
Package ‘unmarked’
January 9, 2024

Version 1.4.1

Date 2024-01-08

Type Package

Title Models for Data from Unmarked Animals

Depends R (>= 4.0)

Imports graphics, lattice, lme4, MASS, Matrix, methods, parallel, Rcpp
(>= 0.8.0), stats, TMB (>= 1.7.18), utils

Suggests pbapply, knitr, rmarkdown, raster, shiny, testthat, terra

Description
Fits hierarchical models of animal abundance and occurrence to data collected using survey meth-
ods such as point counts, site occupancy sampling, distance sampling, removal sampling, and dou-
ble observer sampling. Parameters governing the state and observation processes can be mod-
eled as functions of covariates. References: Kellner et al. (2023) <doi:10.1111/2041-
210X.14123>, Fiske and Chandler (2011) <doi:10.18637/jss.v043.i10>.

License GPL (>= 3)

LazyLoad yes

LazyData yes

Collate 'classes.R' 'unmarkedEstimate.R' 'mapInfo.R' 'unmarkedFrame.R'
'unmarkedFit.R' 'utils.R' 'getDesign.R' 'colext.R' 'distsamp.R'
'multinomPois.R' 'occu.R' 'occuRN.R' 'occuMulti.R' 'pcount.R'
'gmultmix.R' 'pcountOpen.R' 'gdistsamp.R' 'unmarkedFitList.R'
'unmarkedLinComb.R' 'ranef.R' 'boot.R' 'occuFP.R' 'gpcount.R'
'occuPEN.R' 'pcount.spHDS.R' 'occuMS.R' 'occuTTD.R'
'distsampOpen.R' 'multmixOpen.R' 'unmarkedCrossVal.R' 'piFun.R'
'vif.R' 'makePiFun.R' 'posteriorSamples.R' 'nmixTTD.R'
'gdistremoval.R' 'plotEffects.R' 'mixedModelTools.R' 'power.R'
'simulate.R' 'predict.R' 'goccu.R' 'occuCOP.R' 'RcppExports.R'
'zzz.R'

LinkingTo Rcpp, RcppArmadillo, TMB, RcppEigen

SystemRequirements GNU make

1

https://doi.org/10.1111/2041-210X.14123
https://doi.org/10.1111/2041-210X.14123
https://doi.org/10.18637/jss.v043.i10

2 R topics documented:

URL https://groups.google.com/d/forum/unmarked,

https://rbchan.github.io/unmarked/,

https://github.com/ianfiske/unmarked,

https://github.com/rbchan/unmarked

BugReports https://github.com/rbchan/unmarked/issues

VignetteBuilder knitr

NeedsCompilation yes

Author Richard Chandler [aut],
Ken Kellner [cre, aut],
Ian Fiske [aut],
David Miller [aut],
Andy Royle [aut],
Jeff Hostetler [aut],
Rebecca Hutchinson [aut],
Adam Smith [aut],
Lea Pautrel [aut],
Marc Kery [ctb],
Mike Meredith [ctb],
Auriel Fournier [ctb],
Ariel Muldoon [ctb],
Chris Baker [ctb]

Maintainer Ken Kellner <contact@kenkellner.com>

Repository CRAN

Date/Publication 2024-01-09 10:20:02 UTC

R topics documented:
unmarked-package . 4
backTransform-methods . 8
birds . 9
coef-methods . 10
colext . 11
computeMPLElambda . 14
confint-methods . 15
crossbill . 16
crossVal . 18
cruz . 20
csvToUMF . 21
detFuns . 22
distsamp . 24
distsampOpen . 27
fitList . 31
fitted-methods . 32
formatDistData . 33

https://groups.google.com/d/forum/unmarked
https://rbchan.github.io/unmarked/
https://github.com/ianfiske/unmarked
https://github.com/rbchan/unmarked
https://github.com/rbchan/unmarked/issues

R topics documented: 3

formatMult . 35
formatWideLong . 36
frogs . 37
gdistremoval . 38
gdistsamp . 40
getB-methods . 42
getFP-methods . 43
getP-methods . 43
gf . 44
gmultmix . 44
goccu . 47
gpcount . 49
imputeMissing . 52
issj . 53
jay . 54
lambda2psi . 55
linearComb-methods . 56
linetran . 57
makePiFuns . 58
mallard . 60
masspcru . 61
MesoCarnivores . 62
modSel . 63
multinomPois . 64
multmixOpen . 66
nmixTTD . 70
nonparboot-methods . 73
occu . 74
occuCOP . 76
occuFP . 81
occuMS . 84
occuMulti . 92
occuPEN . 97
occuPEN_CV . 100
occuRN . 102
occuTTD . 104
optimizePenalty-methods . 108
ovendata . 109
parboot . 110
pcount . 112
pcount.spHDS . 114
pcountOpen . 116
piFuns . 120
plotEffects . 121
pointtran . 123
posteriorSamples . 124
powerAnalysis . 125
predict-methods . 127

4 unmarked-package

randomTerms . 128
ranef-methods . 129
SE-methods . 131
shinyPower . 132
sight2perpdist . 132
sigma . 133
simulate-methods . 134
SSE . 136
Switzerland . 137
unmarkedEstimate-class . 138
unmarkedEstimateList-class . 139
unmarkedFit-class . 139
unmarkedFitList-class . 142
unmarkedFrame . 143
unmarkedFrame-class . 145
unmarkedFrameDS . 147
unmarkedFrameDSO . 149
unmarkedFrameGDR . 151
unmarkedFrameMMO . 153
unmarkedFrameMPois . 155
unmarkedFrameOccu . 157
unmarkedFrameOccuCOP . 158
unmarkedFrameOccuFP . 160
unmarkedFrameOccuMS . 162
unmarkedFrameOccuMulti . 164
unmarkedFrameOccuTTD . 165
unmarkedFramePCO . 167
unmarkedFramePCount . 169
unmarkedMultFrame . 171
unmarkedPower-methods . 174
unmarkedPowerList . 175
unmarkedRanef-class . 177
vcov-methods . 178
vif . 178
[-methods . 179

Index 181

unmarked-package Models for Data from Unmarked Animals

Description

Fits hierarchical models of animal occurrence and abundance to data collected on species that may
be detected imperfectly. Models include single- and multi-season site occupancy models, binomial
N-mixture models, and multinomial N-mixture models. The data can arise from survey methods
such as occurrence sampling, temporally replicated counts, removal sampling, double observer
sampling, and distance sampling. Parameters governing the state and observation processes can be

unmarked-package 5

modeled as functions of covariates. General treatment of these models can be found in MacKenzie
et al. (2006) and Royle and Dorazio (2008). The primary reference for the package is Fiske and
Chandler (2011).

Details

Overview of Model-fitting Functions:
occu fits occurrence models with no linkage between abundance and detection (MacKenzie et al.
2002).

occuRN fits abundance models to presence/absence data by exploiting the link between detection
probability and abundance (Royle and Nichols 2003).

occuFP fits occupancy models to data characterized by false negatives and false positive detections
(e.g., Royle and Link [2006] and Miller et al. [2011]).

occuMulti fits multi-species occupancy model of Rota et al. [2016].

colext fits the mutli-season occupancy model of MacKenzie et al. (2003).

pcount fits N-mixture models (aka binomial mixture models) to repeated count data (Royle 2004a,
Kery et al 2005).

distsamp fits the distance sampling model of Royle et al. (2004) to distance data recorded in
discrete intervals.

gdistsamp fits the generalized distance sampling model described by Chandler et al. (2011) to
distance data recorded in discrete intervals.

gpcount fits the generalized N-mixture model described by Chandler et al. (2011) to repeated count
data collected using the robust design.

multinomPois fits the multinomial-Poisson model of Royle (2004b) to data collected using meth-
ods such as removal sampling or double observer sampling.

gmultmix fits a generalized form of the multinomial-mixture model of Royle (2004b) that allows
for estimating availability and detection probability.

pcountOpen fits the open population model of Dail and Madsen (2011) to repeated count data.
This is a genearlized form of the Royle (2004a) N-mixture model that includes parameters for
recruitment and apparent survival.

Data: All data are passed to unmarked’s estimation functions as a formal S4 class called an un-
markedFrame, which has child classes for each model type. This allows metadata (eg as distance
interval cut points, measurement units, etc...) to be stored with the response and covariate data. See
unmarkedFrame for a detailed description of unmarkedFrames and how to create them.

Model Specification: unmarked’s model-fitting functions allow specification of covariates for both
the state process and the detection process. For two-level hierarchical models, (eg occu, occuRN,
pcount, multinomPois, distsamp) covariates for the detection process (at the site or observation
level) and the state process (at the site level) are specified with a double right-hand sided formula,
in that order. Such a formula looks like

x1 + x2 + . . .+ xn x1 + x2 + . . .+ xn

where x1 through xn are additive covariates of the process of interest. Using two tildes in a single
formula differs from standard R convention, but it is informative about the model being fit. The
meaning of these covariates, or what they model, is full described in the help files for the individual
functions and is not the same for all functions. For models with more than two processes (eg colext,

6 unmarked-package

gmultmix, pcountOpen), single right-hand sided formulas (only one tilde) are used to model each
parameter.

Utility Functions: unmarked contains several utility functions for organizing data into the form
required by its model-fitting functions. csvToUMF converts an appropriately formated comma-
separated values (.csv) file to a list containing the components required by model-fitting functions.

Author(s)

Ian Fiske, Richard Chandler, Andy Royle, Marc Kery, David Miller, and Rebecca Hutchinson

References

Chandler, R. B., J. A. Royle, and D. I. King. 2011. Inference about density and temporary emigra-
tion in unmarked populations. Ecology 92:1429-1435.

Dail, D. and L. Madsen. 2011. Models for estimating abundance from repeated counts of an open
metapopulation. Biometrics 67:577-587.

Fiske, I. and R. B. Chandler. 2011. unmarked: An R package for fitting hierarchical models of
wildlife occurrence and abundance. Journal of Statistical Software 43:1–23.

Kery, M., Royle, J. A., and Schmid, H. 2005 Modeling avian abundance from replicated counts
using binomial mixture models. Ecological Applications 15:1450–1461.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. Langtimm.
2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:
2248–2255.

MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B. Franklin. 2003. Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84:2200–2207.

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006.
Occupancy Estimation and Modeling. Amsterdam: Academic Press.

Miller, D.A., J.D. Nichols, B.T. McClintock, E.H.C. Grant, L.L. Bailey, and L.A. Weir. 2011.
Improving occupancy estimation when two types of observational error occur: non-detection and
species misidentification. Ecology 92:1422-1428.

Rota, C.T., et al. 2016. A multi-species occupancy model for two or more interacting species.
Methods in Ecology and Evolution 7: 1164-1173.

Royle, J. A. 2004a. N-Mixture models for estimating population size from spatially replicated
counts. Biometrics 60:108–105.

Royle, J. A. 2004b. Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation 27:375–386.

Royle, J. A., D. K. Dawson, and S. Bates. 2004. Modeling abundance effects in distance sampling.
Ecology 85:1591–1597.

Royle, J. A., and R. M. Dorazio. 2006. Hierarchical models of animal abundance and occurrence.
Journal Of Agricultural Biological And Environmental Statistics 11:249–263.

Royle, J.A., and W.A. Link. 2006. Generalized site occupancy models allowing for false positive
and false negative errors. Ecology 87:835-841.

unmarked-package 7

Royle, J. A. and R. M. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic
Press.

Royle, J. A. and J. D. Nichols. 2003. Estimating Abundance from Repeated Presence-Absence
Data or Point Counts. Ecology, 84:777–790.

Sillett, S. and Chandler, R.B. and Royle, J.A. and Kery, M. and Morrison, S.A. In Press. Hierar-
chical distance sampling models to estimate population size and habitat-specific abundance of an
island endemic. Ecological Applications

Examples

An example site-occupancy analysis

Simulate occupancy data
set.seed(344)
nSites <- 100
nReps <- 5
covariates <- data.frame(veght=rnorm(nSites),

habitat=factor(c(rep('A', 50), rep('B', 50))))

psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)

y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {

y[i,] <- rbinom(nReps, 1, z[i]*p[i])
}

Organize data and look at it
umf <- unmarkedFrameOccu(y = y, siteCovs = covariates)
head(umf)
summary(umf)

Fit some models
fm1 <- occu(~1 ~1, umf)
fm2 <- occu(~veght+habitat ~veght+habitat, umf)
fm3 <- occu(~veght ~veght+habitat, umf)

Model selection
fms <- fitList(m1=fm1, m2=fm2, m3=fm3)
modSel(fms)

Empirical Bayes estimates of the number of sites occupied
sum(bup(ranef(fm3), stat="mode")) # Sum of posterior modes
sum(z) # Actual

8 backTransform-methods

Model-averaged prediction and plots

psi in each habitat type
newdata1 <- data.frame(habitat=c('A', 'B'), veght=0)
Epsi1 <- predict(fms, type="state", newdata=newdata1)
with(Epsi1, {

plot(1:2, Predicted, xaxt="n", xlim=c(0.5, 2.5), ylim=c(0, 0.5),
xlab="Habitat",
ylab=expression(paste("Probability of occurrence (", psi, ")")),
cex.lab=1.2,
pch=16, cex=1.5)

axis(1, 1:2, c('A', 'B'))
arrows(1:2, Predicted-SE, 1:2, Predicted+SE, angle=90, code=3, length=0.05)
})

psi and p as functions of vegetation height
newdata2 <- data.frame(habitat=factor('A', levels=c('A','B')),

veght=seq(-2, 2, length=50))
Epsi2 <- predict(fms, type="state", newdata=newdata2, appendData=TRUE)
Ep <- predict(fms, type="det", newdata=newdata2, appendData=TRUE)

op <- par(mfrow=c(2, 1), mai=c(0.9, 0.8, 0.2, 0.2))
plot(Predicted~veght, Epsi2, type="l", lwd=2, ylim=c(0,1),

xlab="Vegetation height (standardized)",
ylab=expression(paste("Probability of occurrence (", psi, ")")))
lines(lower ~ veght, Epsi2, col=gray(0.7))
lines(upper ~ veght, Epsi2, col=gray(0.7))

plot(Predicted~veght, Ep, type="l", lwd=2, ylim=c(0,1),
xlab="Vegetation height (standardized)",
ylab=expression(paste("Detection probability (", italic(p), ")")))

lines(lower~veght, Ep, col=gray(0.7))
lines(upper~veght, Ep, col=gray(0.7))
par(op)

backTransform-methods Methods for Function backTransform in Package ‘unmarked’

Description

Methods for function backTransform in Package ‘unmarked’. This converts from link-scale to
original-scale

Usage

S4 method for signature 'unmarkedFit'
backTransform(obj, type)

birds 9

S4 method for signature 'unmarkedEstimate'
backTransform(obj)

Arguments

obj Object of appropriate S4 class

type one of names(obj), eg ’state’ or ’det’

Methods

obj = "unmarkedEstimate" Typically done internally

obj = "unmarkedFit" Back-transform a parameter from a fitted model. Only possible if no co-
variates are present. Must specify argument type as one of the values returned by names(obj).

obj = "unmarkedLinComb" Back-transform a predicted value created by linearComb. This is
done internally by predict but can be done explicitly by user.

Examples

Not run:

data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)

(fm <- pcount(~ 1 ~ forest, mallardUMF)) # Fit a model
backTransform(fm, type="det") # This works because there are no detection covariates
#backTransform(fm, type="state") # This doesn't work because covariates are present
lc <- linearComb(fm, c(1, 0), type="state") # Estimate abundance on the log scale when forest=0
backTransform(lc) # Abundance on the original scale

End(Not run)

birds BBS Point Count and Occurrence Data from 2 Bird Species

Description

Data frames for 2 species from the breeding bird survey (BBS). Each data frame has a row for each
site and columns for each sampling event. There is a point count and occurrence–designated by
.bin– version for each species.

