, /* center x */

0.5, /* center y */

2, [* xsizelysize = 2 */
FALSE /* ig-

nore child’s aspect */);

gtk_container_add (GTK_CONTAINER(window), aspect_frame);
gtk_widget_show (aspect_frame);

/* Now add a child widget to the aspect frame */
drawing_area = gtk_drawing_area_new ();

/* Ask for a 200x200 window, but the Aspect-

Frame will give us a 200x100

}

* window since we are forcing a 2x1 aspect ratio */

gtk widget_set_usize (drawing_area, 200, 200);

gtk_container_add (GTK_CONTAINER(aspect_frame), drawing_area);
gtk_widget_show (drawing_area);

gtk_widget_show (window);
gtk_main ();
return O;

/* example-end */

Paned Window Widgets

The paned window widgets are useful when you want to divide an area into two parts,
with the relative size of the two parts controlled by the user. A groove is drawn between
the two portions with a handle that the user can drag to change the ratio. The division
can either be horizontal (HPaned) or vertical (VPaned).

To create a new paned window, call one of:

187

Chapter 10. Container Widgets

188

GtkWidget *gtk_hpaned_new (void);
GtkWidget *gtk_vpaned_new (void);

After creating the paned window widget, you need to add child widgets to its two
halves. To do this, use the functions:

void gtk_paned_addl (GtkPaned *paned, GtkWidget *child);
void gtk _paned_add2 (GtkPaned *paned, GtkWidget *child);

gtk_paned_addl() adds the child widget to the left or top half of the paned window.
gtk_paned_add2() adds the child widget to the right or bottom half of the paned
window.

A paned widget can be changed visually using the following two functions.

void gtk paned_set handle_size(GtkPaned *paned,
guintlé size);

void gtk _paned_set gutter_size(GtkPaned *paned,
guintlé size);

The first of these sets the size of the handle and the second sets the size of the gutter
that is between the two parts of the paned window.

As an example, we will create part of the user interface of an imaginary email program.
A window is divided into two portions vertically, with the top portion being a list of

email messages and the bottom portion the text of the email message. Most of the
program is pretty straightforward. A couple of points to note: text can't be added to a
Text widget until it is realized. This could be done by calling

gtk_widget_realize() , but as a demonstration of an alternate technique, we
connect a handler to the "realize" signal to add the text. Also, we need to add the
GTK_SHRINKoption to some of the items in the table containing the text window and

its scrollbars, so that when the bottom portion is made smaller, the correct portions
shrink instead of being pushed off the bottom of the window.

Chapter 10. Container Widgets

/* example-start paned paned.c */

#include <stdio.h>
#include <gtk/gtk.h>

/* Create the list of "messages" */
GtkWidget *create_list(void)
{

GtkWidget *scrolled_window;
GtkWidget *list;
GtkWidget *list_item;

int i;
char buffer[16];

/* Create a new scrolled window, with scroll-

bars only if needed */
scrolled_window = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED WINDOW (scrolled_window),
GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);

/* Create a new list and put it in the scrolled window */

list = gtk_list_new ();

gtk_scrolled_window_add_with_viewport (
GTK_SCROLLED_WINDOW (scrolled_window), list);

gtk_widget_show (list);

/* Add some messages to the window */
for (i=0; i<10; i++) {

sprintf(buffer,"Message #%d",i);

list_item = gtk _list_item_new_with_label (buffer);
gtk_container_add (GTK_CONTAINER(list), list_item);
gtk_widget_show (list_item);

189

Chapter 10. Container Widgets

}

return scrolled_window;

}

/* Add some text to our text widget -

this is a callback that is invoked

when our window is realized. We could also force our win-
dow to be

realized with gtk _widget realize, but it would have to be part of
a hierarchy first */

void realize_text(GtkWidget *text,
gpointer data)
{
gtk_text _freeze (GTK_TEXT (text));
gtk _text_insert (GTK_TEXT (text), NULL, &text->style-
>black, NULL,
"From: pathfinder@nasa.gov\n"
"To: mom@nasa.govin"
"Subject: Made it'\n"
"
"We just got in this morning. The weather has been\n"
"great -
clear but cold, and there are lots of fun sights.\n"
"Sojourner says hi. See you soon.\n"
" -Path\n", -1);

gtk_text_thaw (GTK_TEXT (text));
}

/* Create a scrolled text area that displays a "message" */
GtkWidget *create_text(void)
{

GtkWidget *table;

GtkWidget *text;

GtkWidget *hscrollbar;

190

Chapter 10. Container Widgets

GtkWidget *vscrollbar;

/* Create a table to hold the text widget and scrollbars */
table = gtk table_new (2, 2, FALSE);

/* Put a text widget in the upper left hand cor-
ner. Note the use of

* GTK_SHRINK in the y direction */

text = gtk _text new (NULL, NULL);

gtk table_attach (GTK_TABLE (table), text, 0, 1, 0, 1,
GTK_FILL | GTK_EXPAND,
GTK_FILL | GTK_EXPAND | GTK_SHRINK, 0, 0);

gtk_widget_show (text);

/* Put a HScrollbar in the lower left hand corner */
hscrollbar = gtk_hscrollbar_new (GTK_TEXT (text)->hadj);
gtk table_attach (GTK_TABLE (table), hscrollbar, 0, 1, 1, 2,

GTK_EXPAND | GTK_FILL, GTK_FILL, 0, 0);
gtk_widget_show (hscrollbar);

/* And a VScrollbar in the upper right */

vscrollbar = gtk_vscrollbar_new (GTK_TEXT (text)->vadj);

gtk_table_attach (GTK_TABLE (table), vscrollbar, 1, 2, 0, 1,
GTK_FILL, GTK_EXPAND | GTK_FILL | GTK_SHRINK, 0, 0);

gtk_widget_show (vscrollbar);

/* Add a handler to put a message in the text wid-
get when it is realized */

gtk_signal_connect (GTK_OBJECT (text), "realize",
GTK_SIGNAL_FUNC (realize_text), NULL);

return table;

}

int main(int argc,
char *argv[])

{

191

Chapter 10. Container Widgets

GtkWidget *window;
GtkWidget *vpaned,;
GtkWidget *list;
GtkWidget *text;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Paned Windows");
gtk_signal_connect (GTK_OBJECT (window), "destroy",

GTK_SIGNAL_FUNC (gtk_main_quit), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
gtk widget_set_usize (GTK_WIDGET(window), 450, 400);

[* create a vpaned widget and add it to our toplevel win-
dow */

vpaned = gtk _vpaned_new ();
gtk_container_add (GTK_CONTAINER(window), vpaned);
gtk_paned_set _handle_size (GTK_PANED(vpaned),

10);
gtk_paned_set_gutter_size (GTK_PANED(vpaned),

15);
gtk_widget_show (vpaned);

/* Now create the contents of the two halves of the win-
dow */

list = create_list ();
gtk_paned_addl (GTK_PANED(vpaned), list);
gtk_widget_show (list);

text = create_text ();

gtk_paned_add2 (GTK_PANED(vpaned), text);
gtk_widget_show (text);

gtk_widget_show (window);

gtk_main ();

192

10.8.

Chapter 10. Container Widgets

return O;

}

[* example-end */

Viewports

It is unlikely that you will ever need to use the Viewport widget directly. You are much
more likely to use thé Scrolled Windpw widget which itself uses the Viewport.

A viewport widget allows you to place a larger widget within it such that you can view
a part of it at a time. It usgS Adjustménts to define the area that is currently in view.

A Viewport is created with the function

GtkWidget *gtk viewport_new(GtkAdjustment *hadjustment,
GtkAdjustment *vadjustment);

As you can see you can specify the horizontal and vertical Adjustments that the widget
is to use when you create the widget. It will create its own if you pass NULL as the
value of the arguments.

You can get and set the adjustments after the widget has been created using the
following four functions:

GtkAdjustment *gtk_viewport_get_hadjustment (GtkViewport *view-
port);

GtkAdjustment *gtk_viewport_get_vadjustment (GtkViewport *view-
port);

void gtk_viewport_set_hadjustment(GtkViewport *viewport,
GtkAdjustment *adjustment);

void gtk_viewport_set_vadjustment(GtkViewport *viewport,
GtkAdjustment *adjustment);

193

Chapter 10. Container Widgets

The only other viewport function is used to alter its appearance:

void gtk viewport_set shadow_type(GtkViewport *viewport,
GtkShadowType type);

Possible values for thgpe parameter are:

GTK_SHADOW_NONE,
GTK_SHADOW._IN,
GTK_SHADOW_OUT,
GTK_SHADOW_ETCHED _IN,
GTK_SHADOW_ETCHED_OUT

10.9. Scrolled Windows

194

Scrolled windows are used to create a scrollable area with another widget inside it. You
may insert any type of widget into a scrolled window, and it will be accessible
regardless of the size by using the scrollbars.

The following function is used to create a new scrolled window.

GtkWidget *gtk_scrolled_window_new(GtkAdjustment *hadjustment,
GtkAdjustment *vadjust-
ment);

Where the first argument is the adjustment for the horizontal direction, and the second,
the adjustment for the vertical direction. These are almost always set to NULL.

void gtk scrolled_window_set policy(GtkScrolledWin-
dow *scrolled_window,
GtkPolicy-
Type hscrollbar_policy,
GtkPolicyType vscroll-
bar_policy);

Chapter 10. Container Widgets

This sets the policy to be used with respect to the scrollbars. The first argument is the
scrolled window you wish to change. The second sets the policy for the horizontal
scrollbar, and the third the policy for the vertical scrollbar.

The policy may be one a6 TK_POLICY_AUTOMATI®r GTK_POLICY_ALWAYS
GTK_POLICY_AUTOMATIQvill automatically decide whether you need scrollbars,
whereassTK_POLICY_ALWAY%ill always leave the scrollbars there.

You can then place your object into the scrolled window using the following function.

void gtk _scrolled_window_add_with_viewport(GtkScrolledWin-
dow *scrolled_window,

Gtkwid-
get *child);

Here is a simple example that packs a table eith 100 toggle buttons into a scrolled
window. I've only commented on the parts that may be new to you.

/* example-start scrolledwin scrolledwin.c */

#include <stdio.h>
#include <gtk/gtk.h>

void destroy(GtkWidget *widget,
gpointer data)
{
gtk_main_quit();
}

int main(int argc,
char *argv[])

{
static GtkWidget *window;
GtkWidget *scrolled_window;
GtkWidget *table;
GtkWidget *button;
char buffer[32];
int i, j;

195

Chapter 10. Container Widgets

gtk_init (&argc, &argv);

[* Create a new dialog window for the scrolled window to be

* packed into. */

window = gtk _dialog_new ();

gtk_signal_connect (GTK_OBJECT (window), "destroy",
(GtkSignalFunc) destroy, NULL);

gtk_window_set_title (GTK_WINDOW (window), "GtkScrolledWin-
dow example");

gtk_container_set_border_width (GTK_CONTAINER (window), 0);

gtk_widget_set_usize(window, 300, 300);

/* create a new scrolled window. */
scrolled_window = gtk_scrolled_window_new (NULL, NULL);

gtk_container_set_border_width (GTK_CONTAINER (scrolled_window), 10);

/* the policy is one of GTK_POLICY AUTO-
MATIC, or GTK_POLICY_ALWAYS.
* GTK_POLICY_AUTOMATIC will automatically de-
cide whether you need
* scrollbars, whereas GTK_POLICY_ALWAYS will al-
ways leave the scrollbars
* there. The first one is the horizontal scroll-
bar, the second,
* the vertical. */
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window),
GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAY
/* The dialog window is cre-
ated with a vbox packed into it. */
gtk_box_pack_start (GTK_BOX (GTK_DIALOG(window)-
>vbox), scrolled_window,
TRUE, TRUE, 0);
gtk_widget_show (scrolled_window);

[* create a table of 10 by 10 squares. */

196

Chapter 10. Container Widgets

table = gtk table_new (10, 10, FALSE);

/* set the spacing to 10 on x and 10 on y *
gtk_table_set_row_spacings (GTK_TABLE (table), 10);
gtk_table_set col_spacings (GTK_TABLE (table), 10);

/* pack the table into the scrolled window */
gtk_scrolled_window_add_with_viewport (

GTK_SCROLLED_WINDOW (scrolled_window), table);
gtk_widget_show (table);

[* this simply creates a grid of toggle buttons on the table
* to demonstrate the scrolled window. */
for (i = 0; i < 10; i++)
for = 0; j < 10; j++) {
sprintf (buffer, "button (%d,%d)\n", i, j);
button = gtk toggle button_new_with_label (buffer);
gtk_table_attach_defaults (GTK_TABLE (table), button,
i, i+1, j, j*1);
gtk_widget_show (button);
}

/* Add a "close" button to the bottom of the dialog */
button = gtk button_new_with_label ("close");
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
(GtkSignalFunc) gtk _widget_destroy,
GTK_OBJECT (window));

[* this makes it so the button is the default. */

GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);

gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)-
>action_area), button, TRUE, TRUE, 0);

/* This grabs this button to be the default button. Sim-

ply hitting
* the "Enter" key will cause this button to activate. */

197

Chapter 10. Container Widgets

gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show (window);
gtk_main();
return(0);

}

/* example-end */

Try playing with resizing the window. You'll notice how the scrollbars react. You may
also wish to use the gtk_widget_set_usize() call to set the default size of the window or
other widgets.

10.10. Button Boxes

198

Button Boxes are a convenient way to quickly layout a group of buttons. They come in
both horizontal and vertical flavours. You create a new Button Box with one of the
following calls, which create a horizontal or vertical box, respectively:

GtkWidget *gtk_hbutton_box_new(void);
GtkWidget *gtk_vbutton_box_new(void);

The only attributes pertaining to button boxes effect how the buttons are laid out. You
can change the spacing between the buttons with:

void gtk _hbutton_box_set_spacing_default(gint spacing);
void gtk_vbutton_box_set_spacing_default(gint spacing);
Similarly, the current spacing values can be queried using:

gint gtk _hbutton_box_get _spacing_default(void);

Chapter 10. Container Widgets

gint gtk _vbutton_box_get_spacing_default(void);

The second attribute that we can access effects the layout of the buttons within the box.
It is set using one of:

void gtk_hbutton_box_set_layout_default(GtkButtonBoxStyle lay-
out);

void gtk vbutton_box_set layout default(GtkButtonBoxStyle lay-
out);

Thelayout argument can take one of the following values:
GTK_BUTTONBOX_ DEFAULT_STYLE
GTK_BUTTONBOX_SPREAD
GTK_BUTTONBOX_EDGE
GTK_BUTTONBOX_START
GTK_BUTTONBOX_END
The current layout setting can be retrieved using:
GtkButtonBoxStyle gtk hbutton_box_get layout default(void);
GtkButtonBoxStyle gtk _vbutton_box_get_layout_default(void);
Buttons are added to a Button Box using the usual function:
gtk_container_add(GTK_CONTAINER(button_box), child_widget);
Here’s an example that illustrates all the different layout settings for Button Boxes.
/* example-start buttonbox buttonbox.c */

#include <gtk/gtk.h>

/* Create a Button Box with the specified parameters */
GtkWidget *create_bbox(gint horizontal,

199

Chapter 10. Container Widgets

char *title,

gint spacing,
gint child_w,
gint child_h,
gint layout)

GtkWidget *frame;
GtkWidget *bbox;
GtkWidget *button;

frame = gtk _frame_new (title);

if (horizontal)

bbox = gtk_hbutton_box_new ();
else

bbox = gtk _vbutton_box_new ();

gtk_container_set_border_width (GTK_CONTAINER (bbox), 5);
gtk_container_add (GTK_CONTAINER (frame), bbox);

/* Set the appearance of the Button Box */

gtk_button_box_set_layout (GTK_BUTTON_BOX (bbox), layout);
gtk_button_box_set_spacing (GTK_BUTTON_BOX (bbox), spacing);
gtk_button_box_set _child_size (GTK_BUTTON_BOX (bbox), child_w, child_h);

button = gtk _button_new_with_label ("OK");
gtk_container_add (GTK_CONTAINER (bbox), button);

button = gtk_button_new_with_label ("Cancel");
gtk_container_add (GTK_CONTAINER (bbox), button);

button = gtk_button_new_with_label ("Help");
gtk_container_add (GTK_CONTAINER (bbox), button);

return(frame);

200

Chapter 10. Container Widgets

int main(int argc,
char *argv[])
{
static GtkWidget* window = NULL;
GtkWidget *main_vbox;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *frame_horz;
GtkWidget *frame_vert;

/* Initialize GTK */
gtk_init(&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Button Boxes");

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC(gtk_main_quit),
NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

main_vbox = gtk vbox new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), main_vbox);

frame_horz = gtk _frame_new ("Horizontal Button Boxes");
gtk_box_pack_start (GTK_BOX (main_vbox), frame_horz, TRUE, TRUE, 10);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 10);
gtk_container_add (GTK_CONTAINER (frame_horz), vbox);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "Spread (spac-
ing 40)", 40, 85, 20, GTK_BUTTONBOX_SPREAD),
TRUE, TRUE, 0);

201

Chapter 10. Container Widgets

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "Edge (spac-
ing 30)", 30, 85, 20, GTK_BUTTONBOX_EDGE),
TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "Start (spac-
ing 20)", 20, 85, 20, GTK_BUTTONBOX_START),
TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "End (spac-
ing 10)", 10, 85, 20, GTK_BUTTONBOX_END),
TRUE, TRUE, 5);

frame_vert = gtk frame_new ("Vertical Button Boxes");
gtk_box_pack_start (GTK_BOX (main_vbox), frame_vert, TRUE, TRUE, 10);

hbox = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_container_add (GTK_CONTAINER (frame_vert), hbox);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "Spread (spac-
ing 5)", 5, 85, 20, GTK_BUTTONBOX_SPREAD),
TRUE, TRUE, 0);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "Edge (spac-
ing 30)", 30, 85, 20, GTK_BUTTONBOX_EDGE),
TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "Start (spac-
ing 20)", 20, 85, 20, GTK_BUTTONBOX_START),
TRUE, TRUE, 5);

202

Chapter 10. Container Widgets

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "End (spac-
ing 20)", 20, 85, 20, GTK_BUTTONBOX_END),
TRUE, TRUE, 5);

gtk_widget _show_all (window);

/* Enter the event loop */
gtk_main ();

return(0);

}

/* example-end */

10.11. Toolbar

Toolbars are usually used to group some number of widgets in order to simplify
customization of their look and layout. Typically a toolbar consists of buttons with
icons, labels and tooltips, but any other widget can also be put inside a toolbar. Finally,
items can be arranged horizontally or vertically and buttons can be displayed with
icons, labels, or both.

Creating a toolbar is (as one may already suspect) done with the following function:

GtkWidget *gtk_toolbar_new(GtkOrientation orientation,
GtkToolbarStyle style);

where orientation may be one of:

GTK_ORIENTATION_HORIZONTAL
GTK_ORIENTATION_VERTICAL

and style one of:

GTK_TOOLBAR_TEXT

203

Chapter 10. Container Widgets

GTK_TOOLBAR_ICONS
GTK_TOOLBAR_BOTH

The style applies to all the buttons created with the ‘item’ functions (not to buttons
inserted into toolbar as separate widgets).

After creating a toolbar one can append, prepend and insert items (that means simple
text strings) or elements (that means any widget types) into the toolbar. To describe an
item we need a label text, a tooltip text, a private tooltip text, an icon for the button and
a callback function for it. For example, to append or prepend an item you may use the

following functions:

GtkWidget *gtk toolbar_append_item(GtkToolbar *toolbar,

const char *text,

const char *tooltip_text,

const char *tooltip_private_text,
GtkWidget *icon,
GtkSignalFunc callback,

gpointer user_data);

GtkWidget *gtk_toolbar_prepend_item(GtkToolbar *toolbar,

const char *text,

const char *tooltip_text,

const char *tooltip_private_text,
GtkWidget *icon,
GtkSignalFunc callback,

gpointer user_data);

If you want to use gtk_toolbar_insert_item, the only additional parameter which must
be specified is the position in which the item should be inserted, thus:

GtkWidget *gtk_toolbar_insert_item(GtkToolbar *toolbar,

const char *text,

const char *tooltip_text,

const char *tooltip_private_text,
GtkWidget *icon,
GtkSignalFunc callback,

gpointer user_data,

204

Chapter 10. Container Widgets

gint position);
To simplify adding spaces between toolbar items, you may use the following functions:

void gtk _toolbar_append_space(GtkToolbar *toolbar);
void gtk toolbar_prepend_space(GtkToolbar *toolbar);

void gtk_toolbar_insert_space(GtkToolbar *toolbar,
gint position);

While the size of the added space can be set globally for a whole toolbar with the
function:

void gtk _toolbar_set space_size(GtkToolbar *toolbar,
gint space_size) ;

If it's required, the orientation of a toolbar and its style can be changed "on the fly"
using the following functions:

void gtk toolbar_set orientation(GtkToolbar *toolbar,
GtkOrientation orientation);

void gtk _toolbar_set_style(GtkToolbar *toolbar,
GtkToolbarStyle style);

void gtk_toolbar_set_tooltips(GtkToolbar *toolbar,
gint enable);

Whereorientation is one of GTK_ORIENTATION_HORIZONTA®Or
GTK_ORIENTATION_VERTICALThestyle is used to set appearance of the toolbar
items by using one a6TK_TOOLBAR_ICONSSTK_TOOLBAR_TEXTor
GTK_TOOLBAR_BOTH

To show some other things that can be done with a toolbar, let’s take the following
program (we’ll interrupt the listing with some additional explanations):

#include <gtk/gtk.h>

205

Chapter 10. Container Widgets

#include "gtk.xpm"

/* This function is connected to the Close button or
* closing the window from the WM */
gint delete_event (GtkWidget *widget, Gd-
kEvent *event, gpointer data)
{
gtk_main_quit ();
return(FALSE);
}

The above beginning seems for sure familiar to you if it's not your first GTK program.
There is one additional thing though, we include a nice XPM picture to serve as an icon
for all of the buttons.

GtkWidget* close_button; /* This button will emit sig-
nal to close

* application */
GtkWidget* tooltips_button; /* to enable/disable tooltips */
GtkWidget* text_button,

* jcon_button,

* both_button; /* radio buttons for toolbar style */
GtkWidget* entry; /* a text entry to show packing any wid-
get into

* toolbar */

In fact not all of the above widgets are needed here, but to make things clearer | put
them all together.

/* that's easy... when one of the buttons is toggled, we just

* check which one is active and set the style of the toolbar
* accordingly

* ATTENTION: our toolbar is passed as data to callback ! */
void radio_event (GtkWidget *widget, gpointer data)

{
if (GTK_TOGGLE_BUTTON (text_button)->active)

206

Chapter 10. Container Widgets

gtk_toolbar_set_style(GTK_TOOLBAR (data), GTK_TOOLBAR_TEXT);
else if (GTK_TOGGLE_BUTTON (icon_button)->active)

gtk_toolbar_set_style(GTK_TOOLBAR (data), GTK_TOOLBAR_ICONS);
else if (GTK_TOGGLE_BUTTON (both_button)->active)

gtk_toolbar_set_style(GTK_TOOLBAR (data), GTK_TOOLBAR_BOTH);

}

/* even easier, just check given toggle but-
ton and enable/disable
* tooltips */
void toggle_event (GtkWidget *widget, gpointer data)
{
gtk _toolbar_set_tooltips (GTK_TOOLBAR (data),
GTK_TOGGLE_BUTTON (widget)-
>active);

}

The above are just two callback functions that will be called when one of the buttons on
a toolbar is pressed. You should already be familiar with things like this if you've
already used toggle buttons (and radio buttons).

int main (int argc, char *argv[])
{

/* Here is our main window (a dialog) and a han-
dle for the handlebox */

GtkWidget* dialog;

GtkWidget* handlebox;

/* Ok, we need a toolbar, an icon with a mask (one for all of
the buttons) and an icon widget to put this icon in (but
we'll create a separate widget for each button) */

GtkWidget * toolbar;

GdkPixmap * icon;

GdkBitmap * mask;

GtkWidget * iconw;

/* this is called in all GTK application. */

207

Chapter 10. Container Widgets

gtk_init (&argc, &argv);

[* create a new window with a given title, and nice size */

dialog = gtk_dialog_new ();

gtk_window_set title (GTK_WINDOW (dialog) , "GTKTool-
bar Tutorial");

gtk_widget_set_usize(GTK_WIDGET (dialog) , 600 , 300);

GTK_WINDOW (dialog) ->allow_shrink = TRUE;

[* typically we quit if someone tries to close us */
gtk_signal_connect (GTK_OBJECT (dialog), "delete_event",
GTK_SIGNAL_FUNC (delete_event), NULL);

/* we need to realize the window because we use pixmaps for
* jtems on the toolbar in the context of it */
gtk_widget_realize (dialog);

/* to make it nice we’ll put the toolbar into the handle box,

* so that it can be detached from the main window */

handlebox = gtk _handle_box_new ();

gtk_box_pack_start (GTK_BOX (GTK_DIALOG(dialog)->vbox),
handlebox, FALSE, FALSE, 5);

The above should be similar to any other GTK application. Just initialization of GTK,
creating the window, etc. There is only one thing that probably needs some
explanation: a handle box. A handle box is just another box that can be used to pack
widgets in to. The difference between it and typical boxes is that it can be detached
from a parent window (or, in fact, the handle box remains in the parent, but it is
reduced to a very small rectangle, while all of its contents are reparented to a new
freely floating window). It is usually nice to have a detachable toolbar, so these two
widgets occur together quite often.

/* toolbar will be horizontal, with both icons and text, and

* with 5pxl spaces between items and finally,

* we'll also put it into our handlebox */

toolbar = gtk_toolbar_new (GTK_ORIENTATION_HORIZONTAL,
GTK_TOOLBAR_BOTH);

208

Chapter 10. Container Widgets

gtk_container_set_border_width (GTK_CONTAINER (tool-

bar) , 5);
gtk_toolbar_set_space_size (GTK_TOOLBAR (toolbar), 5);
gtk_container_add (GTK_CONTAINER (handlebox) , toolbar);

/* now we create icon with mask: we’ll reuse it to create

* jcon widgets for toolbar items */

icon = gdk_pixmap_create_from_xpm_d (dialog->window, &mask,
&dialog->style->white, gtk_xpm);

Well, what we do above is just a straightforward initialization of the toolbar widget and
creation of a GDK pixmap with its mask. If you want to know something more about
using pixmaps, refer to GDK documentation or to fhe Pixinaps section earlier in this
tutorial.

/* our first item is <close> button */
iconw = gtk_pixmap_new (icon, mask); /* icon widget */
close_button =
gtk_toolbar_append_item (GTK_TOOLBAR (tool-
bar), /* our toolbar */

"Close", * but-
ton label */
"Closes this app", /* this but-
ton’s tooltip */
"Pri-
vate", /* tooltip private info */
iconw, /* icon wid-
get */
GTK_SIGNAL_FUNC (delete_event), /* a sig-
nal */

NULL);
gtk_toolbar_append_space (GTK_TOOLBAR (tool-
bar)); /* space after item */

In the above code you see the simplest case: adding a button to toolbar. Just before
appending a new item, we have to construct a pixmap widget to serve as an icon for this
item; this step will have to be repeated for each new item. Just after the item we also

209

Chapter 10. Container Widgets

add a space, so the following items will not touch each other. As you see
gtk_toolbar_append_item returns a pointer to our newly created button widget, so that
we can work with it in the normal way.

/* now, let's make our radio buttons group... */

iconw = gtk_pixmap_new (icon, mask);

icon_button = gtk _toolbar_append_element(
GTK_TOOLBAR(toolbar),
GTK_TOOLBAR_CHILD_RADIOBUTTON, /* a type of el-

ement */
NULL, [* pointer to wid-

get */
"lcon”, [* label */
"Only icons in toolbar", /* tooltip */
"Pri-

vate", /* tooltip private string */
iconw, * icon *
GTK_SIGNAL_FUNC (radio_event), /* signal */
tool-

bar); /* data for signal */

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));

Here we begin creating a radio buttons group. To do this we use

gtk _toolbar_append_element. In fact, using this function one can also +add simple
items or even spaces (typeGTK_TOOLBAR_CHILD_SPAC&"
+GTK_TOOLBAR_CHILD_BUTTQNnN the above case we start creating a radio group. In
creating other radio buttons for this group a pointer to the previous button in the group
is required, so that a list of buttons can be easily constructed (see the sedtion o Radio
Buttong earlier in this tutorial).

/* following radio buttons refer to previous ones */
iconw = gtk_pixmap_new (icon, mask);
text_button =
gtk_toolbar_append_element(GTK_TOOLBAR(toolbar),
GTK_TOOLBAR_CHILD_RADIOBUTTON,
icon_button,
"Text",

210

Chapter 10. Container Widgets

"Only texts in toolbar",
"Private",
iconw,
GTK_SIGNAL_FUNC (radio_event),
toolbar);
gtk _toolbar_append_space (GTK _TOOLBAR (toolbar));

iconw = gtk_pixmap_new (icon, mask);
both_button =
gtk_toolbar_append_element(GTK_TOOLBAR(toolbar),

GTK_TOOLBAR_CHILD_RADIOBUTTON,
text_button,
"Both",
"Icons and text in toolbar",
"Private”,
iconw,
GTK_SIGNAL_FUNC (radio_event),
toolbar);

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));

gtk _toggle_button_set_active(GTK_TOGGLE_BUTTON(both_button), TRUE);

In the end we have to set the state of one of the buttons manually (otherwise they all
stay in active state, preventing us from switching between them).

/* here we have just a simple toggle button */

iconw = gtk_pixmap_new (icon, mask);

tooltips_button =

gtk_toolbar_append_element(GTK_TOOLBAR(toolbar),

GTK_TOOLBAR_CHILD_TOGGLEBUTTON,
NULL,
"Tooltips",
"Toolbar with or without tips",
"Private”,
iconw,
GTK_SIGNAL_FUNC (toggle_event),
toolbar);

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));

211

Chapter 10. Container Widgets

212

gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(tooltips_button), TRUE);

A toggle button can be created in the obvious way (if one knows how to create radio
buttons already).

/* to pack a widget into toolbar, we only have to

* create it and append it with an appropriate tooltip */

entry = gtk_entry_new ();

gtk _toolbar_append_widget(GTK_TOOLBAR (toolbar),
entry,
"This is just an entry",
"Private");

/* well, it isn’'t created within thetool-

bar, so we must still show it */

gtk_widget_show (entry);

As you see, adding any kind of widget to a toolbar is simple. The one thing you have to
remember is that this widget must be shown manually (contrary to other items which
will be shown together with the toolbar).

}

[* that's it ! let's show everything. */
gtk_widget_show (toolbar);
gtk_widget_show (handlebox);
gtk_widget_show (dialog);

/* rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return O;

So, here we are at the end of toolbar tutorial. Of course, to appreciate it in full you need
also this nice XPM icon, so here itis:

* XPM */
static char * gtk xpm[] = {

Chapter 10. Container Widgets

"32 39 5 1",

" C none",

+ ¢ black",

"@ c #3070EQ",
"H ¢ #F05050",
$ ¢ #35E035",

TP +++++@ @++...........

TR +++++@ @@ @@ @++.........

RIS +H+++Q A Q@@ @@@++........

M ++++@@++++++++@ @ @ ++.......

O @@ @@ @
LLHHHQQO@O@+++Q@@@Q@Q@+H+++@@@@+....",
LHQ@Q@O@+++O@Q@Q@@@A+++Q@Q@@@++..",
"+HO@Q@Q@O+++Q@QO@@APQE@QOPQ@@@@@++",
"H+QOQ@Q@Q++@Q@O@+++@Q@@Q@Q@@@@@+",
"HHHOQQ@@+++Q@Q@Q+++H++Q@ QO @Q@Q@$Q@.",
HHHHTQOQ@O@+++Q@@Q@+++OQ Q@A @++$$3@.",

" @@ @+ @ @@ @ @+ @$$3$@ .,

" +HAHHA Q@@ A+ @@ @+ +@ PP +.",
"HHHHHH O Q@ Q@@ @++@$$$SSESS+.",

" HHHHBHHH O @ @ @+ 53PS @ @ $S+. ",

" A @ @+ @3S PSS+ +ESS+.,

" AR Q @S5S @+ @SS @+,

" HHH @SS @+ @ P @+ PSS @ .,

" A RS @+ @ PSS HHES S,
"3 @+ @ $H @ S S .

" S @S5S S

A S @ $ESES .

" R SSHHHHH @ S @

" A A+ S5 @+ @@
"33+ @@ +++$@ @,

" A HHEHH 5 355+ @@ ++.,

" A S S S I I I I BB+ ++.",
A S+ S SIS @ +++.",
"R @3S+ @SS SEES ..,

213

Chapter 10. Container Widgets

" QS SSPSS @ +++.... ",
" AR @SSP ES S+

10.12. Notebooks

214

The NoteBook Widget is a collection of "pages” that overlap each other, each page
contains different information with only one page visible at a time. This widget has
become more common lately in GUI programming, and it is a good way to show blocks
of similar information that warrant separation in their display.

The first function call you will need to know, as you can probably guess by now, is used
to create a new notebook widget.

GtkWidget *gtk_notebook_new(void);

Once the notebook has been created, there are a number of functions that operate on the
notebook widget. Let’s look at them individually.

The first one we will look at is how to position the page indicators. These page
indicators or "tabs" as they are referred to, can be positioned in four ways: top, bottom,
left, or right.

void gtk _notebook_set_tab_pos(GtkNotebook *notebook,
GtkPositionType pos);

GtkPositionType will be one of the following, which are pretty self explanatory:

GTK_POS_LEFT
GTK_POS_RIGHT

Chapter 10. Container Widgets

GTK_POS_TOP
GTK_POS_BOTTOM

GTK_POS_TO#Rs the default.

Next we will look at how to add pages to the notebook. There are three ways to add
pages to the NoteBook. Let’s ook at the first two together as they are quite similar.

void gtk _notebook append_page(GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab_label);

void gtk _notebook prepend_page(GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab_label);

These functions add pages to the notebook by inserting them from the back of the
notebook (append), or the front of the notebook (prepermil}l is the widget that is
placed within the notebook page, atad_label s the label for the page being added.
Thechild widget must be created separately, and is typically a set of options setup
witin one of the other container widgets, such as a table.

The final function for adding a page to the notebook contains all of the properties of the
previous two, but it allows you to specify what position you want the page to be in the
notebook.

void gtk_notebook_insert_page(GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab_label,
gint position);

The parameters are the same as _append_ and _prepend_ except it contains an extra
parameterposition . This parameter is used to specify what place this page will be
inserted into the first page having position zero.

Now that we know how to add a page, lets see how we can remove a page from the
notebook.

215

Chapter 10. Container Widgets

216

void gtk_notebook remove_page(GtkNotebook *notebook,
gint page_num);

This function takes the page specifieddage_num and removes it from the widget
pointed to bynotebook .

To find out what the current page is in a notebook use the function:
gint gtk_notebook_get current_page(GtkNotebook *notebook);

These next two functions are simple calls to move the notebook page forward or
backward. Simply provide the respective function call with the notebook widget you
wish to operate on. Note: When the NoteBook is currently on the last page, and
gtk_notebook_next_page is called, the notebook will wrap back to the first page.
Likewise, if the NoteBook is on the first page, and gtk_notebook_prev_page is called,
the notebook will wrap to the last page.

void gtk_notebook_next_page(GtkNoteBook *notebook);
void gtk _notebook prev_page(GtkNoteBook *notebook);

This next function sets the "active" page. If you wish the notebook to be opened to page
5 for example, you would use this function. Without using this function, the notebook
defaults to the first page.

void gtk _notebook set page(GtkNotebook *notebook,
gint page_num);

The next two functions add or remove the notebook page tabs and the notebook border
respectively.

void gtk _notebook_set _show_tabs(GtkNotebook *notebook,
gboolean show_tabs);

void gtk _notebook_set_show_border(GtkNotebook *notebook,
gboolean show_border);

Chapter 10. Container Widgets

The next function is useful when the you have a large number of pages, and the tabs
don't fit on the page. It allows the tabs to be scrolled through using two arrow buttons.

void gtk_notebook_set_scrollable(GtkNotebook *notebook,
gboolean scrollable);

show_tabs , show_border andscrollable can be either TRUE or FALSE.

Now let’s look at an example, it is expanded from the testgtk.c code that comes with the
GTK distribution. This small program creates a window with a notebook and six

buttons. The notebook contains 11 pages, added in three different ways, appended,
inserted, and prepended. The buttons allow you rotate the tab positions, add/remove the
tabs and border, remove a page, change pages in both a forward and backward manner,
and exit the program.

