The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

MEMORE_vs_wsMed

introduction

This document presents a comparison between the MEMORE 3.0 (SPSS Plugin) and wsMed (R Package) outputs.

parallel mediation

We analyze a three-mediator parallel mediation model, comparing the results obtained from both methods.

MEMORE 3.0 Analysis Report

## ```
##  
## Run MATRIX procedure:
## 
## *********************** MEMORE Procedure for SPSS Version 3.0 ***********************
## 
##                            Written by Amanda Montoya
## 
##                     Documentation available at github.com/akmontoya/MEMORE
## 
## **************************** ANALYSIS NOTES AND WARNINGS ****************************
## 
## Bootstrap confidence interval method used: Percentile bootstrap.
## 
## Number of bootstrap samples for bootstrap confidence intervals:
##   5000
## 
## The following variables were mean centered prior to analysis:
##  (        A2        +       A1       )        /2
##  (        B2        +       B1       )        /2
##  (        C2        +       C1       )        /2
## 
## Level of confidence for all confidence intervals in output:
##       95.00
## 
## **************************************************************************************
## 
## Model:
##   1
## 
## Variables:
## Y =   D2       D1
## M1 =  A2       A1
## M2 =  B2       B1
## M3 =  C2       C1
## 
## Computed Variables:
## Ydiff =           D2        -       D1
## M1diff =          A2        -       A1
## M2diff =          B2        -       B1
## M3diff =          C2        -       C1
## M1avg  = (        A2        +       A1       )        /2                         Centered
## M2avg  = (        B2        +       B1       )        /2                         Centered
## M3avg  = (        C2        +       C1       )        /2                         Centered
## 
## Sample Size:
##   100
## 
## **************************************************************************************
## Outcome: Ydiff =  D2        -       D1
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant     -.0316      .0170    -1.8586      .0661     -.0653      .0021
## 
## Degrees of freedom for all regression coefficient estimates:
##   99
## 
## **************************************************************************************
## Outcome: M1diff = A2        -       A1
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant     -.0271      .0176    -1.5385      .1271     -.0621      .0079
## 
## Degrees of freedom for all regression coefficient estimates:
##   99
## 
## **************************************************************************************
## Outcome: M2diff = B2        -       B1
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant      .0145      .0181      .8024      .4243     -.0213      .0503
## 
## Degrees of freedom for all regression coefficient estimates:
##   99
## 
## **************************************************************************************
## Outcome: M3diff = C2        -       C1
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant      .0153      .0163      .9404      .3493     -.0170      .0477
## 
## Degrees of freedom for all regression coefficient estimates:
##   99
## 
## **************************************************************************************
## Outcome: Ydiff =  D2        -       D1
## 
## Model Summary
##           R       R-sq        MSE          F        df1        df2          p
##       .1978      .0391      .0296      .6312     6.0000    93.0000      .7049
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant     -.0315      .0176    -1.7875      .0771     -.0665      .0035
## M1diff       -.0501      .1009     -.4968      .6205     -.2505      .1502
## M2diff       -.0844      .1022     -.8252      .4114     -.2874      .1187
## M3diff       -.0167      .1084     -.1536      .8782     -.2320      .1987
## M1avg        -.0305      .1015     -.3002      .7647     -.2320      .1711
## M2avg        -.0060      .0945     -.0633      .9497     -.1936      .1816
## M3avg        -.1552      .1090    -1.4239      .1578     -.3716      .0612
## 
## Degrees of freedom for all regression coefficient estimates:
##   93
## 
## ************************* TOTAL, DIRECT, AND INDIRECT EFFECTS *************************
## 
## Total effect of X on Y
##      Effect         SE          t         df          p       LLCI       ULCI
##      -.0316      .0170    -1.8586    99.0000      .0661     -.0653      .0021
## 
## Direct effect of X on Y
##      Effect         SE          t         df          p       LLCI       ULCI
##      -.0315      .0176    -1.7875    93.0000      .0771     -.0665      .0035
## 
## Indirect Effect of X on Y through M
##           Effect     BootSE   BootLLCI   BootULCI
## Ind1       .0014      .0030     -.0049      .0078
## Ind2      -.0012      .0029     -.0088      .0035
## Ind3      -.0003      .0028     -.0072      .0050
## Total     -.0001      .0054     -.0130      .0092
## 
## Indirect Key
## Ind1  'X'      ->       M1diff   ->       Ydiff
## Ind2  'X'      ->       M2diff   ->       Ydiff
## Ind3  'X'      ->       M3diff   ->       Ydiff
## 
## Pairwise Contrasts Between Specific Indirect Effects
##           Effect     BootSE   BootLLCI   BootULCI
## (C1)       .0026      .0039     -.0053      .0113
## (C2)       .0016      .0043     -.0067      .0114
## (C3)      -.0010      .0038     -.0089      .0068
## 
## Contrast Key:
## (C1)  Ind1      -       Ind2
## (C2)  Ind1      -       Ind3
## (C3)  Ind2      -       Ind3
## 
## ------ END MATRIX -----
##  
## ```