Usage

data(birds)

10 coef-methods

Format

catbird A data frame of point count observations for the catbird.

catbird.bin A data frame of occurrence observations for the catbird.

woodthrush A data frame of point count observations for the wood thrush.

woodthrush.bin A data frame of point count observations for the wood thrush.

Source

Royle J. N-mixture models for estimating population size from spatially replicated counts. Biomet-
rics. 2004. 60(1):108–115.

Examples

data(birds)

coef-methods Methods for Function coef in Package ‘unmarked’

Description

Extract coefficients

Usage

S4 method for signature 'unmarkedFit'
coef(object, type, altNames = TRUE, fixedOnly=TRUE)
S4 method for signature 'unmarkedEstimate'
coef(object, altNames = TRUE, fixedOnly=TRUE, ...)
S4 method for signature 'linCombOrBackTrans'
coef(object)

Arguments

object Object of appropriate S4 class

type Either ’state’ or ’det’

altNames Return specific names for parameter estimates?

fixedOnly Return only fixed effect parameters?

... Further arguments. Not currently used

Value

A named numeric vector of parameter estimates.

colext 11

Methods

object = "linCombOrBackTrans" Object from linearComb

object = "unmarkedEstimate" unmarkedEstimate object

object = "unmarkedFit" Fitted model

colext Fit the dynamic occupancy model of MacKenzie et. al (2003)

Description

Estimate parameters of the colonization-extinction model, including covariate-dependent rates and
detection process.

Usage

colext(psiformula= ~1, gammaformula = ~ 1, epsilonformula = ~ 1,
pformula = ~ 1, data, starts, method="BFGS", se=TRUE, ...)

Arguments

psiformula Right-hand sided formula for the initial probability of occupancy at each site.

gammaformula Right-hand sided formula for colonization probability.

epsilonformula Right-hand sided formula for extinction probability.

pformula Right-hand sided formula for detection probability.

data unmarkedMultFrame object that supplies the data (see unmarkedMultFrame).

starts optionally, initial values for parameters in the optimization.

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

... Additional arguments to optim, such as lower and upper bounds

Details

This function fits the colonization-extinction model of MacKenzie et al (2003). The colonization
and extinction rates can be modeled with covariates that vary yearly at each site using a logit link.
These covariates are supplied by special unmarkedMultFrame yearlySiteCovs slot. These param-
eters are specified using the gammaformula and epsilonformula arguments. The initial probability
of occupancy is modeled by covariates specified in the psiformula.

The conditional detection rate can also be modeled as a function of covariates that vary at the
secondary sampling period (ie., repeat visits). These covariates are specified by the first part of the
formula argument and the data is supplied via the usual obsCovs slot.

The projected and smoothed trajectories (Weir et al 2009) can be obtained from the smoothed.mean
and projected.mean slots (see examples).

12 colext

Value

unmarkedFitColExt object describing model fit.

References

MacKenzie, D.I. et al. (2002) Estimating Site Occupancy Rates When Detection Probabilities Are
Less Than One. Ecology, 83(8), 2248-2255.

MacKenzie, D. I., J. D. Nichols, J. E. Hines, M. G. Knutson, and A. B. Franklin. 2003. Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84:2200–2207.

MacKenzie, D. I. et al. (2006) Occupancy Estimation and Modeling.Amsterdam: Academic Press.

Weir L. A., Fiske I. J., Royle J. (2009) Trends in Anuran Occupancy from Northeastern States of
the North American Amphibian Monitoring Program. Herpetological Conservation and Biology.
4(3):389-402.

See Also

nonparboot, unmarkedMultFrame, and formatMult

Examples

Fake data
R <- 4 # number of sites
J <- 3 # number of secondary sampling occasions
T <- 2 # number of primary periods

y <- matrix(c(
1,1,0, 0,0,0,
0,0,0, 0,0,0,
1,1,1, 1,1,0,
1,0,1, 0,0,1), nrow=R, ncol=J*T, byrow=TRUE)

y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

yearly.site.covs <- list(
year = matrix(c(

'year1', 'year2',
'year1', 'year2',
'year1', 'year2',
'year1', 'year2'), nrow=R, ncol=T, byrow=TRUE)
)

yearly.site.covs

obs.covs <- list(
x4 = matrix(c(

-1,0,1, -1,1,1,
-2,0,0, 0,0,2,

colext 13

-3,1,0, 1,1,2,
0,0,0, 0,1,-1), nrow=R, ncol=J*T, byrow=TRUE),

x5 = matrix(c(
'a','b','c', 'a','b','c',
'd','b','a', 'd','b','a',
'a','a','c', 'd','b','a',
'a','b','a', 'd','b','a'), nrow=R, ncol=J*T, byrow=TRUE))

obs.covs

umf <- unmarkedMultFrame(y=y, siteCovs=site.covs,
yearlySiteCovs=yearly.site.covs, obsCovs=obs.covs,
numPrimary=2) # organize data

umf # look at data
summary(umf) # summarize
fm <- colext(~1, ~1, ~1, ~1, umf) # fit a model
fm

Not run:
Real data
data(frogs)
umf <- formatMult(masspcru)
obsCovs(umf) <- scale(obsCovs(umf))

Use 1/4 of data just for run speed in example
umf <- umf[which((1:numSites(umf)) %% 4 == 0),]

constant transition rates
(fm <- colext(psiformula = ~ 1,
gammaformula = ~ 1,
epsilonformula = ~ 1,
pformula = ~ JulianDate + I(JulianDate^2), umf, control = list(trace=1, maxit=1e4)))

get the trajectory estimates
smoothed(fm)
projected(fm)

Empirical Bayes estimates of number of sites occupied in each year
re <- ranef(fm)
modes <- colSums(bup(re, stat="mode"))
plot(1:7, modes, xlab="Year", ylab="Sites occupied", ylim=c(0, 70))

Find bootstrap standard errors for smoothed trajectory
fm <- nonparboot(fm, B = 100) # This takes a while!
fm@smoothed.mean.bsse

try yearly transition rates
yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7, numSites(umf))))
(fm.yearly <- colext(psiformula = ~ 1,
gammaformula = ~ year,
epsilonformula = ~ year,
pformula = ~ JulianDate + I(JulianDate^2), umf,

14 computeMPLElambda

control = list(trace=1, maxit=1e4)))

End(Not run)

computeMPLElambda Compute the penalty weight for the MPLE penalized likelihood
method

Description

This function computes the weight for the MPLE penalty of Moreno & Lele (2010).

Usage

computeMPLElambda(formula, data, knownOcc=numeric(0), starts,
method="BFGS",engine=c("C", "R"))

Arguments

formula Double right-hand side formula describing covariates of detection and occu-
pancy in that order.

data An unmarkedFrameOccu object

knownOcc Vector of sites that are known to be occupied. These should be supplied as row
numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a
priori.

starts Vector of parameter starting values.

method Optimization method used by optim.

engine Either "C" or "R" to use fast C++ code or native R code during the optimization.

Details

See occuPEN for details and examples.

Value

The computed lambda.

Author(s)

Rebecca A. Hutchinson

References

Moreno, M. and S. R. Lele. 2010. Improved estimation of site occupancy using penalized likeli-
hood. Ecology 91: 341-346.

confint-methods 15

See Also

unmarked, unmarkedFrameOccu, occu, occuPEN, occuPEN_CV, nonparboot

confint-methods Methods for Function confint in Package ‘unmarked’

Description

Methods for function confint in Package ‘unmarked’

Usage

S4 method for signature 'unmarkedBackTrans'
confint(object, parm, level)
S4 method for signature 'unmarkedEstimate'
confint(object, parm, level)
S4 method for signature 'unmarkedLinComb'
confint(object, parm, level)
S4 method for signature 'unmarkedFit'
confint(object, parm, level, type, method)

Arguments

object Object of appropriate S4 class

parm Name of parameter(s) of interest

level Level of confidence

type Either "state" or "det"

method Either "normal" or "profile"

Value

A vector of lower and upper confidence intervals. These are asymtotic unless method=’profile’ is
used on unmarkedFit objects in which case they are profile likelihood intervals.

See Also

unmarkedFit-class

16 crossbill

crossbill Detection/non-detection data on the European crossbill (Loxia curvi-
rostra)

Description

267 1-kmsq quadrats were surveyed 3 times per year during 1999-2007.

Usage

data(crossbill)

Format

A data frame with 267 observations on the following 58 variables.

id Plot ID

ele Elevation

forest Percent forest cover

surveys a numeric vector

det991 Detection data for 1999, survey 1

det992 Detection data for 1999, survey 2

det993 Detection data for 1999, survey 3

det001 Detection data for 2000, survey 1

det002 a numeric vector

det003 a numeric vector

det011 a numeric vector

det012 a numeric vector

det013 a numeric vector

det021 a numeric vector

det022 a numeric vector

det023 a numeric vector

det031 a numeric vector

det032 a numeric vector

det033 a numeric vector

det041 a numeric vector

det042 a numeric vector

det043 a numeric vector

det051 a numeric vector

det052 a numeric vector

crossbill 17

det053 a numeric vector

det061 a numeric vector

det062 a numeric vector

det063 Detection data for 2006, survey 3

det071 Detection data for 2007, survey 1

det072 Detection data for 2007, survey 2

det073 Detection data for 2007, survey 3

date991 Day of the season for 1999, survey 1

date992 Day of the season for 1999, survey 2

date993 Day of the season for 1999, survey 3

date001 Day of the season for 2000, survey 1

date002 a numeric vector

date003 a numeric vector

date011 a numeric vector

date012 a numeric vector

date013 a numeric vector

date021 a numeric vector

date022 a numeric vector

date023 a numeric vector

date031 a numeric vector

date032 a numeric vector

date033 a numeric vector

date041 a numeric vector

date042 a numeric vector

date043 a numeric vector

date051 a numeric vector

date052 a numeric vector

date053 a numeric vector

date061 a numeric vector

date062 a numeric vector

date063 a numeric vector

date071 a numeric vector

date072 a numeric vector

date073 Day of the season for 2007, survey 3

Source

Schmid, H. N. Zbinden, and V. Keller. 2004. Uberwachung der Bestandsentwicklung haufiger
Brutvogel in der Schweiz, Swiss Ornithological Institute Sempach Switzerland

18 crossVal

See Also

Switzerland for corresponding covariate data defined for all 1-kmsq pixels in Switzerland. Useful
for making species distribution maps.

Examples

data(crossbill)
str(crossbill)

crossVal Cross-validation methods for fitted unmarked models and fit lists

Description

Test predictive accuracy of fitted models using several cross-validation approaches. The dataset is
divided by site only into folds or testing and training datasets (i.e., encounter histories within sites
are never split up).

Usage

S4 method for signature 'unmarkedFit'
crossVal(
object, method=c("Kfold","holdout","leaveOneOut"),
folds=10, holdoutPct=0.25, statistic=RMSE_MAE, parallel=FALSE, ncores, ...)

S4 method for signature 'unmarkedFitList'
crossVal(
object, method=c("Kfold","holdout","leaveOneOut"),
folds=10, holdoutPct=0.25, statistic=RMSE_MAE, parallel=FALSE, ncores,
sort = c("none", "increasing", "decreasing"), ...)

Arguments

object A fitted model inheriting class unmarkedFit or a list of fitted models with class
unmarkedFitList

method Cross validation method to use as string. Valid options are "Kfold", "holdout",
or "leaveOneOut"

folds Number of folds to use for k-fold cross validation

holdoutPct Proportion of dataset (value between 0-1) to use as the "holdout" or "test" set,
for the holdout method

statistic Function that calculates statistics for each fold. The function must take an
unmarkedFit object as the first argument and return a named numeric vector
with statistic value(s). The default function RMSE_MAE returns root-mean-square
error and mean absolute error. See unmarked:::RMSE_MAE for an example of
correct statistic function structure.

crossVal 19

parallel If TRUE, run folds in parallel. This may speed up cross-validation if the un-
marked model takes a long time to fit or you have a large number of sites and
are using leave-one-out cross-validation.

ncores Number of parallel cores to use.

sort If doing cross-validation on a fitList, you can optionally sort the resulting
table(s) of statistic values for each model.

... Other arguments passed to the statistic function.

Value

unmarkedCrossVal or unmarkedCrossValList object containing calculated statistic values for
each fold.

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

fitList, unmarkedFit

Examples

Not run:
#Get data
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)))
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF)))

#Fit occupancy model
fm <- occu(~ obsvar1 ~ 1, pferUMF)

#k-fold cross validation with 10 folds
(kfold = crossVal(fm, method="Kfold", folds=10))

#holdout method with 25
(holdout = crossVal(fm,method='holdout', holdoutPct=0.25))

#Leave-one-out method
(leave = crossVal(fm, method='leaveOneOut'))

#Fit a second model and combine into a fitList
fm2 <- occu(~1 ~1, pferUMF)
fl <- fitList(fm2,fm)

#Cross-validation for all fits in fitList using holdout method
(cvlist <- crossVal(fl, method='holdout'))

20 cruz

End(Not run)

cruz Landscape data for Santa Cruz Island

Description

Spatially-referenced elevation, forest cover, and vegetation data for Santa Cruz Island.

Usage

data(cruz)

Format

A data frame with 2787 observations on the following 5 variables.

x Easting (meters)

y Northing (meters)

elevation a numeric vector, FEET (multiply by 0.3048 to convert to meters)

forest a numeric vector, proportion cover

chaparral a numeric vector, proportion cover

Details

The resolution is 300x300 meters.

The Coordinate system is EPSG number 26911

NAD_1983_UTM_Zone_11N Projection: Transverse_Mercator False_Easting: 500000.000000 False_Northing:
0.000000 Central_Meridian: -117.000000 Scale_Factor: 0.999600 Latitude_Of_Origin: 0.000000
Linear Unit: Meter GCS_North_American_1983 Datum: D_North_American_1983

Source

Brian Cohen of the Nature Conservancy helped prepare the data

References

Sillett, S. and Chandler, R.B. and Royle, J.A. and Kery, M. and Morrison, S.A. In Press. Hierar-
chical distance sampling models to estimate population size and habitat-specific abundance of an
island endemic. Ecological Applications

csvToUMF 21

Examples

Not run:
library(lattice)
data(cruz)
str(cruz)

levelplot(elevation ~ x + y, cruz, aspect="iso",
col.regions=terrain.colors(100))

if(require(raster)) {
elev <- rasterFromXYZ(cruz[,1:3],

crs="+proj=utm +zone=11 +ellps=GRS80 +datum=NAD83 +units=m +no_defs")
elev
plot(elev)
}

End(Not run)

csvToUMF Convert .CSV File to an unmarkedFrame

Description

This function converts an appropriatedly formated comma-separated values file (.csv) to a format
usable by unmarked’s fitting functions (see Details).

Usage

csvToUMF(filename, long=FALSE, type, species, ...)

Arguments

filename string describing filename of file to read in

long FALSE if file is in long format or TRUE if file is in long format (see Details)

species if data is in long format with multiple species, then this can specify a particular
species to extract if there is a column named "species".

type specific type of unmarkedFrame.

... further arguments to be passed to the unmarkedFrame constructor.

22 detFuns

Details

This function provides a quick way to take a .csv file with headers named as described below and
provides the data required and returns of data in the format required by the model-fitting functions
in unmarked. The .csv file can be in one of 2 formats: long or wide. See the first 2 lines of the
examples for what these formats look like.