[* example-start notebook notebook.c */

#include <stdio.h>
#include <gtk/gtk.h>

/* This function rotates the position of the tabs */
void rotate_book(GtkButton *pbutton,
GtkNotebook *notebook)
{
gtk_notebook_set_tab_pos (notebook, (notebook-
>tab_pos +1) %4);
}

/* Add/Remove the page tabs and the borders */
void tabsborder_book(GtkButton *button,
GtkNotebook *notebook)

{

gint tval = FALSE;

gint bval = FALSE;

if (notebook->show_tabs == 0)

tval = TRUE;

if (notebook->show_border == 0)

bval = TRUE;

217

Chapter 10. Container Widgets

218

gtk_notebook_set show_tabs (notebook, tval);
gtk_notebook_set_show_border (notebook, bval);

}

/* Remove a page from the notebook */
void remove_book(GtkButton *button,
GtkNotebook *notebook)

{
gint page;

page = gtk _notebook get current_page(notebook);
gtk_notebook_remove_page (notebook, page);

/* Need to refresh the widget -

This forces the widget to redraw itself. */
gtk_widget _draw(GTK_WIDGET(notebook), NULL);

}

gint delete(GtkWidget *widget,
GtkWidget *event,
gpointer data)

gtk_main_quit();
return(FALSE);
}

int main(int argc,
char *argv[])
{
GtkWidget *window;
GtkWidget *button;
GtkWidget *table;
GtkWidget *notebook;
GtkWidget *frame;
GtkWidget *label;
GtkWidget *checkbutton;
int i

Chapter 10. Container Widgets

char bufferf[32];
char bufferl[32];

gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (delete), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

table = gtk table_new(3,6,FALSE);
gtk_container_add (GTK_CONTAINER (window), table);

/* Create a new notebook, place the position of the tabs */
notebook = gtk_notebook new ();
gtk_notebook_set_tab_pos (GTK_NOTEBOOK (note-

book), GTK_POS_TOP);
gtk_table_attach_defaults(GTK_TABLE(table), note-

book, 0,6,0,1);
gtk_widget_show(notebook);

/* Let's append a bunch of pages to the notebook */
for (i=0; i < 5; i++) {

sprintf(bufferf, "Append Frame %d", i+1);

sprintf(bufferl, "Page %d", i+1);

frame = gtk_frame_new (bufferf);
gtk_container_set_border_width (GTK_CONTAINER (frame), 10);
gtk_widget_set_usize (frame, 100, 75);

gtk_widget_show (frame);

label = gtk _label_new (bufferf);

gtk_container_add (GTK_CONTAINER (frame), label);
gtk_widget_show (label);

219

Chapter 10. Container Widgets

220

label = gtk _label_new (bufferl);
gtk_notebook_append_page (GTK_NOTEBOOK (note-
book), frame, label);

}

/* Now let's add a page to a specific spot */
checkbut-

ton = gtk_check_button_new_with_label ("Check me please!");
gtk_widget_set_usize(checkbutton, 100, 75);
gtk_widget_show (checkbutton);

label = gtk _label_new ("Add page");
gtk_notebook_insert_page (GTK_NOTEBOOK (notebook), checkbut-
ton, label, 2);

/* Now finally let's prepend pages to the notebook */
for (i=0; i < 5; i++) {

sprintf(bufferf, "Prepend Frame %d", i+1);

sprintf(bufferl, "PPage %.d", i+1);

frame = gtk _frame_new (bufferf);
gtk_container_set_border_width (GTK_CONTAINER (frame), 10);
gtk_widget_set_usize (frame, 100, 75);

gtk_widget_show (frame);

label = gtk _label_new (bufferf);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_widget_show (label);

label = gtk _label_new (bufferl);
gtk_notebook_prepend_page (GTK_NOTEBOOK(notebook), frame, label);

}

/* Set what page to start at (page 4) */
gtk_notebook_set_page (GTK_NOTEBOOK(notebook), 3);

/* Create a bunch of buttons */

Chapter 10. Container Widgets

button = gtk_button_new_with_label ("close");
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (delete), NULL);
gtk_table_attach_defaults(GTK_TABLE(table), but-
ton, 0,1,1,2);
gtk_widget_show(button);

button = gtk_button_new_with_label ("next page");
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
(GtkSignalFunc) gtk notebook_next page,
GTK_OBJECT (notebook));
gtk_table_attach_defaults(GTK_TABLE(table), but-
ton, 1,2,1,2);
gtk_widget_show(button);

button = gtk button_new_with_label ("prev page");
gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
(GtkSignalFunc) gtk_notebook_prev_page,
GTK_OBJECT (notebook));
gtk_table_attach_defaults(GTK_TABLE(table), but-
ton, 2,3,1,2);
gtk_widget_show(button);

button = gtk button_new_with_label ("tab position");
gtk_signal_connect (GTK_OBJECT (button), “clicked",
(GtkSignalFunc) rotate_book,
GTK_OBJECT(notebook));
gtk_table_attach_defaults(GTK_TABLE(table), but-
ton, 3,4,1,2);
gtk_widget_show(button);

button = gtk_button_new_with_label (“tabs/border on/off");
gtk_signal_connect (GTK_OBJECT (button), “clicked",
(GtkSignalFunc) tabsborder_book,
GTK_OBJECT (notebook));
gtk_table_attach_defaults(GTK_TABLE(table), but-
ton, 4,5,1,2);

221

Chapter 10. Container Widgets

gtk_widget_show(button);

button = gtk_button_new_with_label (“remove page");
gtk_signal_connect (GTK_OBJECT (button), “clicked",
(GtkSignalFunc) remove_book,
GTK_OBJECT(notebook));
gtk_table_attach_defaults(GTK_TABLE(table), but-
ton, 5,6,1,2);
gtk_widget_show(button);

gtk_widget_show(table);
gtk_widget_show(window);

gtk_main ();
return(0);
}

/* example-end */

| hope this helps you on your way with creating notebooks for your GTK applications.

222

Chapter 11. CList Widget

11.1.

The CList widget has replaced the List widget (which is still available).

The CList widget is a multi-column list widget that is capable of handling literally
thousands of rows of information. Each column can optionally have a title, which itself
is optionally active, allowing us to bind a function to its selection.

Creating a CList widget

Creating a CList is quite straightforward, once you have learned about widgets in
general. It provides the almost standard two ways, that is the hard way, and the easy
way. But before we create it, there is one thing we should figure out beforehand: how
many columns should it have?

Not all columns have to be visible and can be used to store data that is related to a
certain cell in the list.

GtkWidget *gtk clist new (gint columns);

GtkWidget *gtk_clist_new_with_titles(gint columns,
gchar *titles[]);

The first form is very straightforward, the second might require some explanation. Each
column can have a title associated with it, and this title can be a label or a button that
reacts when we click on it. If we use the second form, we must provide pointers to the
title texts, and the number of pointers should equal the number of columns specified.
Of course we can always use the first form, and manually add titles later.

Note: The CList widget does not have its own scrollbars and should be placed within a
ScrolledWindow widget if your require this functionality. This is a change from the
GTK 1.0 implementation.

223

Chapter 11. CList Widget

11.2. Modes of operation

224

There are several attributes that can be used to alter the behaviour of a CList. First there
is

void gtk_clist_set_selection_mode(GtkCList *clist,
GtkSelectionMode mode);

which, as the name implies, sets the selection mode of the CList. The first argument is
the CList widget, and the second specifies the cell selection mode (they are defined in
gtkenums.h). At the time of this writing, the following modes are available to us:

GTK_SELECTION_SINGLE The selection is either NULL or contains a GList
pointer for a single selected item.

« GTK_SELECTION_BROWSH he selection is NULL if the list contains no widgets
or insensitive ones only, otherwise it contains a GList pointer for one GList structure,
and therefore exactly one list item.

« GTK_SELECTION_MULTIPLE The selection is NULL if no list items are selected or
a GList pointer for the first selected item. That in turn points to a GList structure for
the second selected item and so on. This is currentlgéfieultfor the CList widget.

+ GTK_SELECTION_EXTENDEDThe selection is always NULL.
Others might be added in later revisions of GTK.

We can also define what the border of the CList widget should look like. It is done
through

void gtk_clist_set_shadow_type(GtkCList *clist,
GtkShadowType border);

The possible values for the second argument are

GTK_SHADOW_NONE
GTK_SHADOW._IN
GTK_SHADOW_OUT
GTK_SHADOW_ETCHED_IN

Chapter 11. CList Widget

GTK_SHADOW_ETCHED_OUT

11.3. Working with titles

When you create a CList widget, you will also get a set of title buttons automatically.
They live in the top of the CList window, and can act either as normal buttons that
respond to being pressed, or they can be passive, in which case they are nothing more
than a title. There are four different calls that aid us in setting the status of the title
buttons.

void gtk_clist_column_title_active(GtkCList *clist,
gint column);

void gtk_clist_column_title_passive(GtkCList *clist,
gint column);

void gtk_clist_column_titles_active(GtkCList *clist);
void gtk clist_column_titles passive(GtkCList *clist);

An active title is one which acts as a normal button, a passive one is just a label. The
first two calls above will activate/deactivate the title button above the specific column,
while the last two calls activate/deactivate all title buttons in the supplied clist widget.

But of course there are those cases when we don’t want them at all, and so they can be
hidden and shown at will using the following two calls.

void gtk_clist_column_titles_show(GtkCList *clist);
void gtk clist_column_titles hide(GtkCList *clist);

For titles to be really useful we need a mechanism to set and change them, and this is
done using

void gtk_clist_set_column_title(GtkCList *clist,

225

Chapter 11. CList Widget

gint column,
gchar *itle);

Note that only the title of one column can be set at a time, so if all the titles are known
from the beginning, then | really suggest using gtk_clist_new_with_titles (as described
above) to set them. It saves you coding time, and makes your program smaller. There
are some cases where getting the job done the manual way is better, and that's when not
all titles will be text. CList provides us with title buttons that can in fact incorporate

whole widgets, for example a pixmap. It’s all done through

void gtk_clist_set_column_widget(GtkCList *clist,
gint column,
GtkWidget *widget);

which should require no special explanation.

11.4. Manipulating the list itself
It is possible to change the justification for a column, and it is done through

void gtk_clist_set_column_justification(Gtk-
ClList *clist,
gint column,
GtkJustification jus-
tification);

The GtkJustification type can take the following values:

« GTK_JUSTIFY_LEFT - The text in the column will begin from the left edge.
« GTK_JUSTIFY_RIGHT - The text in the column will begin from the right edge.
« GTK_JUSTIFY_CENTER The text is placed in the center of the column.

« GTK_JUSTIFY_FILL - The text will use up all available space in the column. It is
normally done by inserting extra blank spaces between words (or between individual

226

Chapter 11. CList Widget

letters if it's a single word). Much in the same way as any ordinary WYSIWYG text
editor.

The next function is a very important one, and should be standard in the setup of all
CList widgets. When the list is created, the width of the various columns are chosen to
match their titles, and since this is seldom the right width we have to set it using

void gtk_clist_set_column_width(GtkCList *clist,
gint column,
gint width);

Note that the width is given in pixels and not letters. The same goes for the height of
the cells in the columns, but as the default value is the height of the current font this
isn't as critical to the application. Still, it is done through

void gtk_clist_set_row_height(GtkCList *clist,
gint height);
Again, note that the height is given in pixels.

We can also move the list around without user interaction, however, it does require that
we know what we are looking for. Or in other words, we need the row and column of
the item we want to scroll to.

void gtk_clist_moveto(GtkCList *clist,

gint row,

gint column,
gfloat row_align,
gfloat col_align);

The gfloat row_align is pretty important to understand. It's a value between 0.0 and 1.0,
where 0.0 means that we should scroll the list so the row appears at the top, while if the
value of row_align is 1.0, the row will appear at the bottom instead. All other values
between 0.0 and 1.0 are also valid and will place the row between the top and the
bottom. The last argument, gfloat col_align works in the same way, though 0.0 marks
left and 1.0 marks right instead.

227

Chapter 11. CList Widget

228

Depending on the application’s needs, we don’'t have to scroll to an item that is already
visible to us. So how do we know if it is visible? As usual, there is a function to find
that out as well.

GtkVisibility gtk_clist_row_is_visible(GtkCList *clist,
gint row);

The return value is is one of the following:

GTK_VISIBILITY_NONE
GTK_VISIBILITY_PARTIAL
GTK_VISIBILITY_FULL

Note that it will only tell us if a row is visible. Currently there is no way to determine
this for a column. We can get partial information though, because if the return is
GTK_VISIBILITY_PARTIAL ,then some ofitis hidden, but we don’t know if it is the

row that is being cut by the lower edge of the listbox, or if the row has columns that are
outside.

We can also change both the foreground and background colors of a particular row.
This is useful for marking the row selected by the user, and the two functions that is
used to do it are

void gtk_clist_set_foreground(GtkCList *clist,
gint row,
GdkColor *color);

void gtk clist_set_background(GtkCList *clist,
gint row,

GdkColor *color);

Please note that the colors must have been previously allocated.

Chapter 11. CList Widget

11.5. Adding rows to the list

We can add rows in three ways. They can be prepended or appended to the list using

gint gtk clist_prepend(GtkCList *clist,
gchar *text[]);

gint gtk_clist_append(GtkCList *clist,
gchar *text[]);

The return value of these two functions indicate the index of the row that was just
added. We can insert a row at a given place using

void gtk_clist_insert(GtkCList *clist,
gint row,
gchar *text[]);

In these calls we have to provide a collection of pointers that are the texts we want to
put in the columns. The number of pointers should equal the number of columns in the
list. If the text[] argument is NULL, then there will be no text in the columns of the

row. This is useful, for example, if we want to add pixmaps instead (something that has
to be done manually).

Also, please note that the numbering of both rows and columns start at 0.

To remove an individual row we use

void gtk clist_remove(GtkCList *clist,
gint row);

There is also a call that removes all rows in the list. This is a lot faster than calling
gtk_clist_remove once for each row, which is the only alternative.

void gtk_clist_clear(GtkCList *clist);

There are also two convenience functions that should be used when a lot of changes
have to be made to the list. This is to prevent the list flickering while being repeatedly
updated, which may be highly annoying to the user. So instead it is a good idea to

229

Chapter 11. CList Widget

11.6.

230

freeze the list, do the updates to it, and finally thaw it which causes the list to be
updated on the screen.

void gtk_clist_freeze(GtkCList * clist);

void gtk clist_thaw(GtkCList * clist);

Setting text and pixmaps in the cells

A cell can contain a pixmap, text or both. To set them the following functions are used.

void gtk clist_set_text(GtkCList *clist,
gint row,
gint column,
const gchar *text);

void gtk_clist_set_pixmap(GtkCList *clist,
gint row,
gint column,
GdkPixmap *pixmap,
GdkBitmap *mask);

void gtk clist_set_pixtext(GtkCList *clist,

gint row,
gint column,
gchar *text,
guint8 spacing,

GdkPixmap *pixmap,
GdkBitmap *mask);

It's quite straightforward. All the calls have the CList as the first argument, followed by
the row and column of the cell, followed by the data to be set.splaeing argument

in gtk_clist_set_pixtext is the number of pixels between the pixmap and the beginning
of the text. In all cases the data is copied into the widget.

Chapter 11. CList Widget

To read back the data, we instead use

gint gtk _clist_get_text(GtkCList *clist,

gint row,
gint column,
gchar **text);

gint gtk clist_get pixmap(GtkCList *clist,
gint row,
gint column,
GdkPixmap **pixmap,
GdkBitmap **mask);

gint gtk clist_get_pixtext(GtkCList *clist,

gint row,
gint column,
gchar **text,
guint8 *spacing,

GdkPixmap **pixmap,
GdkBitmap **mask);

The returned pointers are all pointers to the data stored within the widget, so the
referenced data should not be modified or released. It isn’'t necessary to read it all back
in case you aren't interested. Any of the pointers that are meant for return values (all
except the clist) can be NULL. So if we want to read back only the text from a cell that
is of type pixtext, then we would do the following, assuming that clist, row and column
already exist:

gchar *mytext;

gtk_clist_get_pixtext(clist, row, column, &my-
text, NULL, NULL, NULL);

There is one more call that is related to what'’s inside a cell in the clist, and that's

GtkCellType gtk_clist_get_cell_type(GtkCList *clist,
gint row,

231

Chapter 11. CList Widget

gint column);

which returns the type of data in a cell. The return value is one of

GTK_CELL_EMPTY
GTK_CELL_TEXT
GTK_CELL_PIXMAP
GTK_CELL_PIXTEXT
GTK_CELL_WIDGET

There is also a function that will let us set the indentation, both vertical and horizontal,
of a cell. The indentation value is of type gint, given in pixels, and can be both positive
and negative.

void gtk_clist_set_shift(GtkCList *clist,

gint row,

gint column,

gint vertical,

gint horizontal);

11.7. Storing data pointers

232

With a CList it is possible to set a data pointer for a row. This pointer will not be visible
for the user, but is merely a convenience for the programmer to associate a row with a
pointer to some additional data.

The functions should be fairly self-explanatory by now.

void gtk clist_set row_data(GtkCList *clist,
gint row,
gpointer data);

oid gtk clist_set row_data_full(GtkCList *clist,
gint row,
gpointer data,

11.8.

Chapter 11. CList Widget

GtkDestroyNotify destroy);

gpointer gtk_clist_get_row_data(GtkCList *clist,
gint row);

gint gtk clist_find_row_from_data(GtkCList *clist,
gpointer data);

Working with selections
There are also functions available that let us force the (un)selection of a row. These are
void gtk_clist_select_row(GtkCList *clist,

gint row,
gint column);

void gtk_clist_unselect_row(GtkCList *clist,
gint row,
gint column);

And also a function that will take x and y coordinates (for example, read from the
mousepointer), and map that onto the list, returning the corresponding row and column.

gint gtk_clist_get_selection_info(GtkCList *clist,

gint X,

gint Y,

gint *row,

gint *column);

When we detect something of interest (it might be movement of the pointer, a click
somewhere in the list) we can read the pointer coordinates and find out where in the list
the pointer is. Cumbersome? Luckily, there is a simpler way...

233

Chapter 11. CList Widget

11.9. The signals that bring it together

As with all other widgets, there are a few signals that can be used. The CList widget is
derived from the Container widget, and so has all the same signals, but also adds the
following:

. select_row - This signal will send the following information, in order: GtkCList
*clist, gint row, gint column, GtkEventButton *event

- unselect_row - When the user unselects a row, this signal is activated. It sends the
same information as select_row<

« click_column - Send GtkCList *clist, gint column

So if we want to connect a callback to select_row, the callback function would be
declared like this

void select_row_callback(GtkWidget *widget,

gint row,
gint column,

GdkEventButton *event,
gpointer data);

The callback is connected as usual with
gtk_signal_connect(GTK_OBJECT(clist),
"select_row"

GTK_SIGNAL_FUNC(select_row_callback),
NULL);

11.10. A CList example

/* example-start clist clist.c */

#include <gtk/gtk.h>

234

Chapter 11. CList Widget

/* User clicked the "Add List" button. */
void button_add_clicked(gpointer data)

{
int indx;
/* Some-

thing silly to add to the list. 4 rows of 2 columns each */
gchar *drink[4][2] = { { "Milk", "3 0z" },

{ "Water", "6 1"},
{ "Carrots", "2" },
{ "Snakes", "55" } };

/* Here we do the ac-
tual adding of the text. It's done once for

* each row.

*/

for (indx=0 ; indx < 4 ; indx++)
gtk_clist_append((GtkCList *) data, drink[indx]);

return;

}

/* User clicked the "Clear List" button. */
void button_clear_clicked(gpointer data)

{

/* Clear the list us-
ing gtk_clist_clear. This is much faster than
* calling gtk_clist_remove once for each row.
*/
gtk_clist_clear((GtkCList *) data);

return;

}

/* The user clicked the "Hide/Show titles" button. */
void button_hide_show_clicked(gpointer data)

235

Chapter 11. CList Widget

236

{

/* Just a flag to remember the status. O = currently

ble */
static short int flag = 0;

if (flag == 0)
{
/* Hide the titles and set the flag to 1 */
gtk_clist_column_titles_hide((GtkCList *) data);
flag++;
}

else

{

/* Show the titles and reset flag to 0 */
gtk_clist_column_titles_show((GtkCList *) data);
flag-;

}

return;

}

/* If we come here, then the user has se-
lected a row in the list. */

void selection_made(GtkWidget *clist,
gint row,
gint column,
GdkEventButton *event,
gpointer data)
{

gchar *text;

/* Get the text that is stored in the se-
lected row and column

* which was clicked in. We will re-
ceive it as a pointer in the

* argument text.

*/

Visi-

Chapter 11. CList Widget

gtk_clist_get_text(GTK_CLIST(clist), row, column, &text);

/* Just prints some information about the selected row */
g_print("You selected row %d. More specifi-
cally you clicked in "
"column %d, and the text in this cell is %s\n\n",
row, column, text);

return;
}
int main(int argc,
gchar *argv[])
{

GtkWidget *window;

GtkWidget *vbox, *hbox;

GtkWidget *scrolled_window, *clist;

GtkWidget *button_add, *button_clear, *button_hide_show;
gchar *itles[2] = { "Ingredients", "Amount" };

gtk_init(&argc, &argv);

window=gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_widget_set_usize(GTK_WIDGET(window), 300, 150);

gtk_window_set_title(GTK_WINDOW(window), "Gtk-
CList Example");
gtk_signal_connect(GTK_OBJECT (window),
"destroy",
GTK_SIGNAL_FUNC(gtk_main_quit),
NULL);

vbox=gtk_vbox_new(FALSE, 5);
gtk_container_set_border_width(GTK_CONTAINER(vbox), 5);
gtk_container_add(GTK_CONTAINER(window), vbox);
gtk_widget_show(vbox);

237

Chapter 11. CList Widget

[* Create a scrolled window to pack the CList widget into */

scrolled_window = gtk_scrolled_window_new (NULL, NULL);

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window),
GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAY

gtk_box_pack_start(GTK_BOX(vbox), scrolled_window, TRUE, TRUE, 0);
gtk_widget_show (scrolled_window);

/* Create the CList. For this example we use 2 columns */
clist = gtk _clist_new_with_titles(2, titles);

/* When a selec-
tion is made, we want to know about it. The callback
* used is selection_made, and its code can be found fur-
ther down */
gtk_signal_connect(GTK_OBJECT(clist), "select_row",
GTK_SIGNAL_FUNC(selection_made),
NULL);

/* It isn't necessary to shadow the bor-
der, but it looks nice :) */
gtk_clist_set_shadow_type (GTK_CLIST(clist), GTK_SHADOW_OUT);

/* What however is important, is that we set the col-
umn widths as
* they will never be right other-
wise. Note that the columns are
* numbered from 0 and up (to 1 in this case).
*/
gtk_clist_set_column_width (GTK_CLIST(clist), 0, 150);
/* Add the CList widget to the vertical box and show it. */
gtk_container_add(GTK_CONTAINER(scrolled_window), clist);
gtk_widget_show(clist);

/* Create the buttons and add them to the win-
dow. See the button

238

Chapter 11

* tutorial for more examples and comments on this.

*/

hbox = gtk_hbox_new(FALSE, 0);
gtk_box_pack_start(GTK_BOX(vbox), hbox, FALSE, TRUE, 0);
gtk_widget_show(hbox);

button_add = gtk button_new_with_label("Add List");
button_clear = gtk_button_new_with_label("Clear List");
but-

ton_hide_show = gtk button_new_with_label("Hide/Show titles");

gtk_box_pack_start(GTK_BOX(hbox), but-

ton_add, TRUE, TRUE, 0);

gtk_box_pack_start(GTK_BOX(hbox), but-

ton_clear, TRUE, TRUE, 0);

gtk_box_pack_start(GTK_BOX(hbox), but-

ton_hide_show, TRUE, TRUE, 0);

/* Connect our callbacks to the three buttons */
gtk_signal_connect_object(GTK_OBJECT(button_add), "clicked",
GTK_SIGNAL_FUNC(button_add_clicked),
(gpointer) clist);
gtk_signal_connect_object(GTK_OBJECT (button_clear), "clicked",
GTK_SIGNAL_FUNC(button_clear_clicked),
(gpointer) clist);

. CList Widget

gtk_signal_connect_object(GTK_OBJECT (button_hide_show), "clicked",

GTK_SIGNAL_FUNC(button_hide_show_clicked),
(gpointer) clist);

gtk_widget_show(button_add);
gtk_widget_show(button_clear);

gtk_widget_show(button_hide_show);

/* The interface is completely set up so we show the win-

dow and

* enter the gtk_main loop.
*/

239

Chapter 11. CList Widget

gtk_widget_show(window);
gtk_main();

return(0);
}

/* example-end */

240

Chapter 12. CTree Widget

The CTree widget is derived from the CList widget. It is designed to display
hierarchically-organised data. The tree is displayed vertically, and branches of the tree
can be clapsed and expanded as required by the user.

This section of the tutorial is under development.

12.1. Creating a CTree

A CTree, being derived from CList, can have multiple columns. These columns
optionally have titles that are displayed along the top of the CTree widget. Hence there
are two functions for creating a new CTree widget:

GtkWidget *gtk_ctree_new_with_titles(gint ~ columns,
gint tree_column,
gchar *itles[]);

GtkWidget *gtk ctree_new(gint columns,
gint tree_column);

Thecolumns argument specifies the number of columns that the CTree will contain.
Thetree_column argumnet specifies which of those columns is to contain the tree.
Columns are numbered starting from O.

With the first funtion above, théitles argument contains an array of strings that
contain the captions for the column headings. A typical code fragment using the
gtk_ctree_new_with_titles() function would be:

/* CTree column titles /*
char *itles[] = { "Location" , "Description" };
GtkWidget *ctree;

ctree = gtk _ctree_new_with_titles(2, 0, titles);

241

Chapter 12. CTree Widget

12.2.

242

This would create a new CTree with two columns entitled "Location" and
"Description", with the first column containing the tree.

Adding and Removing nodes

The items in a CTree are termaddes Nodes are inserted into a CTree in such a way
as to create a hierarchy (although the order of insertion is not critical). The following
function is used to insert a node:

GtkCTreeNode *gtk ctree_insert_node(GtkCTree *ctree,
GtkCTreeNode *parent,
GtkCTreeNode *sibling,

gchar *text(],
guint8 spacing,
Gd-

kPixmap *pixmap_closed,
GdkBitmap *mask_closed,
Gd-

kPixmap *pixmap_opened,
GdkBitmap *mask_opened,
ghoolean is_leaf,
gboolean expanded);

This function looks a little daunting, but that is merely due to the power of the CTreee
widget. Not all of the parameters above are required.

The CTree widget allows you to specify pixmaps to display in each node. For branch
nodes, you can specify different pixmaps for when the branch is collapsed or expanded.
This gives a nice visual feedback to the user, but it is optional so you don’t have to
specify pixmaps.

Lets have a quick look at all of the parameters:

- ctree -the CTree widget we are manipulating

Chapter 12. CTree Widget

parent - the parent node of the one we are inserting. MayWbeL for a root-level
(i.e. initial) node.

- sibling - asibling of the node we are inserting. MayWeLL if there are no
siblings.
text - the textual contents of each column in the tree for this node. This arusy
have an entry for each column, even if it is an empty string.

« spacing - specifies the padding between the nodes pixmap and text elements, if a
pixmap is provided

- pixmap_closed - a pixmap to display for a collapsed branch node and for a leaf
node.

mask_closed - a bitmap mask for the above pixmap.

pixmap_opened - a pixmap to display for an expanded branch node.

mask_opened - a bitmap mask for the above pixmap.
- is_leaf - indicates whether this is a leaf or branch node.
expanded - indicates whether a branch node is initially expanded or collapsed.

An object pointer of type GtkCTreeNode is returned by the gtk_ctree_insert_node()
function. This object pointer is used to reference the node when manipulating it. The
node pointer is also supplied by many of the CTree signals to identify which node the
signal pertains to.

To remove a node for a CTree, the following function is provided:

void gtk _ctree_remove_node(GtkCTree *ctree,
GtkCTreeNode *node);

As you can see, you merely need to specify a CTree and the node to remove.

12.3. Setting CTree Attributes

There are a number of functions that set options that pertain to a CTree instance as a

243

Chapter 12. CTree Widget

whole (rather than to a particular node). The first group set padding attributes that effect
how the widget is drawn:

void gtk_ctree_set_indent(GtkCTree *ctree,
gint indent);

void gtk_ctree_set spacing(GtkCTree *ctree,
gint spacing);

The functiongtk_ctree_set_indent() sets how far a new branch is indented in
relation to it’'s parent. The default is 20.

The functiongtk_ctree_set_spacing() sets how far a node is horizontally padded
from the vertical line that is drawn linking the nodes of each branch. The default is 5.

The next two functions affect the style of the lines and expander that are drawn to
represent the tree structure. An expander is a grpahical component that the user can
select to expand and collapse a branch of the tree.

void gtk_ctree_set_line_style(GtkCTree *ctree,
GtkCTreeLineStyle line_style);

void gtk_ctree_set_expander_style(GtkCTree *Ctree,
GtkCTreeExpanderStyle ex-
pander_style);

The functiongtk_ctree_set_line_style() is used to select the style of line that is
drawn between nodes of the tree. The paranieterstyle can be one of:

GTK_CTREE_LINES_NONE
GTK_CTREE_LINES_SOLID
GTK_CTREE_LINES_DOTTED
GTK_CTREE_LINES_TABBED

The functiongtk_ctree_set_expander_style() is used to select the style of
branch expander, and the parametgrander_style can be one of:

GTK_CTREE_EXPANDER_NONE

244

Chapter 12. CTree Widget

GTK_CTREE_EXPANDER_SQUARE
GTK_CTREE_EXPANDER_TRIANGLE
GTK_CTREE_EXPANDER_CIRCULAR

12.4. Utilizing row data

The CTree widget allows you to associate data with each node of the tree. This is most
often used in callback functions, such as when a row is selected.

Although only a single data element can be stored for each row, this data element can
be any variable or data structure, which indirectly allows a set of data to be referenced.

There are two functions for setting row data:

void gtk ctree node_set row_data(GtkCTree *ctree,
GtkCTreeNode *node,
gpointer data);

void gtk _ctree_node_set row_data_full(GtkCTree *Ctree,
GtkCTreeNode *node,
gpointer data,
GtkDestroyNotify de-
stroy);

The functiongtk_ctree_node_set_row_data() simply takes as arguments
pointers to the CTree, node and data.

The functiongtk_ctree_node_set_row_data_full() takes an additional
parameterdestroy . This parameter is a pointer to a function that will be called when
the row is destroyed. Typically, this function would take responsibility for freeing the
memory used by the row data. This function should take the form:

void destroy_func(gpointer data);

The paramter passed to this function will be the row data.

245

Chapter 13. Tree Widget

The purpose of tree widgets is to display hierarchically-organized data. The Tree
widget itself is a vertical container for widgets of type Treeltem. Tree itself is not
terribly different from CList - both are derived directly from Container, and the
Container methods work in the same way on Tree widgets as on CList widgets. The
difference is that Tree widgets can be nested within other Tree widgets. We’ll see how
to do this shortly.

The Tree widget has its own window, and defaults to a white background, as does
CList. Also, most of the Tree methods work in the same way as the corresponding
CList ones. However, Tree is not derived from CList, so you cannot use them
interchangeably.

13.1. Creating a Tree
A Tree is created in the usual way, using:
GtkWidget *gtk tree_new(void);

Like the CList widget, a Tree will simply keep growing as more items are added to it,

as well as when subtrees are expanded. For this reason, they are almost always packed
into a ScrolledWindow. You might want to use gtk_widget_set_usize() on the scrolled
window to ensure that it is big enough to see the tree’s items, as the default size for
ScrolledWindow is quite small.

Now that you have a tree, you'll probably want to add some items[ioit. The Tree]ltem

Widgel below explains the gory details of Treeltem. For now, it'll suffice to create one,

using:

GtkWidget *gtk _tree_item_new_with_label(gchar *label);

You can then add it to the tree using one of the following (Se€e Functions and Macros
below for more options):

246

13.2.

13.3.

Chapter 13. Tree Widget

void gtk_tree_append(GtkTree *tree,
GtkWidget *tree_item);

void gtk _tree_prepend(GtkTree *tree,
GtkWidget *tree_item);

Note that you must add items to a Tree one at a time - there is no equivalent to
gtk_list_* items().

Adding a Subtree

A subtree is created like any other Tree widget. A subtree is added to another tree
beneath a tree item, using:

void gtk tree_item_set subtree(GtkTreeltem *tree_item,
GtkWidget *subtree);

You do not need to call gtk_widget_show() on a subtree before or after adding itto a
Treeltem. However, yomusthave added the Treeltem in question to a parent tree
before calling gtk _tree_item_set_subtree(). This is because, technically, the parent of
the subtree isotthe GtkTreeltem which "owns" it, but rather the GtkTree which holds
that GtkTreeltem.

When you add a subtree to a Treeltem, a plus or minus sign appears beside it, which the
user can click on to "expand" or "collapse" it, meaning, to show or hide its subtree.
Treeltems are collapsed by default. Note that when you collapse a Treeltem, any
selected items in its subtree remain selected, which may not be what the user expects.

Handling the Selection List

As with CList, the Tree type hassazlection field, and it is possible to control the
behaviour of the tree (somewhat) by setting the selection type using:

247

Chapter 13. Tree Widget

13.4.

248

void gtk _tree_set_selection_mode(GtkTree *tree,
GtkSelectionMode mode);

The semantics associated with the various selection modes are described in the section
on the CList widget. As with the CList widget, the "select_child", "unselect_child" (not
really - seg Signdls below for an explanation), and "selection_changed" signals are
emitted when list items are selected or unselected. However, in order to take advantage
of these signals, you need to kneviich Tree widget they will be emitted by, and

where to find the list of selected items.

This is a source of potential confusion. The best way to explain this is that though all
Tree widgets are created equal, some are more equal than others. All Tree widgets have
their own X window, and can therefore receive events such as mouse clicks (if their
Treeltems or their children don't catch them first!). However, to make
GTK_SELECTION_SINGLEandGTK_SELECTION_BROWSlection types behave in a

sane manner, the list of selected items is specific to the topmost Tree widget in a
hierarchy, known as the "root tree".

Thus, accessing theelection field directly in an arbitrary Tree widget is not a good
idea unless yolnowit’s the root tree. Instead, use tBdK_TREE_SELECTION

(Tree) macro, which gives the root tree’s selection list as a GList pointer. Of course,
this list can include items that are not in the subtree in question if the selection type is
GTK_SELECTION_MULTIPLE

Finally, the "select_child" (and "unselect_child", in theory) signals are emitted by all
trees, but the "selection_changed" signal is only emitted by the root tree. Consequently,
if you want to handle the "select_child" signal for a tree and all its subtrees, you will
have to call gtk_signal_connect() for every subtree.

Tree Widget Internals

The Tree’s struct definition looks like this:

struct _GtkTree
{

Chapter 13. Tree Widget

GtkContainer container;
GList *children;

GtkTree* root_tree; /* owner of selection list */
GtkWidget* tree_owner;

GList *selection;

guint level,

guint indent_value;

guint current_indent;

guint selection_mode : 2;

guint view_mode : 1,

guint view_line : 1,

h

The perils associated with accessingshkection field directly have already been
mentioned. The other important fields of the struct can also be accessed with handy
macros or class function6TK_IS_ROOT_TREE (Tree) returns a boolean value

which indicates whether a tree is the root tree in a Tree hierarchy, while
GTK_TREE_ROOT_TREE (Tree)returns the root tree, an object of type GtkTree (so,
remember to cast it usingTK_WIDGET (Tree) if you want to use one of the
gtk_widget_*() functions on it).

Instead of directly accessing the children field of a Tree widget, it's probably best to
cast it using >tt/GTK_CONTAINER (Tree)/, and pass it to the gtk_container_children()
function. This creates a duplicate of the original list, so it's advisable to free it up using
g_list_free() after you're done with it, or to iterate on it destructively, like this:

children = gtk_container_children (GTK_CONTAINER (tree));
while (children) {
do_something_nice (GTK_TREE_ITEM (children->data));
children = g_list_ remove_link (children, children);

}

Thetree_owner field is defined only in subtrees, where it points to the Treeltem
widget which holds the tree in question. Tieeel field indicates how deeply nested a
particular tree is; root trees have level 0, and each successive level of subtrees has a

249

Chapter 13. Tree Widget

level one greater than the parent level. This field is set only after a Tree widget is
actually mapped (i.e. drawn on the screen).

13.4.1. Signals

void selection_changed(GtkTree *tree);

This signal will be emitted whenever tielection field of a Tree has changed. This
happens when a child of the Tree is selected or deselected.

void select_child(GtkTree *tree,
GtkWidget *child);

This signal is emitted when a child of the Tree is about to get selected. This happens on
calls to gtk_tree_select_item(), gtk_tree_select_child(glbhutton presses and calls

to gtk _tree_item_toggle() and gtk_item_toggle(). It may sometimes be indirectly
triggered on other occasions where children get added to or removed from the Tree.

void unselect_child (GtkTree *tree,
GtkWidget *child);

This signal is emitted when a child of the Tree is about to get deselected. As of GTK
1.0.4, this seems to only occur on calls to gtk_tree_unselect_item() or
gtk_tree_unselect_child(), and perhaps on other occasionspbwhen a button press
deselects a child, nor on emission of the "toggle" signal by gtk _item_toggle().

13.4.2. Functions and Macros

250

guint gtk _tree_get_type(void);
Returns the "GtkTree" type identifier.