wsMed Analysis Report

## 
## 
## *************** VARIABLES ***************
## Outcome (Y):
##    Condition 1: D1 
##    Condition 2: D2 
## Mediators (M):
##   M1:
##     Condition 1: A1
##     Condition 2: A2
##   M2:
##     Condition 1: B1
##     Condition 2: B2
##   M3:
##     Condition 1: C1
##     Condition 2: C2
## Sample size (rows kept): 100 
## 
## 
## *************** MODEL FIT ***************
## 
## 
## |Measure   |  Value|
## |:---------|------:|
## |Chi-Sq    | 16.275|
## |df        | 12.000|
## |p         |  0.179|
## |CFI       |  0.000|
## |TLI       | -1.829|
## |RMSEA     |  0.060|
## |RMSEA Low |  0.000|
## |RMSEA Up  |  0.126|
## |SRMR      |  0.072|
## 
## 
## ************* TOTAL / DIRECT / TOTAL-IND (MC) *************
## 
## 
## |Label          | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:--------------|--------:|------:|---------:|----------:|
## |Total effect   |  -0.0316| 0.0169|   -0.0645|     0.0016|
## |Direct effect  |  -0.0315| 0.0170|   -0.0644|     0.0019|
## |Total indirect |  -0.0001| 0.0046|   -0.0096|     0.0094|
## 
## Indirect effects:
## 
## 
## |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:-----|--------:|------:|---------:|----------:|
## |ind_1 |   0.0014| 0.0031|   -0.0043|     0.0087|
## |ind_2 |  -0.0012| 0.0026|   -0.0078|     0.0031|
## |ind_3 |  -0.0003| 0.0023|   -0.0055|     0.0044|
## 
## Indirect-effect key:
## 
## 
## |Ind   |Path                 |
## |:-----|:--------------------|
## |ind_1 |X -> M1diff -> Ydiff |
## |ind_2 |X -> M2diff -> Ydiff |
## |ind_3 |X -> M3diff -> Ydiff |
## 
## 
## *************** MODERATION EFFECTS (d-paths, MC) ***************
## 
## 
## |Coefficient | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:-----------|--------:|------:|---------:|----------:|
## |d1          |  -0.0305| 0.0983|   -0.2217|     0.1623|
## |d2          |  -0.0060| 0.0894|   -0.1805|     0.1685|
## |d3          |  -0.1552| 0.1047|   -0.3621|     0.0490|
## 
## 
## *************** MODERATION KEY (d-paths) ***************
## 
## 
## |Coefficient |Path           |Moderated       |
## |:-----------|:--------------|:---------------|
## |d1          |M1avg -> Ydiff |M1diff -> Ydiff |
## |d2          |M2avg -> Ydiff |M2diff -> Ydiff |
## |d3          |M3avg -> Ydiff |M3diff -> Ydiff |
## 
## 
## *************** CONTRAST INDIRECT EFFECTS (No Moderator) ***************
## 
## 
## |Contrast                  | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:-------------------------|--------:|------:|---------:|----------:|
## |indirect_2  -  indirect_1 |  -0.0030| 0.0040|   -0.0120|     0.0050|
## |indirect_3  -  indirect_1 |  -0.0020| 0.0040|   -0.0100|     0.0060|
## |indirect_3  -  indirect_2 |   0.0010| 0.0030|   -0.0060|     0.0090|
## 
## 
## *************** C1-C2 COEFFICIENTS (No Moderator) ***************
## 
## 
## |Coeff | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:-----|--------:|------:|---------:|----------:|
## |X1_b1 |  -0.0650| 0.1060|   -0.2730|     0.1440|
## |X0_b1 |  -0.0350| 0.1070|   -0.2440|     0.1740|
## |X1_b2 |  -0.0870| 0.1020|   -0.2860|     0.1140|
## |X0_b2 |  -0.0800| 0.1020|   -0.2770|     0.1230|
## |X1_b3 |  -0.0940| 0.1140|   -0.3180|     0.1300|
## |X0_b3 |   0.0610| 0.1150|   -0.1630|     0.2880|
## 
## 
## *************** REGRESSION PATHS (MC) ***************
## 
## 
## |Path           |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:--------------|:-----|--------:|------:|---------:|----------:|
## |Ydiff ~ M1diff |b1    |  -0.0501| 0.0945|   -0.2337|     0.1359|
## |Ydiff ~ M1avg  |d1    |  -0.0305| 0.0983|   -0.2217|     0.1623|
## |Ydiff ~ M2diff |b2    |  -0.0844| 0.0916|   -0.2629|     0.0996|
## |Ydiff ~ M2avg  |d2    |  -0.0060| 0.0894|   -0.1805|     0.1685|
## |Ydiff ~ M3diff |b3    |  -0.0167| 0.1023|   -0.2173|     0.1843|
## |Ydiff ~ M3avg  |d3    |  -0.1552| 0.1047|   -0.3621|     0.0490|
## 
## 
## *************** INTERCEPTS (MC) ***************
## 
## 
## |Intercept |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:---------|:-----|--------:|------:|---------:|----------:|
## |Ydiff~1   |cp    |  -0.0315| 0.0170|   -0.0644|     0.0019|
## |M1diff~1  |a1    |  -0.0271| 0.0175|   -0.0608|     0.0076|
## |M2diff~1  |a2    |   0.0145| 0.0180|   -0.0207|     0.0502|
## |M3diff~1  |a3    |   0.0153| 0.0163|   -0.0170|     0.0471|
## |M1avg~1   |      |  -0.0000| 0.0185|   -0.0361|     0.0361|
## |M2avg~1   |      |   0.0000| 0.0202|   -0.0396|     0.0400|
## |M3avg~1   |      |  -0.0000| 0.0175|   -0.0342|     0.0342|
## 
## 
## *************** VARIANCES (MC) ***************
## 
## 
## |Variance       |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:--------------|:-----|--------:|------:|---------:|----------:|
## |Ydiff~~Ydiff   |      |   0.0275| 0.0039|    0.0199|     0.0351|
## |M1diff~~M1diff |      |   0.0308| 0.0044|    0.0221|     0.0391|
## |M2diff~~M2diff |      |   0.0323| 0.0046|    0.0232|     0.0413|
## |M3diff~~M3diff |      |   0.0264| 0.0037|    0.0191|     0.0337|
## |M1avg~~M1avg   |      |   0.0339| 0.0048|    0.0245|     0.0433|
## |M2avg~~M2avg   |      |   0.0407| 0.0058|    0.0294|     0.0520|
## |M3avg~~M3avg   |      |   0.0306| 0.0043|    0.0221|     0.0390|
## 
## 
## *************** STANDARDIZED (MC) ***************
## 
## 
## |Parameter      | Estimate|     SE|          R|    2.5%|  97.5%|
## |:--------------|--------:|------:|----------:|-------:|------:|
## |cp             |  -0.1858| 0.0992| 20000.0000| -0.3775| 0.0106|
## |b1             |  -0.0519| 0.0950| 20000.0000| -0.2366| 0.1367|
## |d1             |  -0.0331| 0.1037| 20000.0000| -0.2335| 0.1716|
## |b2             |  -0.0894| 0.0941| 20000.0000| -0.2669| 0.1038|
## |d2             |  -0.0071| 0.1035| 20000.0000| -0.2093| 0.1937|
## |b3             |  -0.0160| 0.0953| 20000.0000| -0.2012| 0.1716|
## |d3             |  -0.1601| 0.1041| 20000.0000| -0.3586| 0.0502|
## |a1             |  -0.1546| 0.1019| 20000.0000| -0.3560| 0.0432|
## |a2             |   0.0806| 0.1015| 20000.0000| -0.1168| 0.2840|
## |a3             |   0.0945| 0.1014| 20000.0000| -0.1045| 0.2976|
## |Ydiff~~Ydiff   |   0.9578| 0.0468| 20000.0000|  0.7977| 0.9770|
## |M1diff~~M1diff |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M2diff~~M2diff |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M3diff~~M3diff |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M1avg~~M1avg   |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M1avg~~M2avg   |   0.2898| 0.0931| 20000.0000|  0.0992| 0.4640|
## |M1avg~~M3avg   |   0.3395| 0.0906| 20000.0000|  0.1521| 0.5080|
## |M2avg~~M2avg   |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M2avg~~M3avg   |   0.3240| 0.0916| 20000.0000|  0.1347| 0.4941|
## |M3avg~~M3avg   |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M1avg~1        |  -0.0000| 0.1016| 20000.0000| -0.1996| 0.1997|
## |M2avg~1        |   0.0000| 0.1012| 20000.0000| -0.1967| 0.1997|
## |M3avg~1        |  -0.0000| 0.1011| 20000.0000| -0.1967| 0.1977|
## |indirect_1     |   0.0080| 0.0180| 20000.0000| -0.0250| 0.0497|
## |indirect_2     |  -0.0072| 0.0149| 20000.0000| -0.0443| 0.0178|
## |indirect_3     |  -0.0015| 0.0131| 20000.0000| -0.0320| 0.0254|
## |total_indirect |  -0.0007| 0.0267| 20000.0000| -0.0552| 0.0540|
## |total_effect   |  -0.1865| 0.0991| 20000.0000| -0.3788| 0.0093|
## 
## Outcome Difference Model (Ydiff):
##  Ydiff ~ cp*1 + b1*M1diff + d1*M1avg + b2*M2diff + d2*M2avg + b3*M3diff + d3*M3avg 
## 
## Mediator Difference Model (Chained Mediator - M1diff):
## M1diff ~ a1*1 
## 
## Mediator Difference Model (Other Mediators):
## M2diff ~ a2*1
## M3diff ~ a3*1 
## 
## Indirect Effects:
## indirect_1 := a1 * b1
## indirect_2 := a2 * b2
## indirect_3 := a3 * b3 
## 
## Total Indirect Effect:
##  total_indirect := indirect_1 + indirect_2 + indirect_3 
## 
## Total Effect:
##  total_effect := cp + total_indirect