The .csv file is formatted as follows:

• col 1 is site labels.

• if data is in long format, col 2 is date of observation.

• next J columns are the observations (y) - counts or 0/1’s.

• next is a series of columns for the site variables (one column per variable). The column header
is the variable name.

• next is a series of columns for the observation-level variables. These are in sets of J columns
for each variable, e.g., var1-1 var1-2 var1-3 var2-1 var2-2 var2-3, etc. The column header of
the first variable in each group must indicate the variable name.

Value

an unmarkedFrame object

Author(s)

Ian Fiske <ianfiske@gmail.com>

Examples

examine a correctly formatted long .csv
head(read.csv(system.file("csv","frog2001pcru.csv", package="unmarked")))

examine a correctly formatted wide .csv
head(read.csv(system.file("csv","widewt.csv", package="unmarked")))

convert them!
dat1 <- csvToUMF(system.file("csv","frog2001pcru.csv", package="unmarked"),

long = TRUE, type = "unmarkedFrameOccu")
dat2 <- csvToUMF(system.file("csv","frog2001pfer.csv", package="unmarked"),

long = TRUE, type = "unmarkedFrameOccu")
dat3 <- csvToUMF(system.file("csv","widewt.csv", package="unmarked"),

long = FALSE, type = "unmarkedFrameOccu")

detFuns Distance-sampling detection functions and associated density func-
tions

detFuns 23

Description

These functions represent the currently available detection functions used for modeling line and
point transect data with distsamp. Detection functions begin with "g", and density functions
begin with a "d".

Usage

gxhn(x, sigma)
gxexp(x, rate)
gxhaz(x, shape, scale)

dxhn(x, sigma)
dxexp(x, rate)
dxhaz(x, shape, scale)
drhn(r, sigma)
drexp(r, rate)
drhaz(r, shape, scale)

Arguments

x Perpendicular distance

r Radial distance

sigma Shape parameter of half-normal detection function

rate Shape parameter of negative-exponential detection function

shape Shape parameter of hazard-rate detection function

scale Scale parameter of hazard-rate detection function

See Also

distsamp for example of using these for plotting detection function

Examples

Detection probabilities at 25m for range of half-normal sigma values.
round(gxhn(25, 10:15), 2)

Plot negative exponential distributions
plot(function(x) gxexp(x, rate=10), 0, 50, xlab="distance",

ylab="Detection probability")
plot(function(x) gxexp(x, rate=20), 0, 50, add=TRUE, lty=2)
plot(function(x) gxexp(x, rate=30), 0, 50, add=TRUE, lty=3)

Plot half-normal probability density functions for line- and point-transects
par(mfrow=c(2, 1))
plot(function(x) dxhn(x, 20), 0, 50, xlab="distance",

ylab="Probability density", main="Line-transect")
plot(function(x) drhn(x, 20), 0, 50, xlab="distance",

ylab="Probability density", main="Point-transect")

24 distsamp

distsamp Fit the hierarchical distance sampling model of Royle et al. (2004)

Description

Fit the hierarchical distance sampling model of Royle et al. (2004) to line or point transect data
recorded in discrete distance intervals.

Usage

distsamp(formula, data, keyfun=c("halfnorm", "exp",
"hazard", "uniform"), output=c("density", "abund"),
unitsOut=c("ha", "kmsq"), starts, method="BFGS", se=TRUE,
engine=c("C", "R", "TMB"), rel.tol=0.001, ...)

Arguments

formula Double right-hand formula describing detection covariates followed by abun-
dance covariates. ~1 ~1 would be a null model.

data object of class unmarkedFrameDS, containing response matrix, covariates, dis-
tance interval cut points, survey type ("line" or "point"), transect lengths (for
survey = "line"), and units ("m" or "km") for cut points and transect lengths.
See example for set up.

keyfun One of the following detection functions: "halfnorm", "hazard", "exp", or "uni-
form." See details.

output Model either "density" or "abund"

unitsOut Units of density. Either "ha" or "kmsq" for hectares and square kilometers,
respectively.

starts Vector of starting values for parameters.

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

engine Use code written in C++ or R

rel.tol Requested relative accuracy of the integral, see integrate

... Additional arguments to optim, such as lower and upper bounds

Details

Unlike conventional distance sampling, which uses the ’conditional on detection’ likelihood formu-
lation, this model is based upon the unconditional likelihood and allows for modeling both abun-
dance and detection function parameters.

The latent transect-level abundance distribution f(N |θ) assumed to be Poisson with mean λ (but
see gdistsamp for alternatives).

distsamp 25

The detection process is modeled as multinomial: yij ∼ Multinomial(Ni, πij), where πij is the
multinomial cell probability for transect i in distance class j. These are computed based upon a
detection function g(x|σ), such as the half-normal, negative exponential, or hazard rate.

Parameters λ and σ can be vectors affected by transect-specific covariates using the log link.

Value

unmarkedFitDS object (child class of unmarkedFit-class) describing the model fit.

Note

You cannot use obsCovs.

Author(s)

Richard Chandler <rbchan@uga.edu>

References

Royle, J. A., D. K. Dawson, and S. Bates (2004) Modeling abundance effects in distance sampling.
Ecology 85, pp. 1591-1597.

Sillett, S. and Chandler, R.B. and Royle, J.A. and Kery, M. and Morrison, S.A. In Press. Hierar-
chical distance sampling models to estimate population size and habitat-specific abundance of an
island endemic. Ecological Applications

See Also

unmarkedFrameDS, unmarkedFit-class fitList, formatDistData, parboot, sight2perpdist,
detFuns, gdistsamp, ranef. Also look at vignette("distsamp").

Examples

Line transect examples

data(linetran)

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")
})

ltUMF
summary(ltUMF)
hist(ltUMF)

Half-normal detection function. Density output (log scale). No covariates.
(fm1 <- distsamp(~ 1 ~ 1, ltUMF))

Some methods to use on fitted model

26 distsamp

summary(fm1)
backTransform(fm1, type="state") # animals / ha
exp(coef(fm1, type="state", altNames=TRUE)) # same
backTransform(fm1, type="det") # half-normal SD
hist(fm1, xlab="Distance (m)") # Only works when there are no det covars
Empirical Bayes estimates of posterior distribution for N_i
plot(ranef(fm1, K=50))

Effective strip half-width
(eshw <- integrate(gxhn, 0, 20, sigma=10.9)$value)

Detection probability
eshw / 20 # 20 is strip-width

Halfnormal. Covariates affecting both density and and detection.
(fm2 <- distsamp(~area + habitat ~ habitat, ltUMF))

Hazard-rate detection function.
(fm3 <- distsamp(~ 1 ~ 1, ltUMF, keyfun="hazard"))

Plot detection function.
fmhz.shape <- exp(coef(fm3, type="det"))
fmhz.scale <- exp(coef(fm3, type="scale"))
plot(function(x) gxhaz(x, shape=fmhz.shape, scale=fmhz.scale), 0, 25,
xlab="Distance (m)", ylab="Detection probability")

Point transect examples

Analysis of the Island Scrub-jay data.
See Sillett et al. (In press)

data(issj)
str(issj)

jayumf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),
siteCovs=data.frame(scale(issj[,c("elevation","forest","chaparral")])),
dist.breaks=c(0,100,200,300), unitsIn="m", survey="point")

(fm1jay <- distsamp(~chaparral ~chaparral, jayumf))

Not run:

data(pointtran)

ptUMF <- with(pointtran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4, dc5),
siteCovs = data.frame(area, habitat),

distsampOpen 27

dist.breaks = seq(0, 25, by=5), survey = "point", unitsIn = "m")
})

Half-normal.
(fmp1 <- distsamp(~ 1 ~ 1, ptUMF))
hist(fmp1, ylim=c(0, 0.07), xlab="Distance (m)")

effective radius
sig <- exp(coef(fmp1, type="det"))
ea <- 2*pi * integrate(grhn, 0, 25, sigma=sig)$value # effective area
sqrt(ea / pi) # effective radius

detection probability
ea / (pi*25^2)

End(Not run)

distsampOpen Open population model for distance sampling data

Description

Fit the model of Dail and Madsen (2011) and Hostetler and Chandler (2015) with a distance sam-
pling observation model (Sollmann et al. 2015).

Usage

distsampOpen(lambdaformula, gammaformula, omegaformula, pformula,
data, keyfun=c("halfnorm", "exp", "hazard", "uniform"),
output=c("abund", "density"), unitsOut=c("ha", "kmsq"),
mixture=c("P", "NB", "ZIP"), K,
dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"),
fix=c("none", "gamma", "omega"), immigration=FALSE, iotaformula = ~1,
starts, method="BFGS", se=TRUE, ...)

Arguments

lambdaformula Right-hand sided formula for initial abundance

gammaformula Right-hand sided formula for recruitment rate (when dynamics is "constant",
"autoreg", or "notrend") or population growth rate (when dynamics is "trend",
"ricker", or "gompertz")

omegaformula Right-hand sided formula for apparent survival probability (when dynamics is
"constant", "autoreg", or "notrend") or equilibrium abundance (when dynamics
is "ricker" or "gompertz")

pformula A right-hand side formula describing the detection function covariates

data An object of class unmarkedFrameDSO

28 distsampOpen

keyfun One of the following detection functions: "halfnorm", "hazard", "exp", or "uni-
form"

output Model either "density" or "abund"

unitsOut Units of density. Either "ha" or "kmsq" for hectares and square kilometers,
respectively

mixture String specifying mixture: "P", "NB", or "ZIP" for the Poisson, negative bino-
mial, or zero-inflated Poisson distributions respectively

K Integer defining upper bound of discrete integration. This should be higher than
the maximum observed count and high enough that it does not affect the param-
eter estimates. However, the higher the value the slower the computation

dynamics Character string describing the type of population dynamics. "constant" indi-
cates that there is no relationship between omega and gamma. "autoreg" is
an auto-regressive model in which recruitment is modeled as gamma*N[i,t-1].
"notrend" model gamma as lambda*(1-omega) such that there is no temporal
trend. "trend" is a model for exponential growth, N[i,t] = N[i,t-1]*gamma,
where gamma in this case is finite rate of increase (normally referred to as
lambda). "ricker" and "gompertz" are models for density-dependent population
growth. "ricker" is the Ricker-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-
N[i,t-1]/omega)), where gamma is the maximum instantaneous population growth
rate (normally referred to as r) and omega is the equilibrium abundance (nor-
mally referred to as K). "gompertz" is a modified version of the Gompertz-
logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-log(N[i,t-1]+1)/log(omega+1))),
where the interpretations of gamma and omega are similar to in the Ricker model

fix If "omega", omega is fixed at 1. If "gamma", gamma is fixed at 0

immigration Logical specifying whether or not to include an immigration term (iota) in pop-
ulation dynamics

iotaformula Right-hand sided formula for average number of immigrants to a site per time
step

starts Vector of starting values

method Optimization method used by optim

se Logical specifying whether or not to compute standard errors

... Additional arguments to optim, such as lower and upper bounds

Details

These models generalize distance sampling models (Buckland et al. 2001) by relaxing the closure
assumption (Dail and Madsen 2011, Hostetler and Chandler 2015, Sollmann et al. 2015).

The models include two or three additional parameters: gamma, either the recruitment rate (births
and immigrations), the finite rate of increase, or the maximum instantaneous rate of increase;
omega, either the apparent survival rate (deaths and emigrations) or the equilibrium abundance
(carrying capacity); and iota, the number of immigrants per site and year. Estimates of population
size at each time period can be derived from these parameters, and thus so can trend estimates. Or,
trend can be estimated directly using dynamics="trend".

When immigration is set to FALSE (the default), iota is not modeled. When immigration is set to
TRUE and dynamics is set to "autoreg", the model will separately estimate birth rate (gamma) and

distsampOpen 29

number of immigrants (iota). When immigration is set to TRUE and dynamics is set to "trend",
"ricker", or "gompertz", the model will separately estimate local contributions to population growth
(gamma and omega) and number of immigrants (iota).

The latent abundance distribution, f(N |θ) can be set as a Poisson, negative binomial, or zero-
inflated Poisson random variable, depending on the setting of the mixture argument, mixture =
"P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of Ni

is λi. If Ni ∼ NB, then an additional parameter, α, describes dispersion (lower α implies higher
variance). For the ZIP distribution, the mean is λi(1−ψ), where psi is the zero-inflation parameter.

For "constant", "autoreg", or "notrend" dynamics, the latent abundance state following the ini-
tial sampling period arises from a Markovian process in which survivors are modeled as Sit ∼
Binomial(Nit−1, ωit), and recruits follow Git ∼ Poisson(γit). Alternative population dynamics
can be specified using the dynamics and immigration arguments.

λi, γit, and ιit are modeled using the the log link. pijt is modeled using the logit link. ωit is either
modeled using the logit link (for "constant", "autoreg", or "notrend" dynamics) or the log link (for
"ricker" or "gompertz" dynamics). For "trend" dynamics, ωit is not modeled.

For the distance sampling detection process, half-normal ("halfnorm"), exponential ("exp"), haz-
ard ("hazard"), and uniform ("uniform") key functions are available.

Value

An object of class unmarkedFitDSO

Warning

This function can be extremely slow, especially if there are covariates of gamma or omega. Consider
testing the timing on a small subset of the data, perhaps with se=FALSE. Finding the lowest value
of K that does not affect estimates will also help with speed.

Note

When gamma or omega are modeled using year-specific covariates, the covariate data for the final
year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be
supplied to unmarkedFrameDSO using the primaryPeriod argument.

Secondary sampling periods are optional, but can greatly improve the precision of the estimates.

Optimization may fail if the initial value of the intercept for the detection parameter (sigma) is too
small or large relative to transect width. By default, this parameter is initialized at log(average band
width). You may have to adjust this starting value.

Author(s)

Richard Chandler, Jeff Hostetler, Andy Royle, Ken Kellner

References

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L. and Thomas, L. (2001)
Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford Uni-
versity Press, Oxford, UK.

30 distsampOpen

Dail, D. and L. Madsen (2011) Models for Estimating Abundance from Repeated Counts of an
Open Metapopulation. Biometrics. 67: 577-587.

Hostetler, J. A. and R. B. Chandler (2015) Improved State-space Models for Inference about Spatial
and Temporal Variation in Abundance from Count Data. Ecology 96: 1713-1723.

Sollmann, R., Gardner, B., Chandler, R.B., Royle, J.A. and Sillett, T.S. (2015) An open-population
hierarchical distance sampling model. Ecology 96: 325-331.

See Also

distsamp, gdistsamp, unmarkedFrameDSO

Examples

Not run:

#Generate some data
set.seed(123)
lambda=4; gamma=0.5; omega=0.8; sigma=25;
M=100; T=10; J=4
y <- array(NA, c(M, J, T))
N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)
db <- c(0, 25, 50, 75, 100)

#Half-normal, line transect
g <- function(x, sig) exp(-x^2/(2*sig^2))

cp <- u <- a <- numeric(J)
L <- 1
a[1] <- L*db[2]
cp[1] <- integrate(g, db[1], db[2], sig=sigma)$value
for(j in 2:J) {

a[j] <- db[j+1] - sum(a[1:j])
cp[j] <- integrate(g, db[j], db[j+1], sig=sigma)$value

}
u <- a / sum(a)
cp <- cp / a * u
cp[j+1] <- 1-sum(cp)

for(i in 1:M) {
N[i,1] <- rpois(1, lambda)
y[i,1:J,1] <- rmultinom(1, N[i,1], cp)[1:J]

for(t in 1:(T-1)) {
S[i,t] <- rbinom(1, N[i,t], omega)
G[i,t] <- rpois(1, gamma)
N[i,t+1] <- S[i,t] + G[i,t]
y[i,1:J,t+1] <- rmultinom(1, N[i,t+1], cp)[1:J]
}

}
y <- matrix(y, M)

fitList 31

#Make a covariate
sc <- data.frame(x1 = rnorm(M))

umf <- unmarkedFrameDSO(y = y, siteCovs=sc, numPrimary=T, dist.breaks=db,
survey="line", unitsIn="m", tlength=rep(1, M))

(fit <- distsampOpen(~x1, ~1, ~1, ~1, data = umf, K=50, keyfun="halfnorm"))

#Compare to truth
cf <- coef(fit)
data.frame(model=c(exp(cf[1]), cf[2], exp(cf[3]), plogis(cf[4]), exp(cf[5])),

truth=c(lambda, 0, gamma, omega, sigma))

#Predict
head(predict(fit, type='lambda'))

#Check fit with parametric bootstrap
pb <- parboot(fit, nsims=15)
plot(pb)

Empirical Bayes estimates of abundance for each site / year
re <- ranef(fit)
plot(re, layout=c(10,5), xlim=c(-1, 10))

End(Not run)

fitList constructor of unmarkedFitList objects

Description

Organize models for model selection or model-averaged prediction.