GtkWidget* gtk _tree_new(void);

Chapter 13. Tree Widget

Create a new Tree object. The new widget is returned as a pointer to a GtkWidget
object. NULL is returned on failure.

void gtk_tree_append(GtkTree *tree,
GtkWidget *tree_item);

Append a tree item to a Tree.

void gtk _tree_prepend(GtkTree *tree,
GtkWidget *tree_item);

Prepend a tree item to a Tree.

void gtk_tree_insert(GtkTree *tree,
GtkWidget *tree_item,
gint position);

Insert a tree item into a Tree at the position in the list specifiepdsition.

void gtk _tree_remove_items(GtkTree *tree,
GList *items);

Remove a list of items (in the form of a GList *) from a Tree. Note that removing an
item from a tree dereferences (and thus usually) destr@yxliits subtree, if it has one,
andall subtrees in that subtree. If you want to remove only one item, you can use
gtk_container_remove().

void gtk tree_clear_items(GtkTree *tree,
gint start,
gint end);

Remove the items from positianart to positionend from a Tree. The same warning
about dereferencing applies here, as gtk_tree_clear_items() simply constructs a list and
passes it to gtk_tree_remove_items().

void gtk_tree_select_item(GtkTree *tree,
gint item);

251

Chapter 13. Tree Widget

Emits the "select_item" signal for the child at positieem , thus selecting the child
(unless you unselect it in a signal handler).

void gtk_tree_unselect_item(GtkTree *tree,
gint item);

Emits the "unselect_item" signal for the child at positi@m , thus unselecting the
child.

void gtk tree_select _child(GtkTree *tree,
GtkWidget *tree_item);

Emits the "select_item" signal for the chidéde_item , thus selecting it.

void gtk tree_unselect child(GtkTree *tree,
GtkWidget *tree_item);

Emits the "unselect_item" signal for the chitde_item , thus unselecting it.

gint gtk tree_child_position(GtkTree *tree,
GtkWidget *child);

Returns the position in the tree ¢iild , unlesschild is not in the tree, in which case
it returns -1.

void gtk tree_set selection_mode(GtkTree *tree,
GtkSelectionMode mode);

Sets the selection mode, which can be on6Tk_SELECTION_SINGLHthe default),
GTK_SELECTION_BROWSETK_SELECTION_MULTIPLEOr
GTK_SELECTION_EXTENDELT his is only defined for root trees, which makes sense,
since the root tree "owns" the selection. Setting it for subtrees has no effect at all; the
value is simply ignored.

void gtk _tree_set view_mode(GtkTree *tree,
GtkTreeViewMode mode);

252

Chapter 13. Tree Widget

Sets the "view mode", which can be eitl&FK_TREE_VIEW_LINE(the default) or
GTK_TREE_VIEW_ITEMThe view mode propagates from a tree to its subtrees, and
can't be set exclusively to a subtree (this is not exactly true - see the example code
comments).

The term "view mode" is rather ambiguous - basically, it controls the way the highlight
is drawn when one of a tree’s children is selected. If®®K_TREE_VIEW_LINE the

entire Treeltem widget is highlighted, while fGiTK_TREE_VIEW_ITEMonly the child
widget (i.e., usually the label) is highlighted.

void gtk tree_set view_lines(GtkTree *tree,
guint flag);

Controls whether connecting lines between tree items are dfeagn.is either TRUE,
in which case they are, or FALSE, in which case they aren't.

GtkTree *GTK_TREE (gpointer obj);

Cast a generic pointer to "GtkTree *".

GtkTreeClass *GTK_TREE_CLASS (gpointer class);

Cast a generic pointer to "GtkTreeClass *".

gint GTK_IS TREE (gpointer obj);

Determine if a generic pointer refers to a "GtkTree" object.
gint GTK_IS_ROOT_TREE (gpointer obj)

Determine if a generic pointer refers to a "GtkTree" obpaudlis a root tree. Though
this will accept any pointer, the results of passing it a pointer that does not refer to a
Tree are undefined and possibly harmful.

GtkTree *GTK_TREE_ROOT_TREE (gpointer obj)

Return the root tree of a pointer to a "GtkTree" object. The above warning applies.

253

Chapter 13. Tree Widget

13.5.

254

GList *GTK_TREE_SELECTION(gpointer obj)

Return the selection list of the root tree of a "GtkTree" object. The above warning
applies here, too.

Tree Item Widget

The Treeltem widget, like CListltem, is derived from Item, which in turn is derived
from Bin. Therefore, the item itself is a generic container holding exactly one child
widget, which can be of any type. The Treeltem widget has a number of extra fields,
but the only one we need be concerned with isdsiitgree field.

The definition for the Treeltem struct looks like this:

struct _GtkTreeltem

{

Gtkltem item;

GtkWidget *subtree;
GtkWidget *pixmaps_box;
GtkWidget *plus_pix_widget, *minus_pix_widget;

GList *pixmaps; /* pixmap node for this items color depth */

guint expanded : 1,
%

Thepixmaps_box field is an EventBox which catches clicks on the plus/minus
symbol which controls expansion and collapsing. phxenaps field points to an
internal data structure. Since you can always obtain the subtree of a Treeltem in a
(relatively) type-safe manner with tl&TK_TREE_ITEM_SUBTREE (Item) macro, it's
probably advisable never to touch the insides of a Treeltem unlesegtiyknow

what you're doing.

Chapter 13. Tree Widget

Since it is directly derived from an Item it can be treated as such by using the
GTK_ITEM (Treeltem) macro. A Treeltem usually holds a label, so the convenience
function gtk_list_item_new_with_label() is provided. The same effect can be achieved
using code like the following, which is actually copied verbatim from
gtk_tree_item_new_with_label():

tree_item = gtk_tree_item_new ();
label_widget = gtk label new (label);
gtk_misc_set_alignment (GTK_MISC (label_widget), 0.0, 0.5);

gtk_container_add (GTK_CONTAINER (tree_item), label widget);
gtk_widget_show (label widget);

As one is not forced to add a Label to a Treeltem, you could also add an HBox or an
Arrow, or even a Notebook (though your app will likely be quite unpopular in this case)
to the Treeltem.

If you remove all the items from a subtree, it will be destroyed and unparented, unless
you reference it beforehand, and the Treeltem which owns it will be collapsed. So, if
you want it to stick around, do something like the following:

gtk_widget_ref (tree);
owner = GTK_TREE(tree)->tree_owner;
gtk_container_remove (GTK_CONTAINER(tree), item);
if (tree->parent == NULL)
gtk_tree_item_expand (GTK_TREE_ITEM(owner));
gtk_tree_item_set_subtree (GTK_TREE_ITEM(owner), tree);

}

else
gtk_widget_unref (tree);

Finally, drag-n-dromloeswork with Treeltems. You just have to make sure that the
Treeltem you want to make into a drag item or a drop site has not only been added to a
Tree, but that each successive parent widget has a parent itself, all the way back to a
toplevel or dialog window, when you call gtk_widget_dnd_drag_set() or
gtk_widget_dnd_drop_set(). Otherwise, strange things will happen.

255

Chapter 13. Tree Widget

13.5.1. Signals

256

Treeltem inherits the "select”, "deselect”, and "toggle" signals from Item. In addition, it
adds two signals of its own, "expand" and "collapse".

void select(Gtkltem *tree_item);

This signal is emitted when an item is about to be selected, either after it has been
clicked on by the user, or when the program calls gtk_tree_item_select(),
gtk_item_select(), or gtk_tree_select_child().

void deselect(Gtkitem *tree_item);

This signal is emitted when an item is about to be unselected, either after it has been
clicked on by the user, or when the program calls gtk_tree_item_deselect() or
gtk_item_deselect(). In the case of Treeltems, it is also emitted by
gtk_tree_unselect_child(), and sometimes gtk_tree_select_child().

void toggle(Gtkltem *tree_item);

This signal is emitted when the program calls gtk _item_toggle(). The effect it has when
emitted on a Treeltem is to call gtk_tree_select_child() (and never
gtk_tree_unselect_child()) on the item’s parent tree, if the item has a parent tree. If it
doesn’t, then the highlight is reversed on the item.

void expand(GtkTreeltem *tree item);

This signal is emitted when the tree item’s subtree is about to be expanded, that is,
when the user clicks on the plus sign next to the item, or when the program calls
gtk_tree_item_expand().

void collapse(GtkTreeltem *tree_item);

This signal is emitted when the tree item’s subtree is about to be collapsed, that is,
when the user clicks on the minus sign next to the item, or when the program calls
gtk_tree_item_collapse().

Chapter 13. Tree Widget

13.5.2. Functions and Macros
guint gtk _tree_item_get_type(void);
Returns the "GtkTreeltem" type identifier.
GtkWidget* gtk tree_item_new(void);

Create a new Treeltem object. The new widget is returned as a pointer to a GtkWidget
object. NULL is returned on failure.

GtkWidget* gtk _tree_item_new_with_label (gchar *label);

Create a new Treeltem object, having a single GtkLabel as the sole child. The new
widget is returned as a pointer to a GtkwWidget object. NULL is returned on failure.

void gtk tree_item_select(GtkTreeltem *tree item);

This function is basically a wrapper around a calyto item_select (GTK_ITEM
(tree_item)) which will emit the select signal.

void gtk_tree_item_deselect(GtkTreeltem *tree_item);

This function is basically a wrapper around a call to gtk_item_deselect (GTK_ITEM
(tree_item)) which will emit the deselect signal.

void gtk tree_item_set subtree(GtkTreeltem *tree_item,
GtkWidget *subtree);

This function adds a subtree to tree_item, showing it if tree_item is expanded, or hiding
it if tree_item is collapsed. Again, remember that the tree_item must have already been
added to a tree for this to work.

void gtk_tree_item_remove_subtree(GtkTreeltem *tree_item);

This removes all of tree_item’s subtree’s children (thus unreferencing and destroying it,
any of its children’s subtrees, and so on...), then removes the subtree itself, and hides
the plus/minus sign.

257

Chapter 13. Tree Widget

13.6.

258

void gtk _tree_item_expand(GtkTreeltem *tree_item);

This emits the "expand" signal on tree_item, which expands it.
void gtk_tree_item_collapse(GtkTreeltem *tree_item);

This emits the "collapse” signal on tree_item, which collapses it.
GtkTreeltem *GTK_TREE_ITEM (gpointer obj)

Cast a generic pointer to "GtkTreeltem *".

GtkTreeltemClass *GTK_TREE_ITEM_CLASS (gpointer obj)
Cast a generic pointer to "GtkTreeltemClass".

gint GTK_IS_TREE_ITEM (gpointer obj)

Determine if a generic pointer refers to a "GtkTreeltem" object.
GtkWidget GTK_TREE_ITEM_SUBTREE (gpointer obj)

Returns a tree item’s subtreab{ should point to a "GtkTreeltem" object).

Tree Example

This is somewhat like the tree example in testgtk.c, but a lot less complete (although
much better commented). It puts up a window with a tree, and connects all the signals
for the relevant objects, so you can see when they are emitted.

[* example-start tree tree.c */
#include <gtk/gtk.h>

/* for all the Gtkltem:: and GtkTreeltem:: signals */

Chapter 13. Tree Widget

static void cb_itemsignal(GtkWidget *item,
gchar *signame)
{
gchar *name;
GtkLabel *label,

/* It's a Bin, so it has one child, which we know to be a
label, so get that */
label = GTK_LABEL (GTK_BIN (item)->child);
/* Get the text of the label */
gtk_label_get (label, &name);
/* Get the level of the tree which the item is in */
g_print ("%s called for item %s-
>%p, level %d\n", signame, name,
item, GTK_TREE (item->parent)->level);

}

/* Note that this is never called */
static void cb_unselect_child(GtkWidget *root_tree,
GtkWidget *child,
GtkWidget *subtree)
{
g_print ("unselect_child called for root tree %p, sub-
tree %p, child %p\n",
root_tree, subtree, child);

}

/* Note that this is called ev-
ery time the user clicks on an item,

whether it is already selected or not. */
static void cb_select _child (GtkWidget *root_tree, GtkWid-
get *child,

GtkWidget *subtree)

{

g_print ("select_child called for root tree %p, sub-
tree %p, child %p\n",

root_tree, subtree, child);

259

Chapter 13. Tree Widget

}

static void cb_selection_changed(GtkWidget *tree)

{
GList *i;

g_print ("selection_change called for tree %p\n", tree);
g_print ("selected objects are:\n");

i = GTK_TREE_SELECTION(tree);
while (i

gchar *name;

GtkLabel *label;

GtkWidget *item;

/* Get a GtkWidget pointer from the list node */
item = GTK _WIDGET (i->data);
label = GTK_LABEL (GTK_BIN (item)->child);
gtk_label_get (label, &name);
g_print ("t%s on level %d\n", name, GTK_TREE
(item->parent)->level);
i = i->next;
}
}

int main(int argc,
char *argv[])
{
Gtkwidget *window, *scrolled_win, *tree;
static gchar *itemnames[] = {"Foo", "Bar", "Baz", "Quux",
"Maurice"};
gint i

gtk_init (&argc, &argv);

/* a generic toplevel window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

260

Chapter 13. Tree Widget

gtk_signal_connect (GTK_OBJECT(window), "delete_event",
GTK_SIGNAL_FUNC (gtk_main_quit), NULL);
gtk_container_set_border_width (GTK_CONTAINER(window), 5);

/* A generic scrolled window */

scrolled_win = gtk _scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win),
GTK_POLICY_AUTOMATIC,

GTK_POLICY_AUTOMATIC);

gtk_widget_set_usize (scrolled_win, 150, 200);

gtk_container_add (GTK_CONTAINER(window), scrolled_win);
gtk_widget_show (scrolled_win);

/* Create the root tree */

tree = gtk_tree_new();

g_print ("root tree is %p\n", tree);

/* connect all GtkTree:: signals */

gtk_signal_connect (GTK_OBJECT(tree), "select_child",
GTK_SIGNAL_FUNC(cb_select_child), tree);

gtk_signal_connect (GTK_OBJECT(tree), "unselect_child",
GTK_SIGNAL_FUNC(cb_unselect_child), tree);

gtk_signal_connect (GTK_OBJECT(tree), "selection_changed",
GTK_SIGNAL_FUNC(cb_selection_changed), tree);

/* Add it to the scrolled window */

gtk_scrolled_window_add_with_viewport (GTK_SCROLLED_WINDOW(scrolled_win),

tree);

/* Set the selection mode */

gtk_tree_set_selection_mode (GTK_TREE(tree),
GTK_SELECTION_MULTIPLE);

/* Show it */

gtk_widget_show (tree);

for (i = 0; i < 5; i++){

GtkWidget *subtree, *item;
gint j;

/* Create a tree item */

261

Chapter 13. Tree Widget

262

item = gtk_tree_item_new_with_label (itemnames]i]);

/* Connect all Gtkltem:: and GtkTreeltem:: signals */

gtk_signal_connect (GTK_OBJECT(item), "select",
GTK_SIGNAL_FUNC(cb_itemsignal), "select");

gtk_signal_connect (GTK_OBJECT(item), "deselect”,
GTK_SIGNAL_FUNC(cb_itemsignal), "deselect");

gtk_signal _connect (GTK_OBJECT(item), "toggle",
GTK_SIGNAL_FUNC(cb_itemsignal), "toggle";

gtk_signal_connect (GTK_OBJECT(item), "expand",
GTK_SIGNAL_FUNC(cb_itemsignal), "expand");

gtk_signal_connect (GTK_OBJECT(item), "collapse”,
GTK_SIGNAL_FUNC(cb_itemsignal), "collapse™;

/* Add it to the parent tree */

gtk_tree_append (GTK_TREE(tree), item);

/* Show it - this can be done at any time */

gtk_widget_show (item);

/* Create this item’s subtree */

subtree = gtk_tree_new();

g_print ("-> item %s->%p, subtree %p\n", itemnames]i], item,

subtree);

/* This is still necessary if you want these sig-
nals to be called
for the subtree’s children. Note that selec-
tion_change will be
signalled for the root tree regardless. */
gtk_signal_connect (GTK_OBJECT(subtree), "select child",
GTK_SIGNAL_FUNC(cb_select_child), subtree);
gtk_signal_connect (GTK_OBJECT(subtree), "unselect_child",
GTK_SIGNAL_FUNC(cb_unselect_child), subtree);
/* This has absolutely no effect, because it is com-
pletely ignored
in subtrees */
gtk_tree_set_selection_mode (GTK_TREE(subtree),
GTK_SELECTION_SINGLE);
/* Neither does this, but for a rather different reason -
the

Chapter 13. Tree Widget

view_mode and view_line values of a tree are propa-
gated to
subtrees when they are mapped. So, set-
ting it later on would
actually have a (somewhat unpredictable) effect */
gtk_tree_set view_mode (GTK_TREE(subtree), GTK _TREE_VIEW_ ITEM);
[* Set this item’s subtree -
note that you cannot do this until
AFTER the item has been added to its parent tree! */
gtk _tree_item_set subtree (GTK_TREE_ITEM(item), subtree);

for § = 0; j < 5; j++){
GtkWidget *subitem;

[* Create a subtree item, in much the same way */
subitem = gtk tree_item_new_with_label (itemnames[j]);
/* Connect all Gtkltem:: and GtkTreeltem:: signals */
gtk_signal_connect (GTK_OBJECT(subitem), "select",
GTK_SIGNAL_FUNC(cb_itemsignal), "select");
gtk_signal_connect (GTK_OBJECT(subitem), "deselect",
GTK_SIGNAL_FUNC(cb_itemsignal), "deselect™);
gtk_signal_connect (GTK_OBJECT(subitem), "toggle",
GTK_SIGNAL_FUNC(cb_itemsignal), "toggle");
gtk_signal_connect (GTK_OBJECT(subitem), "expand",
GTK_SIGNAL_FUNC(cb_itemsignal), "expand");
gtk_signal_connect (GTK_OBJECT(subitem), "collapse”,
GTK_SIGNAL_FUNC(cb_itemsignal), "collapse");
g_print ("-> -> item %s->%p\n", itemnames][j], subitem);
/* Add it to its parent tree */
gtk_tree_append (GTK_TREE(subtree), subitem);
/* Show it */
gtk_widget_show (subitem);
}
}

/* Show the window and loop endlessly */
gtk_widget_show (window);

263

Chapter 13. Tree Widget

gtk_main();
return O;

}

/* example-end */

264

Chapter 14. Menu Widget

14.1.

There are two ways to create menus: there’s the easy way, and there’s the hard way.
Both have their uses, but you can usually use the Itemfactory (the easy way). The
"hard" way is to create all the menus using the calls directly. The easy way is to use the
gtk_item_factory calls. This is much simpler, but there are advantages and
disadvantages to each approach.

The Itemfactory is much easier to use, and to add new menus to, although writing a few
wrapper functions to create menus using the manual method could go a long way
towards usability. With the Itemfactory, it is not possible to add images or the character
'’ to the menus.

Manual Menu Creation

In the true tradition of teaching, we’ll show you the hard way fifst.

There are three widgets that go into making a menubar and submenus:

- amenu item, which is what the user wants to select, e.g., "Save"
- amenu, which acts as a container for the menu items, and
- a menubar, which is a container for each of the individual menus.

This is slightly complicated by the fact that menu item widgets are used for two
different things. They are both the widgets that are packed into the menu, and the
widget that is packed into the menubar, which, when selected, activates the menu.

Let’s look at the functions that are used to create menus and menubars. This first
function is used to create a new menubar.

GtkWidget *gtk_menu_bar_new(void);

This rather self explanatory function creates a new menubar. You use
gtk_container_add to pack this into a window, or the box_pack functions to pack it into

265

Chapter 14. Menu Widget

266

a box - the same as buttons.
GtkWidget *gtk_menu_new(void);

This function returns a pointer to a new menu; it is never actually shown (with
gtk_widget_show), it is just a container for the menu items. | hope this will become
more clear when you look at the example below.

The next two calls are used to create menu items that are packed into the menu (and
menubar).

GtkWidget *gtk_menu_item_new(void);
and

GtkWidget *gtk_menu_item_new_with_label(const char *label);

These calls are used to create the menu items that are to be displayed. Remember to
differentiate between a "menu" as created with gtk_menu_new and a "menu item" as
created by the gtk_menu_item_new functions. The menu item will be an actual button
with an associated action, whereas a menu will be a container holding menu items.

The gtk_menu_new_with_label and gtk_menu_new functions are just as you'd expect
after reading about the buttons. One creates a new menu item with a label already
packed into it, and the other just creates a blank menu item.

Once you've created a menu item you have to put it into a menu. This is done using the
function gtk_menu_append. In order to capture when the item is selected by the user,
we need to connect to tleetivate signal in the usual way. So, if we wanted to create

a standardrile menu, with the option®pen, Save, andQuit , the code would look
something like:

file_menu = gtk_menu_new (); /* Don’'t need to show menus */

[* Create the menu items */

open_item = gtk_menu_item_new_with_label ("Open");
save_item = gtk_menu_item_new_with_label ("Save");
quit_item = gtk_menu_item_new_with_label ("Quit");

Chapter 14. Menu Widget

/* Add them to the menu */

gtk_menu_append (GTK_MENU (file_menu), open_item);
gtk_menu_append (GTK_MENU (file_menu), save_item);
gtk_menu_append (GTK_MENU (file_menu), quit_item);

/* Attach the callback functions to the activate signal */

gtk_signal_connect_object (GTK_OBJECT (open_items), "activate",
GTK_SIGNAL_FUNC (menuitem_response),
(gpointer) "file.open™);

gtk_signal_connect_object (GTK_OBJECT (save_items), “"activate”,
GTK_SIGNAL_FUNC (menuitem_response),
(gpointer) "file.save");

/* We can attach the Quit menu item to our exit function */

gtk_signal_connect_object (GTK_OBJECT (quit_items), "activate",
GTK_SIGNAL_FUNC (destroy),
(gpointer) “file.quit");

/* We do need to show menu items */
gtk_widget_show (open_item);
gtk_widget_show (save_item);
gtk_widget_show (quit_item);

At this point we have our menu. Now we need to create a menubar and a menu item for
theFile entry, to which we add our menu. The code looks like this:

menu_bar = gtk_menu_bar_new ();
gtk_container_add (GTK_CONTAINER (window), menu_bar);
gtk_widget_show (menu_bar);

file_item = gtk_menu_item_new_with_label ("File");
gtk_widget_show (file_item);

Now we need to associate the menu Wil item . This is done with the function

void gtk_menu_item_set_submenu(GtkMenultem *menu_item,
GtkWidget *submenu);

267

Chapter 14. Menu Widget

So, our example would continue with
gtk_menu_item_set_submenu (GTK_MENU_ITEM (file_item), file_menu);

All that is left to do is to add the menu to the menubar, which is accomplished using the
function

void gtk_menu_bar_append(GtkMenuBar *menu_bar,
GtkWidget *menu_item);

which in our case looks like this:
gtk_menu_bar_append (GTK_MENU_BAR (menu_bar), file_item);

If we wanted the menu right justified on the menubar, such as help menus often are, we
can use the following function (again difle_item in the current example) before
attaching it to the menubar.

void gtk_menu_item_right_justify(GtkMenultem *menu_item);

Here is a summary of the steps needed to create a menu bar with menus attached:

Create a new menu using gtk_menu_new()

Use multiple calls to gtk_menu_item_new() for each item you wish to have on your
menu. And use gtk_menu_append() to put each of these new items on to the menu.

- Create a menu item using gtk_menu_item_new(). This will be the root of the menu,
the text appearing here will be on the menubar itself.

« Use gtk_menu_item_set_submenu() to attach the menu to the root menu item (the
one created in the above step).

- Create a new menubar using gtk_menu_bar_new. This step only needs to be done
once when creating a series of menus on one menu bar.

Use gtk_menu_bar_append() to put the root menu onto the menubar.

268

14.2.

Chapter 14. Menu Widget

Creating a popup menu is nearly the same. The difference is that the menu is not posted
"automatically” by a menubar, but explicitly by calling the function gtk_menu_popup()
from a button-press event, for example. Take these steps:

- Create an event handling function. It needs to have the prototype

static gint handler (GtkWidget *widget,
GdkEvent *event);

and it will use the event to find out where to pop up the menu.
- In the event handler, if the event is a mouse button press.gveat as a button

event (which it is) and use it as shown in the sample code to pass information to
gtk_menu_popup().

- Bind that event handler to a widget with

gtk_signal_connect_object (GTK_OBJECT (widget), "event",
GTK_SIGNAL_FUNC (handler),
GTK_OBJECT (menu));

wherewidget is the widget you are binding tbandler is the handling function,
andmenuis a menu created with gtk_menu_new(). This can be a menu which is also
posted by a menu bar, as shown in the sample code.

Manual Menu Example
That should about do it. Let’s take a look at an example to help clarify.

[* example-start menu menu.c */

#include <stdio.h>
#include <gtk/gtk.h>

static gint button_press (GtkWidget *, GdkEvent *);
static void menuitem_response (gchar *);

269

Chapter 14. Menu Widget

int main(int argc,

{

char *argv[])

GtkWidget *window;
GtkWidget *menu;
Gtkwidget *menu_bar;
GtkWidget *root_menu;
GtkWidget *menu_items;
GtkWidget *vbox;
GtkWidget *button;

char buf[128];

int i;

gtk_init (&argc, &argv);

[* create a new window */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_widget_set_usize (GTK_WIDGET (window), 200, 100);

gtk_window_set_title (GTK_WINDOW (window), "GTK Menu Test");

gtk_signal_connect (GTK_OBJECT (window), "delete_event",
(GtkSignalFunc) gtk_main_quit, NULL);

/* Init the menu-widget, and remember - never

* gtk_show_widget() the menu widget!!

* This is the menu that holds the menu items, the one that

* will pop up when you click on the "Root Menu" in the app */
menu = gtk_menu_new ();

/* Next we make a little loop that makes three menu-

entries for "test-menu".

* No-

tice the call to gtk menu_append. Here we are adding a list of

* menu items to our menu. Nor-

mally, we’'d also catch the "clicked"

270

Chapter 14. Menu Widget

* signal on each of the menu items and setup a call-
back for it,
* but it's omitted here to save space. */

for (i = 0; i < 3; i++)
{
/* Copy the names to the buf. */
sprintf (buf, "Test-undermenu - %d", i);

/* Create a new menu-item with a name... */
menu_items = gtk_menu_item_new_with_label (buf);

/* ..and add it to the menu. */
gtk_menu_append (GTK_MENU (menu), menu_items);

/* Do something interesting when the menuitem is selected */
gtk_signal_connect_object (GTK_OBJECT (menu_items), "activate",
GTK_SIGNAL_FUNC (menuitem_response), (gpointer) g_strdup (buf));

/* Show the widget */
gtk_widget_show (menu_items);

}

/* This is the root menu, and will be the label

* displayed on the menu bar. There won't be a signal han-
dler attached,

* as it only pops up the rest of the menu when pressed. */

root_menu = gtk_menu_item_new_with_label ("Root Menu");

gtk_widget_show (root_menu);

/* Now we specify that we want our newly cre-
ated "menu" to be the menu

* for the "root menu" */

gtk_menu_item_set submenu (GTK_MENU_ITEM (root_menu), menu);

/* A vbox to put a menu and a button in: */

271

Chapter 14. Menu Widget

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

/* Create a menu-
bar to hold the menus and add it to our main window */
menu_bar = gtk_menu_bar_new ();
gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 2);
gtk_widget_show (menu_bar);

/* Create a button to which to attach menu as a popup */
button = gtk button_new_with_label ("press me");
gtk_signal_connect_object (GTK_OBJECT (button), "event",

GTK_SIGNAL_FUNC (button_press), GTK_OBJECT (menu));
gtk_box_pack_end (GTK_BOX (vbox), button, TRUE, TRUE, 2);
gtk_widget_show (button);

/* And finally we append the menu-item to the menu-bar -

this is the
* "root" menu-item | have been raving about =) */
gtk_menu_bar_append (GTK_MENU_BAR (menu_bar), root_menu);

[* always display the win-

dow as the last step so it all splashes on
* the screen at once. */
gtk_widget_show (window);

gtk_main ();

return(0);

}

/* Respond to a button-

press by posting a menu passed in as widget.
*

* Note that the "widget" argument is the menu being posted, NOT
* the button that was pressed.

272

Chapter 14. Menu Widget

*/

static gint button_press(GtkWidget *widget,
GdkEvent *event)

{

if (event->type == GDK_BUTTON_PRESS) {

GdkEventButton *bevent = (GdkEventButton *) event;
gtk_menu_popup (GTK_MENU (wid-

get), NULL, NULL, NULL, NULL,

bevent->button, bevent->time);

/* Tell calling code that we have han-

dled this event; the buck
* stops here. */
return TRUE;

}

/* Tell calling code that we have not han-
dled this event; pass it on. */
return FALSE;

}

/* Print a string when a menu item is selected */

static void menuitem_response(gchar *string)

{
printf ("%s\n", string);

}

[* example-end */

You may also set a menu item to be insensitive and, using an accelerator table, bind
keys to menu functions.

273

Chapter 14. Menu Widget

14.3. Using ItemFactory

Now that we've shown you the hard way, here’s how you do it using the
gtk_item_factory calls.

14.4. Item Factory Example
Here is an example using the GTK item factory.

/* example-start menu itemfactory.c */

#include <gtk/gtk.h>
#include <strings.h>

/* Obligatory basic callback */
static void print_hello(GtkWidget *w,

gpointer data)
{

g_message ("Hello, World\n");

}

/* This is the GtkltemFactoryEntry structure used to gener-
ate new menus.
ltem 1. The menu path. The letter after the underscore indi-
cates an
accelerator key once the menu is open.
ltem 2: The accelerator key for the entry
ltem 3. The callback function.
ltem 4. The callback action. This changes the parame-
ters with
which the function is called. The default is 0.
ltem 5. The item type, used to de-
fine what kind of an item it is.
Here are the possible values:

274

Chapter 14

NULL -> "<ltem>"
-> "<ltem>"
"<Title>" -> create a title item
"<|tem>" -> create a simple item
"<Checkltem>" -> create a check item
"<Toggleltem>" -> create a toggle item
"<Radioltem>" -> create a radio item
<path> -

> path of a radio item to link against
"<Separator>" -> create a separator
"<Branch>" -

> create an item to hold sub items (optional)

*/

"<LastBranch>" -> create a right justified branch

static GtkltemFactoryEntry menu_items[] = {

{

Lt W et Wt W et W e W e W e W e W e W e

"I_File", NULL, NULL, 0, "<Branch>" },
"IFile/_New", "<control>N", print_hello, 0, NULL },
"IFile/_Open", "<control>0", print_hello, 0, NULL },
"IFile/_Save", "<control>S", print_hello, 0, NULL },
"IFile/Save _As", NULL, NULL, 0, NULL },
"IFile/sepl", NULL, NULL, 0, "<Separator>" },
"IFile/Quit", "<control>Q", gtk_main_quit, 0, NULL },
"/_Options", NULL, NULL, 0, "<Branch>" },
"/Options/Test", NULL, NULL, O, NULL },
"I_Help", NULL, NULL, O, "<LastBranch>" 1},
"/_Help/About", NULL, NULL, O, NULL },

void get main_menu(GtkWidget *window,

{

Gtkwidget *menubar)

GtkltemFactory *item_factory;
GtkAccelGroup *accel_group;
gint nmenu_items = sizeof (menu_items) / sizeof (menu_items|[0]);

. Menu Widget

275

Chapter 14. Menu Widget

accel_group = gtk_accel_group_new ();

[* This function initializes the item factory.
Param 1. The type of menu -
can be GTK_TYPE_MENU_BAR, GTK_TYPE_MENU,
or GTK_TYPE_OPTION_MENU.
Param 2: The path of the menu.
Param 3: A pointer to a gtk _accel_group. The item fac-
tory sets up
the accelerator table while generating menus.
*/

item_factory = gtk _item_factory new (GTK_TYPE_MENU_BAR, "<main>",
accel_group);

/* This function gener-
ates the menu items. Pass the item factory,
the number of items in the array, the array itself, and any
callback data for the the menu items. */
gtk_item_factory create_items (item_factory, nmenu_items, menu_items, NULL);

/* Attach the new accelerator group to the window. */
gtk_window_add_accel_group (GTK_WINDOW (window), accel_group);

if (menubar)
/* Finally, return the actual menu bar cre-
ated by the item factory. */
*menubar = gtk_item_factory_get_widget (item_factory, "<main>");

}

int main(int argc,
char *argv[])
{
GtkWidget *window;
GtkWidget *main_vbox;
GtkWidget *menubar;

276

Chapter 14. Menu Widget

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_main_quit),
"WM destroy");
gtk_window_set_title (GTK_WINDOW(window), "ltem Factory");
gtk_widget_set_usize (GTK_WIDGET(window), 300, 200);

main_vbox = gtk vbox new (FALSE, 1);
gtk_container_border_width (GTK_CONTAINER (main_vbox), 1);
gtk_container_add (GTK_CONTAINER (window), main_vbox);
gtk_widget_show (main_vbox);

get_main_menu (window, &menubar);
gtk_box_pack_start (GTK_BOX (main_vbox), menubar, FALSE, TRUE, 0);
gtk _widget_show (menubar);

gtk_widget_show (window);
gtk_main ();

return(0);
}

/* example-end */

For now, there’s only this example. An explanation and lots 'o’ comments will follow
later.

277

Chapter 15. Text Widget

15.1.

The Text widget allows multiple lines of text to be displayed and edited. It supports
both multi-colored and multi-font text, allowing them to be mixed in any way we wish.
It also has a wide set of key based text editing commands, which are compatible with
Emacs.

The text widget supports full cut-and-paste facilities, including the use of double- and
triple-click to select a word and a whole line, respectively.

Creating and Configuring a Text box

There is only one function for creating a new Text widget.

GtkWidget *gtk text_new(GtkAdjustment *hadj,
GtkAdjustment *vadj);

The arguments allow us to give the Text widget pointers to Adjustments that can be
used to track the viewing position of the widget. Passing NULL values to either or both
of these arguments will cause the gtk_text_new function to create its own.

void gtk_text set_adjustments(GtkText *text,
GtkAdjustment *hadj,
GtkAdjustment *vadj);

The above function allows the horizontal and vertical adjustments of a text widget to be
changed at any time.

The text widget will not automatically create its own scrollbars when the amount of
text to be displayed is too long for the display window. We therefore have to create and
add them to the display layout ourselves.

vscrollbar = gtk_vscrollbar_new (GTK_TEXT(text)->vad));
gtk_box_pack_start(GTK_BOX(hbox), vscroll-
bar, FALSE, FALSE, 0);

278

15.2.

Chapter 15. Text Widget

gtk_widget_show (vscrollbar);
The above code snippet creates a new vertical scrollbar, and attaches it to the vertical
adjustment of the text widgegxt . It then packs it into a box in the normal way.
Note, currently the Text widget does not support horizontal scrollbars.

There are two main ways in which a Text widget can be used: to allow the user to edit a
body of text, or to allow us to display multiple lines of text to the user. In order for us to
switch between these modes of operation, the text widget has the following function:

void gtk text set editable(GtkText *text,
gint editable);

Theeditable argumentis a TRUE or FALSE value that specifies whether the user is
permitted to edit the contents of the Text widget. When the text widget is editable, it
will display a cursor at the current insertion point.

You are not, however, restricted to just using the text widget in these two modes. You
can toggle the editable state of the text widget at any time, and can insert text at any
time.

The text widget wraps lines of text that are too long to fit onto a single line of the
display window. Its default behaviour is to break words across line breaks. This can be
changed using the next function:

void gtk text set word_wrap(GtkText *text,
gint word_wrap);

Using this function allows us to specify that the text widget should wrap long lines on
word boundaries. Th&ord_wrap argument is a TRUE or FALSE value.

Text Manipulation
The current insertion point of a Text widget can be set using

void gtk_text _set_point(GtkText *text,

279

Chapter 15. Text Widget

guint index);

whereindex is the position to set the insertion point.

Analogous to this is the function for getting the current insertion point:

guint gtk text_get point(GtkText *text);

A function that is useful in combination with the above two functions is
guint gtk _text_get_length(GtkText *text);

which returns the current length of the Text widget. The length is the number of
characters that are within the text block of the widget, including characters such as
newline, which marks the end of lines.

In order to insert text at the current insertion point of a Text widget, the function
gtk_text_insert is used, which also allows us to specify background and foreground
colors and a font for the text.

void gtk text insert(GtkText *text,
GdkFont *font,
GdkColor *fore,
GdkColor *back,
const char *chars,
gint length);

Passing a value ®ULL in as the value for the foreground color, background color or
font will result in the values set within the widget style to be used. Using a valtle of
for the length parameter will result in the whole of the text string given being inserted.

The text widget is one of the few within GTK that redraws itself dynamically, outside

of the gtk_main function. This means that all changes to the contents of the text widget
take effect immediately. This may be undesirable when performing multiple changes to
the text widget. In order to allow us to perform multiple updates to the text widget
without it continuously redrawing, we can freeze the widget, which temporarily stops it
from automatically redrawing itself every time it is changed. We can then thaw the
widget after our updates are complete.

280

Chapter 15. Text Widget

The following two functions perform this freeze and thaw action:

void gtk text freeze(GtkText *text);
void gtk_text thaw(GtkText *text);

Text is deleted from the text widget relative to the current insertion point by the
following two functions. The return value is a TRUE or FALSE indicator of whether
the operation was successful.

gint gtk_text_backward_delete(GtkText *text,
guint nchars);

gint gtk _text_forward_delete (GtkText *text,
guint nchars);

If you want to retrieve the contents of the text widget, then the macro
GTK_TEXT_INDEX(t, index) allows you to retrieve the character at positintex
within the text widget .