chained/serial mediation

We analyze a Serial Mediation (Serial = 1).

MEMORE 3.0 Analysis Report

## ```
##  
## Run MATRIX procedure:
## 
## *********************** MEMORE Procedure for SPSS Version 3.0 ***********************
## 
##                            Written by Amanda Montoya
## 
##                     Documentation available at github.com/akmontoya/MEMORE
## 
## **************************** ANALYSIS NOTES AND WARNINGS ****************************
## 
## Bootstrap confidence interval method used: Percentile bootstrap.
## 
## Number of bootstrap samples for bootstrap confidence intervals:
##   5000
## 
## The following variables were mean centered prior to analysis:
##  (        A2        +       A1       )        /2
##  (        B2        +       B1       )        /2
## 
## Level of confidence for all confidence intervals in output:
##       95.00
## 
## **************************************************************************************
## 
## Model:
##   1
## 
## Variables:
## Y =   C2       C1
## M1 =  A2       A1
## M2 =  B2       B1
## 
## Computed Variables:
## Ydiff =           C2        -       C1
## M1diff =          A2        -       A1
## M2diff =          B2        -       B1
## M1avg  = (        A2        +       A1       )        /2                         Centered
## M2avg  = (        B2        +       B1       )        /2                         Centered
## 
## Sample Size:
##   100
## 
## **************************************************************************************
## Outcome: Ydiff =  C2        -       C1
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant      .0153      .0163      .9404      .3493     -.0170      .0477
## 
## Degrees of freedom for all regression coefficient estimates:
##   99
## 
## **************************************************************************************
## Outcome: M1diff = A2        -       A1
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant     -.0271      .0176    -1.5385      .1271     -.0621      .0079
## 
## Degrees of freedom for all regression coefficient estimates:
##   99
## 
## **************************************************************************************
## Outcome: M2diff = B2        -       B1
## 
## Model Summary
##           R       R-sq        MSE          F        df1        df2          p
##       .2351      .0553      .0314     2.8371     2.0000    97.0000      .0635
## 
## Model
##               coeff         SE          t          p       LLCI       ULCI
## constant      .0208      .0179     1.1603      .2488     -.0148      .0564
## M1diff        .2333      .1010     2.3086      .0231      .0327      .4338
## M1avg        -.0578      .0963     -.6002      .5498     -.2489      .1333
## 
## Degrees of freedom for all regression coefficient estimates:
##   97
## 
## **************************************************************************************
## Outcome: Ydiff =  C2        -       C1
## 
## Model Summary
##           R       R-sq        MSE          F        df1        df2          p
##       .1720      .0296      .0269      .7238     4.0000    95.0000      .5778
## 
## Model
##                Coef         SE          t          p       LLCI       ULCI
## constant      .0160      .0167      .9563      .3413     -.0172      .0492
## M1diff       -.0360      .0962     -.3744      .7089     -.2270      .1549
## M2diff       -.1123      .0967    -1.1607      .2487     -.3043      .0798
## M1avg        -.0617      .0931     -.6619      .5097     -.2466      .1233
## M2avg        -.0733      .0875     -.8374      .4044     -.2469      .1004
## 
## Degrees of freedom for all regression coefficient estimates:
##   95
## 
## ************************* TOTAL, DIRECT, AND INDIRECT EFFECTS *************************
## 
## Total effect of X on Y
##      Effect         SE          t         df          p       LLCI       ULCI
##       .0153      .0163      .9404    99.0000      .3493     -.0170      .0477
## 
## Direct effect of X on Y
##      Effect         SE          t         df          p       LLCI       ULCI
##       .0160      .0167      .9563    95.0000      .3413     -.0172      .0492
## 
## Indirect Effect of X on Y through M
##           Effect     BootSE   BootLLCI   BootULCI
## Ind1       .0010      .0031     -.0045      .0084
## Ind2      -.0023      .0036     -.0111      .0033
## Ind3       .0007      .0010     -.0008      .0034
## Total     -.0006      .0048     -.0109      .0095
## 
## Indirect Key
## Ind1  'X'      ->       M1diff   ->       Ydiff
## Ind2  'X'      ->       M2diff   ->       Ydiff
## Ind3  'X'      ->       M1diff   ->       M2diff   ->       YDiff
## 
## Pairwise Contrasts Between Specific Indirect Effects
##           Effect     BootSE   BootLLCI   BootULCI
## (C1)       .0033      .0042     -.0042      .0128
## (C2)       .0003      .0034     -.0063      .0083
## (C3)      -.0030      .0041     -.0132      .0035
## 
## Contrast Key:
## (C1)  Ind1      -       Ind2
## (C2)  Ind1      -       Ind3
## (C3)  Ind2      -       Ind3
## 
## ------ END MATRIX -----
##  
## ```