Usage

fitList(..., fits, autoNames=c("object", "formula"))

Arguments

... Fitted models. Preferrably named.

fits An alternative way of providing the models. A (preferrably named) list of fitted
models.

autoNames Option to change the names unmarked assigns to models if you don’t name them
yourself. If autoNames="object", models in the fitList will be named based
on their R object names. If autoNames="formula", the models will instead be
named based on their formulas. This is not possible for some model types.

32 fitted-methods

Note

Two requirements exist to conduct AIC-based model-selection and model-averaging in unmarked.
First, the data objects (ie, unmarkedFrames) must be identical among fitted models. Second, the
response matrix must be identical among fitted models after missing values have been removed.
This means that if a response value was removed in one model due to missingness, it needs to be
removed from all models.

Author(s)

Richard Chandler <rbchan@uga.edu>

Examples

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
tlength = lengths, survey = "line", unitsIn = "m")
})

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp(~ 1 ~area, ltUMF)

Two methods of creating an unmarkedFitList using fitList()

Method 1
fmList <- fitList(Null=fm1, .area=fm2, area.=fm3)

Method 2. Note that the arugment name "fits" must be included in call.
models <- list(Null=fm1, .area=fm2, area.=fm3)
fmList <- fitList(fits = models)

Extract coefficients and standard errors
coef(fmList)
SE(fmList)

Model-averaged prediction
predict(fmList, type="state")

Model selection
modSel(fmList, nullmod="Null")

fitted-methods Methods for Function fitted in Package ‘unmarked’

formatDistData 33

Description

Extracted fitted values from a fitted model.

Usage

S4 method for signature 'unmarkedFit'
fitted(object, na.rm = FALSE)
S4 method for signature 'unmarkedFitColExt'
fitted(object, na.rm = FALSE)
S4 method for signature 'unmarkedFitOccu'
fitted(object, na.rm = FALSE)
S4 method for signature 'unmarkedFitOccuRN'
fitted(object, K, na.rm = FALSE)
S4 method for signature 'unmarkedFitPCount'
fitted(object, K, na.rm = FALSE)
S4 method for signature 'unmarkedFitDS'
fitted(object, na.rm = FALSE)

Arguments

object A fitted model of appropriate S4 class

K Integer specifying upper bound of integration.

na.rm Logical. Should missing values be removed from data?

Value

Returns a matrix of expected values

Methods

object = "unmarkedFit" A fitted model

object = "unmarkedFitColExt" A model fit by colext

object = "unmarkedFitOccu" A model fit by occu

object = "unmarkedFitOccuRN" A model fit by occuRN

object = "unmarkedFitPCount" A model fit by pcount

object = "unmarkedFitDS" A model fit by distsamp

formatDistData Bin distance data

Description

Convert individual-level distance data to the transect-level format required by distsamp or gdistsamp

34 formatDistData

Usage

formatDistData(distData, distCol, transectNameCol, dist.breaks,
occasionCol, effortMatrix)

Arguments

distData data.frame where each row is a detected individual. Must have at least 2 columns.
One for distances and the other for transect names.

distCol character, name of the column in distData that contains the distances. The dis-
tances should be numeric.

transectNameCol

character, column name containing transect names. The transect column should
be a factor.

dist.breaks numeric vector of distance interval cutpoints. Length must equal J+1.

occasionCol optional character. If transects were visited more than once, this can be used
to format data for gdistsamp. It is the name of the column in distData that
contains the occasion numbers. The occasion column should be a factor.

effortMatrix optional matrix of 1 and 0s that is M * T in size and will allow for the insertion
of NAs where the matrix = 0, indicating that a survey was not completed. When
not supplied a matrix of all 1s is created since it is assumed all surveys were
completed.

Details

This function creates a site (M) by distance interval (J) response matrix from a data.frame containing
the detection distances for each individual and the transect names. Alternatively, if each transect
was surveyed T times, the resulting matrix is M x JT, which is the format required by gdistsamp,
seeunmarkedFrameGDS.

Value

An M x J or M x JT matrix containing the binned distance data. Transect names will become
rownames and colnames will describe the distance intervals.

Note

It is important that the factor containing transect names includes levels for all the transects surveyed,
not just those with >=1 detection. Likewise, if transects were visited more than once, the factor
containing the occasion numbers should include levels for all occasions. See the example for how
to add levels to a factor.

See Also

distsamp, unmarkedFrame

formatMult 35

Examples

Create a data.frame containing distances of animals detected
along 4 transects.
dat <- data.frame(transect=gl(4,5, labels=letters[1:4]),

distance=rpois(20, 10))
dat

Look at your transect names.
levels(dat$transect)

Suppose that you also surveyed a transect named "e" where no animals were
detected. You must add it to the levels of dat$transect
levels(dat$transect) <- c(levels(dat$transect), "e")
levels(dat$transect)

Distance cut points defining distance intervals
cp <- c(0, 8, 10, 12, 14, 18)

Create formated response matrix
yDat <- formatDistData(dat, "distance", "transect", cp)
yDat

Now you could merge yDat with transect-level covariates and
then use unmarkedFrameDS to prepare data for distsamp

Example for data from multiple occasions

dat2 <- data.frame(distance=1:100, site=gl(5, 20),
visit=factor(rep(1:4, each=5)))

cutpt <- seq(0, 100, by=25)
y2 <- formatDistData(dat2, "distance", "site", cutpt, "visit")
umf <- unmarkedFrameGDS(y=y2, numPrimary=4, survey="point",

dist.breaks=cutpt, unitsIn="m")
Example for datda from multiple occasions with effortMatrix

dat3 <- data.frame(distance=1:100, site=gl(5, 20), visit=factor(rep(1:4, each=5)))
cutpt <- seq(0, 100, by=25)

effortMatrix <- matrix(ncol=4, nrow=5, rbinom(20,1,0.8))

y3 <- formatDistData(dat2, "distance", "site", cutpt, "visit", effortMatrix)

formatMult Create unmarkedMultFrame from Long Format Data Frame

Description

This convenience function converts multi-year data in long format to unmarkedMultFrame Object.
See Details for more information.

36 formatWideLong

Usage

formatMult(df.in)

Arguments

df.in a data.frame appropriately formatted (see Details).

Details

df.in is a data frame with columns formatted as follows:

Column 1 = year number
Column 2 = site name or number
Column 3 = julian date or chronological sample number during year
Column 4 = observations (y)
Column 5 – Final Column = covariates

Note that if the data is already in wide format, it may be easier to create an unmarkedMultFrame
object directly with a call to unmarkedMultFrame.

Value

unmarkedMultFrame object

formatWideLong Convert between wide and long data formats.

Description

Convert a data.frame between wide and long formats.

Usage

formatWide(dfin, sep = ".", obsToY, type, ...)
formatLong(dfin, species = NULL, type, ...)

Arguments

dfin A data.frame to be reformatted.

sep A seperator of column names in wide format.

obsToY Optional matrix specifying relationship between covariate column structure and
response matrix structure.

type Type of unmarkedFrame to create?

species Character name of species response column

... Further arguments to the unmarkedFrame* constructor functions

frogs 37

Details

Note that not all possible unmarkedFrame* classes have been tested with these functions. Multi-
nomial data sets (e.g., removal, double-observer, capture-recapture) are almost certainly easier to
enter directly to the constructor function and are not supported by formatLong or formatWide.

In order for these functions to work, the columns of dfin need to be in the correct order. formatLong
requires that the columns are in the following scheme:

1. site name or number.
2. date or observation number.
3. response variable (detections, counts, etc).
4. The remaining columns are observation-level covariates.

formatWide requires particular names for the columns. The column order for formatWide is

1. (optional) site name, named “site”.
2. response, named “y.1”, “y.2”, . . . , “y.J”.
3. columns of site-level covariates, each with a relevant name per column.
4. groups of columns of observation-level covariates, each group having the name form “someOb-

sCov.1”, “someObsCov.2”, . . . , “someObsCov.J”.

Value

A data.frame

See Also

csvToUMF

frogs 2001 Delaware North American Amphibian Monitoring Program
Data

Description

frogs contains NAAMP data for Pseudacris feriarum (pfer) and Pseudacris crucifer (pcru) in 2001.

Usage

data(frogs)

Format

pcru.y matrix of observed calling indices for pcru
pcru.bin matrix of detections for pcru
pcru.data array of covariates measured at the observation-level for pcru
pfer.y matrix of observed calling indices for pfer
pfer.bin matrix of detections for pfer
pfer.data array of covariates measured at the observation-level for pfer

38 gdistremoval

Details

The rows of pcru.y, pcru.bin, pfer.y, and pfer.bin correspond to sites and columns correspond to
visits to each site. The first 2 dimensions of pfer.data and pcru.data are matrices of covariates that
correspond to the observation matrices (sites× observation), with the 3rd dimension corresponding
to separate covariates.

Source

https://www.pwrc.usgs.gov/naamp/

References

Mossman MJ, Weir LA. North American Amphibian Monitoring Program (NAAMP). Amphibian
Declines: the conservation status of United States species. University of California Press, Berkeley,
California, USA. 2005:307-313.

Examples

data(frogs)
str(pcru.data)

gdistremoval Fit the combined distance and removal model of Amundson et al.
(2014).

Description

Fit the model of Amundson et al. (2014) to point count datasets containing both distance and time
of observation data. The Amundson et al. (2014) model is extended to account for temporary emi-
gration by estimating an additional availability probability if multiple counts at a site are available.
Abundance can be modeled as a Poisson, negative binomial, or Zero-inflated Poisson. Multiple
distance sampling key functions are also available.

Usage

gdistremoval(lambdaformula=~1, phiformula=~1, removalformula=~1,
distanceformula=~1, data, keyfun=c("halfnorm", "exp", "hazard", "uniform"),
output=c("abund", "density"), unitsOut=c("ha", "kmsq"), mixture=c('P', 'NB', 'ZIP'),
K, starts, method = "BFGS", se = TRUE, engine=c("C","TMB"), threads=1, ...)

Arguments

lambdaformula A right-hand side formula describing the abundance covariates

phiformula A right-hand side formula describing the availability covariates

removalformula A right-hand side formula describing removal probability covariates
distanceformula

A right-hand side formula describing the detection function covariates

gdistremoval 39

data An object of class unmarkedFrameGDR

keyfun One of the following detection functions: "halfnorm", "hazard", "exp", or "uni-
form"

output Model either "abund" or "density"

unitsOut Units of density. Either "ha" or "kmsq" for hectares and square kilometers,
respectively

mixture Either "P", "NB", or "ZIP" for the Poisson, negative binomial, and Zero-inflated
Poisson models of abundance

K An integer value specifying the upper bound used in the integration

starts A numeric vector of starting values for the model parameters

method Optimization method used by optim

se logical specifying whether or not to compute standard errors

engine Either "C" to use C++ code or "TMB" to use TMB for optimization

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled

... Additional arguments to optim, such as lower and upper bounds

Value

An object of class unmarkedFitGDR

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Amundson, C.L., Royle, J.A. and Handel, C.M., 2014. A hierarchical model combining distance
sampling and time removal to estimate detection probability during avian point counts. The Auk
131: 476-494.

See Also

unmarkedFrameGDR, gdistsamp, gmultmix

40 gdistsamp

gdistsamp Fit the generalized distance sampling model of Chandler et al. (2011).

Description

Extends the distance sampling model of Royle et al. (2004) to estimate the probability of being
available for detection. Also allows abundance to be modeled using the negative binomial distribu-
tion.

Usage

gdistsamp(lambdaformula, phiformula, pformula, data, keyfun =
c("halfnorm", "exp", "hazard", "uniform"), output = c("abund",
"density"), unitsOut = c("ha", "kmsq"), mixture = c("P", "NB", "ZIP"), K,
starts, method = "BFGS", se = TRUE, engine=c("C","R"), rel.tol=1e-4, threads=1, ...)

Arguments

lambdaformula A right-hand side formula describing the abundance covariates.

phiformula A right-hand side formula describing the availability covariates.

pformula A right-hand side formula describing the detection function covariates.

data An object of class unmarkedFrameGDS

keyfun One of the following detection functions: "halfnorm", "hazard", "exp", or "uni-
form." See details.

output Model either "density" or "abund"

unitsOut Units of density. Either "ha" or "kmsq" for hectares and square kilometers,
respectively.

mixture Either "P", "NB", or "ZIP" for the Poisson, negative binomial, or zero-inflated
Poisson models of abundance.

K An integer value specifying the upper bound used in the integration.

starts A numeric vector of starting values for the model parameters.

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

engine Either "C" to use fast C++ code or "R" to use native R code during the optimiza-
tion.

rel.tol relative accuracy for the integration of the detection function. See integrate.
You might try adjusting this if you get an error message related to the integral.
Alternatively, try providing different starting values.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

gdistsamp 41

Details

This model extends the model of Royle et al. (2004) by estimating the probability of being available
for detection φ. This effectively relaxes the assumption that g(0) = 1. In other words, inividuals at
a distance of 0 are not assumed to be detected with certainty. To estimate this additional parameter,
replicate distance sampling data must be collected at each transect. Thus the data are collected at i
= 1, 2, ..., R transects on t = 1, 2, ..., T occassions. As with the model of Royle et al. (2004), the
detections must be binned into distance classes. These data must be formatted in a matrix with R
rows, and JT columns where J is the number of distance classses. See unmarkedFrameGDS for more
information.

Value

An object of class unmarkedFitGDS.

Note

If you aren’t interested in estimating phi, but you want to use the negative binomial distribution,
simply set numPrimary=1 when formatting the data.

Note

You cannot use obsCovs, but you can use yearlySiteCovs (a confusing name since this model isn’t
for multi-year data. It’s just a hold-over from the colext methods of formatting data upon which it
is based.)

Author(s)

Richard Chandler <rbchan@uga.edu>

References

Royle, J. A., D. K. Dawson, and S. Bates. 2004. Modeling abundance effects in distance sampling.
Ecology 85:1591-1597.

Chandler, R. B, J. A. Royle, and D. I. King. 2011. Inference about density and temporary emigration
in unmarked populations. Ecology 92:1429–1435.