To retrieve larger blocks of text, we can use the function

gchar *gtk_editable_get_chars(GtkEditable *editable,
gint start_pos,
gint end_pos);

This is a function of the parent class of the text widget. A value of -dndspos
signifies the end of the text. The index of the text starts at 0.

The function allocates a new chunk of memory for the text block, so don't forget to free
it with a call to g_free when you have finished with it.

15.3. Keyboard Shortcuts

The text widget has a number of pre-installed keyboard shortcuts for common editing,
motion and selection functions. These are accessed using Control and Alt key

281

Chapter 15. Text Widget

combinations.

In addition to these, holding down the Control key whilst using cursor key movement
will move the cursor by words rather than characters. Holding down Shift whilst using
cursor movement will extend the selection.

15.3.1. Motion Shortcuts

- Ctrl-A Beginning of line

« Ctrl-E End of line

« Citrl-N Next Line

« Ctrl-P Previous Line

- Citrl-B Backward one character
« Ctrl-F Forward one character

- Alt-B Backward one word

« Alt-F Forward one word

15.3.2. Editing Shortcuts

Ctrl-H Delete Backward Character (Backspace)
+ Ctrl-D Delete Forward Character (Delete)
« Citrl-W Delete Backward Word
« Alt-D Delete Forward Word
Ctrl-K Delete to end of line
« Ctrl-U Delete line

282

Chapter 15. Text Widget

15.3.3. Selection Shortcuts

« Ctrl-X Cut to clipboard
« Citrl-C Copy to clipboard
« Ctrl-V Paste from clipboard

15.4. A GtkText Example

[* example-start text text.c */
[* text.c */

#include <stdio.h>
#include <gtk/gtk.h>

void text_toggle editable (GtkWidget *checkbutton,
GtkWidget *text)
{
gtk_text_set_editable(GTK_TEXT(text),
GTK_TOGGLE_BUTTON(checkbutton)->active);

}

void text_toggle word_wrap (GtkWidget *checkbutton,
GtkWidget *text)

{
gtk_text_set word_wrap(GTK_TEXT(text),

GTK_TOGGLE_BUTTON(checkbutton)->active);
}

void close_application(GtkWidget *widget,
gpointer data)

{
gtk_main_quit();

283

Chapter 15. Text Widget

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *box1;
GtkWidget *box2;
GtkWidget *hbox;
GtkWidget *button;
GtkWidget *check;
GtkWidget *separator;
GtkWidget *table;
GtkWidget *vscrollbar;
GtkWidget *text;
GdkColormap *cmap;
GdkColor color;
GdkFont *fixed_font;

FILE *infile;
gtk_init (&argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);

gtk_widget_set_usize (window, 600, 500);

gtk_window_set_policy (GTK_WINDOW (window), TRUE, TRUE, FALSE);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC(close_application),
NULL);

gtk_window_set _title (GTK_WINDOW (window), "Text Wid-

get Example™);
gtk_container_set_border_width (GTK_CONTAINER (window), 0);

boxl = gtk _vbox new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), box1);
gtk_widget_show (box1);

284

Chapter 15. Text Widget

box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

table = gtk table_new (2, 2, FALSE);

gtk table_set row_spacing (GTK_TABLE (table), 0, 2);
gtk_table_set col_spacing (GTK_TABLE (table), 0, 2);
gtk_box_pack_start (GTK_BOX (box2), table, TRUE, TRUE, 0);
gtk_widget_show (table);

/* Create the GtkText widget */

text = gtk _text new (NULL, NULL);

gtk text_set editable (GTK_TEXT (text), TRUE);

gtk_table_attach (GTK_TABLE (table), text, 0, 1, 0, 1,
GTK_EXPAND | GTK_SHRINK | GTK_FILL,
GTK_EXPAND | GTK_SHRINK | GTK_FILL, 0, 0);

gtk_widget_show (text);

/* Add a vertical scrollbar to the GtkText widget */

vscrollbar = gtk _vscrollbar_new (GTK_TEXT (text)->vadj);

gtk_table_attach (GTK_TABLE (table), vscrollbar, 1, 2, 0, 1,
GTK_FILL, GTK_EXPAND | GTK_SHRINK | GTK_FILL, 0, 0);

gtk_widget_show (vscrollbar);

/* Get the system color map and allocate the color red */

cmap = gdk_colormap_get_system();

color.red = Oxffff;

color.green = 0;

color.blue = 0;

if ('gdk_color_alloc(cmap, &color)) {
g_error("couldn’t allocate color");

}

285

Chapter 15. Text Widget

/* Load a fixed font */

fixed_font = gdk font load ("-misc-fixed-medium-r-*-*-*-140-*-
*_*_*_*_*");

/* Realizing a widget creates a window for it,
* ready for us to insert some text */
gtk_widget_realize (text);

[* Freeze the text widget, ready for multiple updates */
gtk _text freeze (GTK_TEXT (text));

/* Insert some colored text */

gtk _text_insert (GTK_TEXT (text), NULL, &text->style-
>black, NULL,

"Supports ", -1);

gtk_text_insert (GTK_TEXT (text), NULL, &color, NULL,

“colored ", -1);
gtk_text_insert (GTK_TEXT (text), NULL, &text->style-
>black, NULL,

"text and different ", -1);

gtk_text_insert (GTK_TEXT (text), fixed_font, &text->style-
>plack, NULL,

"fonts\n\n", -1);

/* Load the file text.c into the text window */
infile = fopen("text.c", "r);

if (infile) {
char buffer[1024];
int nchars;

while (1)
{
nchars = fread(buffer, 1, 1024, infile);
gtk_text_insert (GTK_TEXT (text), fixed_font, NULL,
NULL, buffer, nchars);

286

Chapter 15. Text Widget

if (nchars < 1024)
break;

}

fclose (infile);

}

/* Thaw the text widget, allowing the updates to become visi-
ble */
gtk_text_thaw (GTK_TEXT (text));

hbox = gtk_hbutton_box_new ();
gtk_box_pack_start (GTK_BOX (box2), hbox, FALSE, FALSE, 0);
gtk_widget_show (hbox);

check = gtk _check _button_new_with_label("Editable");
gtk_box_pack_start (GTK_BOX (hbox), check, FALSE, FALSE, 0);
gtk_signal_connect (GTK_OBJECT(check), "toggled",
GTK_SIGNAL_FUNC(text_toggle_editable), text);
gtk_toggle_button_set active(GTK_TOGGLE_BUTTON(check), TRUE);
gtk_widget_show (check);
check = gtk_check_button_new_with_label("Wrap Words");
gtk_box_pack_start (GTK_BOX (hbox), check, FALSE, TRUE, 0);
gtk_signal_connect (GTK_OBJECT(check), "toggled",
GTK_SIGNAL_FUNC(text_toggle_word_wrap), text);
gtk_toggle_button_set active(GTK_TOGGLE_BUTTON(check), FALSE);
gtk_widget_show (check);

separator = gtk _hseparator_new ();

gtk_box_pack_start (GTK_BOX (boxl1), separa-
tor, FALSE, TRUE, 0);

gtk_widget_show (separator);

box2 = gtk _vbox new (FALSE, 10);

gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0);

287

Chapter 15. Text Widget

gtk_widget_show (box2);

button = gtk_button_new_with_label ("close");
gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC(close_application),
NULL);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE,
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show (window);
gtk_main ();
return(0);

}

/* example-end */

288

0);

Chapter 16. Undocumented Widgets

These all require authors! :) Please consider contributing to our tutorial.

If you must use one of these widgets that are undocumented, | strongly suggest you take
a look at their respective header files in the GTK distribution. GTK’s function names

are very descriptive. Once you have an understanding of how things work, it’s not
difficult to figure out how to use a widget simply by looking at its function declarations.
This, along with a few examples from others’ code, and it should be no problem.

When you do come to understand all the functions of a new undocumented widget,
please consider writing a tutorial on it so others may benefit from your time.

16.1. CTree

16.2. Curves

16.3. Drawing Area

16.4. Font Selection Dialog

289

Chapter 16. Undocumented Widgets

16.5. Gamma Curve

16.6. Image

16.7. Packer

16.8. Plugs and Sockets

16.9. Preview

290

Chapter 17. Setting Widget Attributes

This describes the functions used to operate on widgets. These can be used to set style,
padding, size, etc.

(Maybe | should make a whole section on accelerators.)

void gtk_widget_install_accelerator(GtkWidget *wid-
get,
GtkAcceleratorTable *table,
gchar *signal_name,
gchar key,
guint8 modi-

fiers);

void gtk _widget remove_accelerator (GtkWid-

get *widget,
GtkAcceleratorTable *table,
gchar *signal_name);
void gtk_widget_activate(GtkWidget *widget);
void gtk widget _set_name(GtkWidget *widget,
gchar *name);

gchar *gtk_widget_get_name(GtkWidget *widget);

void gtk_widget_set_sensitive(GtkWidget *widget,
gint sensitive);

void gtk _widget_set style(GtkWidget *widget,
GtkStyle *style);

GtkStyle *gtk_widget get_style(GtkWidget *widget);

GtkStyle *gtk_widget_get_default_style(void);

291

Chapter 17. Setting Widget Attributes

292

void gtk_widget_set_uposition(GtkWidget *widget,
gint X,
gint y)
void gtk widget_set_usize(GtkWidget *widget,
gint width,
gint height);
void gtk widget _grab_focus(GtkWidget *widget);
void gtk_widget_show(GtkWidget *widget);

void gtk widget hide(GtkWidget *widget);

Chapter 18. Timeouts, 10 and Idle
Functions

18.1.

18.2.

Timeouts

You may be wondering how you make GTK do useful work when in gtk_main. Well,
you have several options. Using the following function you can create a timeout
function that will be called every "interval” milliseconds.

gint gtk _timeout_add(guint32 interval,
GtkFunction function,
gpointer data);

The first argument is the number of milliseconds between calls to your function. The
second argument is the function you wish to have called, and the third, the data passed
to this callback function. The return value is an integer "tag" which may be used to stop
the timeout by calling:

void gtk timeout_remove(gint tag);

You may also stop the timeout function by returning zero or FALSE from your callback
function. Obviously this means if you want your function to continue to be called, it
should return a non-zero value, i.e., TRUE.

The declaration of your callback should look something like this:

gint timeout_callback(gpointer data);

Monitoring 10

A nifty feature of GDK (the library that underlies GTK), is the ability to have it check

293

Chapter 18. Timeouts, 10 and Idle Functions

294

for data on a file descriptor for you (as returned by open(2) or socket(2)). This is
especially useful for networking applications. The function:

gint gdk_input_add(gint source,
GdkInputCondition condition,
GdkInputFunction function,
gpointer data);

Where the first argument is the file descriptor you wish to have watched, and the second
specifies what you want GDK to look for. This may be one of:

« GDK_INPUT_READ Call your function when there is data ready for reading on your
file descriptor.

« >GDK_INPUT_WRITE Call your function when the file descriptor is ready for
writing.

As I'm sure you've figured out already, the third argument is the function you wish to
have called when the above conditions are satisfied, and the fourth is the data to pass to
this function.

The return value is a tag that may be used to stop GDK from monitoring this file
descriptor using the following function.

void gdk_input_remove(gint tag);
The callback function should be declared as:
void input_callback(gpointer data,
gint source,

GdkInputCondition condition);

Wheresource andcondition are as specified above.

Chapter 18. Timeouts, 10 and Idle Functions

18.3. Idle Functions

What if you have a function which you want to be called when nothing else is
happening ?

gint gtk _idle_add(GtkFunction function,
gpointer data);

This causes GTK to call the specified function whenever nothing else is happening.
void gtk_idle_remove(gint tag);

| won't explain the meaning of the arguments as they follow very much like the ones
above. The function pointed to by the first argument to gtk _idle_add will be called
whenever the opportunity arises. As with the others, returning FALSE will stop the idle
function from being called.

295

Chapter 19. Advanced Event and Signal
Handling

19.1. Signal Functions

19.1.1. Connecting and Disconnecting Signal Handlers

guint gtk _signal_connect(GtkObject *object,
const gchar *name,
GtkSignalFunc func,
gpointer func_data);

guint gtk_signal_connect_after(GtkObject *object,
const gchar *name,
GtkSignalFunc func,
gpointer func_data);

guint gtk _signal_connect_object(GtkObject *object,
const gchar *name,
GtkSignalFunc func,
GtkObiject *slot_object);

guint gtk _signal_connect_object_after(GtkObject *object,
const gchar *name,
GtkSignalFunc func,

GtkOb-
ject *slot_object);
guint gtk _signal_connect_full(GtkObject *object,
const gchar *name,
GtkSignalFunc func,

GtkCallbackMarshal marshal,

296

Chapter 19. Advanced Event and Signal Handling

gpointer data,
GtkDestroyNotify destroy_func,
gint object_signal,
gint after);
guint gtk _signal_connect_interp(GtkObject *object,
const gchar *name,
GtkCallbackMarshal func,
gpointer data,
GtkDestroyNo-
tify destroy_func,
gint after);
void gtk_signal_connect_object_while_alive(GtkOb-
ject *object,
const gchar *signal,
GtkSignalFunc func,
GtkOb-
ject *alive_object);
void gtk_signal_connect_while_alive(GtkObject *object,
const gchar *signal,
GtkSignalFunc func,
gpointer func_data,
GtkOb-
ject *alive_object);
void gtk_signal_disconnect(GtkObject *object,
guint handler_id);
void gtk_signal_disconnect by func(GtkObject *object,
GtkSignalFunc func,
gpointer data);

297

Chapter 19. Advanced Event and Signal Handling

19.1.2. Blocking and Unblocking Signal Handlers

void gtk_signal_handler_block(GtkObject *object,

guint handler_id);
void gtk_signal_handler_block_by func(GtkObject *object,
GtkSignalFunc func,
gpointer data);

void gtk_signal_handler_block_by data(GtkObject *object,
gpointer data);

void gtk_signal_handler_unblock(GtkObject *object,

guint handler_id);
void gtk_signal_handler_unblock_by func(GtkObject *object,
GtkSignalFunc func,
gpointer data);

void gtk_signal_handler_unblock by data(GtkObject *object,
gpointer data);

19.1.3. Emitting and Stopping Signals

void gtk_signal_emit(GtkObject *object,
guint signal_id,

)

void gtk_signal_emit_by name(GtkObject *object,
const gchar *name,

)
void gtk_signal_emitv(GtkObject *object,

guint signal_id,
GtkArg *params);

298

19.2.

Chapter 19. Advanced Event and Signal Handling

void gtk _signal_emitv_by name(GtkObject *object,
const gchar *name,
GtkArg *params);

guint gtk _signal_n_emissions(GtkObject *object,
guint signal_id);

guint gtk _signal_n_emissions_by name(GtkObject *object,
const gchar *name);

void gtk _signal_emit_stop(GtkObject *object,
guint signal_id);

void gtk_signal_emit_stop_by name(GtkObject *object,
const gchar *name);

Signal Emission and Propagation

Signal emission is the process whereby GTK runs all handlers for a specific object and
signal.

First, note that the return value from a signal emission is the return value lafsthe
handler executed. Since event signals are all of typ€_RUN_LASTthis will be the
default (GTK supplied) handler, unless you connect with gtk_signal_connect_after().

The way an event (say "button_press_event") is handled, is:

- Start with the widget where the event occured.

- Emit the generic "event" signal. If that signal handler returns a value of TRUE, stop
all processing.

- Otherwise, emit a specific, "button_press_event" signal. If that returns TRUE, stop
all processing.

299

Chapter 19. Advanced Event and Signal Handling

- Otherwise, go to the widget’s parent, and repeat the above two steps.

- Continue until some signal handler returns TRUE, or until the top-level widget is
reached.

Some consequences of the above are:

- Your handler’s return value will have no effect if there is a default handler, unless
you connect with gtk_signal_connect_after().

- To prevent the default handler from being run, you need to connect with
gtk_signal_connect() and use gtk_signal_emit_stop_by name() - the return value
only affects whether the signal is propagated, not the current emission.

300

Chapter 20. Managing Selections

20.1. Overview

One type of interprocess communication supported by X and GEKlectionsA

selection identifies a chunk of data, for instance, a portion of text, selected by the user
in some fashion, for instance, by dragging with the mouse. Only one application on a
display (theownel) can own a particular selection at one time, so when a selection is
claimed by one application, the previous owner must indicate to the user that selection
has been relinquished. Other applications can request the contents of a selection in
different forms, calledargets There can be any number of selections, but most X
applications only handle one, tipeimary selection

In most cases, it isn’t necessary for a GTK application to deal with selections itself.

The standard widgets, such as the Entry widget, already have the capability to claim the
selection when appropriate (e.g., when the user drags over text), and to retrieve the
contents of the selection owned by another widget or another application (e.g., when
the user clicks the second mouse button). However, there may be cases in which you
want to give other widgets the ability to supply the selection, or you wish to retrieve
targets not supported by default.

A fundamental concept needed to understand selection handling is thatatdtheAn

atom is an integer that uniquely identifies a string (on a certain display). Certain atoms
are predefined by the X server, and in some cases there are constgkis in
corresponding to these atoms. For instance the conS@KtPRIMARY_SELECTION
corresponds to the string "PRIMARY". In other cases, you should use the functions
gdk_atom_intern() , to get the atom corresponding to a string, and

gdk_atom_name() , to get the name of an atom. Both selections and targets are
identified by atoms.

301

Chapter 20. Managing Selections

20.2. Retrieving the selection

Retrieving the selection is an asynchronous process. To start the process, you call:

gint gtk _selection_convert(GtkWidget *widget,
GdkAtom selection,
GdkAtom target,
guint32 time);

This convertsthe selection into the form specified tayget . If at all possible, the

time field should be the time from the event that triggered the selection. This helps
make sure that events occur in the order that the user requested them. However, if it is
not available (for instance, if the conversion was triggered by a "clicked" signal), then
you can use the constaBDK_CURRENT_TIME

When the selection owner responds to the request, a "selection_received" signal is sent
to your application. The handler for this signal receives a pointer to a
GtkSelectionData structure, which is defined as:

struct _GtkSelectionData
{
GdkAtom selection;
GdkAtom target;
GdkAtom type;

gint format;
guchar *data;
gint length;

h

selection andtarget are the values you gave in your

gtk_selection_convert() call. type is an atom that identifies the type of data
returned by the selection owner. Some possible values are "STRING", a string of
latin-1 characters, "ATOM", a series of atoms, "INTEGER", an integer, etc. Most
targets can only return one tydermat gives the length of the units (for instance
characters) in bits. Usually, you don’t care about this when receiving dita. is a
pointer to the returned data, akeigth gives the length of the returned data, in bytes.
If length is negative, then an error occurred and the selection could not be retrieved.

302

Chapter 20. Managing Selections

This might happen if no application owned the selection, or if you requested a target
that the application didn’t support. The buffer is actually guaranteed to be one byte
longer tharlength ; the extra byte will always be zero, so it isn’'t necessary to make a
copy of strings just to null terminate them.

In the following example, we retrieve the special target "TARGETS", which is a list of
all targets into which the selection can be converted.

/* example-start selection gettargets.c */

#include <gtk/gtk.h>

void selection_received(GtkWidget *widget,
GtkSelectionData *selection_data,
gpointer data);

/* Signal handler invoked when user clicks on the "Get Tar-
gets" button */
void get_targets(GtkWidget *widget,

gpointer data)

{
static GdkAtom targets_atom = GDK_NONE;

/* Get the atom corresponding to the string "TARGETS" */
if (targets_atom == GDK_NONE)
targets_atom = gdk_atom_intern ("TARGETS", FALSE);

/* And request the "TARGETS" target for the primary selec-
tion */

gtk_selection_convert (wid-
get, GDK_SELECTION_PRIMARY, targets_atom,
GDK_CURRENT_TIME);

}

/* Signal handler called when the selections owner re-

turns the data */

void selection_received(GtkWidget *widget,
GtkSelectionData *selection_data,

303

Chapter 20. Managing Selections

gpointer data)

GdkAtom *atoms;
GList *item_list;
int i

[* ** IMPORTANT **** Check to see if retrieval succeeded */
if (selection_data->length < 0)
{
g_print ("Selection retrieval failed\n");
return;

}

/* Make sure we got the data in the expected form */
if (selection_data->type !'= GDK_SELECTION_TYPE_ATOM)
{
g_print ("Selection \"TARGETS\" was not re-
turned as atoms!\n");
return;

}

/* Print out the atoms we received */
atoms = (GdkAtom *)selection_data->data;

item_list = NULL;
for (i=0; i<selection_data->length/sizeof(GdkAtom); i++)
{
char *name;
name = gdk_atom_name (atoms]i]);
if (name != NULL)
g_print ("%s\n",name);
else
g_print ("(bad atom)\n");

}

return;

304

Chapter 20. Managing Selections

int main(int argc,

{

}

char *argv[])

GtkWidget *window;
GtkWidget *button;

gtk_init (&argc, &argv);

/* Create the toplevel window */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set _title (GTK_WINDOW (window), "Event Box");

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

/* Create a button the user can click to get targets */

button = gtk button_new_with_label ("Get Targets");
gtk_container_add (GTK_CONTAINER (window), button);

gtk_signal_connect (GTK_OBJECT(button), "clicked",
GTK_SIGNAL_FUNC (get_targets), NULL);

gtk_signal_connect (GTK_OBJECT(button), "selection_received",
GTK_SIGNAL_FUNC (selection_received), NULL);

gtk_widget_show (button);
gtk_widget_show (window);

gtk_main ();

return O;

/* example-end */

305

Chapter 20. Managing Selections

20.3. Supplying the selection

306

Supplying the selection is a bit more complicated. You must register handlers that will
be called when your selection is requested. For each selection/target pair you will
handle, you make a call to:

void gtk_selection_add_target (GtkWidget *widget,
GdkAtom selection,
GdkAtom target,
guint info);

widget , selection , andtarget identify the requests this handler will manage.
When a request for a selection is received, the "selection_get" signal will be called.
info can be used as an enumerator to identify the specific target within the callback
function.

The callback function has the signature:

void "selection_get" (GtkWidget *widget,
GtkSelectionData *selection_data,
guint info,
guint time);

The GtkSelectionData is the same as above, but this time, we’re responsible for filling
in the fieldstype , format , data , andlength . (Theformat field is actually

important here - the X server uses it to figure out whether the data needs to be
byte-swapped or not. Usually it will be 8.e.a character - or 32i-e. a. integer.) This

is done by calling the function:

void gtk_selection_data_set(GtkSelectionData *selection_data,

GdkAtom type,
gint format,
guchar *data,
gint length);

This function takes care of properly making a copy of the data so that you don’t have to
worry about keeping it around. (You should not fill in the fields of the

Chapter 20. Managing Selections

GtkSelectionData structure by hand.)

When prompted by the user, you claim ownership of the selection by calling:

gint gtk_selection_owner_set(GtkWidget *widget,
GdkAtom selection,
guint32 time);

If another application claims ownership of the selection, you will receive a
"selection_clear_event".

As an example of supplying the selection, the following program adds selection
functionality to a toggle button. When the toggle button is depressed, the program
claims the primary selection. The only target supported (aside from certain targets like
"TARGETS" supplied by GTK itself), is the "STRING" target. When this target is
requested, a string representation of the time is returned.

/* example-start selection setselection.c */

#include <gtk/gtk.h>
#include <time.h>

/* Callback when the user toggles the selection */
void selection_toggled(GtkWidget *widget,
gint *have_selection)
{
if (GTK_TOGGLE_BUTTON(widget)->active)
{
*have_selection = gtk_selection_owner_set (widget,
GDK_SELECTION_PRIMARY,
GDK_CURRENT_TIME);
/* if claiming the selection failed, we return the but-
ton to
the out state */
if ("*have_selection)
gtk _toggle_button_set_active (GTK_TOGGLE_BUTTON(widget), FALSE);
}

else

307

Chapter 20. Managing Selections

308

{
if (*have_selection)
{
/* Before clearing the selection by setting the owner to NULL,
we check if we are the actual owner */
if (gdk_selection_owner_get (GDK_SELECTION_PRIMARY) == widget-
>window)
gtk_selection_owner_set (NULL, GDK_SELECTION_PRIMARY,
GDK_CURRENT_TIME);
*have_selection = FALSE;

}
}

}

/* Called when another application claims the selection */

gint selection_clear(GtkWidget *widget,
GdkEventSelection *event,
gint *have_selection)

{

*have_selection = FALSE;
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON(widget), FALSE);

return TRUE;

}

/* Supplies the current time as the selection. */

void selection_handle(GtkWidget *widget,
GtkSelectionData *selection_data,
guint info,
guint time_stamp,
gpointer data)

{

gchar *timestr,;
time_t current_time;

current_time = time(NULL);
timestr = asctime (localtime(¤t_time));

Chapter 20. Managing Selections

/* When we return a sin-
gle string, it should not be null terminated.
That will be done for us */

gtk_selection_data_set (selec-
tion_data, GDK_SELECTION_TYPE_STRING,
8, timestr, strlen(timestr));

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *selection_button;
static int have_selection = FALSE;
gtk_init (&argc, &argv);
[* Create the toplevel window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set _title (GTK_WINDOW (window), "Event Box");
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

/* Create a toggle button to act as the selection */
selec-

tion_button = gtk _toggle_button_new_with_label ("Claim Selection™);
gtk_container_add (GTK_CONTAINER (window), selection_button);

gtk_widget_show (selection_button);

gtk_signal_connect (GTK_OBJECT(selection_button), "toggled”,
GTK_SIGNAL_FUNC (selection_toggled), &have_selection);

309

Chapter 20. Managing Selections

gtk_signal_connect (GTK_OBJECT(selection_button), "selection_clear_event”,
GTK_SIGNAL_FUNC (selection_clear), &have_selection);

gtk_selection_add_target (selection_button,
GDK_SELECTION_PRIMARY,
GDK_SELECTION_TYPE_STRING,
1);
gtk_signal_connect (GTK_OBJECT(selection_button), "selection_get",
GTK_SIGNAL_FUNC (selection_handle), &have_selection);

gtk_widget_show (selection_button);
gtk_widget_show (window);

gtk_main ();
return O;

}

/* example-end */

310

Chapter 21. GLib

21.1.

GLib is a lower-level library that provides many useful definitions and functions
available for use when creating GDK and GTK applications. These include definitions
for basic types and their limits, standard macros, type conversions, byte order, memory
allocation, warnings and assertions, message logging, timers, string utilities, hook
functions, a lexical scanner, dynamic loading of modules, and automatic string
completion. A number of data structures (and their related operations) are also defined,
including memory chunks, doubly-linked lists, singly-linked lists, hash tables, strings
(which can grow dynamically), string chunks (groups of strings), arrays (which can
grow in size as elements are added), balanced binary trees, N-ary trees, quarks (a
two-way association of a string and a unique integer identifier), keyed data lists (lists of
data elements accessible by a string or integer id), relations and tuples (tables of data
which can be indexed on any number of fields), and caches.

A summary of some of GLib’s capabilities follows; not every function, data structure,
or operation is covered here. For more complete information about the GLib routines,
see the GLib documentation. One source of GLib documentation is
http://www.gtk.org/.

If you are using a language other than C, you should consult your language’s binding
documentation. In some cases your language may have equivalent functionality
built-in, while in other cases it may not.

Definitions

Definitions for the extremes of many of the standard types are:

G_MINFLOAT
G_MAXFLOAT
G_MINDOUBLE
G_MAXDOUBLE
G_MINSHORT
G_MAXSHORT

311

Chapter 21. GLib

G_MININT
G_MAXINT
G_MINLONG
G_MAXLONG

Also, the following typedefs. The ones left unspecified are dynamically set depending
on the architecture. Remember to avoid counting on the size of a pointer if you want to
be portable! E.g., a pointer on an Alpha is 8 bytes, but 4 on Intel 80x86 family CPUs.

char gchar;
short gshort;
long glong;

int gint;

char gboolean;

unsigned char guchar,
unsigned short gushort;
unsigned long gulong;
unsigned int guint;

float dfloat;
double gdouble;
long double gldouble;

void* gpointer;

gint8
guint8
gintl6
guintl6
gint32
guint32

312

Chapter 21. GLib

21.2. Doubly Linked Lists

The following functions are used to create, manage, and destroy standard doubly linked
lists. Each element in the list contains a piece of data, together with pointers which link
to the previous and next elements in the list. This enables easy movement in either
direction through the list. The data item is of type "gpointer", which means the data can
be a pointer to your real data or (through casting) a numeric value (but do not assume
that int and gpointer have the same size!). These routines internally allocate list
elements in blocks, which is more efficient than allocating elements individually.

There is no function to specifically create a list. Instead, simply create a variable of
type GList* and set its value to NULL; NULL is considered to be the empty list.

To add elements to a list, use the g_list_append(), g_list_prepend(), g_list_insert(), or
g_list_insert_sorted() routines. In all cases they accept a pointer to the beginning of the
list, and return the (possibly changed) pointer to the beginning of the list. Thus, for all
of the operations that add or remove elements, be sure to save the returned value!

GList *g_list_append(GList *list,
gpointer data);

This adds a new element (with valdata) onto the end of the list.

GList *g_list_prepend(GList *list,
gpointer data);

This adds a new element (with valdata) to the beginning of the list.
GList *g_list_insert(GList *list,
gpointer data,

gint position);

This inserts a new element (with value data) into the list at the given position. If
position is 0, this is just like g_list_prepend(); if position is less than 0, this is just like
g_list_append().

GList *g_list_remove(GList *list,

313

Chapter 21. GLib

314

gpointer data);

This removes the element in the list with the vatlaga ; if the element isn’t there, the
listis unchanged.

void g_list_free(GList *list);

This frees all of the memory used by a GList. If the list elements refer to
dynamically-allocated memory, then they should be freed first.

There are many other GLib functions that support doubly linked lists; see the glib
documentation for more information. Here are a few of the more useful functions’
signatures:

GList *g_list_remove_link(GList *list,
GList *link);

GList *g_list_reverse(GList *list);

GList *g_list_nth(GList *list,
gint n);

GList *g_list_find(GList *list,
gpointer data);

GList *g_list_last(GList *list);
GList *g_list_first(GList *list);
gint g_list_length(GList *list);
void g_list_foreach(GList *ist,

GFunc func,
gpointer user_data);

21.3. Singly Linked Lists

Many of the above functions for singly linked lists are identical to the above. Here is a
list of some of their operations:

GSlList

GSlList

GSlList

GSlList

GSList

GSlList

GSList

GSlList

GSlList

*g_slist_append(GSList *list,

gpointer data);

*g_slist_prepend(GSList *list,

gpointer data);

*g_slist_insert(GSList *ist,

gint

gpointer data,
position);

*g_slist_remove(GSList *list,

gpointer data);

*g_slist_remove_link(GSList *list,

GSlList *link);

*g_slist_reverse(GSList *list);

*g_slist_nth(GSList *list,

gint n);

*g_slist_find(GSList *list,

gpointer data);

*g_slist_last(GSList *list);

gint g_slist_length(GSList *list);

void g_slist_foreach(GSList *list,

GFunc func,
gpointer user_data);

Chapter 21. GLib

315

Chapter 21. GLib

21.4. Memory Management
gpointer g_malloc(gulong size);

This is a replacement for malloc(). You do not need to check the return value as it is
done for you in this function. If the memory allocation fails for whatever reasons, your
applications will be terminated.

gpointer g_mallocO(gulong size);
Same as above, but zeroes the memory before returning a pointer to it.

gpointer g_realloc(gpointer mem,
gulong size);

Relocates "size" bytes of memory starting at "mem". Obviously, the memory should
have been previously allocated.

void g_free(gpointer mem);
Frees memory. Easy one.niemis NULL it simply returns.
void g_mem_profile(void);

Dumps a profile of used memory, but requires that yousiddine MEM_PROFILE to
the top of glib/gmem.c and re-make and make install.

void g_mem_check(gpointer mem);

Checks that a memory location is valid. Requires you#tidine MEM_CHECK to the
top of gmem.c and re-make and make install.

21.5. Timers

Timer functions can be used to time operations (e.g., to see how much time has

316

Chapter 21. GLib

elapsed). First, you create a new timer with g_timer_new(). You can then use
g_timer_start() to start timing an operation, g_timer_stop() to stop timing an operation,
and g_timer_elapsed() to determine the elapsed time.

GTimer *g_timer_new(void);

void g_timer_destroy(GTimer *timer);
void g_timer_start(GTimer *timer);

void g_timer_stop(GTimer *timer);

void g_timer_reset(GTimer *timer);

gdouble g_timer_elapsed(GTimer *timer,
gulong *microseconds);

21.6. String Handling

GLib defines a new type called a GString, which is similar to a standard C string but
one that grows automatically. Its string data is null-terminated. What this gives you is
protection from buffer overflow programming errors within your program. This is a

very important feature, and hence | recommend that you make use of GStrings. GString
itself has a simple public definition:

struct GString
{

gchar *str; /* Points to the string’s current \O-
terminated value. */
gint len; /* Current length */

%
As you might expect, there are a number of operations you can do with a GString.

GString *g_string_new(gchar *init);

317

Chapter 21. GLib

318

This constructs a GString, copying the string valuéaf into the GString and
returning a pointer to it. NULL may be given as the argument for an initially empty
GString.

void g_string_free(GString *string,
gint free_segment);

This frees the memory for the given GStringfrfe_segment is TRUE, then this
also frees its character data.

GString *g_string_assign(GString *|val,
const gchar *rval);

This copies the characters from rval into Ival, destroying the previous contents of Ival.
Note that Ival will be lengthened as necessary to hold the string’s contents, unlike the
standard strcpy() function.

The rest of these functions should be relatively obvious (the _c versions accept a
character instead of a string):

GString *g_string_truncate(GString *string,
gint len);

GString *g_string_append(GString *string,
gchar *val);

GString *g_string_append_c(GString *string,
gchar c);

GString *g_string_prepend(GString *string,
gchar *val);

GString *g_string_prepend_c(GString *string,
gchar c);

void g_string_sprintf(GString *string,
gchar *fmt,

o)

21.7.

Chapter 21. GLib

void g_string_sprintfa (GString *string,
gcha *mt,

)

Utility and Error Functions

gchar *g_strdup(const gchar *str);

Replacement strdup function. Copies the original strings contents to newly allocated
memory, and returns a pointer to it.

gchar *g_strerror(gint errnum);

| recommend using this for all error messages. It's much nicer, and more portable than
perror() or others. The output is usually of the form:

program name:function that failed:file or further descrip-
tion:strerror

Here’s an example of one such call used in our hello_world program:

g_print("hello_world:open:%s:%s\n", file-
name, g_strerror(errno));

void g_error(gchar *format, ...);

Prints an error message. The format is just like printf, but it prepends "* ERROR **: "
to your message, and exits the program. Use only for fatal errors.

void g_warning(gchar *format, ...);
Same as above, but prepends "** WARNING **: ", and does not exit the program.

void g_message(gchar *format, ...);

319

Chapter 21. GLib

Prints "message: " prepended to the string you pass in.

void g_print(gchar *format, ...);

Replacement for printf().

And our last function:
gchar *g_strsignal(gint signum);

Prints out the name of the Unix system signal given the signal number. Useful in
generic signal handling functions.

All of the above are more or less just stolen from glib.h. If anyone cares to document
any function, just send me an email!

320

Chapter 22. GTK’s rc Files

22.1.

GTK has its own way of dealing with application defaults, by using rc files. These can
be used to set the colors of just about any widget, and can also be used to tile pixmaps
onto the background of some widgets.

Functions For rc Files
When your application starts, you should include a call to:
void gtk rc_parse(char *filename);
Passing in the filename of your rc file. This will cause GTK to parse this file, and use

the style settings for the widget types defined there.

If you wish to have a special set of widgets that can take on a different style from
others, or any other logical division of widgets, use a call to:

void gtk_widget_set_name(GtkWidget *widget,
gchar *name);

Passing your newly created widget as the first argument, and the name you wish to give
it as the second. This will allow you to change the attributes of this widget by name
through the rc file.

If we use a call something like this:

button = gtk _button_new_with_label ("Special Button");
gtk_widget_set name (button, "special button");

Then this button is given the name "special button” and may be addressed by name in
the rc file as "special button.GtkButton". [<— Verify ME!]

The example rc file below, sets the properties of the main window, and lets all children
of that main window inherit the style described by the "main button" style. The code

321

Chapter 22. GTK'’s rc Files

22.2.

322

used in the application is:

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set name (window, "main window");

And then the style is defined in the rc file using:

widget "main window.*GtkButton*" style "main_button"
Which sets all the Button widgets in the "main window" to the "main_buttons" style as
defined in the rc file.

As you can see, this is a fairly powerful and flexible system. Use your imagination as to
how best to take advantage of this.

GTK'’s rc File Format

The format of the GTK file is illustrated in the example below. This is the testgtkrc file
from the GTK distribution, but I've added a few comments and things. You may wish
to include this explanation in your application to allow the user to fine tune his
application.

There are several directives to change the attributes of a widget.

- fg - Sets the foreground color of a widget.