wsMed Analysis Report

result2 <- wsMed(
  data = example_data, #dataset
  M_C1 = c("A1","B1"), # A1/B1 is A/B mediator variable in condition 1
  M_C2 = c("A2","B2"), # A2/B2 is A/B mediator variable in condition 2
  Y_C1 = "C1", # C1 is outcome variable in condition 1
  Y_C2 = "C2", # C2 is outcome variable in condition 2
  form = "CN", # Parallel mediation
  standardized = TRUE,
)
print(result2,digits=4)
## 
## 
## *************** VARIABLES ***************
## Outcome (Y):
##    Condition 1: C1 
##    Condition 2: C2 
## Mediators (M):
##   M1:
##     Condition 1: A1
##     Condition 2: A2
##   M2:
##     Condition 1: B1
##     Condition 2: B2
## Sample size (rows kept): 100 
## 
## 
## *************** MODEL FIT ***************
## 
## 
## |Measure   |  Value|
## |:---------|------:|
## |Chi-Sq    |  5.751|
## |df        |  3.000|
## |p         |  0.124|
## |CFI       |  0.494|
## |TLI       | -0.518|
## |RMSEA     |  0.096|
## |RMSEA Low |  0.000|
## |RMSEA Up  |  0.214|
## |SRMR      |  0.050|
## 
## 
## ************* TOTAL / DIRECT / TOTAL-IND (MC) *************
## 
## 
## |Label          | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:--------------|--------:|------:|---------:|----------:|
## |Total effect   |   0.0153| 0.0163|   -0.0169|     0.0469|
## |Direct effect  |   0.0160| 0.0162|   -0.0161|     0.0479|
## |Total indirect |  -0.0006| 0.0045|   -0.0100|     0.0083|
## 
## Indirect effects:
## 
## 
## |Label   | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:-------|--------:|------:|---------:|----------:|
## |ind_1   |   0.0010| 0.0031|   -0.0050|     0.0081|
## |ind_2   |  -0.0023| 0.0032|   -0.0103|     0.0025|
## |ind_1_2 |   0.0007| 0.0009|   -0.0005|     0.0031|
## 
## Indirect-effect key:
## 
## 
## |Ind     |Path                           |
## |:-------|:------------------------------|
## |ind_1   |X -> M1diff -> Ydiff           |
## |ind_2   |X -> M2diff -> Ydiff           |
## |ind_1_2 |X -> M1diff -> M2diff -> Ydiff |
## 
## 
## *************** MODERATION EFFECTS (d-paths, MC) ***************
## 
## 
## |Coefficient | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:-----------|--------:|------:|---------:|----------:|
## |d1          |  -0.0617| 0.0914|   -0.2433|     0.1203|
## |d2          |  -0.0733| 0.0835|   -0.2367|     0.0913|
## |d_1_2       |  -0.0578| 0.0943|   -0.2440|     0.1290|
## 
## 
## *************** MODERATION KEY (d-paths) ***************
## 
## 
## |Coefficient |Path            |Moderated        |
## |:-----------|:---------------|:----------------|
## |d1          |M1avg -> Ydiff  |M1diff -> Ydiff  |
## |d2          |M2avg -> Ydiff  |M2diff -> Ydiff  |
## |d_1_2       |M1avg -> M2diff |M1diff -> M2diff |
## 
## 
## *************** CONTRAST INDIRECT EFFECTS (No Moderator) ***************
## 
## 
## |Contrast                    | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:---------------------------|--------:|------:|---------:|----------:|
## |indirect_2    -  indirect_1 |  -0.0030| 0.0040|   -0.0130|     0.0040|
## |indirect_1_2  -  indirect_1 |  -0.0000| 0.0030|   -0.0070|     0.0070|
## |indirect_1_2  -  indirect_2 |   0.0030| 0.0040|   -0.0020|     0.0120|
## 
## 
## *************** C1-C2 COEFFICIENTS (No Moderator) ***************
## 
## 
## |Coeff    | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:--------|--------:|------:|---------:|----------:|
## |X1_b1    |  -0.0660| 0.1030|   -0.2700|     0.1340|
## |X0_b1    |  -0.0060| 0.1050|   -0.2130|     0.2000|
## |X1_b2    |  -0.1480| 0.1000|   -0.3450|     0.0470|
## |X0_b2    |  -0.0750| 0.1000|   -0.2720|     0.1210|
## |X1_b_1_2 |   0.2030| 0.1110|   -0.0170|     0.4200|
## |X0_b_1_2 |   0.2620| 0.1110|    0.0440|     0.4770|
## 
## 
## *************** REGRESSION PATHS (MC) ***************
## 
## 
## |Path            |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:---------------|:-----|--------:|------:|---------:|----------:|
## |Ydiff ~ M1diff  |b1    |  -0.0360| 0.0930|   -0.2178|     0.1460|
## |Ydiff ~ M1avg   |d1    |  -0.0617| 0.0914|   -0.2433|     0.1203|
## |Ydiff ~ M2diff  |b2    |  -0.1123| 0.0911|   -0.2890|     0.0662|
## |Ydiff ~ M2avg   |d2    |  -0.0733| 0.0835|   -0.2367|     0.0913|
## |M2diff ~ M1diff |b_1_2 |   0.2333| 0.1002|    0.0358|     0.4305|
## |M2diff ~ M1avg  |d_1_2 |  -0.0578| 0.0943|   -0.2440|     0.1290|
## 
## 
## *************** INTERCEPTS (MC) ***************
## 
## 
## |Intercept |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:---------|:-----|--------:|------:|---------:|----------:|
## |Ydiff~1   |cp    |   0.0160| 0.0162|   -0.0161|     0.0479|
## |M1diff~1  |a1    |  -0.0271| 0.0176|   -0.0618|     0.0073|
## |M2diff~1  |a2    |   0.0208| 0.0177|   -0.0134|     0.0562|
## |M1avg~1   |      |  -0.0000| 0.0186|   -0.0366|     0.0362|
## |M2avg~1   |      |   0.0000| 0.0202|   -0.0396|     0.0392|
## 
## 
## *************** VARIANCES (MC) ***************
## 
## 
## |Variance       |Label | Estimate|     SE| 2.5%CI.Lo| 97.5%CI.Up|
## |:--------------|:-----|--------:|------:|---------:|----------:|
## |Ydiff~~Ydiff   |      |   0.0256| 0.0036|    0.0186|     0.0327|
## |M2diff~~M2diff |      |   0.0305| 0.0043|    0.0220|     0.0389|
## |M1diff~~M1diff |      |   0.0308| 0.0044|    0.0222|     0.0394|
## |M1avg~~M1avg   |      |   0.0339| 0.0048|    0.0244|     0.0433|
## |M2avg~~M2avg   |      |   0.0407| 0.0058|    0.0293|     0.0519|
## 
## 
## *************** STANDARDIZED (MC) ***************
## 
## 
## |Parameter      | Estimate|     SE|          R|    2.5%|  97.5%|
## |:--------------|--------:|------:|----------:|-------:|------:|
## |cp             |   0.0983| 0.0989| 20000.0000| -0.0974| 0.2916|
## |b1             |  -0.0388| 0.0983| 20000.0000| -0.2299| 0.1548|
## |d1             |  -0.0697| 0.1012| 20000.0000| -0.2673| 0.1335|
## |b2             |  -0.1239| 0.0988| 20000.0000| -0.3132| 0.0726|
## |d2             |  -0.0908| 0.1010| 20000.0000| -0.2852| 0.1108|
## |a1             |  -0.1546| 0.1020| 20000.0000| -0.3591| 0.0415|
## |a2             |   0.1159| 0.0987| 20000.0000| -0.0757| 0.3112|
## |b_1_2          |   0.2278| 0.0946| 20000.0000|  0.0346| 0.4082|
## |d_1_2          |  -0.0592| 0.0956| 20000.0000| -0.2468| 0.1299|
## |Ydiff~~Ydiff   |   0.9656| 0.0419| 20000.0000|  0.8320| 0.9891|
## |M2diff~~M2diff |   0.9446| 0.0461| 20000.0000|  0.8186| 0.9930|
## |M1diff~~M1diff |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M1avg~~M1avg   |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M1avg~~M2avg   |   0.2898| 0.0938| 20000.0000|  0.0944| 0.4651|
## |M2avg~~M2avg   |   1.0000| 0.0000| 20000.0000|  1.0000| 1.0000|
## |M1avg~1        |  -0.0000| 0.1020| 20000.0000| -0.2020| 0.2000|
## |M2avg~1        |   0.0000| 0.1012| 20000.0000| -0.1985| 0.1984|
## |indirect_1     |   0.0060| 0.0187| 20000.0000| -0.0302| 0.0485|
## |indirect_2     |  -0.0144| 0.0192| 20000.0000| -0.0611| 0.0147|
## |indirect_1_2   |   0.0044| 0.0056| 20000.0000| -0.0032| 0.0189|
## |total_indirect |  -0.0040| 0.0269| 20000.0000| -0.0605| 0.0493|
## |total_effect   |   0.0943| 0.0991| 20000.0000| -0.1023| 0.2878|
printGM(result2)
## 
## Outcome Difference Model (Ydiff):
##  Ydiff ~ cp*1 + b1*M1diff + d1*M1avg + b2*M2diff + d2*M2avg 
## 
## Mediator Difference Model (Chained Mediator - M1diff):
## M1diff ~ a1*1 
## 
## Mediator Difference Model (Other Mediators):
## M2diff ~ a2*1 + b_1_2*M1diff + d_1_2*M1avg 
## 
## Indirect Effects:
## indirect_1 := a1 * b1
## indirect_2 := a2 * b2
## indirect_1_2 := a1 * b_1_2 * b2 
## 
## Total Indirect Effect:
##  total_indirect := indirect_1 + indirect_2 + indirect_1_2 
## 
## Total Effect:
##  total_effect := cp + total_indirect

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.