See Also

distsamp

Examples

Simulate some line-transect data

set.seed(36837)

R <- 50 # number of transects
T <- 5 # number of replicates

42 getB-methods

strip.width <- 50
transect.length <- 100
breaks <- seq(0, 50, by=10)

lambda <- 5 # Abundance
phi <- 0.6 # Availability
sigma <- 30 # Half-normal shape parameter

J <- length(breaks)-1
y <- array(0, c(R, J, T))
for(i in 1:R) {

M <- rpois(1, lambda) # Individuals within the 1-ha strip
for(t in 1:T) {

Distances from point
d <- runif(M, 0, strip.width)
Detection process
if(length(d)) {

cp <- phi*exp(-d^2 / (2 * sigma^2)) # half-normal w/ g(0)<1
d <- d[rbinom(length(d), 1, cp) == 1]
y[i,,t] <- table(cut(d, breaks, include.lowest=TRUE))
}

}
}

y <- matrix(y, nrow=R) # convert array to matrix

Organize data
umf <- unmarkedFrameGDS(y = y, survey="line", unitsIn="m",

dist.breaks=breaks, tlength=rep(transect.length, R), numPrimary=T)
summary(umf)

Fit the model
m1 <- gdistsamp(~1, ~1, ~1, umf, output="density", K=50)

summary(m1)

backTransform(m1, type="lambda")
backTransform(m1, type="phi")
backTransform(m1, type="det")

Not run:
Empirical Bayes estimates of abundance at each site
re <- ranef(m1)
plot(re, layout=c(10,5), xlim=c(-1, 20))

End(Not run)

getB-methods Methods for Function getB in Package ‘unmarked’

getFP-methods 43

Description

Methods for function getB in Package ‘unmarked’. These methods return a matrix of probabilities
detections were certain for occupancy models that account for false positives.

getFP-methods Methods for Function getFP in Package ‘unmarked’

Description

Methods for function getFP in Package ‘unmarked’. These methods return a matrix of false positive
detection probabilities.

getP-methods Methods for Function getP in Package ‘unmarked’

Description

Methods for function getP in Package ‘unmarked’. These methods return a matrix of the back-
transformed detection parameter (p the detection probability or λ the detection rate, depending on
the model). The matrix is of dimension MxJ, with M the number of sites and J the number of
sampling periods; or of dimension MxJT for models with multiple primary periods T.

Methods

signature(object = "unmarkedFit") A fitted model object

signature(object = "unmarkedFitDS") A fitted model object

signature(object = "unmarkedFitMPois") A fitted model object

signature(object = "unmarkedFitGMM") A fitted model object

signature(object = "unmarkedFitOccuCOP") With unmarkedFitOccuCOP the object of a model
fitted with occuCOP. Returns a matrix of λ the detection rate.

44 gmultmix

gf Green frog count index data

Description

Multinomial calling index data.

Usage

data(gf)

Format

A list with 2 components

gf.data 220 x 3 matrix of count indices

gf.obs list of covariates

References

Royle, J. Andrew, and William A. Link. 2005. A General Class of Multinomial Mixture Models for
Anuran Calling Survey Data. Ecology 86, no. 9: 2505–2512.

Examples

data(gf)
str(gf.data)
str(gf.obs)

gmultmix Generalized multinomial N-mixture model

Description

A three level hierarchical model for designs involving repeated counts that yield multinomial out-
comes. Possible data collection methods include repeated removal sampling and double observer
sampling. The three model parameters are abundance, availability, and detection probability.

Usage

gmultmix(lambdaformula, phiformula, pformula, data, mixture = c("P", "NB", "ZIP"), K,
starts, method = "BFGS", se = TRUE, engine=c("C","R"), threads=1, ...)

gmultmix 45

Arguments

lambdaformula Righthand side (RHS) formula describing abundance covariates

phiformula RHS formula describing availability covariates

pformula RHS formula describing detection covariates

data An object of class unmarkedFrameGMM

mixture Either "P", "NB", or "ZIP" for the Poisson, negative binomial, or zero-inflated
Poisson models of abundance

K The upper bound of integration

starts Starting values

method Optimization method used by optim

se Logical. Should standard errors be calculated?

engine Either "C" to use fast C++ code or "R" to use native R code during the optimiza-
tion.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

The latent transect-level super-population abundance distribution f(M |θ) can be set as a Pois-
son, negative binomial, or zero-inflated Poisson random variable, depending on the setting of the
mixture argument. mixture = "P", mixture = "NB", and mixture = "ZIP" select the Poisson, neg-
ative binomial, and zero-inflated Poisson distributions respectively. The mean of Mi is λi. If
Mi ∼ NB, then an additional parameter, α, describes dispersion (lower α implies higher vari-
ance). If Mi ∼ ZIP , then an additional zero-inflation parameter ψ is estimated.

The number of individuals available for detection at time j is a modeled as binomial: Nij ∼
Binomial(Mi, φij).

The detection process is modeled as multinomial: yit ∼Multinomial(Nit, πit), where πijt is the
multinomial cell probability for plot i at time t on occasion j.

Cell probabilities are computed via a user-defined function related to the sampling design. Alterna-
tively, the default functions removalPiFun or doublePiFun can be used for equal-interval removal
sampling or double observer sampling. Note that the function for computing cell probabilites is
specified when setting up the data using unmarkedFrameGMM.

Parameters λ, φ and p can be modeled as linear functions of covariates using the log, logit and logit
links respectively.

Value

An object of class unmarkedFitGMM.

46 gmultmix

Note

In the case where availability for detection is due to random temporary emigration, population
density at time j, D(i,j), can be estimated by N(i,j)/plotArea.

This model is also applicable to sampling designs in which the local population size is closed during
the J repeated counts, and availability is related to factors such as the probability of vocalizing. In
this case, density can be estimated by M(i)/plotArea.

If availability is a function of both temporary emigration and other processess such as song rate,
then density cannot be directly estimated, but inference about the super-population size, M(i), is
possible.

Three types of covariates can be supplied, site-level, site-by-year-level, and observation-level. These
must be formatted correctly when organizing the data with unmarkedFrameGPC

Author(s)

Richard Chandler <rbchan@uga.edu> and Andy Royle

References

Royle, J. A. (2004) Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation 27, pp. 375–386.

Chandler, R. B., J. A. Royle, and D. I. King. 2011. Inference about density and temporary emigra-
tion in unmarked populations. Ecology 92:1429-1435.

See Also

unmarkedFrameGMM for setting up the data and metadata. multinomPois for surveys where no sec-
ondary sampling periods were used. Example functions to calculate multinomial cell probabilities
are described piFuns

Examples

Simulate data using the multinomial-Poisson model with a
repeated constant-interval removal design.

n <- 100 # number of sites
T <- 4 # number of primary periods
J <- 3 # number of secondary periods

lam <- 3
phi <- 0.5
p <- 0.3

#set.seed(26)
y <- array(NA, c(n, T, J))
M <- rpois(n, lam) # Local population size
N <- matrix(NA, n, T) # Individuals available for detection

for(i in 1:n) {

goccu 47

N[i,] <- rbinom(T, M[i], phi)
y[i,,1] <- rbinom(T, N[i,], p) # Observe some
Nleft1 <- N[i,] - y[i,,1] # Remove them
y[i,,2] <- rbinom(T, Nleft1, p) # ...
Nleft2 <- Nleft1 - y[i,,2]
y[i,,3] <- rbinom(T, Nleft2, p)
}

y.ijt <- cbind(y[,1,], y[,2,], y[,3,], y[,4,])

umf1 <- unmarkedFrameGMM(y=y.ijt, numPrimary=T, type="removal")

(m1 <- gmultmix(~1, ~1, ~1, data=umf1, K=30))

backTransform(m1, type="lambda") # Individuals per plot
backTransform(m1, type="phi") # Probability of being avilable
(p <- backTransform(m1, type="det")) # Probability of detection
p <- coef(p)

Multinomial cell probabilities under removal design
c(p, (1-p) * p, (1-p)^2 * p)

Or more generally:
head(getP(m1))

Empirical Bayes estimates of super-population size
re <- ranef(m1)
plot(re, layout=c(5,5), xlim=c(-1,20), subset=site%in%1:25)

goccu Fit multi-scale occupancy models

Description

Fit multi-scale occupancy models as described in Nichols et al. (2008) to repeated presence-absence
data collected using the robust design. This model allows for inference about occupancy, availabil-
ity, and detection probability.

Usage

goccu(psiformula, phiformula, pformula, data, linkPsi = c("logit", "cloglog"),
starts, method = "BFGS", se = TRUE, ...)

Arguments

psiformula Right-hand sided formula describing occupancy covariates

48 goccu

phiformula Right-hand sided formula describing availability covariates

pformula Right-hand sided formula for detection probability covariates

data An object of class unmarkedFrameGOccu or unmarkedMultFrame

linkPsi Link function for the occupancy model. Options are "logit" for the standard
occupancy model or "cloglog" for the complimentary log-log link, which re-
lates occupancy to site-level abundance.

starts Starting values

method Optimization method used by optim

se Logical. Should standard errors be calculated?

... Additional arguments to optim, such as lower and upper bounds

Details

Primary periods could represent spatial or temporal sampling replicates. For example, you could
have several spatial sub-units within each site, where each sub-unit was then sampled repeatedly.
This is a frequent design for eDNA studies. Or, you could have multiple primary periods of sam-
pling at each site (conducted at different times within a season), each of which contains several
secondary sampling periods. In both cases the robust design structure can be used to estimate an
availability probability in addition to detection probability. See Kery and Royle (2015) 10.10 for
more details.

Value

An object of class unmarkedFitGOccu

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Kery, M., & Royle, J. A. (2015). Applied hierarchical modeling in ecology: Volume 1: Prelude and
static models. Elsevier Science.

Nichols, J. D., Bailey, L. L., O’Connell Jr, A. F., Talancy, N. W., Campbell Grant, E. H., Gilbert,
A. T., Annand E. M., Husband, T. P., & Hines, J. E. (2008). Multi-scale occupancy estimation and
modelling using multiple detection methods. Journal of Applied Ecology, 45(5), 1321-1329.

See Also

occu, colext, unmarkedMultFrame, unmarkedFrameGOccu

Examples

set.seed(123)
M <- 100
T <- 5
J <- 4

gpcount 49

psi <- 0.5
phi <- 0.3
p <- 0.4

z <- rbinom(M, 1, psi)
zmat <- matrix(z, nrow=M, ncol=T)

zz <- rbinom(M*T, 1, zmat*phi)
zz <- matrix(zz, nrow=M, ncol=T)

zzmat <- zz[,rep(1:T, each=J)]
y <- rbinom(M*T*J, 1, zzmat*p)
y <- matrix(y, M, J*T)
umf <- unmarkedMultFrame(y=y, numPrimary=T)

Not run:
mod <- goccu(psiformula = ~1, phiformula = ~1, pformula = ~1, umf)
plogis(coef(mod))

End(Not run)

gpcount Generalized binomial N-mixture model for repeated count data

Description

Fit the model of Chandler et al. (2011) to repeated count data collected using the robust design.
This model allows for inference about population size, availability, and detection probability.

Usage

gpcount(lambdaformula, phiformula, pformula, data,
mixture = c("P", "NB", "ZIP"), K, starts, method = "BFGS", se = TRUE,
engine = c("C", "R"), threads=1, ...)

Arguments

lambdaformula Right-hand sided formula describing covariates of abundance.

phiformula Right-hand sided formula describing availability covariates

pformula Right-hand sided formula for detection probability covariates

data An object of class unmarkedFrameGPC

mixture Either "P", "NB", or "ZIP" for Poisson, negative binomial, or zero-inflated Pois-
son distributions

K The maximum possible value of M, the super-population size.

starts Starting values

50 gpcount

method Optimization method used by optim

se Logical. Should standard errors be calculated?

engine Either "C" or "R" for the C++ or R versions of the likelihood. The C++ code is
faster, but harder to debug.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

The latent transect-level super-population abundance distribution f(M |θ) can be set as either a
Poisson, negative binomial, or zero-inflated Poisson random variable, depending on the setting of
the mixture argument. The expected value ofMi is λi. IfMi ∼ NB, then an additional parameter,
α, describes dispersion (lower α implies higher variance). If Mi ∼ ZIP , then an additional zero-
inflation parameter ψ is estimated.

The number of individuals available for detection at time j is a modeled as binomial: Nij ∼
Binomial(Mi, φij).

The detection process is also modeled as binomial: yikj ∼ Binomial(Nij , pikj).

Parameters λ, φ and p can be modeled as linear functions of covariates using the log, logit and logit
links respectively.

Value

An object of class unmarkedFitGPC

Note

In the case where availability for detection is due to random temporary emigration, population
density at time j, D(i,j), can be estimated by N(i,j)/plotArea.

This model is also applicable to sampling designs in which the local population size is closed during
the J repeated counts, and availability is related to factors such as the probability of vocalizing. In
this case, density can be estimated by M(i)/plotArea.

If availability is a function of both temporary emigration and other processess such as song rate,
then density cannot be directly estimated, but inference about the super-population size, M(i), is
possible.

Three types of covariates can be supplied, site-level, site-by-year-level, and observation-level. These
must be formatted correctly when organizing the data with unmarkedFrameGPC

Author(s)

Richard Chandler <rbchan@uga.edu>

gpcount 51

References

Royle, J. A. 2004. N-Mixture models for estimating population size from spatially replicated
counts. Biometrics 60:108–105.

Chandler, R. B., J. A. Royle, and D. I. King. 2011. Inference about density and temporary emigra-
tion in unmarked populations. Ecology 92:1429-1435.

See Also

gmultmix, gdistsamp, unmarkedFrameGPC

Examples

set.seed(54)

nSites <- 20
nVisits <- 4
nReps <- 3

lambda <- 5
phi <- 0.7
p <- 0.5

M <- rpois(nSites, lambda) # super-population size

N <- matrix(NA, nSites, nVisits)
y <- array(NA, c(nSites, nReps, nVisits))
for(i in 1:nVisits) {

N[,i] <- rbinom(nSites, M, phi) # population available during vist j
}
colMeans(N)

for(i in 1:nSites) {
for(j in 1:nVisits) {

y[i,,j] <- rbinom(nReps, N[i,j], p)
}

}

ym <- matrix(y, nSites)
ym[1,] <- NA
ym[2, 1:nReps] <- NA
ym[3, (nReps+1):(nReps+nReps)] <- NA
umf <- unmarkedFrameGPC(y=ym, numPrimary=nVisits)

Not run:
fmu <- gpcount(~1, ~1, ~1, umf, K=40, control=list(trace=TRUE, REPORT=1))

backTransform(fmu, type="lambda")
backTransform(fmu, type="phi")
backTransform(fmu, type="det")

End(Not run)

52 imputeMissing

imputeMissing A function to impute missing entries in continuous obsCovs

Description

This function uses an ad-hoc averaging approach to impute missing entries in obsCovs. The missing
entry is replaced by an average of the average for the site and the average for the visit number.

Usage

imputeMissing(umf, whichCovs = seq(length=ncol(obsCovs(umf))))

Arguments

umf The data set who’s obsCovs are being imputed.

whichCovs An integer vector giving the indices of the covariates to be imputed. This de-
faults to all covariates in obsCovs.

Value

A version of umf that has the requested obsCovs imputed.

Author(s)

Ian Fiske

Examples

data(frogs)
pcru.obscovs <- data.frame(MinAfterSunset=as.vector(t(pcru.data[,,1])),

Wind=as.vector(t(pcru.data[,,2])),
Sky=as.vector(t(pcru.data[,,3])),
Temperature=as.vector(t(pcru.data[,,4])))

pcruUMF <- unmarkedFrameOccu(y = pcru.bin, obsCovs = pcru.obscovs)
pcruUMF.i1 <- imputeMissing(pcruUMF)
pcruUMF.i2 <- imputeMissing(pcruUMF, whichCovs = 2)

issj 53

issj Distance-sampling data for the Island Scrub Jay (Aphelocoma insu-
laris)

Description

Data were collected at 307 survey locations ("point transects") on Santa Cruz Island, California
during the Fall of 2008. The distance data are binned into 3 distance intervals [0-100], (100-200],
and (200-300]. The coordinates of the survey locations as well as 3 habitat covariates are also
included.