+ bg - Sets the background color of a widget.

« bg_pixmap - Sets the background of a widget to a tiled pixmap.
. font - Sets the font to be used with the given widget.

In addition to this, there are several states a widget can be in, and you can set different
colors, pixmaps and fonts for each state. These states are:

- NORMAL - The normal state of a widget, without the mouse over top of it, and not
being pressed, etc.

Chapter 22. GTK’s rc Files

« PRELIGHT - When the mouse is over top of the widget, colors defined using this
state will be in effect.

- ACTIVE - When the widget is pressed or clicked it will be active, and the attributes
assigned by this tag will be in effect.

- INSENSITIVE - When a widget is set insensitive, and cannot be activated, it will
take these attributes.

- SELECTED - When an object is selected, it takes these attributes.

When using the "fg" and "bg" keywords to set the colors of widgets, the format is:
fg[<STATE>] = { Red, Green, Blue }

Where STATE is one of the above states (PRELIGHT, ACTIVE, etc), and the Red,
Green and Blue are values in the range of 0 - 1.0, { 1.0, 1.0, 1.0 } being white. They
must be in float form, or they will register as 0, so a straight "1" will not work, it must
be "1.0". A straight "0" is fine because it doesn’t matter if it's not recognized.
Unrecognized values are set to 0.

bg_pixmap is very similar to the above, except the colors are replaced by a filename.

pixmap_path is a list of paths separated by ":"’s. These paths will be searched for any
pixmap you specify.

The font directive is simply:

font = ""

The only hard part is figuring out the font string. Using xfontsel or a similar utility
should help.

The "widget_class" sets the style of a class of widgets. These classes are listed in the
widget overview on the class hierarchy.

The "widget" directive sets a specifically named set of widgets to a given style,
overriding any style set for the given widget class. These widgets are registered inside
the application using the gtk_widget_set_name() call. This allows you to specify the
attributes of a widget on a per widget basis, rather than setting the attributes of an entire

323

Chapter 22. GTK'’s rc Files

22.3.

324

widget class. | urge you to document any of these special widgets so users may
customize them.

When the keyworgharent is used as an attribute, the widget will take on the attributes
of its parent in the application.

When defining a style, you may assign the attributes of a previously defined style to
this new one.

style "main_button" = "button"

{
font = "-adobe-helvetica-medium-r-normal-*-100-*-*-*-*_*.*"
bg[PRELIGHT] = { 0.75, 0, 0 }

}

This example takes the "button" style, and creates a new "main_button" style simply by
changing the font and prelight background color of the "button" style.

Of course, many of these attributes don’t apply to all widgets. It's a simple matter of
common sense really. Anything that could apply, should.

Example rc file

pixmap_path "<dir 1>:<dir 2>:<dir 3>:...."

#

pixmap_path "/usr/include/X11R6/pixmaps:/home/imain/pixmaps
#

style <name> [= <name>]

{

<option>

#}

#

widget <widget set> style <style name>

widget_class <widget_class_set> style <style_name>

Chapter 22. GTK’s rc Files

Here is a list of all the possi-

ble states. Note that some do not apply to

certain widgets.

#

NORMAL -

The normal state of a widget, without the mouse over top of
it, and not being pressed, etc.

#

PRELIGHT -

When the mouse is over top of the widget, colors defined
using this state will be in effect.

#

ACTIVE -

When the widget is pressed or clicked it will be active, and
the attributes assigned by this tag will be in effect.

#
#
INSENSITIVE - When a widget is set insensitive, and cannot be
activated, it will take these attributes.

#

SELECTED -

When an object is selected, it takes these attributes.

#

Given these states, we can set the attributes of the wid-

gets in each of

these states using the following directives.

fg - Sets the foreground color of a widget.

fg - Sets the background color of a widget.

bg_pixmap - Sets the background of a widget to a tiled pixmap.
font - Sets the font to be used with the given widget.

HOHOH H HH

This sets a style called "button". The name is not really im-
portant, as

it is assigned to the actual widgets at the bot-

tom of the file.

325

Chapter 22. GTK'’s rc Files

style "window"

{
#This sets the padding around the win-

dow to the pixmap specified.
#bg_pixmap[<STATE>] = "<pixmap filename>"
bg_pixmap[NORMAL] = "warning.xpm"

}

style "scale"

{
#Sets the fore-

ground color (font color) to red when in the "NORMAL"
#state.

fgINORMAL] = { 1.0, 0, 0 }

#Sets the background pixmap of this wid-
get to that of its parent.
bg_pixmap[NORMAL] = "<parent>"
}

style "button”
{

This shows all the possible states for a but-
ton. The only one that

doesn't apply is the SELECTED state.

fg[PRELIGHT] = { 0, 1.0, 1.0 }
bg[PRELIGHT] = { 0, 0, 1.0 }
bg[ACTIVE] = { 1.0, 0, 0 }
fg[ACTIVE] = { 0, 1.0, 0 }
bg[NORMAL] = { 1.0, 1.0, 0 }
fgINORMAL] = { .99, 0, .99 }
bg[INSENSITIVE] = { 1.0, 1.0, 1.0 }
fg[INSENSITIVE] = { 1.0, 0, 1.0 }

326

Chapter 22. GTK’s rc Files

In this example, we inherit the attributes of the "but-

ton" style and then

override the font and background color when prelit to cre-
ate a new

"main_button" style.

style "main_button" = "button"

{

bg[PRELIGHT] = { 0.75, 0, 0 }
}

style "toggle button" = "button"

{
fgINORMAL] = { 1.0, 0, 0 }
fg[ACTIVE] = { 1.0, 0, 0 }

This sets the background pixmap of the tog-
gle_button to that of its

parent widget (as defined in the application).

bg_pixmap[NORMAL] = "<parent>"

}

style "text"

{
bg_pixmap[NORMAL] = "marble.xpm"

fgINORMAL] = { 1.0, 1.0, 1.0 }
}

style "ruler"

{
}

pixmap_path "~/.pixmaps"

These set the widget types to use the styles defined above.

327

Chapter 22. GTK'’s rc Files

The widget types are listed in the class hierar-
chy, but could probably be
just listed in this document for the users reference.

widget_class "GtkWindow" style "window"
widget_class "GtkDialog" style "window"
widget_class "GtkFileSelection" style "window"
widget_class "*Gtk*Scale" style "scale"

widget_class "*GtkCheckButton*"' style "toggle button"
widget_class "*GtkRadioButton*" style "toggle button"
widget_class "*GtkButton*" style "button”
widget_class "*Ruler" style "ruler"

widget_class "*GtkText" style "text"

This sets all the buttons that are children of the "main win-
dow" to

the main_button style. These must be docu-

mented to be taken advantage of.

widget "main window.*GtkButton*" style "main_button"

328

Chapter 23. Writing Your Own Widgets

23.1.

23.2.

Overview

Although the GTK distribution comes with many types of widgets that should cover
most basic needs, there may come a time when you need to create your own new
widget type. Since GTK uses widget inheritance extensively, and there is already a
widget that is close to what you want, it is often possible to make a useful new widget
type in just a few lines of code. But before starting work on a new widget, check
around first to make sure that someone has not already written it. This will prevent
duplication of effort and keep the number of GTK widgets out there to a minimum,
which will help keep both the code and the interface of different applications
consistent. As a flip side to this, once you finish your widget, announce it to the world
so other people can benefit. The best place to do this is probakbdykthist

Complete sources for the example widgets are available at the place you got this
tutorial, or from:

http://www.gtk.org/~otaylor/gtk/tutorial/

The Anatomy Of A Widget

In order to create a new widget, it is important to have an understanding of how GTK
objects work. This section is just meant as a brief overview. See the reference
documentation for the details.

GTK widgets are implemented in an object oriented fashion. However, they are
implemented in standard C. This greatly improves portability and stability over using
current generation C++ compilers; however, it does mean that the widget writer has to
pay attention to some of the implementation details. The information common to all
instances of one class of widgets (e.g., to all Button widgets) is stored olab®e

structure There is only one copy of this in which is stored information about the class’s

329

Chapter 23. Writing Your Own Widgets

signals (which act like virtual functions in C). To support inheritance, the first field in
the class structure must be a copy of the parent’s class structure. The declaration of the
class structure of GtkButtton looks like:

struct _GtkButtonClass
{

GtkContainerClass parent_class;

void (* pressed) (GtkButton *button);
void (* released) (GtkButton *button);
void (* clicked) (GtkButton *button);
void (* enter) (GtkButton *button);
void (* leave) (GtkButton *button);

h

When a button is treated as a container (for instance, when it is resized), its class
structure can be cast to GtkContainerClass, and the relevant fields used to handle the
signals.

There is also a structure for each widget that is created on a per-instance basis. This
structure has fields to store information that is different for each instance of the widget.
We'll call this structure th@bject structureFor the Button class, it looks like:

struct _GtkButton
{

GtkContainer container;
GtkWidget *child;

guint in_button : 1;
guint button_down : 1;

k

Note that, similar to the class structure, the first field is the object structure of the parent
class, so that this structure can be cast to the parent class’ object structure as needed.

330

Chapter 23. Writing Your Own Widgets

23.3. Creating a Composite widget

23.3.1. Introduction

One type of widget that you may be interested in creating is a widget that is merely an
aggregate of other GTK widgets. This type of widget does nothing that couldn’t be
done without creating new widgets, but provides a convenient way of packaging user
interface elements for reuse. The FileSelection and ColorSelection widgets in the
standard distribution are examples of this type of widget.

The example widget that we’ll create in this section is the Tictactoe widget, a 3x3 array
of toggle buttons which triggers a signal when all three buttons in a row, column, or on
one of the diagonals are depressed.

23.3.2. Choosing a parent class

The parent class for a composite widget is typically the container class that holds all of
the elements of the composite widget. For example, the parent class of the
FileSelection widget is the Dialog class. Since our buttons will be arranged in a table, it
might seem natural to make our parent class the Table class. Unfortunately, this turns
out not to work. The creation of a widget is divided among two functions - a
WIDGETNAME_new()function that the user calls, andMiDGETNAME_init()

function which does the basic work of initializing the widget which is independent of
the arguments passed to theew() function. Descendant widgets only call thieit

function of their parent widget. But this division of labor doesn’t work well for tables,
which when created need to know the number of rows and columns in the table. Unless
we want to duplicate most of the functionality gik_table_new() in our Tictactoe
widget, we had best avoid deriving it from Table. For that reason, we derive it from
VBox instead, and stick our table inside the VBox.

331

Chapter 23. Writing Your Own Widgets

23.3.3. The header file

332

Each widget class has a header file which declares the object and class structures for
that widget, along with public functions. A couple of features are worth pointing out.
To prevent duplicate definitions, we wrap the entire header file in:

#ifndef _ TICTACTOE_H_
#define _ TICTACTOE_H_

#endif /* __TICTACTOE_H__ */
And to keep C++ programs that include the header file happy, in:

#ifdef __ cplusplus
extern "C" {
#endif /* _ cplusplus */

#ifdef __ cplusplus

}
#endif /* __ cplusplus */

Along with the functions and structures, we declare three standard macros in our
header fileTICTACTOE(obj) , TICTACTOE_CLASS(klass) , and

IS_TICTACTOE(obj) , which cast a pointer into a pointer to the object or class
structure, and check if an object is a Tictactoe widget respectively.

Here is the complete header file:

/* tictactoe.h */

#ifndef _ TICTACTOE_H_
#define _ TICTACTOE_H_

#include <gdk/gdk.h>

Chapter 23. Writing Your Own Widgets

#include <gtk/gtkvbox.h>

#ifdef _ cplusplus
extern "C" {
#endif /* __ cplusplus */

#define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictac-
toe_get_type (), Tictactoe)

#define TICTAC-

TOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictac-
toe_get_type (), TictactoeClass)

#define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictac-

toe_get _type ()

typedef struct _Tictactoe Tictactoe;
typedef struct _TictactoeClass TictactoeClass;

struct _Tictactoe

{
GtkVBox vbox;

GtkWidget *buttons[3][3];
2
struct _TictactoeClass
{

GtkVBoxClass parent_class;

void (* tictactoe) (Tictactoe *ttt);

2

guint tictactoe_get_type (void);
GtkWidget* tictactoe_new (void);
void tictactoe_clear (Tictactoe *ttt);

#ifdef __ cplusplus

333

Chapter 23. Writing Your Own Widgets

}
#endif /* __ cplusplus */

#endif * _ TICTACTOE_H__ */

23.3.4. The get type() function

We now continue on to the implementation of our widget. A core function for every
widget is the functioWIDGETNAME_get_type() . This function, when first called,
tells GTK about the widget class, and gets an ID that uniquely identifies the widget
class. Upon subsequent calls, it just returns the ID.

guint
tictactoe_get_type ()

{
static guint ttt_type = 0;

if ('ttt_type)
{
GtkTypelnfo ttt info =
{
"Tictactoe",
sizeof (Tictactoe),
sizeof (TictactoeClass),
(GtkClassInitFunc) tictactoe_class_init,
(GtkObjectlnitFunc) tictactoe_init,
(GtkArgSetFunc) NULL,
(GtkArgGetFunc) NULL

g

ttt_type = gtk_type unique (gtk_vbox_get_type (), &ttt info);
}

return ttt_type;
}

334

Chapter 23. Writing Your Own Widgets

The GtkTypelnfo structure has the following definition:

struct _GtkTypelnfo
{

gchar *type_name;

guint object_size;

guint class_size;
GtkClasslnitFunc class_init_func;
GtkObijectlnitFunc object_init_func;
GtkArgSetFunc arg_set_func;
GtkArgGetFunc arg_get_func;

h

The fields of this structure are pretty self-explanatory. We’'ll ignoreatheset_func
andarg_get_func fields here: they have an important, but as yet largely
unimplemented, role in allowing widget options to be conveniently set from interpreted
languages. Once GTK has a correctly filled in copy of this structure, it knows how to
create objects of a particular widget type.

23.3.5. The _class _init() function

TheWIDGETNAME_class_init() ~ function initializes the fields of the widget's class
structure, and sets up any signals for the class. For our Tictactoe widget it looks like:

enum {
TICTACTOE_SIGNAL,
LAST_SIGNAL

2
static gint tictactoe_signals[LAST_SIGNAL] = { 0 };
static void

tictactoe_class_init (TictactoeClass *class)

{
GtkObijectClass *object class;

335

Chapter 23. Writing Your Own Widgets

336

object_class = (GtkObjectClass*) class;

tictac-
toe_signals[TICTACTOE_SIGNAL] = gtk_signal_new (“tictactoe",
GTK_RUN_FIRST,

object_class->type,

GTK_SIGNAL_OFFSET (TictactoeClass, tictactoe),
gtk_signal_default_marshaller, GTK_TYPE_NONE, 0);

gtk_object_class_add_signals (object_class, tictac-
toe_signals, LAST_SIGNAL);

class->tictactoe = NULL;

}

Our widget has just one signal, thietactoe ~ signal that is invoked when a row,
column, or diagonal is completely filled in. Not every composite widget needs signals,
so if you are reading this for the first time, you may want to skip to the next section
now, as things are going to get a bit complicated.

The function:

gint gtk_signal_new(const gchar *name,
GtkSignalRunType run_type,
GtkType object_type,
gint function_offset,
GtkSignalMarshaller marshaller,
GtkType return_val,
guint nparams,
o)

Creates a new signal. The parameters are:

« name: The name of the signal.

Chapter 23. Writing Your Own Widgets

run_type : Whether the default handler runs before or after user handlers. Usually
this will be GTK_RUN_FIRST or GTK_RUN_LASTalthough there are other
possibilities.

object_type : The ID of the object that this signal applies to. (It will also apply to
that objects descendants.)

function_offset : The offset within the class structure of a pointer to the default
handler.

marshaller : A function that is used to invoke the signal handler. For signal

handlers that have no arguments other than the object that emitted the signal and user
data, we can use the pre-supplied marshaller function

gtk_signal_default_marshaller

return_val : The type of the return val.

nparams : The number of parameters of the signal handler (other than the two
default ones mentioned above)

: The types of the parameters.

When specifying types, thetkType enumeration is used:

typedef enum

{

GTK_TYPE_INVALID,
GTK_TYPE_NONE,
GTK_TYPE_CHAR,
GTK_TYPE_BOOL,
GTK_TYPE_INT,
GTK_TYPE_UINT,
GTK_TYPE_LONG,
GTK_TYPE_ULONG,
GTK_TYPE_FLOAT,
GTK_TYPE_DOUBLE,
GTK_TYPE_STRING,
GTK_TYPE_ENUM,
GTK_TYPE_FLAGS,
GTK_TYPE_BOXED,

337

Chapter 23. Writing Your Own Widgets

GTK_TYPE_FOREIGN,
GTK_TYPE_CALLBACK,
GTK_TYPE_ARGS,

GTK_TYPE_POINTER,

/* itd be great if the next two could be removed eventu-
ally */

GTK_TYPE_SIGNAL,

GTK_TYPE_C_CALLBACK,

GTK_TYPE_OBJECT
} GtkFundamentalType;

gtk_signal_new() returns a unique integer identifier for the signal, that we store in
thetictactoe_signals array, which we index using an enumeration.
(Conventionally, the enumeration elements are the signal name, uppercased, but here
there would be a conflict with tHECTACTOE() macro, so we called it
TICTACTOE_SIGNALinstead.

After creating our signals, we need to tell GTK to associate our signals with the
Tictactoe class. We do that by calligtk_object_class_add_signals() . We
then set the pointer which points to the default handler for the "tictactoe" signal to
NULL, indicating that there is no default action.

23.3.6. The _init() function

338

Each widget class also needs a function to initialize the object structure. Usually, this
function has the fairly limited role of setting the fields of the structure to default values.
For composite widgets, however, this function also creates the component widgets.

static void
tictactoe_init (Tictactoe *ttt)

{
GtkWidget *table;

Chapter 23. Writing Your Own Widgets

gint ij;

table = gtk _table_new (3, 3, TRUE);
gtk_container_add (GTK_CONTAINER(ttt), table);
gtk_widget_show (table);

for (i=0;i<3; i++)
for (j=0;j<3; j++)
{
ttt->buttons][i][j] = gtk _toggle button_new ();
gtk_table_attach_defaults (GTK_TABLE(table), ttt->buttonsi][j],
i, i+1, j, j+1);
gtk_signal_connect (GTK_OBJECT (ttt->buttonsi][j]), "toggled",
GTK_SIGNAL_FUNC (tictactoe_toggle), ttt);
gtk_widget_set_usize (ttt->buttons]i][j], 20, 20);
gtk_widget_show (ttt->buttonsi][j]);
}
}

23.3.7. And the rest...

There is one more function that every widget (except for base widget types like Bin that
cannot be instantiated) needs to have - the function that the user calls to create an object
of that type. This is conventionally call@lIDGETNAME_new() In some widgets,

though not for the Tictactoe widgets, this function takes arguments, and does some
setup based on the arguments. The other two functions are specific to the Tictactoe

widget.
tictactoe_clear() is a public function that resets all the buttons in the widget to
the up position. Note the use gtk_signal_handler_block_by data() to keep

our signal handler for button toggles from being triggered unnecessarily.

tictactoe_toggle() is the signal handler that is invoked when the user clicks on a
button. It checks to see if there are any winning combinations that involve the toggled
button, and if so, emits the "tictactoe" signal.

339

Chapter 23. Writing Your Own Widgets

GtkWidget*
tictactoe_new ()

{
return GTK_WIDGET (gtk _type_new (tictactoe_get_type ()));

}

void
tictactoe_clear (Tictactoe *ttt)

{

int ij;

for (i=0;i<3;i++)
for (j=0;j<3;j++)
{

gtk_signal_handler_block_by data (GTK_OBJECT(ttt-
>buttons[i][j]), ttt);
gtk _toggle button_set active (GTK_TOGGLE_BUTTON (ttt-
>buttonsli][j]),

FALSE);
gtk_signal_handler_unblock by data (GTK_OBJECT(ttt-
>buttonsl[i][j]), ttt);

}
}
static void
tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt)
{
int ik;
static int rwins[8][83] = { {0, 0,0} {1, 1,11} {2 2, 21}
{0 1,21} {0,1, 2%} {0,121, 2}
{0,121} {0 1, 21} }
static int cwins[8][3] = { {0, 1,2} {0,121, 21} {0, 1, 2}
{0,001} {1111} {2 2 2}
{0,1,2}{2 10} }

int success, found;

340

Chapter 23. Writing Your Own Widgets

for (k=0; k<8; k++)
{
success = TRUE;
found = FALSE;

for (i=0;i<3;i++)

success = success &&
GTK_TOGGLE_BUTTON(ttt->buttons[rwins[k][i]][cwins[K][i]])-
>active;
found = found ||
ttt->buttons[rwins[K][i]][cwins[K][]]] == widget;

if (success && found)

{

gtk_signal_emit (GTK_OBJECT (itt),

tictactoe_signals[TICTACTOE_SIGNAL));

break;

}
}

}

And finally, an example program using our Tictactoe widget:

#include <gtk/gtk.h>
#include "tictactoe.h"

/* Invoked when a row, column or diagonal is completed */
void
win (GtkWidget *widget, gpointer data)
{
g_print ("Yay\n");
tictactoe_clear (TICTACTOE (widget));
}

int

341

Chapter 23. Writing Your Own Widgets

342

main (int argc, char *argvl[])

{

GtkWidget *window;
GtkWidget *ttt;

gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set title (GTK_WINDOW (window), "Aspect Frame");

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a new Tictactoe widget */

ttt = tictactoe_new ();

gtk_container_add (GTK_CONTAINER (window), ttt);

gtk_widget _show (ttt);

/* And attach to its "tictactoe" signal */

gtk_signal_connect (GTK_OBJECT (ttt), "tictactoe",
GTK_SIGNAL_FUNC (win), NULL);

gtk_widget_show (window);

gtk_main ();

return O;

Chapter 23. Writing Your Own Widgets

23.4. Creating a widget from scratch

23.4.1. Introduction

In this section, we’ll learn more about how widgets display themselves on the screen
and interact with events. As an example of this, we’ll create an analog dial widget with
a pointer that the user can drag to set the value.

23.4.2. Displaying a widget on the screen

There are several steps that are involved in displaying on the screen. After the widget is
created with a call toVIDGETNAME_new() several more functions are needed:

WIDGETNAME_realize() is responsible for creating an X window for the widget if
it has one.

WIDGETNAME_map()s invoked after the user callgk widget show() .Itis
responsible for making sure the widget is actually drawn on the screapped. For
a container class, it must also make callsitp() > functions of any child widgets.

WIDGETNAME_draw() is invoked whergtk_widget_draw() is called for the

widget or one of its ancestors. It makes the actual calls to the drawing functions to
draw the widget on the screen. For container widgets, this function must make calls
to gtk_widget_draw() for its child widgets.

WIDGETNAME_expose() is a handler for expose events for the widget. It makes the
necessary calls to the drawing functions to draw the exposed portion on the screen.
For container widgets, this function must generate expose events for its child widgets
which don’t have their own windows. (If they have their own windows, then X will
generate the necessary expose events.)

You might notice that the last two functions are quite similar - each is responsible for
drawing the widget on the screen. In fact many types of widgets don't really care about
the difference between the two. The defaliéiw() function in the widget class simply

343

Chapter 23. Writing Your Own Widgets

generates a synthetic expose event for the redrawn area. However, some types of
widgets can save work by distinguishing between the two functions. For instance, if a
widget has multiple X windows, then since expose events identify the exposed window,
it can redraw only the affected window, which is not possible for caltsda() .

Container widgets, even if they don’t care about the difference for themselves, can't
simply use the defauliraw() function because their child widgets might care about
the difference. However, it would be wasteful to duplicate the drawing code between
the two functions. The convention is that such widgets have a function called
WIDGETNAME_paint() that does the actual work of drawing the widget, that is then
called by thedraw() andexpose() functions.

In our example approach, since the dial widget is not a container widget, and only has a
single window, we can take the simplest approach and use the défam{} function
and only implement aaxpose() function.

23.4.3. The origins of the Dial Widget

Just as all land animals are just variants on the first amphibian that crawled up out of
the mud, GTK widgets tend to start off as variants of some other, previously written
widget. Thus, although this section is entitled "Creating a Widget from Scratch", the
Dial widget really began with the source code for the Range widget. This was picked as
a starting point because it would be nice if our Dial had the same interface as the Scale
widgets which are just specialized descendants of the Range widget. So, though the
source code is presented below in finished form, it should not be implied that it was
written, ab initio in this fashion. Also, if you aren’t yet familiar with how scale widgets
work from the application writer’s point of view, it would be a good idea to look them
over before continuing.

23.4.4. The Basics

Quite a bit of our widget should look pretty familiar from the Tictactoe widget. First,
we have a header file:

344

Chapter 23. Writing Your Own Widgets

/* GTK - The GIMP Toolkit

* Copyright (C) 1995-

1997 Peter Mattis, Spencer Kimball and Josh MacDonald

*

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-

tion) any later version.

*

* This library is dis-

tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

* Library General Public License for more detalils.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the Free

* Software Foundation, Inc., 675 Mass Ave, Cam-

bridge, MA 02139, USA.

*/

#ifndef _ GTK_DIAL_H__
#define _ GTK_DIAL_H__

#include <gdk/gdk.h>
#include <gtk/gtkadjustment.h>
#include <gtk/gtkwidget.h>

#ifdef __ cplusplus
extern "C" {
#endif /* __ cplusplus */

345

Chapter 23. Writing Your Own Widgets

#define GTK_DIAL(obj) GTK_CHECK _CAST (obj, gtk_dial_get type (), GtkDial)
#define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get_type (), Gtk
#define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk _dial_get_type ())

typedef struct _GtkDial GtkDial,

typedef struct _GtkDialClass GtkDialClass;

struct _GtkDial

{
GtkWidget widget;

[* update pol-
icy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUQUS]) */
guint policy : 2;

/* Button currently pressed or 0 if none */
guint8 button;

/* Dimensions of dial components */
gint radius;
gint pointer_width;

/* ID of update timer, or O if none *
guint32 timer;

[* Current angle */
gfloat angle;

/* Old values from adjustment stored so we know when some-
thing changes */

gfloat old_value;

gfloat old_lower;

gfloat old_upper;

/* The adjustment object that stores the data for this dial */

346

Chapter 23. Writing Your Own Widgets

GtkAdjustment *adjustment;

%
struct _GtkDialClass
{

GtkWidgetClass parent_class;
2
GtkWidget* gtk_dial_new (GtkAdjust-
ment *adjustment);
guint gtk_dial_get_type (void);
GtkAdjustment* gtk_dial_get adjustment (Gtk-
Dial *dial);
void gtk_dial_set_update_policy (Gtk-
Dial *dial,

GtkUpdateType policy);

void gtk_dial_set_adjustment (Gtk-
Dial *dial,

GtkAdjustment *adjustment);

#ifdef __ cplusplus

}
#endif /* _ cplusplus */

#endif ¥ __GTK_DIAL_H__ */

Since there is quite a bit more going on in this widget than the last one, we have more

fields in the data structure, but otherwise things are pretty similar.

Next, after including header files and declaring a few constants, we have some

functions to provide information about the widget and initialize it:

#include <math.h>
#include <stdio.h>
#include <gtk/gtkmain.h>
#include <gtk/gtksignal.h>

Chapter 23. Writing Your Own Widgets

#include "gtkdial.h"

#define SCROLL_DELAY_LENGTH 300
#define DIAL_DEFAULT_SIZE 100

/* Forward declarations */

[omitted to save space |

/* Local data */

static GtkWidgetClass *parent_class = NULL;

guint
gtk_dial_get_type ()
{
static guint dial_type = 0;

if ('dial_type)
{
GtkTypelnfo dial_info =

{
"GtkDial",

sizeof (GtkDial),

sizeof (GtkDialClass),

(GtkClasslnitFunc) gtk_dial_class_init,

(GtkObjectlnitFunc) gtk_dial_init,

(GtkArgSetFunc) NULL,
(GtkArgGetFunc) NULL,

h

dial_type = gtk_type_unique (gtk_widget_get type (), &dial_info);
}

return dial_type;

}

348

Chapter 23. Writing Your Own Widgets

static void
gtk_dial_class_init (GtkDialClass *class)
{
GtkObjectClass *object_class;
GtkWidgetClass *widget_class;

object_class = (GtkObjectClass*) class;
widget_class = (GtkWidgetClass*) class;

parent_class = gtk _type_class (gtk_widget_get_type ());

object_class->destroy = gtk _dial_destroy;

widget_class->realize = gtk _dial_realize;
widget_class->expose_event = gtk_dial_expose;
widget_class->size _request = gtk_dial_size request;
widget_class->size_allocate = gtk_dial_size_allocate;
widget_class->button_press_event = gtk _dial_button_press;
widget_class->button_release_event = gtk dial_button_release;
widget_class->motion_notify_event = gtk_dial_motion_notify;

}

static void

gtk_dial_init (GtkDial *dial)

{
dial->button = O;
dial->policy = GTK_UPDATE_CONTINUOUS;
dial->timer = 0;
dial->radius = 0;
dial->pointer_width = 0;
dial->angle = 0.0;
dial->old_value = 0.0;
dial->old_lower = 0.0;
dial->old_upper = 0.0;
dial->adjustment = NULL;

349

Chapter 23. Writing Your Own Widgets

350

GtkWidget*
gtk_dial_new (GtkAdjustment *adjustment)

{
GtkDial *dial;

dial = gtk_type_new (gtk_dial_get_type ());

if (‘adjustment)
adjustment = (GtkAdjust-
ment*) gtk_adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

gtk_dial_set_adjustment (dial, adjustment);

return GTK_WIDGET (dial);
}

static void
gtk_dial_destroy (GtkObject *object)

{
GtkDial *dial;

g_return_if_fail (object != NULL);
g_return_if fail (GTK_IS_DIAL (object));

dial = GTK_DIAL (object);

if (dial->adjustment)
gtk_object_unref (GTK_OBJECT (dial->adjustment));

if (GTK_OBJECT_CLASS (parent_class)->destroy)
(* GTK_OBJECT_CLASS (parent_class)->destroy) (object);

}

Note that thidnit() function does less than for the Tictactoe widget, since this is not
a composite widget, and tmew() function does more, since it now has an argument.
Also, note that when we store a pointer to the Adjustment object, we increment its

Chapter 23. Writing Your Own Widgets

reference count, (and correspondingly decrement it when we no longer use it) so that
GTK can keep track of when it can be safely destroyed.

Also, there are a few function to manipulate the widget'’s options:

GtkAdjustment*

gtk_dial_get_adjustment (GtkDial *dial)

{
g_return_val_if fail (dial '= NULL, NULL);
g_return_val_if fail (GTK_IS_DIAL (dial), NULL);

return dial->adjustment;

}

void

gtk_dial_set_update_policy (GtkDial *dial,
GtkUpdateType policy)

{

g_return_if fail (dial '= NULL);
g_return_if fail (GTK_IS_DIAL (dial));

dial->policy = policy;
}

void

gtk_dial_set_adjustment (GtkDial *dial,
GtkAdjustment *adjustment)

{
g_return_if_fail (dial !'= NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

if (dial->adjustment)
{
gtk_signal_disconnect_by data (GTK_OBJECT (dial-
>adjustment), (gpointer) dial);
gtk_object_unref (GTK_OBJECT (dial->adjustment));

}

351

Chapter 23. Writing Your Own Widgets

dial->adjustment = adjustment;
gtk _object_ref (GTK_OBJECT (dial->adjustment));

gtk_signal_connect (GTK_OBJECT (adjustment), "changed",
(GtkSignalFunc) gtk _dial_adjustment_changed,
(gpointer) dial);

gtk_signal _connect (GTK_OBJECT (adjustment), "value_changed",
(GtkSignalFunc) gtk_dial_adjustment_value_changed,
(gpointer) dial);

dial->old_value = adjustment->value;
dial->old_lower = adjustment->lower;
dial->old_upper = adjustment->upper;

gtk_dial_update (dial);

23.4.5. gtk_dial_realize()

352

Now we come to some new types of functions. First, we have a function that does the
work of creating the X window. Notice that a mask is passed to the function
gdk_window_new() which specifies which fields of the GdkWindowAttr structure
actually have data in them (the remaining fields will be given default values). Also
worth noting is the way the event mask of the widget is created. We call
gtk_widget_get_events() to retrieve the event mask that the user has specified for

this widget (withgtk_widget_set_events()), and add the events that we are
interested in ourselves.

After creating the window, we set its style and background, and put a pointer to the

widget in the user data field of the GdkWindow. This last step allows GTK to dispatch
events for this window to the correct widget.

static void
gtk_dial_realize (GtkWidget *widget)
{

Chapter 23. Writing Your Own Widgets

GtkDial *dial;
GdkWindowAttr attributes;
gint attributes_mask;

g_return_if_fail (widget !'= NULL);
g_return_if fail (GTK_IS_DIAL (widget));

GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED);
dial = GTK_DIAL (widget);

attributes.x = widget->allocation.x;

attributes.y = widget->allocation.y;

attributes.width = widget->allocation.width;

attributes.height = widget->allocation.height;

attributes.wclass = GDK_INPUT_OUTPUT;

attributes.window_type = GDK_WINDOW_CHILD;

attributes.event_mask = gtk_widget_get_events (widget) |
GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_ MASK |
GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK |
GDK_POINTER_MOTION_HINT_MASK;

attributes.visual = gtk_widget_get_visual (widget);

attributes.colormap = gtk _widget_get_colormap (widget);

at-

tributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP;
widget->window = gdk_window_new (widget->parent-

>window, &attributes, attributes_mask);

widget->style = gtk_style_attach (widget->style, widget-
>window);

gdk_window_set_user_data (widget->window, widget);
otk_style_set _background (widget->style, widget-

>window, GTK_STATE_ACTIVE);
}

353

Chapter 23. Writing Your Own Widgets

23.4.6. Size negotiation

354

Before the first time that the window containing a widget is displayed, and whenever
the layout of the window changes, GTK asks each child widget for its desired size. This
request is handled by the functigtk_dial_size_request() . Since our widget

isn’t a container widget, and has no real constraints on its size, we just return a
reasonable default value.

static void
gtk_dial_size_request (GtkWidget *widget,
GtkRequisition *requisition)
{
requisition->width = DIAL_DEFAULT_SIZE;
requisition->height = DIAL_DEFAULT_SIZE;

}

After all the widgets have requested an ideal size, the layout of the window is

computed and each child widget is notified of its actual size. Usually, this will be at

least as large as the requested size, but if for instance the user has resized the window, it
may occasionally be smaller than the requested size. The size notification is handled by
the functiongtk_dial_size_allocate() . Notice that as well as computing the

sizes of some component pieces for future use, this routine also does the grunt work of
moving the widget’s X window into the new position and size.

static void
gtk_dial_size_allocate (GtkWidget *widget,
GtkAllocation *allocation)

{
GtkDial *dial;

g_return_if_fail (widget !'= NULL);
g_return_if fail (GTK_IS_DIAL (widget));
g_return_if_fail (allocation !'= NULL);

widget->allocation = *allocation;
if (GTK_WIDGET_REALIZED (widget))

{

Chapter 23. Writing Your Own Widgets

dial = GTK_DIAL (widget);

gdk_window_move_resize (widget->window,
allocation->x, allocation->y,
allocation->width, allocation->height);

dial->radius = MAX(allocation->width,allocation-
>height) * 0.45;
dial->pointer_width = dial->radius / 5;

}

23.4.7. gtk_dial_expose()

As mentioned above, all the drawing of this widget is done in the handler for expose
events. There’s not much to remark on here except the use of the function
gtk_draw_polygon to draw the pointer with three dimensional shading according to
the colors stored in the widget's style.

static gint
gtk_dial_expose (GtkWidget *widget,
GdkEventExpose *event)
{
GtkDial *dial;
GdkPoint points[3];
gdouble s,c;
gdouble theta;
gint xc, yc;
gint tick_length;
gint i
g_return_val_if_fail (widget != NULL, FALSE);

g_return_val_if fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

355

Chapter 23. Writing Your Own Widgets

if (event->count > 0)
return FALSE;

dial = GTK_DIAL (widget);

gdk_window_clear_area (widget->window,
0, O,
widget->allocation.width,
widget->allocation.height);

widget->allocation.width/2;
widget->allocation.height/2;

XC
ycC

/* Draw ticks */

for (i=0; i<25; i++)
{
theta = (i*M_PI/18. - M_PI/6.);
s = sin(theta);
¢ = cos(theta);

tick_length = (i%6 == 0) ? dial->pointer_width : dial-
>pointer_width/2;

gdk_draw_line (widget->window,

widget->style->fg_gc[widget->state],
Xc + c*(dial->radius - tick_length),
yc - s*(dial->radius - tick_length),
xc + c*dial->radius,

yc - s*dial->radius);

}
/* Draw pointer */

= sin(dial->angle);
cos(dial->angle);

o w
o1

356

Chapter 23. Writing Your Own Widgets

points[0].x = xc + s*dial->pointer_width/2;
points[0].y = yc + c*dial->pointer_width/2;
points[1].x = xc + c*dial->radius;
points[1].y = yc - s*dial->radius;
points[2].x = xc - s*dial->pointer_width/2;
points[2].y = yc - c*dial->pointer_width/2;

gtk_draw_polygon (widget->style,
widget->window,
GTK_STATE_NORMAL,
GTK_SHADOW_OUT,
points, 3,
TRUE);

return FALSE;

23.4.8. Event handling

The rest of the widget’s code handles various types of events, and isn't too different
from what would be found in many GTK applications. Two types of events can occur -
either the user can click on the widget with the mouse and drag to move the pointer, or
the value of the Adjustment object can change due to some external circumstance.