Usage

data(issj)

Format

A data frame with 307 observations on the following 8 variables.

issj[0-100] Number of individuals detected within 100m
issj(100-200] Detections in the interval (100-200m]
issj(200-300] Detections in the interval (200-300m]
x Easting (meters)
y Northing (meters)
elevation Elevation in meters
forest Forest cover
chaparral Chaparral cover

References

Sillett, S. and Chandler, R.B. and Royle, J.A. and Kery, M. and Morrison, S.A. In Press. Hierar-
chical distance sampling models to estimate population size and habitat-specific abundance of an
island endemic. Ecological Applications

See Also

Island-wide covariates are also available cruz

Examples

data(issj)
str(issj)
head(issj)

umf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]), siteCovs=issj[,6:8],
dist.breaks=c(0,100,200,300), unitsIn="m", survey="point")

summary(umf)

54 jay

jay European Jay data from the Swiss Breeding Bird Survey 2002

Description

The Swiss breeding bird survey ("Monitoring Haufige Brutvogel" MHB) has monitored the popu-
lations of 150 common species since 1999. The MHB sample consists of 267 1-km squares that are
laid out as a grid across Switzerland. Fieldwork is conducted by about 200 skilled birdwatchers,
most of them volunteers. Avian populations are monitored using a simplified territory mapping
protocol, where each square is surveyed up to three times during the breeding season (only twice
above the tree line). Surveys are conducted along a transect that does not change over the years.

The list jay has the data for European Jay territories for 238 sites surveyed in 2002.

Usage

data("jay")

Format

jay is a list with 3 elements:

caphist a data frame with rows for 238 sites and columns for each of the observable detection his-
tories. For the sites visited 3 times, these are "100", "010", "001", "110", "101", "011",
"111". Sites visited twice have "10x", "01x", "11x".
Each row gives the number of territories with the corresponding detection history, with NA
for the detection histories not applicable: sites visited 3 times have NAs in the last 3 columns
while those visited twice have NAs in the first 7 columns.

sitescovs a data frame with rows for 238 sites, and the following columns:
1. elev : the mean elevation of the quadrat, m.
2. length : the length of the route walked in the quadrat, km.
3. forest : percentage forest cover.

covinfo a data frame with rows for 238 sites, and the following columns:
1. x, y : the coordinates of the site.
2. date1, date2, date3 : the Julian date of the visit, with 1 April = 1. Sites visited twice

have NA in the 3rd column.
3. dur1, dur2, dur3 : the duration of the survey, mins. For 10 visits the duration is not

available, so there are additional NAs in these columns.

Note

In previous versions, jay had additional information not required for the analysis, and a data frame
with essentially the same information as the Switzerland data set.

Source

Swiss Ornithological Institute

lambda2psi 55

References

Royle, J.A., Kery, M., Gauthier, R., Schmid, H. (2007) Hierarchical spatial models of abundance
and occurrence from imperfect survey data. Ecological Monographs, 77, 465-481.

Kery & Royle (2016) Applied Hierarachical Modeling in Ecology Section 7.9

Examples

data(jay)
str(jay)

Carry out a simple analysis, without covariates:
Create a customised piFun (see ?piFun for details)
crPiFun <- function(p) {

p1 <- p[,1] # Extract the columns of the p matrix, one for
p2 <- p[,2] # each of J = 3 sample occasions
p3 <- p[,3]
cbind(# define multinomial cell probabilities:

"100" = p1 * (1-p2) * (1-p3),
"010" = (1-p1) * p2 * (1-p3),
"001" = (1-p1) * (1-p2) * p3,
"110" = p1 * p2 * (1-p3),
"101" = p1 * (1-p2) * p3,
"011" = (1-p1) * p2 * p3,
"111" = p1 * p2 * p3,
"10x" = p1*(1-p2),
"01x" = (1-p1)*p2,
"11x" = p1*p2)

}
Build the unmarkedFrame object
mhb.umf <- unmarkedFrameMPois(y=as.matrix(jay$caphist),

obsToY=matrix(1, 3, 10), piFun="crPiFun")
Fit a model
(fm1 <- multinomPois(~1 ~1, mhb.umf))

lambda2psi Convert Poisson mean (lambda) to probability of occurrence (psi).

Description

Abundance and occurrence are fundamentally related.

Usage

lambda2psi(lambda)

Arguments

lambda Numeric vector with values >= 0

56 linearComb-methods

Value

A vector of psi values of the same length as lambda.

See Also

pcount, multinomPois, distsamp

Examples

lambda2psi(0:5)

linearComb-methods Methods for Function linearComb in Package ‘unmarked’

Description

Methods for function linearComb in Package ‘unmarked’

Methods

obj = "unmarkedEstimate", coefficients = "matrixOrVector" Typically called internally

obj = "unmarkedFit", coefficients = "matrixOrVector" Returns linear combinations of param-
eters from a fitted model. Coefficients are supplied through coefficients. The required argu-
ment type specifies which model estimate to use. You can use names(fittedmodel) to view
possible values for the type argument.

Examples

data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])), type = "removal")
fm <- multinomPois(~ 1 ~ ufc + trba, ovenFrame)
linearComb(fm, c(1, 0.5, 0.5), type = "state")
linearComb(fm, matrix(c(1, 0.5, 0.5, 1, 0, 0, 1, 0, 0.5), 3, 3,

byrow=TRUE), type="state")

linetran 57

linetran Simulated line transect data

Description

Response matrix of animals detected in four distance classes plus transect lengths and two covari-
ates.

Usage

data(linetran)

Format

A data frame with 12 observations on the following 7 variables.

dc1 Counts in distance class 1 [0-5 m)

dc2 Counts in distance class 2 [5-10 m)

dc3 Counts in distance class 3 [10-15 m)

dc4 Counts in distance class 4 [15-20 m)

Length Transect lengths in km

area Numeric covariate

habitat a factor with levels A and B

Examples

data(linetran)
linetran

Format for distsamp()
ltUMF <- with(linetran, {

unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")
})

58 makePiFuns

makePiFuns Create functions to compute multinomial cell probabilities

Description

These are factory functions that generate piFuns with the required defaults, which are enclosed
within the environment of the piFun. See the main entry for piFuns.

Usage

makeRemPiFun(times)
makeCrPiFun(nOcc)
makeCrPiFunMb(nOcc)
makeCrPiFunMh(nOcc)

Arguments

times a vector of times for each interval, length(times) is the number of survey
occasions; can be all 1’s if times are the same.

nOcc the number of survey occasions

Details

makeRemPiFun produces a piFun for a removal model with the required number of occasions and
potentially varying time intervals. The input to the piFun must be probabilities per unit time. This
is a generalisation of the piFun in the Examples section of piFuns.

makeCrPiFun produces a piFun for a standard capture-recapture model, M0, Mt or Mx. Probabili-
ties of detection may vary across occasions. See Kery & Royle (2016) section 7.8.1.

makeCrPiFunMb produces a piFun for a capture-recapture model with a behavioral response after
the first capture, Mb. Probabilities of detection are constant across occasions. The first column is
the probability of detection for animals not caught before, column #2 is for animals after the first
capture. The remaining columns are ignored. See Kery & Royle (2016) section 7.8.2.

makeCrPiFunMh produces a piFun for a capture-recapture model with individual heterogeneity in
detection probability, Mh, using a logit-normal distribution. Probabilities of detection are constant
across occasions. The first column is the mean of the logit-normal on the probability scale. Cell
p[1, 2] is a value in [0, 1] which controls the spread of the distribution. The remaining cells are
ignored. See Kery & Royle (2016) section 7.8.3.

Value

A piFun with the appropriate defaults.

References

Kery, M., Royle, J. A. (2016) Applied Hierarchical Modeling in Ecology Vol 1.

makePiFuns 59

Examples

Generate piFuns and check their behaviour:

makeRemPiFun
============
(pRem <- matrix(0.4, nrow=5, ncol=3))
myPi <- makeRemPiFun(times=c(2,3,5))
myPi(pRem)
ls(environment(myPi)) # See what's in the environment
environment(myPi)$times

(pRem <- matrix(runif(15), 5, 3))
myPi(pRem)

myPi <- makeRemPiFun(c(5,3,2))
environment(myPi)$times
myPi(pRem)

More than 3 occasions
myPi <- makeRemPiFun(c(1,2,3,5))
try(myPi(pRem)) # Error
(pRem <- matrix(runif(20), 5, 4))
myPi(pRem)
Probability of escaping detection
1 - rowSums(myPi(pRem))

makeCrPiFun
===========
p <- matrix(0.4, 2, 3)
myPi <- makeCrPiFun(3)
myPi(p)
myPi # Look at the function
ls(environment(myPi))
environment(myPi)$histories

p <- matrix(runif(6, 0.1, 0.9), 2, 3) # different p's everywhere
myPi(p)

p <- matrix(runif(4*5, 0.1, 0.9), 4, 5) # > 3 occasions
try(myPi(p)) # Error
myPi <- makeCrPiFun(5)
(tmp <- myPi(p))
1 - rowSums(tmp) # Probability of non-capture

makeCrPiFunMb
==============
(pMb <- cbind(rep(0.7, 5), 0.3, NA))
myPi <- makeCrPiFunMb(3)
myPi(pMb)

(pMb <- matrix(runif(15), 5, 3)) # col #3 will be ignored
myPi(pMb)

60 mallard

with > 3 occasions
(pMb <- matrix(runif(15), 3, 5))
try(myPi(pMb))
myPi <- makeCrPiFunMb(5)
myPi(pMb)

makeCrPiFunMh
=============
pMh <- cbind(rep(0.4, 5), NA, NA)
pMh[1, 2] <- 0.3
pMh
myPi <- makeCrPiFunMh(3)
myPi(pMh)
pMh <- cbind(runif(5), NA, NA)
pMh[1, 2] <- 0.3
pMh
myPi(pMh)

with > 3 occasions
pMh <- cbind(runif(5), NA, NA, NA, NA)
pMh[1, 2] <- 0.3
pMh
try(myPi(pMh))
myPi <- makeCrPiFunMh(5)
1 - rowSums(myPi(pMh)) # Probability of non-detection

mallard Mallard count data

Description

Mallard repeated count data and covariates

Usage

data(mallard)

Format

A list with 3 components

mallard.y response matrix

mallard.site site-specific covariates

mallard.obs survey-specific covariates

References

Kery, M., Royle, J. A., and Schmid, H. (2005) Modeling Avaian Abundance from Replicated Counts
Using Binomial Mixture Models. Ecological Applications 15(4), pp. 1450–1461.

masspcru 61

Examples

data(mallard)
str(mallard.y)
str(mallard.site)
str(mallard.obs)

masspcru Massachusetts North American Amphibian Monitoring Program Data

Description

masspcru contains NAAMP data for Pseudacris crucifer (pcru) in Massachusetts from 2001 to 2007
in the raw long format.

Usage

data(masspcru)

Format

Data frame with

SurveyYear Year of data collection.
RouteNumStopNum Stop number.
JulianDate Day of year.
Pcru Observed calling index.
MinAfterSunset Minutes after sunset of the observation.
Temperature Temperature measured during observation.

Details

These data come from the North American Amphibian Monitoring Program. Please see the refer-
ence below for more details.

Source

https://www.pwrc.usgs.gov/naamp/

References

Mossman MJ, Weir LA. North American Amphibian Monitoring Program (NAAMP). Amphibian
Declines: the conservation status of United States species. University of California Press, Berkeley,
California, USA. 2005:307-313.

Examples

data(masspcru)
str(masspcru)

62 MesoCarnivores

MesoCarnivores Occupancy data for coyote, red fox, and bobcat

Description

Occupancy data and site covariates for coyote, red fox, and bobcat from 1437 camera trap sites
sampled 3 times. Each sampling period represents one week. This data is a simplified form of the
dataset used by Rota et al. (2016).

Usage

data(MesoCarnivores)

Format

A list with four elements:

bobcat A 1437x3 occupancy matrix for bobcat

coyote A 1437x3 occupancy matrix for coyote

redfox A 1437x3 occupancy matrix for red fox

sitecovs A data frame containing covariates for the 1437 sites, with the following columns:

Dist_5km Proportion of disturbed land in 5 km radius

HDens_5km Housing density in 5 km radius

Latitude Latitude / 100

Longitude Longitude / 100

People_site Number of photos of people at site / 1000

Trail 1 if camera was on trail, 0 if not

Source

Used with permission of Roland Kays and Arielle Parsons at North Carolina State University and
the North Carolina Museum of Natural Sciences.

References

Rota, C.T., et al. 2016. A multi-species occupancy model for two or more interacting species.
Methods in Ecology and Evolution 7: 1164-1173.

modSel 63

modSel Model selection results from an unmarkedFitList

Description

Model selection results from an unmarkedFitList

Arguments

object an object of class "unmarkedFitList" created by the function fitList.

nullmod optional character naming which model in the fitList contains results from the
null model. Only used in calculation of Nagelkerke’s R-squared index.

Value

A S4 object with the following slots

Full data.frame with formula, estimates, standard errors and model selection infor-
mation. Converge is optim convergence code. CondNum is model condition
number. n is the number of sites. delta is delta AIC. cumltvWt is cumulative
AIC weight. Rsq is Nagelkerke’s (1991) R-squared index, which is only re-
turned when the nullmod argument is specified.

Names matrix referencing column names of estimates (row 1) and standard errors (row
2).

Note

Two requirements exist to conduct AIC-based model-selection and model-averaging in unmarked.
First, the data objects (ie, unmarkedFrames) must be identical among fitted models. Second, the
response matrix must be identical among fitted models after missing values have been removed.
This means that if a response value was removed in one model due to missingness, it needs to be
removed from all models.

Author(s)

Richard Chandler <rbchan@uga.edu>

References

Nagelkerke, N.J.D. (2004) A Note on a General Definition of the Coefficient of Determination.
Biometrika 78, pp. 691-692.

64 multinomPois

Examples

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
tlength = lengths, survey = "line", unitsIn = "m")
})

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp(~ 1 ~area, ltUMF)

fl <- fitList(Null=fm1, A.=fm2, .A=fm3)
fl

ms <- modSel(fl, nullmod="Null")
ms

coef(ms) # Estimates only
SE(ms) # Standard errors only
(toExport <- as(ms, "data.frame")) # Everything

multinomPois Multinomial-Poisson Mixtures Model

Description

Fit the multinomial-Poisson mixture model to data collected using survey methods such as removal
sampling or double observer sampling.

Usage

multinomPois(formula, data, starts, method = "BFGS",
se = TRUE, engine=c("C","R","TMB"), ...)

Arguments

formula double right-hand side formula for detection and abundance covariates, in that
order.

data unmarkedFrame supplying data.

starts vector of starting values.

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

multinomPois 65

engine Either "C" to use fast C++ code or "R" to use native R code during the optimiza-
tion.

... Additional arguments to optim, such as lower and upper bounds

Details

This function takes advantage of the closed form of the integrated likelihood when a latent Pois-
son distribution is assumed for abundance at each site and a multinomial distribution is taken for
the observation state. Many common sampling methods can be framed in this context. For ex-
ample, double-observer point counts and removal sampling can be analyzed with this function by
specifying the proper multinomial cell probablilities. This is done with by supplying the appropriate
function (piFun) argument. removalPiFun and doublePiFun are supplied as example cell probability
functions.

Value

unmarkedFit object describing the model fit.

Author(s)

Ian Fiske

References

Royle, J. A. (2004). Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation, 27(1), 375-386.

Royle, J. A., & Dorazio, R. M. (2006). Hierarchical Models of Animal Abundance and Occurrence.
Journal Of Agricultural Biological And Environmental Statistics, 11(3), 249.

See Also

piFuns, unmarkedFrameMPois

Examples

Simulate independent double observer data
nSites <- 50
lambda <- 10
p1 <- 0.5
p2 <- 0.3
cp <- c(p1*(1-p2), p2*(1-p1), p1*p2)
set.seed(9023)
N <- rpois(nSites, lambda)
y <- matrix(NA, nSites, 3)
for(i in 1:nSites) {

y[i,] <- rmultinom(1, N[i], c(cp, 1-sum(cp)))[1:3]
}

Fit model

66 multmixOpen

observer <- matrix(c('A','B'), nSites, 2, byrow=TRUE)
umf <- unmarkedFrameMPois(y=y, obsCovs=list(observer=observer),

type="double")
fm <- multinomPois(~observer-1 ~1, umf)

Estimates of fixed effects
e <- coef(fm)
exp(e[1])
plogis(e[2:3])

Estimates of random effects
re <- ranef(fm, K=20)
#ltheme <- canonical.theme(color = FALSE)
#lattice.options(default.theme = ltheme)
plot(re, layout=c(10,5))

Real data
data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,

siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])),
type = "removal")

(fm1 <- multinomPois(~ 1 ~ ufc + trba, ovenFrame))

Detection probability for a single pass
backTransform(fm1, type="det")

Detection probability after 4 removal passes
rowSums(getP(fm1))

Empirical Bayes estimates of abundance at first 25 sites
Very low uncertainty because p is very high
plot(ranef(fm1, K=10), layout=c(10,7), xlim=c(-1, 10))

multmixOpen Open population multinomial N-mixture model

Description

Fit the model of Dail and Madsen (2011) and Hostetler and Chandler (2015) for designs involving
repeated counts that yield multinomial outcomes. Possible data collection methods include repeated
removal sampling and double observer sampling.

Usage

multmixOpen(lambdaformula, gammaformula, omegaformula, pformula,
data, mixture=c("P", "NB", "ZIP"), K,
dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"),

multmixOpen 67

fix=c("none", "gamma", "omega"), immigration=FALSE, iotaformula = ~1,
starts, method="BFGS", se=TRUE, ...)

Arguments

lambdaformula Right-hand sided formula for initial abundance

gammaformula Right-hand sided formula for recruitment rate (when dynamics is "constant",
"autoreg", or "notrend") or population growth rate (when dynamics is "trend",
"ricker", or "gompertz")

omegaformula Right-hand sided formula for apparent survival probability (when dynamics is
"constant", "autoreg", or "notrend") or equilibrium abundance (when dynamics
is "ricker" or "gompertz")

pformula A right-hand side formula describing the detection function covariates

data An object of class unmarkedFrameMMO

mixture String specifying mixture: "P", "NB", or "ZIP" for the Poisson, negative bino-
mial, or zero-inflated Poisson distributions respectively

K Integer defining upper bound of discrete integration. This should be higher than
the maximum observed count and high enough that it does not affect the param-
eter estimates. However, the higher the value the slower the computation

dynamics Character string describing the type of population dynamics. "constant" indi-
cates that there is no relationship between omega and gamma. "autoreg" is
an auto-regressive model in which recruitment is modeled as gamma*N[i,t-1].
"notrend" model gamma as lambda*(1-omega) such that there is no temporal
trend. "trend" is a model for exponential growth, N[i,t] = N[i,t-1]*gamma,
where gamma in this case is finite rate of increase (normally referred to as
lambda). "ricker" and "gompertz" are models for density-dependent population
growth. "ricker" is the Ricker-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-
N[i,t-1]/omega)), where gamma is the maximum instantaneous population growth
rate (normally referred to as r) and omega is the equilibrium abundance (nor-
mally referred to as K). "gompertz" is a modified version of the Gompertz-
logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-log(N[i,t-1]+1)/log(omega+1))),
where the interpretations of gamma and omega are similar to in the Ricker model

fix If "omega", omega is fixed at 1. If "gamma", gamma is fixed at 0

immigration Logical specifying whether or not to include an immigration term (iota) in pop-
ulation dynamics

iotaformula Right-hand sided formula for average number of immigrants to a site per time
step

starts Vector of starting values

method Optimization method used by optim

se Logical specifying whether or not to compute standard errors

... Additional arguments to optim, such as lower and upper bounds

68 multmixOpen

Details

These models generalize multinomial N-mixture models (Royle et al. 2004) by relaxing the closure
assumption (Dail and Madsen 2011, Hostetler and Chandler 2015, Sollmann et al. 2015).

The models include two or three additional parameters: gamma, either the recruitment rate (births
and immigrations), the finite rate of increase, or the maximum instantaneous rate of increase;
omega, either the apparent survival rate (deaths and emigrations) or the equilibrium abundance
(carrying capacity); and iota, the number of immigrants per site and year. Estimates of population
size at each time period can be derived from these parameters, and thus so can trend estimates. Or,
trend can be estimated directly using dynamics="trend".

When immigration is set to FALSE (the default), iota is not modeled. When immigration is set to
TRUE and dynamics is set to "autoreg", the model will separately estimate birth rate (gamma) and
number of immigrants (iota). When immigration is set to TRUE and dynamics is set to "trend",
"ricker", or "gompertz", the model will separately estimate local contributions to population growth
(gamma and omega) and number of immigrants (iota).

The latent abundance distribution, f(N |θ) can be set as a Poisson, negative binomial, or zero-
inflated Poisson random variable, depending on the setting of the mixture argument, mixture =
"P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of Ni

is λi. If Ni ∼ NB, then an additional parameter, α, describes dispersion (lower α implies higher
variance). For the ZIP distribution, the mean is λi(1−ψ), where psi is the zero-inflation parameter.

For "constant", "autoreg", or "notrend" dynamics, the latent abundance state following the ini-
tial sampling period arises from a Markovian process in which survivors are modeled as Sit ∼
Binomial(Nit−1, ωit), and recruits follow Git ∼ Poisson(γit). Alternative population dynamics
can be specified using the dynamics and immigration arguments.

λi, γit, and ιit are modeled using the the log link. pijt is modeled using the logit link. ωit is either
modeled using the logit link (for "constant", "autoreg", or "notrend" dynamics) or the log link (for
"ricker" or "gompertz" dynamics). For "trend" dynamics, ωit is not modeled.

The detection process is modeled as multinomial: yit ∼Multinomial(Nit, πit), where πijt is the
multinomial cell probability for plot i at time t on occasion j.

Options for the detection process include equal-interval removal sampling ("removal"), double ob-
server sampling ("double"), or dependent double-observer sampling ("depDouble"). This option
is specified when setting up the data using unmarkedFrameMMO. Note that unlike the related func-
tions multinomPois and gmultmix, custom functions for the detection process (i.e., piFuns) are
not supported. To request additional options contact the author.

Value

An object of class unmarkedFitMMO

Warning

This function can be extremely slow, especially if there are covariates of gamma or omega. Consider
testing the timing on a small subset of the data, perhaps with se=FALSE. Finding the lowest value
of K that does not affect estimates will also help with speed.

multmixOpen 69

Note

When gamma or omega are modeled using year-specific covariates, the covariate data for the final
year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be
supplied to unmarkedFrameMMO using the primaryPeriod argument.

Secondary sampling periods are optional, but can greatly improve the precision of the estimates.

Author(s)

Ken Kellner <contact@kenkellner.com>, Richard Chandler

References

Dail, D. and L. Madsen (2011) Models for Estimating Abundance from Repeated Counts of an
Open Metapopulation. Biometrics. 67: 577-587.

Hostetler, J. A. and R. B. Chandler (2015) Improved State-space Models for Inference about Spatial
and Temporal Variation in Abundance from Count Data. Ecology 96: 1713-1723.

Royle, J. A. (2004). Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation 27(1), 375-386.

See Also

multinomPois, gmultmix, unmarkedFrameMMO

Examples

#Generate some data
set.seed(123)
lambda=4; gamma=0.5; omega=0.8; p=0.5
M <- 100; T <- 5
y <- array(NA, c(M, 3, T))
N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)

for(i in 1:M) {
N[i,1] <- rpois(1, lambda)
y[i,1,1] <- rbinom(1, N[i,1], p) # Observe some
Nleft1 <- N[i,1] - y[i,1,1] # Remove them
y[i,2,1] <- rbinom(1, Nleft1, p) # ...
Nleft2 <- Nleft1 - y[i,2,1]
y[i,3,1] <- rbinom(1, Nleft2, p)

for(t in 1:(T-1)) {
S[i,t] <- rbinom(1, N[i,t], omega)
G[i,t] <- rpois(1, gamma)
N[i,t+1] <- S[i,t] + G[i,t]
y[i,1,t+1] <- rbinom(1, N[i,t+1], p) # Observe some
Nleft1 <- N[i,t+1] - y[i,1,t+1] # Remove them

70 nmixTTD

y[i,2,t+1] <- rbinom(1, Nleft1, p) # ...
Nleft2 <- Nleft1 - y[i,2,t+1]
y[i,3,t+1] <- rbinom(1, Nleft2, p)

}
}
y=matrix(y, M)

#Create some random covariate data
sc <- data.frame(x1=rnorm(100))

Not run:
#Create unmarked frame
umf <- unmarkedFrameMMO(y=y, numPrimary=5, siteCovs=sc, type="removal")

#Fit model
(fit <- multmixOpen(~x1, ~1, ~1, ~1, K=30, data=umf))

#Compare to truth
cf <- coef(fit)
data.frame(model=c(exp(cf[1]), cf[2], exp(cf[3]), plogis(cf[4]), plogis(cf[5])),

truth=c(lambda, 0, gamma, omega, p))

#Predict
head(predict(fit, type='lambda'))

#Check fit with parametric bootstrap
pb <- parboot(fit, nsims=15)
plot(pb)

Empirical Bayes estimates of abundance for each site / year
re <- ranef(fit)
plot(re, layout=c(10,5), xlim=c(-1, 10))

End(Not run)

nmixTTD Fit N-mixture Time-to-detection Models

Description

Fit N-mixture models with time-to-detection data.

Usage

nmixTTD(stateformula= ~1, detformula = ~1, data, K=100,
mixture = c("P","NB"), ttdDist = c("exp", "weibull"), starts, method="BFGS",
se=TRUE, engine = c("C", "R"), threads = 1, ...)

nmixTTD 71

Arguments

stateformula Right-hand sided formula for the abundance at each site.

detformula Right-hand sided formula for mean time-to-detection.

data unmarkedFrameOccuTTD object that supplies the data (see unmarkedFrameOccuTTD).
Note that only single-season models are supported by nmixTTD.

K The upper summation index used to numerically integrate out the latent abun-
dance. This should be set high enough so that it does not affect the parameter
estimates. Computation time will increase with K.

mixture String specifying mixture distribution: "P" for Poisson or "NB" for negative
binomial.

ttdDist Distribution to use for time-to-detection; either "exp" for the exponential, or
"weibull" for the Weibull, which adds an additional shape parameter k.

starts optionally, initial values for parameters in the optimization.

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

engine Either "C" or "R" to use fast C++ code or native R code during the optimization.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

This model extends time-to-detection (TTD) occupancy models to estimate site abundance using
data from single or repeated visits. Latent abundance can be modeled as Poisson (mixture="P") or
negative binomial (mixture="NB"). Time-to-detection can be modeled as an exponential (ttdDist="exp")
or Weibull (ttdDist="weibull") random variable with rate parameter λ and, for the Weibull, an
additional shape parameter k. Note that occuTTD puts covariates on λ and not 1/λ, i.e., the expected
time between events.

Assuming that there are N independent individuals at a site, and all individuals have the same
individual detection rate, the expected detection rate across all individuals λ is equal to the the
individual-level detection rate r multipled by the number of individuals present N .

In the case where there are no detections before the maximum sample time at a site (surveyLength)
is reached, we are not sure if the site hasN = 0 or if we just didn’t wait long enough for a detection.
We therefore must censor (C the exponential or Weibull distribution at the maximum survey length,
Tmax. Thus, assuming true abundance at site i is Ni, and an exponential distribution for the TTD
yi (parameterized with the rate), then:

yi ∼ Exponential(ri ∗Ni)C(Tmax)

Note that when Ni = 0, the exponential rate lambda = 0 and the scale is therefore 1/0 = Inf ,
and thus the value will be censored at Tmax.

72 nmixTTD

Because in unmarked values of NA are typically used to indicate missing values that were a result
of the sampling structure (e.g., lost data), we indicate a censored yi in nmixTTD instead by setting
yi = Tmaxi in the y matrix provided to unmarkedFrameOccuTTD. You can provide either a single
value of Tmax to the surveyLength argument of unmarkedFrameOccuTTD, or provide a matrix,
potentially with a unique value of Tmax for each value of y. Note that in the latter case the value
of y that will be interpreted by nmixTTD as a censored observation (i.e., Tmax) will differ between
observations!

Value

unmarkedFitNmixTTD object describing model fit.

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Strebel, N., Fiss, C., Kellner, K. F., Larkin, J. L., Kery, M., & Cohen, J (2021). Estimating abun-
dance based on time-to-detection data. Methods in Ecology and Evolution 12: 909-920.

See Also

unmarked, unmarkedFrameOccuTTD

Examples

Not run:

Simulate data
M = 1000 # Number of sites
nrep <- 3 # Number of visits per site
Tmax = 5 # Max duration of a visit
alpha1 = -1 # Covariate on rate
beta1 = 1 # Covariate on density
mu.lambda = 1 # Rate at alpha1 = 0
mu.dens = 1 # Density at beta1 = 0

covDet <- matrix(rnorm(M*nrep),nrow = M,ncol = nrep) #Detection covariate
covDens <- rnorm(M) #Abundance/density covariate
dens <- exp(log(mu.dens) + beta1 * covDens)
sum(N <- rpois(M, dens)) # Realized density per site
lambda <- exp(log(mu.lambda) + alpha1 * covDet) # per-individual detection rate
ttd <- NULL
for(i in 1:nrep) {

ttd <- cbind(ttd,rexp(M, N*lambda[,i])) # Simulate time to first detection per visit
}
ttd[N == 0,] <- 5 # Not observed where N = 0; ttd set to Tmax
ttd[ttd >= Tmax] <- 5 # Crop at Tmax

#Build unmarked frame

nonparboot-methods 73

umf <- unmarkedFrameOccuTTD(y = ttd, surveyLength=5,
siteCovs = data.frame(covDens=covDens),
obsCovs = data.frame(covDet=as.vector(t(covDet))))

#Fit model
fit <- nmixTTD(~covDens, ~covDet, data=umf, K=max(N)+10)

#Compare to truth
cbind(coef(fit), c(log(mu.dens), beta1, log(mu.lambda), alpha1))

#Predict abundance/density values
head(predict(fit, type='state'))

End(Not run)

nonparboot-methods Nonparametric bootstrapping in unmarked

Description

Call nonparboot on an unmarkedFit to obtain non-parametric bootstrap samples. These can then
be used by vcov in order to get bootstrap estimates of standard errors.

Details

Calling nonparboot on an unmarkedFit returns the original unmarkedFit, with the bootstrap sam-
ples added on. Then subsequent calls to vcov with the argument method="nonparboot" will use
these bootstrap samples. Additionally, standard errors of derived estimates from either linearComb
or backTransform can be instructed to use bootstrap samples by providing the argument method =
"nonparboot".

For occu and occuRN both sites and occassions are re-sampled. For all other fitting functions, only
sites are re-sampled.