When the user clicks on the widget, we check to see if the click was appropriately near
the pointer, and if so, store the button that the user clicked with ibuhen field of

the widget structure, and grab all mouse events with a cgtktagrab_add()

Subsequent motion of the mouse causes the value of the control to be recomputed (by
the functiongtk_dial_update_mouse). Depending on the policy that has been set,
"value_changed" events are either generated instadllig (UPDATE_CONTINUOYS

after a delay in a timer added witjtk_timeout_add() (GTK_UPDATE_DELAYBpor

only when the button is releasedT{K_UPDATE_DISCONTINUOYS

static gint

357

Chapter 23. Writing Your Own Widgets

gtk_dial_button_press (GtkWidget *widget,
GdkEventButton *event)
{
GtkDial *dial;
gint dx, dy;
double s, c;
double d_parallel;
double d_perpendicular;

g_return_val_if fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

dial = GTK_DIAL (widget);

/* Determine if button press was within pointer region - we
do this by computing the parallel and perpendicular dis-
tance of
the point where the mouse was pressed from the line pass-
ing through
the pointer */

dx = event->x - widget->allocation.width / 2;
dy = widget->allocation.height / 2 - event->y;
s = sin(dial->angle);
¢ = cos(dial->angle);

d_parallel = s*dy + c*dx;
d_perpendicular = fabs(s*dx - c*dy);

if (!dial->button &&
(d_perpendicular < dial->pointer_width/2) &&
(d_parallel > - dial->pointer_width))

{
gtk_grab_add (widget);

358

Chapter 23

dial->button = event->button;

gtk_dial_update_mouse (dial, event->x, event->y);

}

return FALSE;
}

static gint
gtk_dial_button_release (GtkWidget *widget,
GdkEventButton *event)

{
GtkDial *dial;

g_return_val_if fail (widget '= NULL, FALSE);
g_return_val_if fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial->button == event->button)

{
gtk_grab_remove (widget);

dial->button = O;

if (dial->policy == GTK_UPDATE_DELAYED)
gtk_timeout_remove (dial->timer);

if ((dial->policy !'= GTK_UPDATE_CONTINUOUS)
(dial->old_value != dial->adjustment->value))
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

}

return FALSE;

. Writing Your Own Widgets

&&

359

Chapter 23. Writing Your Own Widgets

360

static gint
gtk_dial_motion_notify (GtkWidget *widget,
GdkEventMotion *event)
{
GtkDial *dial;
GdkModifierType mods;
gint x, y, mask;

g_return_val_if fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial->button != 0)
{

X
y

event->x;
event->y;

if (event->is_hint || (event->window != widget->window))
gdk_window_get_pointer (widget->window, &x, &y, &mods);

switch (dial->button)
{
case 1:
mask = GDK_BUTTON1_MASK;
break;
case 2:
mask = GDK_BUTTON2_MASK;
break;
case 3:
mask = GDK_BUTTON3_ MASK;
break;
default:
mask = O;
break;

Chapter 23. Writing Your Own Widgets

if (mods & mask)
gtk_dial_update_mouse (dial, x,y);

}

return FALSE;
}

static gint

gtk_dial_timer (GtkDial *dial)

{
g_return_val_if fail (dial '= NULL, FALSE);
g_return_val_if fail (GTK_IS DIAL (dial), FALSE);

if (dial->policy == GTK_UPDATE_DELAYED)
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

return FALSE;
}

static void
gtk _dial_update_mouse (GtkDial *dial, gint x, gint y)
{

gint xc, yc;

gfloat old_value;

g_return_if_fail (dial '= NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

GTK_WIDGET(dial)->allocation.width / 2;
GTK_WIDGET(dial)->allocation.height / 2;

XC
ycC

old value = dial->adjustment->value;
dial->angle = atan2(yc-y, X-Xc);

361

Chapter 23. Writing Your Own Widgets

if (dial->angle < -M_PI/2.)
dial->angle += 2*M_PI;

if (dial->angle < -M_PI/6)
dial->angle = -M_PI/6;

if (dial->angle > 7.*M_PI/6.)
dial->angle = 7.*M_PI/6.;

dial->adjustment->value = dial->adjustment-
>lower + (7.*M_PI/6 - dial->angle) *
(dial->adjustment->upper - dial->adjustment-
>lower) / (4.*M_PI/3.);

if (dial->adjustment->value != old_value)
{
if (dial->policy == GTK_UPDATE_CONTINUOUS)
{
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");
}

else

{
gtk_widget _draw (GTK_WIDGET(dial), NULL);

if (dial->policy == GTK_UPDATE_DELAYED)
{
if (dial->timer)
gtk_timeout_remove (dial->timer);

dial->timer = gtk timeout_add (SCROLL_DELAY_LENGTH,

(GtkFunction) gtk_dial_timer,
(gpointer) dial);

362

Chapter 23. Writing Your Own Widgets

Changes to the Adjustment by external means are communicated to our widget by the
"changed" and "value_changed" signals. The handlers for these functions call
gtk_dial_update() to validate the arguments, compute the new pointer angle, and
redraw the widget (by callingtk_widget_draw()).

static void
gtk_dial_update (GtkDial *dial)
{

gfloat new_value;

g_return_if_fail (dial !'= NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

new_value = dial->adjustment->value;

if (new_value < dial->adjustment->lower)
new_value = dial->adjustment->lower;

if (new_value > dial->adjustment->upper)
new_value = dial->adjustment->upper;

if (new_value != dial->adjustment->value)

{

dial->adjustment->value = new_value;
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

}

dial->angle = 7.*M_PI/6. - (new_value - dial->adjustment-
>lower) * 4.*M_PI/3. /
(dial->adjustment->upper - dial->adjustment->lower);

gtk_widget_draw (GTK_WIDGET(dial), NULL);
}

static void
gtk_dial_adjustment_changed (GtkAdjustment *adjustment,

363

Chapter 23. Writing Your Own Widgets

gpointer data)
GtkDial *dial;

g_return_if_fail (adjustment != NULL);
g_return_if _fail (data !'= NULL);

dial = GTK_DIAL (data);

if ((dial->old_value !'= adjustment->value) ||
(dial->old_lower != adjustment->lower) ||
(dial->o0ld_upper != adjustment->upper))
gtk_dial_update (dial);
dial->old_value = adjustment->value;

dial->old_lower = adjustment->lower;
dial->old_upper = adjustment->upper;

}
}
static void
gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment,
gpointer data)
{
GtkDial *dial;

g_return_if_fail (adjustment != NULL);
g_return_if_fail (data '= NULL);

dial = GTK_DIAL (data);
if (dial->old_value != adjustment->value)
{
gtk_dial_update (dial);

dial->old_value = adjustment->value;

364

Chapter 23. Writing Your Own Widgets

23.4.9. Possible Enhancements

23.5.

The Dial widget as we've described it so far runs about 670 lines of code. Although
that might sound like a fair bit, we've really accomplished quite a bit with that much
code, especially since much of that length is headers and boilerplate. However, there
are quite a few more enhancements that could be made to this widget:

If you try this widget out, you'll find that there is some flashing as the pointer is
dragged around. This is because the entire widget is erased every time the pointer is
moved before being redrawn. Often, the best way to handle this problem is to draw
to an offscreen pixmap, then copy the final results onto the screen in one step. (The
ProgressBar widget draws itself in this fashion.)

The user should be able to use the up and down arrow keys to increase and decrease
the value.

It would be nice if the widget had buttons to increase and decrease the value in small
or large steps. Although it would be possible to use embedded Button widgets for
this, we would also like the buttons to auto-repeat when held down, as the arrows on
a scrollbar do. Most of the code to implement this type of behavior can be found in
the Range widget.

The Dial widget could be made into a container widget with a single child widget
positioned at the bottom between the buttons mentioned above. The user could then
add their choice of a label or entry widget to display the current value of the dial.

Learning More

Only a small part of the many details involved in creating widgets could be described

365

Chapter 23. Writing Your Own Widgets

above. If you want to write your own widgets, the best source of examples is the GTK
source itself. Ask yourself some questions about the widget you want to write: IS it a
Container widget? Does it have its own window? Is it a modification of an existing
widget? Then find a similar widget, and start making changes. Good luck!

366

Chapter 24. Scribble, A Simple
Example Drawing Program

24.1.

24.2.

Overview

In this section, we will build a simple drawing program. In the process, we will

examine how to handle mouse events, how to draw in a window, and how to do drawing
better by using a backing pixmap. After creating the simple drawing program, we will
extend it by adding support for XInput devices, such as drawing tablets. GTK provides
support routines which makes getting extended information, such as pressure and tilt,
from such devices quite easy.

Event Handling

The GTK signals we have already discussed are for high-level actions, such as a menu
item being selected. However, sometimes it is useful to learn about lower-level
occurrences, such as the mouse being moved, or a key being pressed. There are also
GTK signals corresponding to these low-leegknts The handlers for these signals

have an extra parameter which is a pointer to a structure containing information about
the event. For instance, motion event handlers are passed a pointer to a
GdkEventMotion structure which looks (in part) like:

struct _GdkEventMotion
{
GdkEventType type;
GdkWindow *window;
guint32 time;
gdouble x;
gdouble v;

367

Chapter 24. Scribble, A Simple Example Drawing Program

guint state;

,

type will be set to the event type, in this caG®K_MOTION_NOTIFYwindow is the

window in which the event occurreg.andy give the coordinates of the evestate
specifies the modifier state when the event occurred (that is, it specifies which modifier
keys and mouse buttons were pressed). It is the bitwise OR of some of the following:

GDK_SHIFT_MASK
GDK_LOCK_MASK
GDK_CONTROL_MASK
GDK_MOD1_MASK
GDK_MOD2_MASK
GDK_MOD3_MASK
GDK_MOD4_MASK
GDK_MOD5_MASK
GDK_BUTTON1_MASK
GDK_BUTTON2_MASK
GDK_BUTTON3_MASK
GDK_BUTTON4_MASK
GDK_BUTTON5_MASK

As for other signals, to determine what happens when an event occurs we call
gtk_signal_connect() . But we also need let GTK know which events we want to
be notified about. To do this, we call the function:

void gtk widget_set_events (GtkWidget *widget,
gint events);

The second field specifies the events we are interested in. It is the bitwise OR of
constants that specify different types of events. For future reference the event types are:

GDK_EXPOSURE_MASK
GDK_POINTER_MOTION_MASK
GDK_POINTER_MOTION_HINT_MASK
GDK_BUTTON_MOTION_MASK

368

Chapter 24. Scribble, A Simple Example Drawing Program

GDK_BUTTON1_MOTION_MASK
GDK_BUTTON2_MOTION_MASK
GDK_BUTTON3_MOTION_MASK
GDK_BUTTON_PRESS_MASK

GDK_BUTTON_RELEASE_MASK

GDK_KEY_PRESS_MASK

GDK_KEY_RELEASE_MASK
GDK_ENTER_NOTIFY_MASK
GDK_LEAVE_NOTIFY_MASK
GDK_FOCUS_CHANGE_MASK

GDK_STRUCTURE_MASK

GDK_PROPERTY_CHANGE_MASK
GDK_PROXIMITY_IN_MASK
GDK_PROXIMITY_OUT_MASK

There are a few subtle points that have to be observed when calling

gtk_widget_set_events()

. First, it must be called before the X window for a GTK

widget is created. In practical terms, this means you should call it immediately after
creating the widget. Second, the widget must have an associated X window. For
efficiency, many widget types do not have their own window, but draw in their parent’s
window. These widgets are:

GtkAlignment
GtkArrow

GtkBin

GtkBox
Gtkimage
Gtkltem
GtkLabel
GtkPixmap
GtkScrolledWindow
GtkSeparator
GtkTable
GtkAspectFrame
GtkFrame
GtkVBox
GtkHBoOx

369

Chapter 24. Scribble, A Simple Example Drawing Program

370

GtkVSeparator
GtkHSeparator

To capture events for these widgets, you need to use an EventBox widget. See the
section on th€ EveniBpx widget for details.

For our drawing program, we want to know when the mouse button is pressed and
when the mouse is moved, so we speGiyK_POINTER_MOTION_MASHKd
GDK_BUTTON_PRESS_MASKe also want to know when we need to redraw our
window, so we speciffsDK_EXPOSURE_MASKIthough we want to be notified via a
Configure event when our window size changes, we don’t have to specify the
correspondingsDK_STRUCTURE_MASHQ, because it is automatically specified for all
windows.

It turns out, however, that there is a problem with just specifying
GDK_POINTER_MOTION_MASKhis will cause the server to add a new motion event to
the event queue every time the user moves the mouse. Imagine that it takes us 0.1
seconds to handle a motion event, but the X server queues a new motion event every
0.05 seconds. We will soon get way behind the users drawing. If the user draws for 5
seconds, it will take us another 5 seconds to catch up after they release the mouse
button! What we would like is to only get one motion event for each event we process.
The way to do this is to specifgDK_POINTER_MOTION_HINT_MASK

When we specififGDK_POINTER_MOTION_HINT_MASHKe server sends us a motion
event the first time the pointer moves after entering our window, or after a button press
or release event. Subsequent motion events will be suppressed until we explicitly ask
for the position of the pointer using the function:

GdkWindow* gdk_window_get_pointer (Gdkwindow *win-
dow,

gint *X,

gint *Y,

GdkModifierType *mask);

(There is another functiomtk_widget_get_pointer() which has a simpler
interface, but turns out not to be very useful, since it only retrieves the position of the
mouse, not whether the buttons are pressed.)

Chapter 24. Scribble, A Simple Example Drawing Program

The code to set the events for our window then looks like:

gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event",
(GtkSignalFunc) expose_event, NULL);
gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event",
(GtkSignalFunc) configure_event, NULL);
gtk_signal_connect (GTK_OBJECT (draw-
ing_area), "motion_notify_event",
(GtkSignalFunc) motion_notify_event, NULL);
gtk_signal_connect (GTK_OBJECT (draw-
ing_area), "button_press_event",
(GtkSignalFunc) button_press_event, NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK

| GDK_BUTTON_PRESS_MASK

| GDK_POINTER_MOTION_MASK

| GDK_POINTER_MOTION_HINT_MASK);

We’'ll save the "expose_event" and "configure_event" handlers for later. The
"motion_notify _event" and "button_press_event" handlers are pretty simple:

static gint
button_press_event (GtkWidget *widget, GdkEventButton *event)

{
if (event->button == 1 && pixmap != NULL)
draw_brush (widget, event->x, event->y);

return TRUE;

}

static gint

motion_notify _event (GtkWidget *widget, GdkEventMotion *event)
{

int X, vy;
GdkModifierType state;

if (event->is_hint)

371

Chapter 24. Scribble, A Simple Example Drawing Program

gdk_window_get_pointer (event->window, &X, &y, &state);
else
{
X = event->x;
y = event->y;
state = event->state;

}

if (state & GDK_BUTTON1 _MASK && pixmap !'= NULL)
draw_brush (widget, X, V);

return TRUE;

24.3. The DrawingArea Widget, And Drawing

372

We now turn to the process of drawing on the screen. The widget we use for this is the
DrawingArea widget. A drawing area widget is essentially an X window and nothing
more. It is a blank canvas in which we can draw whatever we like. A drawing area is
created using the call:

GtkWidget* gtk_drawing_area_new (void);

A default size for the widget can be specified by calling:

void gtk_drawing_area_size (Gtk-
DrawingArea *darea,

gint width,

gint height);

This default size can be overridden, as is true for all widgets, by calling
gtk_widget_set_usize() , and that, in turn, can be overridden if the user manually
resizes the the window containing the drawing area.

Chapter 24. Scribble, A Simple Example Drawing Program

It should be noted that when we create a DrawingArea widget, wecamgletely
responsible for drawing the contents. If our window is obscured then uncovered, we get
an exposure event and must redraw what was previously hidden.

Having to remember everything that was drawn on the screen so we can properly
redraw it can, to say the least, be a nuisance. In addition, it can be visually distracting if
portions of the window are cleared, then redrawn step by step. The solution to this
problem is to use an offscredacking pixmaplnstead of drawing directly to the

screen, we draw to an image stored in server memory but not displayed, then when the
image changes or new portions of the image are displayed, we copy the relevant
portions onto the screen.

To create an offscreen pixmap, we call the function:

GdkPixmap* gdk_pixmap_new (GdkWindow *window,
gint width,
gint height,
gint depth);

Thewindow parameter specifies a GDK window that this pixmap takes some of its
properties fromwidth andheight specify the size of the pixmapepth specifies
thecolor depth that is the number of bits per pixel, for the new window. If the depth is
specified as1 , it will match the depth ofvindow .

We create the pixmap in our "configure_event" handler. This event is generated
whenever the window changes size, including when it is originally created.

/* Backing pixmap for drawing area */
static GdkPixmap *pixmap = NULL;

/* Create a new backing pixmap of the appropriate size */
static gint
configure_event (GtkWidget *widget, GdkEventConfigure *event)

{
if (pixmap)
gdk_pixmap_unref(pixmap);

pixmap = gdk pixmap_new(widget->window,

373

Chapter 24. Scribble, A Simple Example Drawing Program

widget->allocation.width,

widget->allocation.height,

-1);

gdk_draw_rectangle (pixmap,
widget->style->white_gc,
TRUE,
o, 0O,
widget->allocation.width,
widget->allocation.height);

return TRUE;
}

The call togdk_draw_rectangle() clears the pixmap initially to white. We’ll say
more about that in a moment.

Our exposure event handler then simply copies the relevant portion of the pixmap onto
the screen (we determine the area we need to redraw by using the event->area field of
the exposure event):

/* Redraw the screen from the backing pixmap */

static gint

expose_event (GtkWidget *widget, GdkEventExpose *event)
{

gdk_draw_pixmap(widget->window,
widget->style->fg_gc[GTK_WIDGET_STATE (widget)],
pixmap,

event->area.x, event->area.y,

event->area.x, event->area.y,

event->area.width, event->area.height);

return FALSE;
}

We've now seen how to keep the screen up to date with our pixmap, but how do we
actually draw interesting stuff on our pixmap? There are a large number of calls in
GTK'’s GDK library for drawing ondrawables A drawable is simply something that

374

Chapter 24. Scribble, A Simple Example Drawing Program

can be drawn upon. It can be a window, a pixmap, or a bitmap (a black and white
image). We've already seen two such calls abgdg, draw_rectangle() and
gdk_draw_pixmap() . The complete listis:

gdk_draw_line ()
gdk_draw_rectangle ()
gdk_draw_arc ()
gdk_draw_polygon ()
gdk_draw_string ()
gdk_draw_text ()
gdk_draw_pixmap ()
gdk_draw_bitmap ()
gdk_draw_image ()
gdk_draw_points ()
gdk_draw_segments ()

See the reference documentation or the headetdde/gdk.h> for further details on
these functions. These functions all share the same first two arguments. The first
argument is the drawable to draw upon, the second argumegtréphics context
(GC).

A graphics context encapsulates information about things such as foreground and
background color and line width. GDK has a full set of functions for creating and
modifying graphics contexts, but to keep things simple we’ll just use predefined
graphics contexts. Each widget has an associated style. (Which can be modified in a
gtkrc file, see the section GTK’s rc file.) This, among other things, stores a number of
graphics contexts. Some examples of accessing these graphics contexts are:
widget->style->white_gc

widget->style->black_gc

widget->style->fg_gc[GTK_STATE_NORMAL]
widget->style->bg_gc[GTK_WIDGET_STATE(widget)]

The fieldsfg_gc , bg_gc, dark_gc , andlight gc are indexed by a parameter of type
GtkStateType which can take on the values:

GTK_STATE_NORMAL,

375

Chapter 24. Scribble, A Simple Example Drawing Program

376

GTK_STATE_ACTIVE,
GTK_STATE_PRELIGHT,
GTK_STATE_SELECTED,
GTK_STATE_INSENSITIVE

For instance, foGTK_STATE_SELECTEIhe default foreground color is white and the
default background color, dark blue.

Our functiondraw_brush() , which does the actual drawing on the screen, is then:

/* Draw a rectangle on the screen */
static void
draw_brush (GtkWidget *widget, gdouble x, gdouble y)

{
GdkRectangle update_rect;

update rect.x = x - 5;
update_recty =y - 5;
update_rect.width = 10;
update_rect.height = 10;
gdk_draw_rectangle (pixmap,
widget->style->black_gc,
TRUE,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);
gtk_widget_draw (widget, &update_rect);
}

After we draw the rectangle representing the brush onto the pixmap, we call the
function:

void gtk_widget_draw (Gtkwid-
get *widget,
GdkRectangle *area);

which notifies X that the area given by theea parameter needs to be updated. X will
eventually generate an expose event (possibly combining the areas passed in several

24.4.

Chapter 24. Scribble, A Simple Example Drawing Program

calls togtk_widget_draw()) which will cause our expose event handler to copy the
relevant portions to the screen.

We have now covered the entire drawing program except for a few mundane details like
creating the main window.

Adding Xlnput support

It is now possible to buy quite inexpensive input devices such as drawing tablets, which
allow drawing with a much greater ease of artistic expression than does a mouse. The
simplest way to use such devices is simply as a replacement for the mouse, but that
misses out many of the advantages of these devices, such as:

« Pressure sensitivity

- Tilt reporting

« Sub-pixel positioning

« Multiple inputs (for example, a stylus with a point and eraser)

For information about the Xinput extension, see the Xinput-HOWTO
(http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO. html).

If we examine the full definition of, for example, the GdkEventMotion structure, we
see that it has fields to support extended device information.

struct _GdkEventMotion
{
GdkEventType type;
GdkWindow *window;
guint32 time;
gdouble x;
gdouble v;
gdouble pressure;
gdouble xtilt;
gdouble ytilt;

377

Chapter 24. Scribble, A Simple Example Drawing Program

guint state;

gintl6 is_hint;
GdkInputSource source;
guint32 deviceid;

h

pressure gives the pressure as a floating point number between 0 atiet 1. and

ytiit can take on values between -1 and 1, corresponding to the degree of tilt in each
direction.source anddeviceid specify the device for which the event occurred in

two different wayssource gives some simple information about the type of device. It
can take the enumeration values:

GDK_SOURCE_MOUSE
GDK_SOURCE_PEN
GDK_SOURCE_ERASER
GDK_SOURCE_CURSOR

deviceid specifies a unique numeric ID for the device. This can be used to find out
further information about the device using thk_input_list_devices() call

(see below). The special val@K_CORE_POINTER used for the core pointer device.
(Usually the mouse.)

24.4.1. Enabling extended device information

To let GTK know about our interest in the extended device information, we merely
have to add a single line to our program:

gtk_widget_set_extension_events (draw-
ing_area, GDK_EXTENSION_EVENTS_CURSOR);

By giving the valueGDK_EXTENSION_EVENTS_CURS®@R say that we are interested

in extension events, but only if we don’t have to draw our own cursor. See the sgction
Further Sophistications below for more information about drawing the cursor. We
could also give the valuegs8DK_EXTENSION_EVENTS_ALf we were willing to draw

378

Chapter 24. Scribble, A Simple Example Drawing Program

our own cursor, o6GDK_EXTENSION_EVENTS_NOMErevert back to the default
condition.

This is not completely the end of the story however. By default, no extension devices
are enabled. We need a mechanism to allow users to enable and configure their
extension devices. GTK provides the InputDialog widget to automate this process. The
following procedure manages an InputDialog widget. It creates the dialog if it isn't
present, and raises it to the top otherwise.

void
input_dialog_destroy (GtkWidget *w, gpointer data)
{
*((GtkWidget **)data) = NULL;
}

void
create_input_dialog ()

{
static GtkWidget *inputd = NULL;

if (linputd)

{
inputd = gtk _input_dialog_new();

gtk_signal_connect (GTK_OBJECT (inputd), "destroy",
(GtkSignalFunc)input_dialog_destroy, &inputd);
gtk_signal_connect_object (GTK_OBJECT(GTK_INPUT_DIALOG(inputd)-
>close_button),
"clicked",
(GtkSignalFunc)gtk_widget_hide,
GTK_OBJECT(inputd));
gtk_widget_hide (GTK_INPUT_DIALOG(inputd)->save_button);

gtk_widget_show (inputd);
}

else

{

379

Chapter 24. Scribble, A Simple Example Drawing Program

if IGTK_WIDGET_MAPPED(inputd))
gtk_widget_show(inputd);
else
gdk_window_raise(inputd->window);
}
}

(You might want to take note of the way we handle this dialog. By connecting to the
"destroy"” signal, we make sure that we don’t keep a pointer to dialog around after it is
destroyed - that could lead to a segfault.)

The InputDialog has two buttons "Close" and "Save", which by default have no actions
assigned to them. In the above function we make "Close" hide the dialog, hide the
"Save" button, since we don’t implement saving of XInput options in this program.

24.4.2. Using extended device information

380

Once we've enabled the device, we can just use the extended device information in the
extra fields of the event structures. In fact, it is always safe to use this information since
these fields will have reasonable default values even when extended events are not
enabled.

Once change we do have to make is to gaK_input_window_get_pointer()
instead ofydk_window_get_pointer . This is necessary because
gdk_window_get_pointer doesn’t return the extended device information.

void gdk_input_window_get_pointer(GdkWindow *window,
guint32 deviceid,
gdouble *X,
gdouble *y,
gdouble *pressure,
gdouble *xtilt,
gdouble *yilt,

GdkModifierType *mask);

Chapter 24. Scribble, A Simple Example Drawing Program

When calling this function, we need to specify the device ID as well as the window.
Usually, we’ll get the device ID from theeviceid field of an event structure. Again,
this function will return reasonable values when extension events are not enabled. (In
this caseevent->deviceid will have the valuesDK_CORE_POINTER

So the basic structure of our button-press and motion event handlers doesn’t change
much - we just need to add code to deal with the extended information.

static gint
button_press_event (GtkWidget *widget, GdkEventButton *event)
{

print_button_press (event->deviceid);

if (event->button == 1 && pixmap !'= NULL)
draw_brush (widget, event->source, event->X, event-
>y, event->pressure);

return TRUE;
}

static gint
motion_notify _event (GtkWidget *widget, GdkEventMotion *event)
{

gdouble x, v;

gdouble pressure;

GdkModifierType state;

if (event->is_hint)
gdk_input_window_get pointer (event->window, event-
>deviceid,
&x, &y, &pressure, NULL, NULL, &state);
else
{
X = event->x;
y = event->y;
pressure = event->pressure;
state = event->state;

381

Chapter 24. Scribble, A Simple Example Drawing Program

if (state & GDK_BUTTON1 _MASK && pixmap !'= NULL)
draw_brush (widget, event->source, X, Yy, pressure);

return TRUE;
}

We also need to do something with the new information. Our cv@w_brush()
function draws with a different color for eaelent->source and changes the brush
size depending on the pressure.

/* Draw a rectangle on the screen, size depending on pressure,
and color on the type of device */
static void
draw_brush (GtkWidget *widget, GdklnputSource source,
gdouble x, gdouble y, gdouble pressure)
{
GdkGC *gc;
GdkRectangle update_rect;

switch (source)
{
case GDK_SOURCE_MOUSE:
gc = widget->style->dark_gc[GTK_WIDGET_STATE (widget)];
break;
case GDK_SOURCE_PEN:
gc = widget->style->black_gc;
break;
case GDK_SOURCE_ERASER:
gc = widget->style->white_gc;
break;
default:
gc = widget->style->light gc[GTK_WIDGET_STATE (widget)];
}

update_rect.x = x - 10 * pressure;
update_rect.y y - 10 * pressure;

382

Chapter 24. Scribble, A Simple Example Drawing Program

update_rect.width = 20 * pressure;
update_rect.height = 20 * pressure;
gdk_draw_rectangle (pixmap, gc, TRUE,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);
gtk_widget draw (widget, &update_rect);

24.4.3. Finding out more about a device

As an example of how to find out more about a device, our program will print the name
of the device that generates each button press. To find out the name of a device, we call
the function:

GList *gdk_input_list_devices (void);

which returns a GList (a linked list type from the GLib library) of GdkDevicelnfo
structures. The GdkDevicelnfo structure is defined as:

struct _GdkDevicelnfo

{
guint32 deviceid;
gchar *name;
GdkInputSource source;
GdklnputMode mode;
gint has_cursor;
gint num_axes;
GdkAxisUse *axes;
gint num_keys;
GdkDeviceKey *keys;

3

Most of these fields are configuration information that you can ignore unless you are
implementing XInput configuration saving. The fieldwe are interested in heegrs
which is simply the name that X assigns to the device. The other field that isn’t

383

Chapter 24. Scribble, A Simple Example Drawing Program

configuration information isas_cursor . If has_cursor is false, then we we need to
draw our own cursor. But since we've specifieDK_EXTENSION_EVENTS_CURSOR
we don’t have to worry about this.

Our print_button_press() function simply iterates through the returned list until it
finds a match, then prints out the name of the device.

static void
print_button_press (guint32 deviceid)

{
GList *tmp_list;

/* gdk_input_list_devices returns an inter-
nal list, so we shouldn’t
free it afterwards */
tmp_list = gdk_input_list_devices();

while (tmp_list)

{
GdkDevicelnfo *info = (GdkDevicelnfo *)tmp_list->data;
if (info->deviceid == deviceid)
{
printf("Button press on device '%s\n", info->name);
return;
}
tmp_list = tmp_list->next;
}
}

That completes the changes to "XInputize" our program.

384

Chapter 24. Scribble, A Simple Example Drawing Program

24.4.4. Further sophistications

Although our program now supports Xlnput quite well, it lacks some features we
would want in a full-featured application. First, the user probably doesn’t want to have
to configure their device each time they run the program, so we should allow them to
save the device configuration. This is done by iterating through the return of
gdk_input_list_devices() and writing out the configuration to afile.

To restore the state next time the program is run, GDK provides functions to change
device configuration:

gdk_input_set_extension_events()
gdk_input_set_source()
gdk_input_set_mode()
gdk_input_set_axes()
gdk_input_set_key()

(The list returned frongdk_input_list_devices() should not be modified

directly.) An example of doing this can be found in the drawing program gsumi.
(Available from http://www.msc.cornell.edu/~otaylor/gsumi/) Eventually, it would be
nice to have a standard way of doing this for all applications. This probably belongs at
a slightly higher level than GTK, perhaps in the GNOME library.

Another major omission that we have mentioned above is the lack of cursor drawing.
Platforms other than XFree86 currently do not allow simultaneously using a device as
both the core pointer and directly by an application. See the XInput-HOWTO
(http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO.html) for more
information about this. This means that applications that want to support the widest
audience need to draw their own cursor.

An application that draws its own cursor needs to do two things: determine if the
current device needs a cursor drawn or not, and determine if the current device is in
proximity. (If the current device is a drawing tablet, it's a nice touch to make the cursor
disappear when the stylus is lifted from the tablet. When the device is touching the
stylus, that is called "in proximity.”) The first is done by searching the device list, as we
did to find out the device name. The second is achieved by selecting "proximity_out"

385

Chapter 24. Scribble, A Simple Example Drawing Program

events. An example of drawing one’s own cursor is found in the "testinput” program
found in the GTK distribution.

386

Chapter 25. Tips For Writing GTK
Applications

This section is simply a gathering of wisdom, general style guidelines and hints to
creating good GTK applications. Currently this section is very short, but | hope it will
get longer in future editions of this tutorial.

Use GNU autoconf and automake! They are your friends :) Automake examines C files,
determines how they depend on each other, and generates a Makefile so the files can be
compiled in the correct order. Autoconf permits automatic configuration of software
installation, handling a large number of system quirks to increase portability. | am
planning to make a quick intro on them here.

When writing C code, use only C comments (beginning with "/*" and ending with

"*["), and don’t use C++-style comments ("//"). Although many C compilers

understand C++ comments, others don’t, and the ANSI C standard does not require that
C++-style comments be processed as comments.

387

Chapter 26. Contributing

This document, like so much other great software out there, was created for free by
volunteers. If you are at all knowledgeable about any aspect of GTK that does not
already have documentation, please consider contributing to this document.

If you do decide to contribute, please mail your text to Tony Ggd&@gtk.org
(mailto:gale@gtk.org) . Also, be aware that the entirety of this document is free,
and any addition by you provide must also be free. That is, people may use any portion
of your examples in their programs, and copies of this document may be distributed at
will, etc.

Thank you.

388

Chapter 27. Credits

We would like to thank the following for their contributions to this text.

- Bawer DagdeviremhameleOn@geocities.com
(mailto:chameleOn@geocities.com) for the menus tutorial.

« Raph Levienraph@acm.org (mailto:raph@acm.org) for hello world ala
GTK, widget packing, and general all around wisdom. He’s also generously donated
a home for this tutorial.

« Peter Mattispetm@xcf.berkeley.edu (mailto:petm@xcf.berkeley.edu)
for the simplest GTK program.. and the ability to make it :)

« Werner Kochwerner.koch@guug.de (mailto:werner.koch@guug.de) for
converting the original plain text to SGML, and the widget class hierarchy.

« Mark Crichtoncrichton@expert.cc.purdue.edu
(mailto:crichton@expert.cc.purdue.edu) for the menu factory code, and
the table packing tutorial.

« Owen Taylorowtl@cornell.edu (mailto:owtl@cornell.edu) for the
EventBox widget section (and the patch to the distro). He’s also responsible for the
selections code and tutorial, as well as the sections on writing your own GTK
widgets, and the example application. Thanks a lot Owen for all you help!

- Mark VanderBoonmmvboom42@calvin.edu (mailto:mvboom42@calvin.edu)
for his wonderful work on the Notebook, Progress Bar, Dialogs, and File selection
widgets. Thanks a lot Mark! You've been a great help.

« Tim Janiktimj@gtk.org (mailto:timj@gtk.org) for his great job on the
Lists Widget. His excellent work on automatically extracting the widget tree and
signal information from GTK. Thanks Tim :)

- Rajat Dattaajat@ix.netcom.com (mailto:rajat@ix.netcom.com) for the
excellent job on the Pixmap tutorial.

389

Chapter 27. Credits

390

Michael K. Johnsolphnsonm@redhat.com
(mailto:johnsonm@redhat.com) for info and code for popup menus.

David Huggins-Dainebn711@freenet.carleton.ca
(mailto:bn711@freenet.carleton.ca) for the Range Widgets and Tree
Widget sections.

Stefan Marsnars@lysator.liu.se (mailto:mars@Ilysator.liu.se) for the
ClList section.

David A. Wheelerdwheeler@ida.org (mailto:dwheeler@ida.org) for

portions of the text on GLib and various tutorial fixups and improvements. The GLib
text was in turn based on material developed by Damon Chaplin
DAChaplin@msn.com (mailto:DAChaplin@msn.com)

David King for style checking the entire document.

And to all of you who commented on and helped refine this document.
Thanks.

Chapter 28. Tutorial Copyright and
Permissions Notice

The GTK Tutorial is Copyright (C) 1997 lan Main.
Copyright (C) 1998-1999 Tony Gale.

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under
the conditions for verbatim copying, provided that this copyright notice is included
exactly as in the original, and that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this document into another
language, under the above conditions for modified versions.

If you are intending to incorporate this document into a published work, please contact
the maintainer, and we will make an effort to ensure that you have the most up to date
information available.

There is no guarantee that this document lives up to its intended purpose. This is simply
provided as a free resource. As such, the authors and maintainers of the information
provided within can not make any guarantee that the information is even accurate.

391

Appendix A. GTK Signals

As GTK is an object oriented widget set, it has a hierarchy of inheritance. This
inheritance mechanism applies for signals. Therefore, you should refer to the widget
hierarchy tree when using the signals listed in this section.

A.l. GtkObject

void GtkObject::destroy (GtkObject *,
gpointer);

A.2. GtkWidget

void GtkWidget::show (GtkWidget *,

gpointer);
void GtkWidget::hide (GtkWidget *,
gpointer);
void GtkWidget::map (GtkWidget *,
gpointer);
void GtkWidget::unmap (GtkWidget *,
gpointer);
void GtkWidget::realize (GtkWidget *,
gpointer);
void GtkWidget::unrealize (GtkWidget *,
gpointer);
void GtkWidget:.draw (GtkWidget *,
ggpointer,
gpointer);
void GtkWidget:.draw-focus (GtkWidget *,
gpointer);
void GtkWidget::draw-default (GtkWidget *,
gpointer);

392

Appendix A. GTK Signals

void GtkWidget::size-request (GtkWidget *,
ggpointer,
gpointer);
void GtkWidget::size-allocate (GtkWidget *,
ggpointer,
gpointer);
void GtkWidget::state-changed (GtkWidget *,
GtkStateType,
gpointer);
void GtkWidget::parent-set (GtkWidget *,
GtkObject *,
gpointer);
void GtkWidget::style-set (GtkWidget *,
GtkStyle *,
gpointer);
void GtkWidget::add-accelerator (GtkWidget *,
gguint,
GtkAccelGroup *,
gguint,
GdkModifierType,
GtkAccelFlags,
gpointer);
void GtkWidget::remove-accelerator (GtkWidget *,
GtkAccelGroup *,
gguint,
GdkModifierType,
gpointer);
gboolean GtkWidget::event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::button-press-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::button-release-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::motion-notify-event (GtkWidget *,

393

Appendix A. GTK Signals

GdkEvent *,
gpointer);
gboolean GtkWidget::delete-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::.destroy-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::expose-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::key-press-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::key-release-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::enter-notify-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::leave-notify-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::configure-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::focus-in-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::focus-out-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::map-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::unmap-event (GtkWidget *,
GdkEvent *,

394

Appendix A. GTK Signals

gpointer);
ghoolean GtkWidget::property-notify-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::selection-clear-event (GtkWidget *,
GdkEvent *,
gpointer);
ghoolean GtkWidget::selection-request-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::selection-notify-event (GtkWidget *,
GdkEvent *,
gpointer);
void GtkWidget::selection-get (GtkwWidget *,
GtkSelectionData *,
gguint,
gpointer);
void GtkWidget::selection-received (GtkWidget *,
GtkSelectionData *,
gguint,
gpointer);
gboolean GtkWidget::proximity-in-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::proximity-out-event (GtkWidget *,
GdkEvent *,
gpointer);
void GtkWidget::drag-begin (GtkWidget *,
GdkDragContext *,
gpointer);
void GtkWidget::drag-end (GtkWidget *,
GdkDragContext *,
gpointer);
void GtkWidget:.drag-data-delete (GtkWidget *,
GdkDragContext *,
gpointer);
void GtkWidget:.drag-leave (GtkWidget *,

395

Appendix A. GTK Signals

GdkDragContext *,
gguint,
gpointer);
gboolean GtkWidget::drag-motion (GtkWidget *,
GdkDragContext *,
ggint,
ggint,
gguint,
gpointer);
ghoolean GtkWidget::drag-drop (GtkWidget *,
GdkDragContext *,
ggint,
ggint,
gguint,
gpointer);
void GtkWidget:.drag-data-get (GtkWidget *,
GdkDragContext *,
GtkSelectionData *,
gguint,
gguint,
gpointer);
void GtkWidget::drag-data-received (GtkWidget *,
GdkDragContext *,
ggint,
ggint,
GtkSelectionData *,
gguint,
gguint,
gpointer);
ghoolean GtkWidget::client-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::no-expose-event (GtkWidget *,
GdkEvent *,
gpointer);
gboolean GtkWidget::visibility-notify-event (GtkWidget *,
GdkEvent *,

396

Appendix A. GTK Signals

gpointer);

void GtkWidget::debug-msg (GtkWidget *,

GtkString *,

gpointer);

A.3. GtkData

void GtkData::disconnect (GtkData *,

gpointer);

A.4. GtkContainer
void GtkContainer::add (GtkContainer *,
GtkWidget *,
gpointer);

void GtkContainer::remove (GtkContainer *,

GtkWidget *,

gpointer);
void GtkContainer::.check-resize (GtkContainer *,

gpointer);
GtkDirectionType GtkContainer::focus (GtkContainer *,
GtkDirectionType,
gpointer);
void GtkContainer::set-focus-child (GtkContainer *,
GtkWidget *,

gpointer);

A.5. GtkCalendar

void GtkCalendar::month-changed (GtkCalendar *,

397

Appendix A. GTK Signals

void

void

void

void

void

void

GtkCalendar:

GtkCalendar:

GtkCalendar::

GtkCalendar::

GtkCalendar::

GtkCalendar::

gpointer);
.day-selected (GtkCalendar *,
gpointer);
:day-selected-double-click (GtkCalendar *,
gpointer);
prev-month (GtkCalendar *,
gpointer);
next-month (GtkCalendar *,
gpointer);
prev-year (GtkCalendar *,
gpointer);
next-year (GtkCalendar *,
gpointer);

A.6. GtkEditable

398

void

void

void

void

void

void

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

changed (GtkEditable *,
gpointer);
insert-text (GtkEditable *,
GtkString *,
ggint,
ggpointer,
gpointer);
delete-text (GtkEditable *,
ggint,
ggint,
gpointer);
activate (GtkEditable *,
gpointer);
set-editable (GtkEditable *,
gboolean,
gpointer);
move-cursor (GtkEditable *,
ggint,
ggint,

void

void

void

void

void

void

void

void

void

void

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

GtkEditable::

gpointer);
move-word (GtkEditable *,
ggint,
gpointer);
move-page (GtkEditable *,
ggint,
ggint,
gpointer);
move-to-row (GtkEditable *,
ggint,
gpointer);
move-to-column (GtkEditable *,
ggint,
gpointer);
kill-char (GtkEditable *,
ggint,
gpointer);
kill-word (GtkEditable *,
ggint,
gpointer);
kill-line (GtkEditable *,
ggint,
gpointer);
cut-clipboard (GtkEditable *,
gpointer);
copy-clipboard (GtkEditable *,
gpointer);
paste-clipboard (GtkEditable *,

gpointer);

A.7. GtkTipsQuery

void GtkTipsQuery::start-query (GtkTipsQuery *,

gpointer);

void GtkTipsQuery::stop-query (GtkTipsQuery *,

Appendix A. GTK Signals

399

Appendix A. GTK Signals

gpointer);
void GtkTipsQuery::widget-entered (GtkTipsQuery *,
GtkWidget *,
GtkString *,
GtkString *,
gpointer);
gboolean GtkTipsQuery::widget-selected (GtkTipsQuery *,
GtkWidget *,
GtkString *,
GtkString *,
GdkEvent *,
gpointer);
A.8. GtkClList
void GtkCList::select-row (GtkCList *,
ggint,
ggint,
GdkEvent *,
gpointer);
void GtkCList::unselect-row (GtkCList *,
ggint,
ggint,
GdkEvent *,
gpointer);
void GtkCList::row-move (GtkCList *,
ggint,
ggint,
gpointer);
void GtkCList::click-column (GtkCList *,
ggint,
gpointer);
void GtkCList::resize-column (GtkCList *,
ggint,
ggint,

400

void

void

void

void

void

void

void

void

void

void

void

GtkClList::

GtkCList::

GtkClList::

GtkCList::

GtkClList::

GtkClList::

GtkCList::

GtkClList::

GtkCList::

GtkCList::

GtkCList::

gpointer);
toggle-focus-row (GtkCList *,
gpointer);
select-all (GtkCList *,
gpointer);
unselect-all (GtkCList *,
gpointer);
undo-selection (GtkCList *,
gpointer);
start-selection (GtkCList *,
gpointer);
end-selection (GtkCList *,
gpointer);
toggle-add-mode (GtkCList *,
gpointer);
extend-selection (GtkCList *,
GtkScrollType,
gofloat,
gboolean,
gpointer);
scroll-vertical (GtkCList *,
GtkScrollType,
gofloat,
gpointer);

scroll-horizontal (GtkCList *,
GtkScrollType,
gofloat,
gpointer);
abort-column-resize (GtkCList *,
gpointer);

A.9. GtkNotebook

void GtkNotebook::switch-page (GtkNotebook *,

ggpointer,

Appendix A. GTK Signals

401

Appendix A. GTK Signals

gguint,
gpointer);

A.10. GtkList

void GtkList::selection-changed (GtkList *,
gpointer);
void GtkList::select-child (GtkList *,
GtkWidget *,
gpointer);
void GtkList::unselect-child (GtkList *,
GtkWidget *,
gpointer);

A.11. GtkMenuShell

void GtkMenuShell::deactivate (GtkMenuShell *,
gpointer);
void GtkMenuShell::selection-done (GtkMenuShell *,
gpointer);
void GtkMenuShell::move-current (GtkMenuShell *,
GtkMenuDirectionType,
gpointer);
void GtkMenuShell::activate-current (GtkMenuShell *,
gboolean,
gpointer);
void GtkMenuShell::cancel (GtkMenuShell *,
gpointer);

402

A.12. GtkToolbar

void GtkToolbar::orientation-changed (GtkToolbar *,

ggint,
gpointer);
void GtkToolbar::style-changed (GtkToolbar *,
ggint,
gpointer);
A.13. GtkTree
void GtkTree::selection-changed (GtkTree *,
gpointer);
void GtkTree::select-child (GtkTree *,
GtkWidget *,
gpointer);
void GtkTree::unselect-child (GtkTree *,
GtkWidget *,
gpointer);

A.14. GtkButton

void GtkButton::pressed (GtkButton *,

gpointer);
void GtkButton::released (GtkButton *,
gpointer);
void GtkButton::clicked (GtkButton *,
gpointer);
void GtkButton::enter (GtkButton *,
gpointer);
void GtkButton::leave (GtkButton *,
gpointer);

Appendix A. GTK Signals

403

Appendix A. GTK Signals

A.15. Gtkltem

void Gtkltem::select (Gtkltem *,
gpointer);
void Gtkltem::deselect (Gtkltem *,
gpointer);
void Gtkltem::toggle (Gtkltem *,
gpointer);

A.16. GtkWindow

void GtkWindow::set-focus (GtkWindow *,
ggpointer,
gpointer);

A.17. GtkHandleBox

void GtkHandleBox::child-attached (GtkHandleBox *,
GtkWidget *,
gpointer);

void GtkHandleBox::child-detached (GtkHandleBox *,
GtkWidget *,
gpointer);

A.18. GtkToggleButton

void GtkToggleButton::toggled (GtkToggleButton *,
gpointer);

404

Appendix A. GTK Signals

A.19. GtkMenultem

void GtkMenultem::activate (GtkMenultem *,
gpointer);
void GtkMenultem::activate-item (GtkMenultem *,
gpointer);

A.20. GtkListltem

void GtkListltem::toggle-focus-row (GtkListltem *,

gpointer);
void GtkListltem::select-all (GtkListltem *,
gpointer);
void GtkListltem::unselect-all (GtkListltem *,
gpointer);
void GtkListltem::undo-selection (GtkListltem *,
gpointer);
void GtkListltem::start-selection (GtkListltem *,
gpointer);
void GtkListltem::end-selection (GtkListltem *,
gpointer);
void GtkListltem::toggle-add-mode (GtkListlitem *,
gpointer);
void GtkListltem::extend-selection (GtkListitem *,
GtkEnum,
gdfloat,
gboolean,
gpointer);
void GtkListltem::scroll-vertical (GtkListltem *,
GtkEnum,
gdfloat,
gpointer);
void GtkListlitem::scroll-horizontal (GtkListlitem *,
GtkEnum,
gdfloat,

405

Appendix A. GTK Signals

gpointer);

A.21. GtkTreeltem

void GtkTreeltem::collapse (GtkTreeltem *,
gpointer);

void GtkTreeltem::expand (GtkTreeltem *,

gpointer);

A.22. GtkCheckMenultem

void GtkCheckMenultem::toggled (GtkCheckMenultem *,
gpointer);

A.23. GtkinputDialog

void GtkinputDialog::enable-device (GtkinputDialog *,
ggint,
gpointer);

void GtkinputDialog::disable-device (GtkinputDialog *,
ggint,
gpointer);

A.24. GtkColorSelection

void GtkColorSelection::color-changed (GtkColorSelection *,
gpointer);

406

Appendix A. GTK Signals

A.25. GtkStatusBar

void GtkStatusbar::text-pushed (GtkStatusbar *,
gguint,
GtkString *,
gpointer);

void GtkStatusbar::text-popped (GtkStatusbar *,
gauint,
GtkString *,
gpointer);

A.26. GtkCTree

void GtkCTree::tree-select-row (GtkCTree *,
GtkCTreeNode *,
ggint,
gpointer);
void GtkCTree::tree-unselect-row (GtkCTree *,
GtkCTreeNode *,
ggint,
gpointer);
void GtkCTree::tree-expand (GtkCTree *,
GtkCTreeNode *,
gpointer);
void GtkCTree::tree-collapse (GtkCTree *,
ggpointer,
gpointer);
void GtkCTree::tree-move (GtkCTree *,
GtkCTreeNode *,
GtkCTreeNode *,
GtkCTreeNode *,

gpointer);
void GtkCTree::.change-focus-row-expansion (GtkCTree *,
GtkCTreeExpansionType,
gpointer);

407

Appendix A. GTK Signals

A.27. GtkCurve

void GtkCurve:.curve-type-changed (GtkCurve *,
gpointer);

A.28. GtkAdjustment

void GtkAdjustment::changed (GtkAdjustment *,
gpointer);
void GtkAdjustment::value-changed (GtkAdjustment *,
gpointer);

408

Appendix B. GDK Event Types

The following data types are passed into event handlers by GTK+. For each data type
listed, the signals that use this data type are listed.

GdkEvent

. drag_end_event

« GdkEventType<
GdkEventAny
- delete_event
. destroy_event
- map_event
- unmap_event

+ NO_expose_event

« GdkEventExpose

. expose_event

GdkEventNoExpose
« GdkEventVisibility
« GdkEventMotion

« motion_notify_event

« GdkEventButton
. button_press_event

« button_release_event

« GdkEventKey

409

Appendix B. GDK Event Types

- key press_event

- key_release_event

« GdkEventCrossing
- enter_notify_event

- leave_notify_event

- GdkEventFocus
. focus_in_event

. focus_out_event

- GdkEventConfigure

. configure_event

- GdkEventProperty

- property_notify event

- GdkEventSelection
. selection_clear_event
- selection_request_event

. selection_notify_event

« GdkEventProximity
« proximity_in_event

« proximity_out_event

- GdkEventDragBegin

. drag_begin_event

- GdkEventDragRequest

410

Appendix B. GDK Event Types

. drag_request_event

GdkEventDropEnter

- drop_enter_event

GdkEventDropLeave

. drop_leave_event

GdkEventDropDataAvailable

- drop_data_available_event

GdkEventClient

. client_event

GdkEventOther

. other_event

The data typ&dkEventType is a special data type that is used by all the other data
types as an indicator of the data type being passed to the signal handler. As you will see
below, each of the event data structures has a member of this type. It is defined as an
enumeration type as follows:

typedef enum

{
GDK_NOTHING = -1,
GDK_DELETE = 0,
GDK_DESTROY = 1,
GDK_EXPOSE = 2,
GDK_MOTION_NOTIFY = 3,
GDK_BUTTON_PRESS = 4,
GDK_2BUTTON_PRESS = 5,
GDK_3BUTTON_PRESS = 6,
GDK_BUTTON_RELEASE = 7

GDK_KEY_PRESS = 8,
GDK_KEY_RELEASE =9

411

Appendix B. GDK Event Types

GDK_ENTER_NOTIFY = 10,
GDK_LEAVE_NOTIFY = 11,
GDK_FOCUS_CHANGE = 12,
GDK_CONFIGURE = 13,
GDK_MAP = 14,
GDK_UNMAP = 15,
GDK_PROPERTY_NOTIFY = 16,
GDK_SELECTION_CLEAR = 17,

GDK_SELECTION_REQUEST = 18,

GDK_SELECTION_NOTIFY = 19,
GDK_PROXIMITY_IN = 20,
GDK_PROXIMITY_OUT = 21,
GDK_DRAG_BEGIN = 22,
GDK_DRAG_REQUEST = 23,
GDK _DROP_ENTER = 24,
GDK_DROP_LEAVE = 25,
GDK_DROP_DATA AVAIL = 26,
GDK_CLIENT_EVENT = 27,
GDK_VISIBILITY_NOTIFY = 28,
GDK_NO_EXPOSE = 29,
GDK_OTHER_EVENT = 9999 /* Deprecated, use filters in-

stead */
} GdkEventType;

The other event type that is different from the otherGd&Event itself. This is a union
of all the other data types, which allows it to be cast to a specific event data type within
a signal handler.

So, the event data types are defined as follows:

struct _GdkEventAny

{
GdkEventType type;

GdkWindow *window;
gint8 send_event;

J

struct _GdkEventExpose

412

Appendix B. GDK Event Types

GdkEventType type;

GdkWindow *window;

gint8 send_event;

GdkRectangle area;

gint count; /* If non-zero, how many more events follow. */

k

struct _GdkEventNoExpose
{

GdkEventType type;

GdkWindow *window;

gint8 send_event;

[* XXX: does anyone need the X major_code or mi-
nor_code fields? */

h

struct _GdkEventVisibility
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkVisibilityState state;

h

struct _GdkEventMotion
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
gdouble x;
gdouble v;
gdouble pressure;
gdouble xtilt;
gdouble ytilt;
guint state;

413

Appendix B. GDK Event Types

414

h

gintl6 is_hint;
GdkInputSource source;
guint32 deviceid;
gdouble x_root, y_root;

struct _GdkEventButton

{

J

GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;

gdouble x;

gdouble v;

gdouble pressure;
gdouble xtilt;

gdouble ytilt;

guint state;

guint button;
GdkInputSource source;
guint32 deviceid,;
gdouble x_root, y_root;

struct _GdkEventKey

{

h

GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;

guint state;

guint keyval,

gint length;

gchar *string;

struct _GdkEventCrossing

GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkWindow *subwindow;
GdkNotifyType detalil;

k

struct _GdkEventFocus

{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
gintl6 in;

h

struct _GdkEventConfigure
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
gintl6 x, v;
gintl6 width;
gintl6 height;
3

struct _GdkEventProperty
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkAtom atom:;
guint32 time;
guint state;

h

struct _GdkEventSelection

Appendix B. GDK Event Types

415

Appendix B. GDK Event Types

416

h

/* This event type will be used pretty rarely. It

GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkAtom selection;
GdkAtom target;
GdkAtom property;
guint32 requestor;
guint32 time;

only is important

for Xinput aware programs that are drawing their own cur-
sor */

struct _GdkEventProximity

{

J

GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
GdkInputSource source;
guint32 deviceid,;

struct _GdkEventDragRequest

{

GdkEventType type;

GdkWindow *window;

gint8 send_event;

guint32 requestor;

union {

struct {

guint protocol_version:4;
guint sendreply:1;
guint willaccept:1;

guint delete_data:1; /* Do

not delete if link is

sent, only

Appendix B. GDK Event Types

if data is sent */
guint senddata:1;
guint reserved:22;
} flags;
glong allflags;
}ou
guint8 isdrop; /* This gdk event can be generated by a cou-
ple of
X events -
this lets the app know whether the
drop really oc-
curred or we just set the data */

GdkPoint drop_coords;
gchar *data_type;
guint32 timestamp;

h

struct _GdkEventDragBegin
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
union {
struct {
guint protocol_version:4;
guint reserved:28;
} flags;
glong allflags;
b
2

struct _GdkEventDropEnter

{
GdkEventType type;

GdkWindow *window;
gint8 send_event;

417

Appendix B. GDK Event Types

guint32 requestor;
union {
struct {
guint protocol_version:4;
guint sendreply:1;
guint extended_typelist:1;
guint reserved:26;
} flags;
glong allflags;
by
2

struct _GdkEventDropLeave
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 requestor;
union {
struct {
guint protocol_version:4;
guint reserved:28;
} flags;
glong allflags;
by

I3

struct _GdkEventDropDataAvailable
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 requestor;
union {
struct {
guint protocol_version:4;
guint isdrop:1;

418

Appendix B. GDK Event Types

guint reserved:25;

} flags;

glong allflags;
b
gchar *data_type; /* MIME type */
gulong data_numbytes;
gpointer data;
guint32 timestamp;
GdkPoint coords;

h

struct _GdkEventClient
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkAtom message_type;
gushort data_format;
union {
char b[20];
short s[10];
long I[5];
} data;
2

struct _GdkEventOther

{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkXEvent *xevent;

419

Appendix C. Code Examples

Below are the code examples that are used in the above text which are not included in
complete form elsewhere.

C.1. Tictactoe

C.1.1. tictactoe.h

/* example-start tictactoe tictactoe.h */

[* GTK - The GIMP Toolkit

* Copyright (C) 1995-

1997 Peter Mattis, Spencer Kimball and Josh MacDonald

*

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-
tion) any later version.

*

* This library is dis-
tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

* Library General Public License for more details.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place - Suite 330,

420

Appendix C. Code Examples

* Boston, MA 02111-1307, USA.
*/

#ifndef _ TICTACTOE_H__
#define __ TICTACTOE H__

#include <gdk/gdk.h>
#include <gtk/gtkvbox.h>

#ifdef __ cplusplus
extern "C" {
#endif /* _ cplusplus */

#define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictac-
toe_get type (), Tictactoe)

#define TICTAC-

TOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictac-
toe_get_type (), TictactoeClass)

#define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictac-

toe_get _type ()

typedef struct _Tictactoe Tictactoe;
typedef struct _TictactoeClass TictactoeClass;

struct _Tictactoe

{
GtkVBox vbox;

GtkWidget *buttons[3][3];
I3

struct _TictactoeClass

{

GtkVBoxClass parent_class;

421

Appendix C. Code Examples

C.1.2.

422

void (* tictactoe) (Tictactoe *ttt);

%

guint tictactoe_get_type (void);
GtkWidget* tictactoe_new (void);
void tictactoe_clear (Tictactoe *ttt);

#ifdef __ cplusplus

}
#endif /* _ cplusplus */

#endif /¥ _ TICTACTOE_H__ *

/* example-end */

tictactoe.c

/* example-start tictactoe tictactoe.c */

/* GTK - The GIMP Toolkit

* Copyright (C) 1995-

1997 Peter Mattis, Spencer Kimball and Josh MacDonald

*

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-

tion) any later version.

*

* This library is dis-

tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

Appendix C. Code Examples

* Library General Public License for more detalils.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.

*/

#include "gtk/gtksignal.h"

#include "gtk/gtktable.h"

#include "gtk/gtktogglebutton.h"

#include "tictactoe.h"

enum {
TICTACTOE_SIGNAL,
LAST_SIGNAL

J

static void tictactoe class_init (Tictactoe-

Class *klass);

static void tictactoe_init (Tictactoe *tt);
static void tictactoe_toggle (Gtkwidget *wid-
get, Tictactoe *ttt);

static gint tictactoe_signals[LAST_SIGNAL] = { 0 };

guint
tictactoe_get_type ()

{
static guint ttt_type = 0;

if ('ttt_type)

{
GtkTypelnfo ttt info =

{

"Tictactoe",
sizeof (Tictactoe),

423

Appendix C. Code Examples

sizeof (TictactoeClass),

(GtkClasslnitFunc) tictactoe_class _init,

(GtkObjectlnitFunc) tictactoe_init,
(GtkArgSetFunc) NULL,
(GtkArgGetFunc) NULL

3
ttt_type = gtk_type_unique (gtk_vbox_get type (), &ttt_info);
}
return ttt_type;
}
static void
tictactoe_class_init (TictactoeClass *class)
{

GtkObijectClass *object_class;
object_class = (GtkObjectClass*) class;

tictac-
toe_signals[TICTACTOE_SIGNAL] = gtk_signal_new (“tictactoe",
GTK_RUN_FIRST,
object_class->type,
GTK_SIGNAL_OFFSET (TictactoeClass,
tictactoe),
gtk_signal_default_marshaller,
GTK_TYPE_NONE, 0);

gtk_object_class_add_signals (object_class, tictac-
toe_signals, LAST_SIGNAL);

class->tictactoe = NULL;

}

static void

424

Appendix C. Code Examples

tictactoe_init (Tictactoe *ttt)
{

GtkWidget *table;

gint ij;

table = gtk table new (3, 3, TRUE);
gtk_container_add (GTK_CONTAINER(ttt), table);
gtk_widget_show (table);

for (i=0;i<3; i++)
for (j=0;j<3; j++)
{
ttt->buttons][i][j] = gtk _toggle button_new ();
gtk_table_attach_defaults (GTK_TABLE(table), ttt->buttonsi][j],
i, i+1, j, j+1);
gtk_signal_connect (GTK_OBJECT (ttt->buttonsJi][j]), "toggled",
GTK_SIGNAL_FUNC (tictactoe_toggle), ttt);
gtk_widget_set_usize (ttt->buttons]i][j], 20, 20);
gtk_widget_show (ttt->buttonsi][j]);
}
}

GtkWidget*
tictactoe_new ()

{
return GTK_WIDGET (gtk _type_new (tictactoe_get type ()));

}

void
tictactoe_clear (Tictactoe *ttt)

{

int i,j;
for (i=0;i<3;i++)
for (j=0;j<3;j++)
{

425

Appendix C. Code Examples

gtk_signal_handler_block_by data (GTK_OBJECT(ttt-
>buttonsli][j]), ttt);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (ttt-
>buttonsi][j]),

FALSE);
gtk_signal_handler_unblock by data (GTK_OBJECT(ttt-
>buttonsl[i][j]), ttt);

}
}
static void
tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt)
{
int i,k;
static int rwins[8][3] = { {0, 0,0} {1, 1,11} {2 2 21}
{0,121}, {01, 21} {0,1, 2}
{0, 1,2} {0 1 2} }
static int cwins[8][3] = { {0, 1,2} {0,121, 21} {0, 1, 2}
{010’0}1{1111}!{2!212}1
{0,13,2}{2 101} }
int success, found,;
for (k=0; k<8; k++)
{
success = TRUE;
found = FALSE;
for (i=0;i<3;i++)
{

success = success &&
GTK_TOGGLE_BUTTON(ttt->buttons[rwins[K][i]][cwins[K][i]])-
>active;
found = found ||
ttt->buttons[rwins[K][i]][cwins[K][]]] == widget;

426

C.1.3.

if (success && found)

{
gtk_signal_emit (GTK_OBJECT (itt),
tictactoe_signals[TICTACTOE_SIGNAL));
break;

}
}
}

[* example-end */

ttt_test.c

/* example-start tictactoe ttt_test.c */

#include <gtk/gtk.h>
#include "tictactoe.h"

void win(GtkWidget *widget,
gpointer data)
{
g_print ("Yay\n"),
tictactoe_clear (TICTACTOE (widget));
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *ttt;

gtk_init (&argc, &argv),

Appendix C. Code Examples

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);

427

Appendix C. Code Examples

gtk_window_set _title (GTK_WINDOW (window), "Aspect Frame");

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);
ttt = tictactoe_new ();

gtk_container_add (GTK_CONTAINER (window), ttt);
gtk_widget_show (ttt);

gtk_signal_connect (GTK_OBJECT (itt), "tictactoe”,
GTK_SIGNAL_FUNC (win), NULL);

gtk_widget_show (window);
gtk_main ();

return O;

}

/* example-end */

C.2. GtkDial

C.2.1. gtkdial.h

/* example-start gtkdial gtkdial.h */

/* GTK - The GIMP Toolkit

428

Appendix C. Code Examples

* Copyright (C) 1995-

1997 Peter Mattis, Spencer Kimball and Josh MacDonald

*

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-

tion) any later version.

*

* This library is dis-

tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

* Library General Public License for more detalils.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.

*/

#ifndef _ GTK_DIAL_H__

#define _ GTK_DIAL_H__

#include <gdk/gdk.h>
#include <gtk/gtkadjustment.h>
#include <gtk/gtkwidget.h>

#ifdef __ cplusplus
extern "C" {
#endif /* __ cplusplus */

429

Appendix C. Code Examples

#define GTK_DIAL(obj) GTK_CHECK_CAST (obj, gtk_dial_get_type (), GtkDial)
#define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get type (), Gtk
#define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk dial_get_type ())

typedef struct _GtkDial GtkDial;

typedef struct _GtkDialClass GtkDialClass;

struct _GtkDial

{
GtkWidget widget;

[* update pol-
icy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUOQUS]) */
guint policy : 2;

/* Button currently pressed or 0 if none */
guint8 button;

/* Dimensions of dial components */
gint radius;
gint pointer_width;

/* ID of update timer, or O if none */
guint32 timer;

/* Current angle */
gfloat angle;
gfloat last_angle;

/* Old values from adjustment stored so we know when some-
thing changes */

gfloat old_value;

gfloat old_lower;

gfloat old_upper;

/* The adjustment object that stores the data for this dial */

430

Appendix C. Code Examples

GtkAdjustment *adjustment;

%
struct _GtkDialClass
{

GtkWidgetClass parent_class;
2
GtkWidget* gtk_dial_new (GtkAdjust-
ment *adjustment);
guint gtk_dial_get_type (void);
GtkAdjustment* gtk_dial_get adjustment (Gtk-
Dial *dial);
void gtk_dial_set_update_policy (Gtk-
Dial *dial,

GtkUpdateType policy);

void gtk_dial_set_adjustment (Gtk-
Dial *dial,

GtkAdjustment *adjustment);

#ifdef __ cplusplus

}
#endif /* _ cplusplus */

#endif * _GTK DIAL_ H__ */
[* example-end */

C.2.2. gtkdial.c

/* example-start gtkdial gtkdial.c */

/* GTK - The GIMP Toolkit

431

Appendix C. Code Examples

432

* Copyright (C) 1995-

1997 Peter Mattis, Spencer Kimball and Josh MacDonald

*

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-

tion) any later version.

*

* This library is dis-

tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

* Library General Public License for more detalils.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.

*/

#include <math.h>

#include <stdio.h>

#include <gtk/gtkmain.h>

#include <gtk/gtksignal.h>

#include "gtkdial.h"

#define SCROLL_DELAY_LENGTH 300
#define DIAL_DEFAULT_SIZE 100

/* Forward declarations */

static void gtk _dial_class_init (GtkDial-
Class *klass);

Appendix C. Code Examples

static void gtk_dial_init (Gtk-
Dial *dial);
static void gtk_dial_destroy (GtkOb-
ject *object);
static void gtk _dial_realize (Gtkwid-
get *widget);
static void gtk _dial_size request (Gtkwid-
get *widget,

GtkRequisition *requisition);
static void gtk dial_size allocate (Gtkwid-
get *widget,

GtkAllocation *allocation);
static gint gtk_dial_expose (Gtkwid-
get *widget,
GdkEventExpose *event);
static gint gtk _dial_button_press (Gtkwid-
get *widget,
GdkEventButton *event);
static gint gtk_dial_button_release (Gtkwid-
get *widget,
GdkEventButton *event);
static gint gtk_dial_motion_notify (Gtkwid-
get *widget,
GdkEventMotion *event);
static gint gtk_dial_timer (Gtk-
Dial *dial);

static void gtk dial update_mouse (Gtk-

Dial *dial, gint x, gint y);

static void gtk_dial_update (GtkDial *dial);
static void gtk dial_adjustment_changed (GtkAdjust-
ment *adjustment,

gpointer data);

static void gtk dial_adjustment_value_changed (GtkAdjust-

ment *adjustment,

gpointer data);

433

Appendix C. Code Examples

/* Local data */
static GtkWidgetClass *parent_class = NULL;

guint
gtk_dial_get type ()
{
static guint dial_type = 0;

if (!dial_type)
{

GtkTypelnfo dial_info =

{
"GtkDial",
sizeof (GtkDial),
sizeof (GtkDialClass),
(GtkClasslnitFunc) gtk_dial_class_init,
(GtkObjectlInitFunc) gtk_dial_init,
(GtkArgSetFunc) NULL,
(GtkArgGetFunc) NULL,

3

dial_type = gtk _type unique (gtk_widget get type (), &dial_info);
}

return dial_type;

}

static void
gtk_dial_class_init (GtkDialClass *class)

{
GtkObjectClass *object_class;

GtkWidgetClass *widget_class;

object_class = (GtkObjectClass*) class;
widget_class = (GtkWidgetClass*) class;

434

Appendix C. Code Examples

parent_class = gtk type_class (gtk_widget_get_type ());
object_class->destroy = gtk _dial_destroy;

widget_class->realize = gtk _dial_realize;
widget_class->expose_event = gtk_dial_expose;
widget_class->size_request = gtk_dial_size_request;
widget_class->size_allocate = gtk_dial_size_allocate;
widget_class->button_press_event = gtk _dial_button_press;
widget_class->button_release_event = gtk dial_button_release;
widget_class->motion_notify_event = gtk_dial_motion_notify;

}

static void

gtk_dial_init (GtkDial *dial)

{
dial->button = O0;
dial->policy = GTK_UPDATE_CONTINUOUS;
dial->timer = 0;
dial->radius = O;
dial->pointer_width = 0;
dial->angle = 0.0;
dial->old_value = 0.0;
dial->old_lower = 0.0;
dial->old_upper = 0.0;
dial->adjustment = NULL;

}

GtkWidget*
gtk_dial_new (GtkAdjustment *adjustment)
{
GtkDial *dial;
dial = gtk _type_new (gtk_dial_get type ());

if (adjustment)

435

Appendix C. Code Examples

436

adjustment = (GtkAdjust-
ment*) gtk _adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

gtk_dial_set_adjustment (dial, adjustment);

return GTK_WIDGET (dial);
}

static void
gtk_dial_destroy (GtkObject *object)

{
GtkDial *dial;

g_return_if_fail (object !'= NULL);
g_return_if_fail (GTK_IS_DIAL (object));

dial = GTK_DIAL (object);

if (dial->adjustment)
gtk _object_unref (GTK_OBJECT (dial->adjustment));

if (GTK_OBJECT_CLASS (parent_class)->destroy)
(* GTK_OBJECT_CLASS (parent_class)->destroy) (object);

}

GtkAdjustment*

gtk_dial_get _adjustment (GtkDial *dial)

{
g_return_val_if fail (dial '= NULL, NULL);
g_return_val_if fail (GTK_IS_DIAL (dial), NULL);

return dial->adjustment;

}

void
gtk_dial_set_update_policy (GtkDial *dial,
GtkUpdateType policy)

Appendix C. Code Examples

{
g_return_if fail (dial '= NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

dial->policy = policy;
}

void

gtk_dial_set_adjustment (GtkDial *dial,
GtkAdjustment *adjustment)

{
g_return_if_fail (dial '= NULL);
g_return_if fail (GTK_IS_DIAL (dial));

if (dial->adjustment)
{
gtk_signal_disconnect_by data (GTK_OBJECT (dial-
>adjustment), (gpointer) dial);

gtk_object_unref (GTK_OBJECT (dial->adjustment));
}

dial->adjustment = adjustment;
gtk_object_ref (GTK_OBJECT (dial->adjustment));

gtk_signal_connect (GTK_OBJECT (adjustment), "changed",
(GtkSignalFunc) gtk_dial_adjustment_changed,
(gpointer) dial);

gtk_signal _connect (GTK_OBJECT (adjustment), "value changed",
(GtkSignalFunc) gtk_dial_adjustment_value_changed,
(gpointer) dial);

dial->old_value = adjustment->value;
dial->old_lower = adjustment->lower;
dial->old_upper = adjustment->upper;

gtk_dial_update (dial);

437

Appendix C. Code Examples

static void
gtk_dial_realize (GtkWidget *widget)
{

GtkDial *dial;

GdkWindowAttr attributes;

gint attributes_mask;

g_return_if_fail (widget !'= NULL);
g_return_if fail (GTK_IS_DIAL (widget));

GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED);
dial = GTK_DIAL (widget);

attributes.x = widget->allocation.x;

attributes.y = widget->allocation.y;

attributes.width = widget->allocation.width;

attributes.height = widget->allocation.height;

attributes.wclass = GDK_INPUT_OUTPUT;

attributes.window_type = GDK_WINDOW_CHILD;

attributes.event_mask = gtk_widget_get_events (widget) |
GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS MASK |
GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK |
GDK_POINTER_MOTION_HINT_MASK;

attributes.visual = gtk_widget_get_visual (widget);

attributes.colormap = gtk _widget_get_colormap (widget);

at-

tributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_ COLORMAP;
widget->window = gdk_window_new (widget->parent-

>window, &attributes, attributes_mask);

widget->style = gtk_style_attach (widget->style, widget-
>window);

gdk_window_set_user_data (widget->window, widget);

438

gtk_style_set_background (widget->style, widget-
>window, GTK_STATE_ACTIVE);
}

static void
gtk_dial_size request (GtkWidget *widget,
GtkRequisition *requisition)
{
requisition->width = DIAL_DEFAULT_SIZE;
requisition->height = DIAL _DEFAULT_SIZE;
}

static void
gtk_dial_size_allocate (GtkWidget *widget,
GtkAllocation *allocation)

{
GtkDial *dial;

g_return_if_fail (widget !'= NULL);
g_return_if fail (GTK_IS_DIAL (widget));
g_return_if_fail (allocation !'= NULL);

widget->allocation = *allocation;
dial = GTK_DIAL (widget);

if (GTK_WIDGET_REALIZED (widget))
{

gdk_window_move_resize (widget->window,
allocation->x, allocation->y,
allocation->width, allocation->height);

}

dial->radius = MIN(allocation->width,allocation-
>height) * 0.45;
dial->pointer_width = dial->radius / 5;

}

Appendix C. Code Examples

439

Appendix C. Code Examples

440

static gint
gtk_dial_expose (GtkWidget *widget,
GdkEventExpose *event)
{
GtkDial *dial;
GdkPoint points[6];
gdouble s,c;
gdouble theta, last, increment;
GtkStyle *blankstyle;
gint xc, yc;

/*

gint upper, lower;

gint tick_length;

gint i, inc;

g_return_val_if fail (widget != NULL, FALSE);
g_return_val_if fail (GTK_IS DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

if (event->count > 0)
return FALSE;

dial = GTK_DIAL (widget);

gdk_window_clear_area (widget->window,

0, O,
widget->allocation.width,
widget->allocation.height);

*/

Xxc = widget->allocation.width/2;
yc = widget->allocation.height/2;

upper = dial->adjustment->upper;
lower = dial->adjustment->lower;

/* Erase old pointer */

Appendix C. Code Examples

s = sin(dial->last_angle);
¢ = cos(dial->last_angle);
dial->last_angle = dial->angle;

points[0].x = xc + s*dial->pointer_width/2;
points[0].y = yc + c*dial->pointer_width/2;
points[1].x = xc + c*dial->radius;
points[1].y = yc - s*dial->radius;
points[2].x = xc - s*dial->pointer_width/2;
points[2].y = yc - c*dial->pointer_width/2;
points[3].x = xc - c*dial->radius/10;
points[3].y = yc + s*dial->radius/10;
points[4].x = points[0].x;

points[4].y = points[0].y;

blankstyle = gtk _style new ();
blankstyle->bg_gc[GTK_STATE_NORMAL] =
widget->style->bg_gc[GTK_STATE_NORMAL];
blankstyle->dark_gc[GTK_STATE_NORMAL] =
widget->style->bg_gc[GTK_STATE_NORMAL];
blankstyle->light_gc[GTK_STATE_NORMAL] =
widget->style->bg_gc[GTK_STATE_NORMAL];
blankstyle->black_gc =
widget->style->bg_gc[GTK_STATE_NORMAL];

gtk_draw_polygon (blankstyle,
widget->window,
GTK_STATE_NORMAL,
GTK_SHADOW_OUT,
points, 5,
FALSE);

gtk_style_unref(blankstyle);

/* Draw ticks */

441

Appendix C. Code Examples

if ((upper - lower) == 0)

return;

increment = (100*M_PI)/(dial->radius*dial->radius);

inc = (upper - lower);

while (inc < 100) inc *=10;
while (inc >= 1000) inc /=10;

last = -1;

for (i=0; i<=inc; i++)

theta = ((gfloat)i*M_PI/(18*inc/24.) - M_PI/6.);

if ((theta - last) < (increment))

{
continue;
last = theta;
s = sin(theta);
¢ = cos(theta);

tick_length = (i%(inc/10) == 0) ? dial-

>pointer_width :

dial->pointer_width/2;

gdk_draw_line (widget->window,

}

/* Draw pointer */

(7]
1

sin(dial->angle);
cos(dial->angle);

(¢}
1

442

widget->style->fg_gc[widget->state],
Xxc + c*(dial->radius - tick_length),
yc - s*(dial->radius - tick_length),
xc + c*dial->radius,
yc - s*dial->radius);

Appendix C. Code Examples

dial->last_angle = dial->angle;

points[0].x = xc + s*dial->pointer_width/2;
points[0].y = yc + c*dial->pointer_width/2;
points[1].x = xc + c*dial->radius;
points[1].y = yc - s*dial->radius;
points[2].x = xc - s*dial->pointer_width/2;
points[2].y = yc - c*dial->pointer_width/2;
points[3].x = xc - c*dial->radius/10;
points[3].y = yc + s*dial->radius/10;
points[4].x = points[0].x;

points[4].y = points[0].y;

gtk_draw_polygon (widget->style,
widget->window,
GTK_STATE_NORMAL,
GTK_SHADOW_OUT,
points, 5,
TRUE);

return FALSE;
}

static gint
gtk_dial_button_press (GtkWidget *widget,
GdkEventButton *event)
{
GtkDial *dial;
gint dx, dy;
double s, c;
double d_parallel;
double d_perpendicular;

g_return_val_if fail (widget '= NULL, FALSE);

g_return_val_if _fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

443

Appendix C. Code Examples

dial = GTK_DIAL (widget);

/* Determine if button press was within pointer region - we
do this by computing the parallel and perpendicular dis-
tance of
the point where the mouse was pressed from the line pass-
ing through
the pointer */

dx
dy

event->x - widget->allocation.width / 2;
widget->allocation.height / 2 - event->y;

s = sin(dial->angle);
cos(dial->angle);

o
1

d_parallel = s*dy + c*dx;
d_perpendicular = fabs(s*dx - c*dy);

if (!dial->button &&
(d_perpendicular < dial->pointer_width/2) &&
(d_parallel > - dial->pointer_width))

{
gtk_grab_add (widget);

dial->button = event->button;

gtk_dial_update_mouse (dial, event->x, event->y);

}

return FALSE;
}

static gint

gtk_dial_button_release (GtkWidget *widget,
GdkEventButton *event)

{

444

Appendix C. Code Examples

GtkDial *dial;

g_return_val_if fail (widget '= NULL, FALSE);
g_return_val_if _fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial->button == event->button)

{
gtk_grab_remove (widget);

dial->button = O;

if (dial->policy == GTK_UPDATE_DELAYED)
gtk_timeout_remove (dial->timer);

if ((dial->policy !'= GTK_UPDATE_CONTINUOUS) &&
(dial->old_value != dial->adjustment->value))
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

}

return FALSE;
}

static gint
gtk_dial_motion_notify (GtkWidget *widget,
GdkEventMotion *event)
{
GtkDial *dial;
GdkModifierType mods;
gint x, y, mask;

g_return_val_if fail (widget '= NULL, FALSE);

g_return_val_if _fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if fail (event !'= NULL, FALSE);

445

Appendix C. Code Examples

dial = GTK_DIAL (widget);

if (dial->button != 0)
{

X
y

event->x;
event->y;

if (event->is_hint || (event->window != widget->window))
gdk_window_get_pointer (widget->window, &x, &y, &mods);

switch (dial->button)
{
case 1.
mask = GDK_BUTTON1_MASK;
break;
case 2:
mask = GDK_BUTTON2_ MASK;
break;
case 3:
mask
break;
default:
mask
break;

GDK_BUTTONS3_MASK;

I
o

if (mods & mask)
gtk_dial_update_mouse (dial, x,y);
}

return FALSE;
}

static gint
gtk_dial_timer (GtkDial *dial)
{

446

g_return_val_if fail (dial '= NULL, FALSE);
g_return_val_if fail (GTK_IS_DIAL (dial), FALSE);

if (dial->policy == GTK_UPDATE_DELAYED)

gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

return FALSE;
}

static void

gtk_dial_update_mouse (GtkDial *dial, gint x, gint y)

{
gint xc, yc;
gfloat old_value;

g_return_if fail (dial '= NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

XCc
ycC

GTK_WIDGET(dial)->allocation.width / 2;
GTK_WIDGET(dial)->allocation.height / 2;

old value = dial->adjustment->value;
dial->angle = atan2(yc-y, X-Xc);

if (dial->angle < -M_PI/2.)
dial->angle += 2*M_PI;

if (dial->angle < -M_PI/6)
dial->angle = -M_PI/6;

if (dial->angle > 7.*M_PI/6.)
dial->angle = 7.*M_PI/6.;

dial->adjustment->value = dial->adjustment-
>lower + (7.*M_PI/6 - dial->angle) *

Appendix C. Code Examples

447

Appendix C. Code Examples

(dial->adjustment->upper - dial->adjustment-
>lower) / (4.*M_PI/3.);

if (dial->adjustment->value != old_value)
{
if (dial->policy == GTK_UPDATE_CONTINUOUS)
{
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

}

else

{
gtk_widget _draw (GTK_WIDGET(dial), NULL);

if (dial->policy == GTK_UPDATE_DELAYED)
{
if (dial->timer)
gtk_timeout_remove (dial->timer);

dial->timer = gtk timeout_add (SCROLL_DELAY_LENGTH,
(GtkFunction) gtk_dial_timer,
(gpointer) dial);
}
}
}
}

static void
gtk_dial_update (GtkDial *dial)
{

gfloat new_value;

g_return_if_fail (dial '= NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

new_value = dial->adjustment->value;

448

Appendix C. Code Examples

if (new_value < dial->adjustment->lower)
new_value = dial->adjustment->lower;

if (new_value > dial->adjustment->upper)
new_value = dial->adjustment->upper;

if (new_value != dial->adjustment->value)

{

dial->adjustment->value = new_value;
gtk_signal_emit_by name (GTK_OBJECT (dial-
>adjustment), "value_changed");

}

dial->angle = 7.*M_PI/6. - (new_value - dial->adjustment-
>lower) * 4*M_PI/3. /
(dial->adjustment->upper - dial->adjustment->lower);

gtk_widget_draw (GTK_WIDGET(dial), NULL);

}
static void
gtk_dial_adjustment_changed (GtkAdjustment *adjustment,
gpointer data)
{
GtkDial *dial;

g_return_if fail (adjustment != NULL);
g_return_if_fail (data !'= NULL);

dial = GTK_DIAL (data);

if ((dial->old_value != adjustment->value) ||
(dial->old_lower != adjustment->lower) ||
(dial->old_upper != adjustment->upper))

{
gtk_dial_update (dial);

449

Appendix C. Code Examples

dial->old_value = adjustment->value;
dial->old_lower = adjustment->lower;
dial->old_upper = adjustment->upper;

}
}
static void
gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment,
gpointer data)
{
GtkDial *dial;

g_return_if _fail (adjustment != NULL);
g_return_if_fail (data '= NULL);

dial = GTK_DIAL (data);

if (dial->old_value != adjustment->value)

{
gtk_dial_update (dial);

dial->old_value = adjustment->value;
}
}

/* example-end */

C.2.3. dial_test.c

#include <stdio.h>
#include <gtk/gtk.h>
#include "gtkdial.h"

void value changed(GtkAdjustment *adjustment,
GtkWidget *label)
{

450

Appendix C. Code Examples

char buffer[16];

sprintf(buffer,"%4.2f" adjustment->value);
gtk_label_set (GTK_LABEL (label), buffer);

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkAdjustment *adjustment;
GtkWidget *dial;
GtkWidget *frame;
GtkWidget *vbox;
GtkWidget *label;

gtk_init (&argc, &argv);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Dial);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

gtk_container_border_width (GTK_CONTAINER (window), 10);

vbox = gtk_vbox_new (FALSE, 5);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show(vbox);

frame = gtk_frame_new (NULL);

gtk_frame_set_shadow_type (GTK_FRAME(frame), GTK_SHADOW_IN);
gtk_container_add (GTK_CONTAINER (vbox), frame);
gtk_widget_show (frame);

451

Appendix C. Code Examples

adjust-
ment = GTK_ADJUSTMENT(gtk_adjustment_new (0, 0, 100, 0.01, 0.1, 0));

dial = gtk_dial_new(adjustment);
gtk_dial_set_update_policy (GTK_DIAL(dial), GTK_UPDATE_DELAYED);
/* gtk _widget_set usize (dial, 100, 100); */

gtk_container_add (GTK_CONTAINER (frame), dial);
gtk_widget_show (dial);

label = gtk _label_new("0.00");
gtk_box_pack_end (GTK_BOX(vbox), label, 0, 0, 0);
gtk_widget _show (label);

gtk_signal_connect (GTK_OBJECT(adjustment), "value_changed",
GTK_SIGNAL_FUNC (value_changed), label);

gtk_widget_show (window);
gtk_main ();

return O;

C.3. Scribble

C.3.1. scribble-simple.c

/* example-start scribble-simple scribble-simple.c */
/* GTK - The GIMP Toolkit

* Copyright (C) 1995-
1997 Peter Mattis, Spencer Kimball and Josh MacDonald

452

Appendix C. Code Examples

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-
tion) any later version.

*

* This library is dis-
tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

* Library General Public License for more details.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.

*/

#include <gtk/gtk.h>

/* Backing pixmap for drawing area */
static GdkPixmap *pixmap = NULL;

/* Create a new backing pixmap of the appropriate size */
static gint configure_event(GtkWidget *widget,
GdkEventConfigure *event)
{
if (pixmap)
gdk_pixmap_unref(pixmap);

pixmap = gdk pixmap_new(widget->window,

widget->allocation.width,
widget->allocation.height,

453

Appendix C. Code Examples

-1);

gdk_draw_rectangle (pixmap,
widget->style->white_gc,
TRUE,
o, O,
widget->allocation.width,
widget->allocation.height);

return TRUE;
}

/* Redraw the screen from the backing pixmap */
static gint expose_event(GtkWidget *widget,
GdkEventExpose *event

{
gdk_draw_pixmap(widget->window,
widget->style->fg_gc[GTK_WIDGET_STATE (widget)],
pixmap,
event->area.x, event->area.y,
event->area.x, event->area.y,
event->area.width, event->area.height);

return FALSE;
}

/* Draw a rectangle on the screen */

static void draw_brush(GtkWidget *widget,
gdouble X,
gdouble y)

GdkRectangle update_rect;

update_rect.x = x - 5;
update_recty =y - 5;
update_rect.width = 10;
update_rect.height = 10;
gdk_draw_rectangle (pixmap,

454

Appendix C. Code Examples

widget->style->black_gc,

TRUE,

update_rect.x, update_rect.y,

update_rect.width, update_rect.height);
gtk_widget_draw (widget, &update_rect);

}

static gint button_press_event(GtkWidget *widget,
GdkEventButton *event)

{

if (event->pbutton == 1 && pixmap != NULL)
draw_brush (widget, event->x, event->y);

return TRUE;
}

static gint motion_notify_event(GtkWidget *widget,
GdkEventMotion *event)

{
int X, vy;
GdkModifierType state;

if (event->is_hint)
gdk_window_get pointer (event->window, &X, &y, &state);

else
{
X = event->X;
y = event->y;
state = event->state;
}

if (state & GDK_BUTTON1_MASK && pixmap !'= NULL)
draw_brush (widget, X, V);

return TRUE;

455

Appendix C. Code Examples

void quit ()
{

gtk_exit (0);
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *drawing_area;
GtkWidget *vbox;

GtkWidget *button;
gtk_init (&argc, &argv);

window = gtk _window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_name (window, "Test Input");

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (quit), NULL);

[* Create the drawing area */

drawing_area = gtk_drawing_area_new ();

gtk_drawing_area_size (GTK_DRAWING_AREA (draw-
ing_area), 200, 200);

gtk_box_pack_start (GTK_BOX (vbox), draw-
ing_area, TRUE, TRUE, 0);

gtk_widget_show (drawing_area);

/* Signals used to handle backing pixmap */

456

Appendix C. Code Examples

gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event",
(GtkSignalFunc) expose_event, NULL);

gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event",
(GtkSignalFunc) configure_event, NULL);

/* Event signals */

gtk_signal_connect (GTK_OBJECT (draw-

ing_area), "motion_notify_event",

(GtkSignalFunc) motion_notify_event, NULL);
gtk_signal_connect (GTK_OBJECT (draw-

ing_area), "button_press_event",

}

(GtkSignalFunc) button_press_event, NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK

| GDK_BUTTON_PRESS_MASK

| GDK_POINTER_MOTION_MASK

| GDK_POINTER_MOTION_HINT_MASK);

/* .. And a quit button */

button = gtk button_new_with_label ("Quit");

gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (gtk_widget_destroy),
GTK_OBJECT (window));

gtk_widget_show (button);

gtk_widget_show (window);

gtk_main ();

return O;

[* example-end */

457

Appendix C. Code Examples

C.3.2. scribble-xinput.c

458

/* example-start scribble-xinput scribble-xinput.c */

/* GTK - The GIMP Toolkit

* Copyright (C) 1995-

1997 Peter Mattis, Spencer Kimball and Josh MacDonald

*

* This library is free software; you can redistribute it and/or

* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your op-

tion) any later version.

*

* This library is dis-

tributed in the hope that it will be useful,

* pbut WITHOUT ANY WARRANTY; without even the implied war-
ranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU

* Library General Public License for more details.

*

* You should have received a copy of the GNU Library Gen-
eral Public

* License along with this library; if not, write to the

* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.

*/

#include <gtk/gtk.h>

/* Backing pixmap for drawing area */
static GdkPixmap *pixmap = NULL;

/* Create a new backing pixmap of the appropriate size */
static gint
configure_event (GtkWidget *widget, GdkEventConfigure *event)

Appendix C. Code Examples

if (pixmap)
gdk_pixmap_unref(pixmap);

pixmap = gdk_pixmap_new(widget->window,
widget->allocation.width,
widget->allocation.height,
-1);
gdk_draw_rectangle (pixmap,
widget->style->white_gc,
TRUE,
0, O,
widget->allocation.width,
widget->allocation.height);

return TRUE;
}

/* Redraw the screen from the backing pixmap */
static gint
expose_event (GtkWidget *widget, GdkEventExpose *event)
{
gdk_draw_pixmap(widget->window,
widget->style-
>fg_gc[GTK_WIDGET_STATE (widget)],
pixmap,
event->area.x, event->area.y,
event->area.x, event->area.y,
event->area.width, event->area.height);

return FALSE;
}

/* Draw a rectangle on the screen, size depending on pressure,
and color on the type of device */

static void

draw_brush (GtkWidget *widget, GdkIinputSource source,

459

Appendix C. Code Examples

gdouble x, gdouble y, gdouble pressure)
{
GdkGC *gc;
GdkRectangle update_rect;

switch (source)
{
case GDK_SOURCE_MOUSE:
gc = widget->style->dark_gc[GTK_WIDGET_STATE (widget)];
break;
case GDK_SOURCE_PEN:
gc = widget->style->black_gc;
break;
case GDK_SOURCE_ERASER:
gc = widget->style->white_gc;
break;
default:
gc = widget->style->light_gc[GTK_WIDGET_STATE (widget)];
}

update rect.x = x - 10 * pressure;

update_rect.y = y - 10 * pressure;

update_rect.width = 20 * pressure;

update_rect.height = 20 * pressure;

gdk_draw_rectangle (pixmap, gc, TRUE,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

gtk_widget _draw (widget, &update_rect);

}

static void
print_button_press (guint32 deviceid)

{
GList *tmp_list;

/* gdk_input_list_devices returns an inter-
nal list, so we shouldn’t

460

Appendix C. Code Examples

free it afterwards */
tmp_list = gdk_input_list_devices();

while (tmp_list)

{
GdkDevicelnfo *info = (GdkDevicelnfo *)tmp_list->data;
if (info->deviceid == deviceid)
{
g_print("Button press on device '%s\n", info->name);
return;
}
tmp_list = tmp_list->next;
}
}
static gint
button_press_event (GtkWidget *widget, GdkEventButton *event)
{

print_button_press (event->deviceid);

if (event->button == 1 && pixmap !'= NULL)
draw_brush (widget, event->source, event->X, event-
>y, event->pressure);

return TRUE;
}

static gint
motion_notify _event (GtkWidget *widget, GdkEventMotion *event)

{
gdouble x, v;

gdouble pressure;
GdkModifierType state;

if (event->is_hint)

461

Appendix C. Code Examples

gdk_input_window_get_pointer (event->window, event-
>deviceid,
&x, &y, &pressure,
NULL, NULL, &state);
else

{

X = event->x;

y = event->y;

pressure = event->pressure;
state = event->state;

}

if (state & GDK_BUTTON1 MASK && pixmap !'= NULL)
draw_brush (widget, event->source, X, Yy, pressure);

return TRUE;
}

void
input_dialog_destroy (GtkWidget *w, gpointer data)
{
*((GtkWidget **)data) = NULL;
}

void
create_input_dialog ()

{
static GtkWidget *inputd = NULL;

if (linputd)
{
inputd = gtk_input_dialog_new();

gtk_signal_connect (GTK_OBJECT(inputd), "destroy",

(GtkSignal-
Func)input_dialog_destroy, &inputd);

462

Appendix C. Code Examples

gtk_signal_connect_object (GTK_OBJECT(GTK_INPUT_DIALOG(inputd)-
>close_button),
“clicked",
(GtkSignalFunc)gtk_widget_hide,
GTK_OBJECT (inputd));
gtk_widget_hide (GTK_INPUT_DIALOG(inputd)->save_button);

gtk_widget_show (inputd);

}
else
{
if ({GTK_WIDGET_MAPPED(inputd))
gtk_widget_show(inputd);
else
gdk_window_raise(inputd->window);
}
}
void
quit ()
{
gtk_exit (0);
}
int
main (int argc, char *argvl])
{

GtkWidget *window;
GtkWidget *drawing_area;
GtkWidget *vbox;
GtkWidget *button;
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_name (window, "Test Input");

463

Appendix C. Code Examples

464

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (quit), NULL);

/* Create the drawing area */

drawing_area = gtk_drawing_area_new ();

gtk_drawing_area_size (GTK_DRAWING_AREA (draw-
ing_area), 200, 200);

gtk_box_pack_start (GTK_BOX (vbox), draw-
ing_area, TRUE, TRUE, 0);

gtk_widget_show (drawing_area);
/* Signals used to handle backing pixmap */

gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event",
(GtkSignalFunc) expose_event, NULL);

gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event",
(GtkSignalFunc) configure_event, NULL);

/* Event signals */

gtk_signal connect (GTK_OBJECT (draw-
ing_area), "motion_notify_event",
(GtkSignalFunc) mo-
tion_notify_event, NULL);
gtk_signal_connect (GTK_OBJECT (draw-
ing_area), "button_press_event",
(GtkSignalFunc) button_press_event, NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK

Appendix C. Code Examples

| GDK_BUTTON_PRESS_MASK
| GDK_POINTER_MOTION_MASK
| GDK_POINTER_MOTION_HINT_MASK);

/* The following call enables tracking and process-

ing of extension

events for the drawing area */
gtk_widget_set_extension_events (draw-

ing_area, GDK_EXTENSION_EVENTS_CURSOR);

/* .. And some buttons */
button = gtk button_new_with_label (“Input Dialog");
gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (cre-

ate_input_dialog), NULL);

}

gtk_widget_show (button);

button = gtk _button_new_with_label ("Quit");
gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

gtk_signal_connect_object (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (gtk_widget_destroy),
GTK_OBJECT (window));

gtk_widget_show (button);

gtk_widget_show (windowy);

gtk_main ();

return O;

/* example-end */

465

Appendix D. List Widget

NOTE: The List widget has been superseded by the CList widget. It is detailed here
just for completeness.

The List widget is designed to act as a vertical container for widgets that should be of
the type Listltem.

A List widget has its own window to receive events and its own background color
which is usually white. As it is directly derived from a Container it can be treated as
such by using the GTK_CONTAINER(List) macro, see the Container widget for more
on this. One should already be familiar with the usage of a GList and its related
functions g_list_*() to be able to use the List widget to it full extent.

There is one field inside the structure definition of the List widget that will be of greater
interest to us, this is:

struct _GtkList
{

GList *selection;
guint selection_mode;

,

The selection field of a List points to a linked list of all items that are currently selected,
or NULL if the selection is empty. So to learn about the current selection we read the
GTK_LIST()->selection field, but do not modify it since the internal fields are
maintained by the gtk _list_*() functions.

The selection_mode of the List determines the selection facilities of a List and
therefore the contents of the GTK_LIST()->selection field. The selection_mode may be
one of the following:

« GTK_SELECTION_SINGLE The selection is either NULL or contains a GList
pointer for a single selected item.

466

Appendix D. List Widget

« GTK_SELECTION_BROWSH he selection is NULL if the list contains no widgets
or insensitive ones only, otherwise it contains a GList pointer for one GList structure,
and therefore exactly one list item.

« GTK_SELECTION_MULTIPLE The selection is NULL if no list items are selected
or a GList pointer for the first selected item. That in turn points to a GList structure
for the second selected item and so on.

+ GTK_SELECTION_EXTENDEDThe selection is always NULL.
The default iSGTK_SELECTION_MULTIPLE

D.1. Signals

void selection_changed(GtkList *list);

This signal will be invoked whenever the selection field of a List has changed. This
happens when a child of thekList got selected or deselected.

void select_child(GtkList *list,
GtkWidget *child);

This signal is invoked when a child of the List is about to get selected. This happens
mainly on calls to gtk_list_select_item(), gtk_list_select_child(), button presses and
sometimes indirectly triggered on some else occasions where children get added to or
removed from the List.

void unselect_child(GtkList *list,
GtkWidget *child);

This signal is invoked when a child of the List is about to get deselected. This happens
mainly on calls to gtk_list_unselect_item(), gtk _list_unselect_child(), button presses
and sometimes indirectly triggered on some else occasions where children get added to
or removed from the List.

467

Appendix D. List Widget

D.2. Functions

468

guint gtk _list_get type(void);
Returns the "GtkList" type identifier.
GtkWidget *gtk_list_new(void);

Create a new List object. The new widget is returned as a pointer to a GtkWidget
object. NULL is returned on failure.

void gtk _list_insert_items(GtkList *list,
GList *items,
gint position);

Insert list items into the list, starting pbsition . items is a doubly linked list where
each nodes data pointer is expected to point to a newly created Listltem. The GList
nodes oftems are taken over by the list.

void gtk list_ append_items(GtkList *list,
GList *items);

Insert list items just like gtk _list_insert_items() at the end of the list. The GList nodes
of items are taken over by the list.

void gtk_list_prepend_items(GtkList *list,
GList *items);

Insert list items just like gtk_list_insert_items() at the very beginning of the list. The
GList nodes oftems are taken over by the list.

void gtk_list remove_items(GtkList *list,
GList *items);

Remove list items from the listems is a doubly linked list where each nodes data
pointer is expected to point to a direct child of list. It is the callers responsibility to

Appendix D. List Widget

make a call to g_list_free(items) afterwards. Also the caller has to destroy the list items
himself.

void gtk _list_clear_items(GtkList *list,
gint start,
gint end);

Remove and destroy list items from the list. A widget is affected if its current position
within the list is in the range specified byart andend.

void gtk _list_select_item(GtkList *list,
gint item);

Invoke the select_child signal for a list item specified through its current position
within the list.

void gtk _list_unselect_item(GtkList *list,
gint item);

Invoke the unselect_child signal for a list item specified through its current position
within the list.

void gtk _list_select child(GtkList *list,
GtkWidget *child);

Invoke the select_child signal for the specified child.

void gtk list_unselect _child(GtkList *list,
GtkWidget *child);

Invoke the unselect_child signal for the specified child.

gint gtk _list_child_position(GtkList *list,
GtkWidget *child);

Return the position afhild within the list. "-1" is returned on failure.

void gtk _list_set_selection_mode(GtkList *list,

469

Appendix D. List Widget

GtkSelectionMode mode);

Set the selection mode MODE which can be of GTK_SELECTION_SINGLE,
GTK_SELECTION_BROWSE, GTK_SELECTION_MULTIPLE or
GTK_SELECTION_EXTENDED.

GtkList *GTK_LIST(gpointer obj);

Cast a generic pointer to "GtkList *".
GtkListClass *GTK_LIST_CLASS(gpointer class);
Cast a generic pointer to "GtkListClass *".

gint GTK_IS_LIST(gpointer obj);

Determine if a generic pointer refers to a "GtkList" object.

D.3. Example

Following is an example program that will print out the changes of the selection of a
List, and lets you "arrest” list items into a prison by selecting them with the rightmost
mouse button.

/* example-start list list.c */

/* Include the GTK header files

* Include stdio.h, we need that for the printf() function
*/

#include <gtk/gtk.h>

#include <stdio.h>

/* This is our data identification string to store
* data in list items

*

const gchar *list_item_data_key="list_item_data";

470

Appendix D. List Widget

/* prototypes for signal handler that we are going to connect
* to the List widget
*/
static void sigh_print_selection(GtkWidget *gtklist,
gpointer func_data);

static void sigh_button_event(GtkWidget *gtklist,
GdkEventButton *event,
GtkWidget *frame);

/* Main function to set up the user interface */

gint main(int argc,
gchar *argv[])
{
GtkWidget *separator;
GtkWidget *window;
GtkWidget *vbox;
GtkWidget *scrolled_window;
GtkWidget *frame;
GtkWidget *gtklist;
GtkWidget *button;
GtkWidget *list_item;
GList *dlist;
guint i
gchar buffer[64];

/* Initialize GTK (and subsequently GDK) */

gtk_init(&argc, &argv);

/* Create a window to put all the widgets in

471

Appendix D. List Widget

* connect gtk_main_quit() to the "destroy" event of
* the window to handle window manager close-window-events
*/
window=gtk_window_new(GTK_WINDOW_TOPLEVEL);
gtk_window_set_title(GTK_WINDOW/(window), "GtkList Example");
gtk_signal_connect(GTK_OBJECT(window),

"destroy",

GTK_SIGNAL_FUNC(gtk_main_quit),

NULL);

/* Inside the window we need a box to arrange the widgets
* vertically */

vbox=gtk_vbox_new(FALSE, 5);
gtk_container_set_border_width(GTK_CONTAINER(vbox), 5);
gtk_container_add(GTK_CONTAINER(window), vbox);
gtk_widget_show(vbox);

/* This is the scrolled window to put the List widget in-
side */

scrolled_window=gtk_scrolled_window_new(NULL, NULL);

gtk_widget_set_usize(scrolled_window, 250, 150);

gtk_container_add(GTK_CONTAINER(vbox), scrolled_window);

gtk_widget_show(scrolled_window);

/* Create thekList widget.

* Connect the sigh print_selection() signal handler

* function to the "selection_changed" signal of the List

* to print out the selected items each time the selection

* has changed */

gtklist=gtk_list_new();

gtk_scrolled_window_add_with_viewport(GTK_SCROLLED_WINDOW(scrolled_window),

gtklist);

gtk_widget_show(gtklist);

gtk_signal_connect(GTK_OBJECT(gtklist),
"selection_changed",
GTK_SIGNAL_FUNC(sigh_print_selection),

472

Appendix D. List Widget

NULL);

/* We create a "Prison" to put a list item in ;) */
frame=gtk_frame_new("Prison");

gtk_widget_set_usize(frame, 200, 50);

gtk _container_set _border_width(GTK_CONTAINER(frame), 5);
gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_OUT);
gtk_container_add(GTK_CONTAINER(vbox), frame);
gtk_widget_show(frame);

/* Connect the sigh_button_event() signal han-
dler to the List

* which will handle the "arresting" of list items

*/

gtk_signal_connect(GTK_OBJECT(gtklist),
"button_release_event",
GTK_SIGNAL_FUNC(sigh_button_event),
frame);

/* Create a separator */
separator=gtk_hseparator_new();
gtk_container_add(GTK_CONTAINER(vbox), separator);
gtk_widget_show(separator);

/* Finally create a button and connect its "clicked" signal
* to the destruction of the window */
button=gtk_button_new_with_label("Close");
gtk_container_add(GTK_CONTAINER(vbox), button);
gtk_widget_show(button);
gtk_signal_connect_object(GTK_OBJECT (button),

"clicked",

GTK_SIGNAL_FUNC(gtk_widget_destroy),

GTK_OBJECT(window));

/* Now we create 5 list items, each having its own
* label and add them to the List using gtk container_add()

473

Appendix D. List Widget

* Also we query the text string from the label and

* asso-

ciate it with the list_item_data_key for each list item
*/
for (i=0; i<5; i++) {

GtkWidget *label;

gchar *string;

sprintf(buffer, "ListitemContainer with Label #%d", i);
label=gtk label new(buffer);
list_item=gtk_list_item_new();
gtk_container_add(GTK_CONTAINER(list_item), label);
gtk_widget_show(label);
gtk_container_add(GTK_CONTAINER(gtklist), list_item);
gtk_widget_show(list_item);
gtk_label_get(GTK_LABEL (label), &string);
gtk _object_set data(GTK_OBJECT(list_item),

list_item_data_key,

string);

}

/* Here, we are creating another 5 labels, this time

* we use gtk list_item_new_with_label() for the creation

* we can't query the text string from the label because

* we don't have the labels pointer and therefore

* we just associate the list_item_data_key of each

* list item with the same text string.

* For adding of the list items we put them all into a doubly

* linked list (GList), and then add them by a sin-
gle call to

* gtk_list_append_items().

* Because we use ¢_list prepend() to put the items into the

* doubly linked list, their order will be descend-
ing (instead

* of ascending when using g_list_append())

*/

dlist=NULL;

for (; i<10; i++) {

474

Appendix D. List Widget

sprintf(buffer, "List Item with Label %d", i);
list_item=gtk_list_item_new_with_label(buffer);
dlist=g_list_prepend(dlist, list_item);
gtk_widget_show(list_item);
gtk_object_set_data(GTK_OBJECT(list_item),
list_item_data key,
"Listltem with integrated Label");

}
gtk _list_append_items(GTK_LIST(gtklist), dlist);

/* Finally we want to see the window, don't we? ;) */
gtk_widget_show(window);

/* Fire up the main event loop of gtk */
gtk_main();

/* We get here after gtk _main_quit() has been called which
* happens if the main window gets destroyed
*/
return(0);
}

/* This is the signal handler that got connected to button
* press/release events of the List

*/
void sigh_button_event(GtkWidget *gtklist,
GdkEventButton *event,
GtkWidget *frame)
{

/* We only do something if the third (rightmost mouse button
* was released
*/
if (event->type==GDK_BUTTON_RELEASE &&
event->button==3) {
GList *dlist, *free_list;
Gtkwidget *new_prisoner;

475

Appendix D. List Widget

/* Fetch the currently selected list item which
* will be our next prisoner ;)

*/

dlist=GTK_LIST(gtklist)->selection;

if (dlist)

new_prisoner=GTK_WIDGET (dlist->data);

else

new_prisoner=NULL;

/* Look for already imprisoned list items, we
* will put them back into the list.
* Remember to free the doubly linked list that
* gtk_container_children() returns
*/
dlist=gtk_container_children(GTK_CONTAINER(frame));
free_list=dlist;
while (dlist) {
GtkWidget *list_item;

list_item=dlist->data;
gtk_widget_reparent(list_item, gtklist);

dlist=dlist->next;

}

g_list_free(free_list);

/* If we have a new prisoner, remove him from the
* List and put him into the frame "Prison".
* We need to unselect the item first.
*/
if (new_prisoner) {
GList static_dlist;

static_dlist.data=new_prisoner;

static_dlist.next=NULL;
static_dlist.prev=NULL;

476

Appendix D. List Widget

gtk_list_unselect_child(GTK_LIST(gtklist),
new_prisoner);
gtk_widget_reparent(new_prisoner, frame);
}
}
}

/* This is the signal handler that gets called if List
* emits the "selection_changed" signal
*/
void sigh_print_selection(GtkWidget *gtklist,
gpointer func_data)

{
GList *dlist;
/* Fetch the doubly linked list of selected items
* of the List, remember to treat this as read-only!
*/
dlist=GTK_LIST(gtklist)->selection;
[* If there are no selected items there is nothing more
* to do than just telling the user so
*/
if (!dlist) {
g_print("Selection cleared\n");
return;
}
/* Ok, we got a selection and so we print it
*

g_print("The selection is a ");

[* Get the list item from the doubly linked list
* and then query the data associ-
ated with list_item_data_key.
* We then just print it */
while (dlist) {

ar7

Appendix D. List Widget

GtkObject *list_item;
gchar *item_data_string;

list_item=GTK_OBJECT(dlist->data);

item_data_string=gtk_object_get_data(list_item,
list_item_data key);

g_print("%s ", item_data_string);

dlist=dlist->next;
}
g_print("\n");
}

/* example-end */

D.4. List Item Widget

478

The Listltem widget is designed to act as a container holding up to one child, providing
functions for selection/deselection just like the List widget requires them for its
children.

A Listltem has its own window to receive events and has its own background color
which is usually white.

As it is directly derived from an Item it can be treated as such by using the
GTK_ITEM(Listltem) macro, see the Item widget for more on this. Usually a Listitem
just holds a label to identify, e.g., a flename within a List — therefore the convenience
function gtk_list_item_new_with_label() is provided. The same effect can be achieved
by creating a Label on its own, setting its alignment to xalign=0 and yalign=0.5 with a
subsequent container addition to the Listltem.

As one is not forced to add a GtkLabel to a GtkListltem, you could also add a
GtkVBox or a GtkArrow etc. to the GtkListltem.

Appendix D. List Widget

D.5. Signals

A GtkListltem does not create new signals on its own, but inherits the signals of a Item.

D.6. Functions
guint gtk _list_item_get_type(void);
Returns the "GtkListltem" type identifier.
GtkWidget *gtk_list_item_new(void);

Create a new Listltem object. The new widget is returned as a pointer to a GtkWidget
object. NULL is returned on failure.

GtkWidget *gtk_list_item_new_with_label(gchar *label);

Create a new Listltem object, having a single GtkLabel as the sole child. The new
widget is returned as a pointer to a GtkWidget object. NULL is returned on failure.

void gtk_list_item_select(GtkListltem *list_item);

This function is basically a wrapper around a call to gtk_item_select (GTK_ITEM
(list_item)) which will emit the select signal. *Note Gtkitem::, for more info.

void gtk list_item_deselect(GtkListltem *list_item);

This function is basically a wrapper around a call to gtk_item_deselect (GTK_ITEM
(list_item)) which will emit the deselect signal. *Note Gtkitem::, for more info.

GtkListltem *GTK_LIST_ITEM(gpointer obj);

Cast a generic pointer to "GtkListltem *".

GtkListltemClass *GTK_LIST_ITEM_CLASS(gpointer class);

479

Appendix D. List Widget

Cast a generic pointer to GtkListltemClass*. *Note Standard Macros::, for more info.

gint GTK_IS_LIST_ITEM(gpointer obj);

Determine if a generic pointer refers to a ‘GtkListltem’ object. *Note Standard
Macros::, for more info.

D.7. Example

Please see the List example on this, which covers the usage of a Listitem as well.

480