Methods

signature(object = "unmarkedFit") Obtain nonparametric bootstrap samples for a general un-
markedFit.

signature(object = "unmarkedFitColExt") Obtain nonparametric bootstrap samples for colext
fits.

signature(object = "unmarkedFitDS") Obtain nonparametric bootstrap samples for a distsamp
fits.

signature(object = "unmarkedFitMPois") Obtain nonparametric bootstrap samples for a dist-
samp fits.

signature(object = "unmarkedFitOccu") Obtain nonparametric bootstrap samples for a occu
fits.

74 occu

signature(object = "unmarkedFitOccuPEN") Obtain nonparametric bootstrap samples for an
occuPEN fit.

signature(object = "unmarkedFitOccuPEN_CV") Obtain nonparametric bootstrap samples for
occuPEN_CV fit.

signature(object = "unmarkedFitOccuRN") Obtain nonparametric bootstrap samples for a oc-
cuRN fits.

signature(object = "unmarkedFitPCount") Obtain nonparametric bootstrap samples for a pcount
fits.

Examples

data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])), type = "removal")
(fm <- multinomPois(~ 1 ~ ufc + trba, ovenFrame))
fm <- nonparboot(fm, B = 20) # should use larger B in real life.
vcov(fm, method = "hessian")
vcov(fm, method = "nonparboot")
avg.abundance <- backTransform(linearComb(fm, type = "state", coefficients = c(1, 0, 0)))

Bootstrap sample information propagates through to derived quantities.
vcov(avg.abundance, method = "hessian")
vcov(avg.abundance, method = "nonparboot")
SE(avg.abundance, method = "nonparboot")

occu Fit the MacKenzie et al. (2002) Occupancy Model

Description

This function fits the single season occupancy model of MacKenzie et al (2002).

Usage

occu(formula, data, knownOcc=numeric(0), linkPsi=c("logit", "cloglog"),
starts, method="BFGS", se=TRUE, engine=c("C", "R", "TMB"),
threads = 1, ...)

Arguments

formula Double right-hand side formula describing covariates of detection and occu-
pancy in that order.

data An unmarkedFrameOccu object

knownOcc Vector of sites that are known to be occupied. These should be supplied as row
numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a
priori.

occu 75

linkPsi Link function for the occupancy model. Options are "logit" for the standard
occupancy model or "cloglog" for the complimentary log-log link, which re-
lates occupancy to site-level abundance. See details.

starts Vector of parameter starting values.

method Optimization method used by optim.

se Logical specifying whether or not to compute standard errors.

engine Code to use for optimization. Either "C" for fast C++ code, "R" for native R
code, or "TMB" for Template Model Builder. "TMB" is used automatically if
your formula contains random effects.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccu for a description of how to supply data to the data
argument.

occu fits the standard occupancy model based on zero-inflated binomial models (MacKenzie et al.
2006, Royle and Dorazio 2008). The occupancy state process (zi) of site i is modeled as

zi ∼ Bernoulli(ψi)

The observation process is modeled as

yij |zi ∼ Bernoulli(zipij)

By default, covariates of ψi and pij are modeled using the logit link according to the formula argu-
ment. The formula is a double right-hand sided formula like ~ detform ~ occform where detform
is a formula for the detection process and occform is a formula for the partially observed occupancy
state. See formula for details on constructing model formulae in R.

When linkPsi = "cloglog", the complimentary log-log link function is used for psi instead of the
logit link. The cloglog link relates occupancy probability to the intensity parameter of an under-
lying Poisson process (Kery and Royle 2016). Thus, if abundance at a site is can be modeled as
Ni Poisson(λi), where log(λi) = α+β ∗x, then presence/absence data at the site can be modeled
as Zi Binomial(ψi) where cloglog(ψi) = α+ β ∗ x.

Value

unmarkedFitOccu object describing the model fit.

Author(s)

Ian Fiske

76 occuCOP

References

Kery, Marc, and J. Andrew Royle. 2016. Applied Hierarchical Modeling in Ecology, Volume 1.
Academic Press.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

MacKenzie, D. I. et al. 2006. Occupancy Estimation and Modeling. Amsterdam: Academic Press.

Royle, J. A. and R. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic
Press.

See Also

unmarked, unmarkedFrameOccu, modSel, parboot

Examples

data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
plot(pferUMF, panels=4)
add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)))

observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF)))

(fm <- occu(~ obsvar1 ~ 1, pferUMF))

confint(fm, type='det', method = 'normal')
confint(fm, type='det', method = 'profile')

estimate detection effect at obsvars=0.5
(lc <- linearComb(fm['det'],c(1,0.5)))

transform this to probability (0 to 1) scale and get confidence limits
(btlc <- backTransform(lc))
confint(btlc, level = 0.9)

Empirical Bayes estimates of proportion of sites occupied
re <- ranef(fm)
sum(bup(re, stat="mode"))

occuCOP Fit the occupancy model using count dta

Description

This function fits a single season occupancy model using count data.

occuCOP 77

Usage

occuCOP(data,
psiformula = ~1, lambdaformula = ~1,
psistarts, lambdastarts, starts,
method = "BFGS", se = TRUE,
engine = c("C", "R"), na.rm = TRUE,
return.negloglik = NULL, L1 = FALSE, ...)

Arguments

data An unmarkedFrameOccuCOP object created with the unmarkedFrameOccuCOP
function.

psiformula Formula describing the occupancy covariates.

lambdaformula Formula describing the detection covariates.

psistarts Vector of starting values for likelihood maximisation with optim for occupancy
probability ψ. These values must be logit-transformed (with qlogis) (see de-
tails). By default, optimisation will start at 0, corresponding to an occupancy
probability of 0.5 (plogis(0) is 0.5).

lambdastarts Vector of starting values for likelihood maximisation with optim for detection
rate λ. These values must be log-transformed (with log) (see details). By de-
fault, optimisation will start at 0, corresponding to detection rate of 1 (exp(0)
is 1).

starts Vector of starting values for likelihood maximisation with optim. If psistarts
and lambdastarts are provided, starts = c(psistarts, lambdastarts).

method Optimisation method used by optim.

se Logical specifying whether to compute (se=TRUE) standard errors or not (se=FALSE).

engine Code to use for optimisation. Either "C" for fast C++ code, or "R" for native R
code.

na.rm Logical specifying whether to fit the model (na.rm=TRUE) or not (na.rm=FALSE)
if there are NAs in the unmarkedFrameOccuCOP object.

return.negloglik

A list of vectors of parameters (c(psiparams, lambdaparams)). If specified,
the function will not maximise likelihood but return the negative log-likelihood
for the those parameters in the nll column of a dataframe. See an example
below.

L1 Logical specifying whether the length of observations (L) are purposefully set to
1 (L1=TRUE) or not (L1=FALSE).

... Additional arguments to pass to optim, such as lower and upper bounds or a list
of control parameters.

Details

See unmarkedFrameOccuCOP for a description of how to supply data to the data argument. See
unmarkedFrame for a more general documentation of unmarkedFrame objects for the different mod-
els implemented in unmarked.

78 occuCOP

The COP occupancy model:
occuCOP fits a single season occupancy model using count data, as described in Pautrel et al.
(2023).
The occupancy sub-model is:

zi ∼ Bernoulli(ψi)

• With zi the occupany state of site i. zi = 1 if site i is occupied by the species, i.e. if the
species is present in site i. zi = 0 if site i is not occupied.

• With ψi the occupancy probability of site i.

The observation sub-model is:

Nij |zi = 1 ∼ Poisson(λijLij)Nij |zi = 0 ∼ 0

• With Nij the count of detection events in site i during observation j.
• With λij the detection rate in site i during observation j (for example, 1 detection per day.).
• With Lij the length of observation j in site i (for example, 7 days.).

What we call "observation" (j) here can be a sampling occasion, a transect, a discretised session.
Consequently, the unit of λij and Lij can be either a time-unit (day, hour, ...) or a space-unit
(kilometer, meter, ...).

The transformation of parameters ψ and λ: In order to perform unconstrained optimisation,
parameters are transformed.
The occupancy probability (ψ) is transformed with the logit function (psi_transformed = qlogis(psi)).
It can be back-transformed with the "inverse logit" function (psi = plogis(psi_transformed)).
The detection rate (λ) is transformed with the log function (lambda_transformed = log(lambda)).
It can be back-transformed with the exponential function (lambda = exp(lambda_transformed)).

Value

unmarkedFitOccuCOP object describing the model fit. See the unmarkedFit classes.

Author(s)

Léa Pautrel

References

Pautrel, L., Moulherat, S., Gimenez, O. & Etienne, M.-P. Submitted. Analysing biodiversity ob-
servation data collected in continuous time: Should we use discrete or continuous-time occupancy
models? Preprint at doi:10.1101/2023.11.17.567350.

See Also

unmarked, unmarkedFrameOccuCOP, unmarkedFit-class

https://doi.org/10.1101/2023.11.17.567350

occuCOP 79

Examples

set.seed(123)
options(max.print = 50)

We simulate data in 100 sites with 3 observations of 7 days per site.
nSites <- 100
nObs <- 3

For an occupancy covariate, we associate each site to a land-use category.
landuse <- sample(factor(c("Forest", "Grassland", "City"), ordered = TRUE),

size = nSites, replace = TRUE)
simul_psi <- ifelse(landuse == "Forest", 0.8,

ifelse(landuse == "Grassland", 0.4, 0.1))
z <- rbinom(n = nSites, size = 1, prob = simul_psi)

For a detection covariate, we create a fake wind variable.
wind <- matrix(rexp(n = nSites * nObs), nrow = nSites, ncol = nObs)
simul_lambda <- wind / 5
L = matrix(7, nrow = nSites, ncol = nObs)

We now simulate count detection data
y <- matrix(rpois(n = nSites * nObs, lambda = simul_lambda * L),

nrow = nSites, ncol = nObs) * z

We create our unmarkedFrameOccuCOP object
umf <- unmarkedFrameOccuCOP(

y = y,
L = L,
siteCovs = data.frame("landuse" = landuse),
obsCovs = list("wind" = wind)

)
print(umf)

We fit our model without covariates
fitNull <- occuCOP(data = umf)
print(fitNull)

We fit our model with covariates
fitCov <- occuCOP(data = umf, psiformula = ~ landuse, lambdaformula = ~ wind)
print(fitCov)

We back-transform the parameter's estimates
Back-transformed occupancy probability with no covariates
backTransform(fitNull, "psi")

Back-transformed occupancy probability depending on habitat use
predict(fitCov,

"psi",
newdata = data.frame("landuse" = c("Forest", "Grassland", "City")),
appendData = TRUE)

Back-transformed detection rate with no covariates

80 occuCOP

backTransform(fitNull, "lambda")

Back-transformed detection rate depending on wind
predict(fitCov,

"lambda",
appendData = TRUE)

This is not easily readable. We can show the results in a clearer way, by:
- adding the site and observation
- printing only the wind covariate used to get the predicted lambda
cbind(

data.frame(
"site" = rep(1:nSites, each = nObs),
"observation" = rep(1:nObs, times = nSites),
"wind" = getData(fitCov)@obsCovs

),
predict(fitCov, "lambda", appendData = FALSE)

)

We can choose the initial parameters when fitting our model.
For psi, intituively, the initial value can be the proportion of sites
in which we have observations.
(psi_init <- mean(rowSums(y) > 0))

For lambda, the initial value can be the mean count of detection events
in sites in which there was at least one observation.
(lambda_init <- mean(y[rowSums(y) > 0,]))

We have to transform them.
occuCOP(

data = umf,
psiformula = ~ 1,
lambdaformula = ~ 1,
psistarts = qlogis(psi_init),
lambdastarts = log(lambda_init)

)

If we have covariates, we need to have the right length for the start vectors.
psi ~ landuse --> 3 param to estimate: Intercept, landuseForest, landuseGrassland
lambda ~ wind --> 2 param to estimate: Intercept, wind
occuCOP(

data = umf,
psiformula = ~ landuse,
lambdaformula = ~ wind,
psistarts = rep(qlogis(psi_init), 3),
lambdastarts = rep(log(lambda_init), 2)

)

And with covariates, we could have chosen better initial values, such as the
proportion of sites in which we have observations per land-use category.
(psi_init_covs <- c(

"City" = mean(rowSums(y[landuse == "City",]) > 0),
"Forest" = mean(rowSums(y[landuse == "Forest",]) > 0),

occuFP 81

"Grassland" = mean(rowSums(y[landuse == "Grassland",]) > 0)
))
occuCOP(

data = umf,
psiformula = ~ landuse,
lambdaformula = ~ wind,
psistarts = qlogis(psi_init_covs))

We can fit our model with a different optimisation algorithm.
occuCOP(data = umf, method = "Nelder-Mead")

We can run our model with a C++ or with a R likelihood function.
They give the same result.
occuCOP(data = umf, engine = "C", psistarts = 0, lambdastarts = 0)
occuCOP(data = umf, engine = "R", psistarts = 0, lambdastarts = 0)

The C++ (the default) is faster.
system.time(occuCOP(data = umf, engine = "C", psistarts = 0, lambdastarts = 0))
system.time(occuCOP(data = umf, engine = "R", psistarts = 0, lambdastarts = 0))

However, if you want to understand how the likelihood is calculated,
you can easily access the R likelihood function.
print(occuCOP(data = umf, engine = "R", psistarts = 0, lambdastarts = 0)@nllFun)

Finally, if you do not want to fit your model but only get the likelihood,
you can get the negative log-likelihood for a given set of parameters.
occuCOP(data = umf, return.negloglik = list(

c("psi" = qlogis(0.25), "lambda" = log(2)),
c("psi" = qlogis(0.5), "lambda" = log(1)),
c("psi" = qlogis(0.75), "lambda" = log(0.5))

))

occuFP Fit occupancy models when false positive detections occur (e.g., Royle
and Link [2006] and Miller et al. [2011])

Description

This function fits the single season occupancy model while allowing for false positive detections.

Usage

occuFP(detformula = ~ 1, FPformula = ~ 1, Bformula = ~ 1,
stateformula = ~ 1, data, starts, method="BFGS", se = TRUE, engine = "R", ...)

Arguments

detformula formula describing covariates of detection.

FPformula formula describing covariates of false positive detection probability.

82 occuFP

Bformula formula describing covariates of probability detections are certain.

stateformula formula describing covariates of occupancy.

data An unmarkedFrameOccuFP object

starts Vector of parameter starting values.

method Optimization method used by optim.

se Logical specifying whether or not to compute standard errors.

engine Currently only choice is R.

... Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccuFP for a description of how to supply data to the data
argument.

occuFP fits an extension of the standard single-season occupancy model (MacKenzie et al. 2002),
which allows false positive detections. The occupancy status of a site is the same way as with the
occu function, where stateformula is used to specify factors that lead to differences in occupancy
probabilities among sites.

The observation process differs in that both false negative and false positive errors are modeled
for observations. The function allows data to be of 3 types. These types are specified using in
unmarkedFrameOccuFP as type. Occassions are specified to belong to 1 of the 3 data types and all
or a subset of the data types can be combined in the same model.

For type 1 data, the detection process is assumed to fit the assumptions of the standard MacKenzie
model where false negative probabilities are estimated but false positive detections are assumed not
to occur. If all of your data is of this type you should use occu to analyze data. The detection
parameter p, which is modeled using the detformula is the only observation parameter for these
data.

For type 2 data, both false negative and false positive detection probabilities are estimated. If all
data is of this type the likelihood follows Royle and Link (2006). Both p (the true positive detection
probability) and fp (the false positive detection probability described by fpformula) are estimated
for occassions when this data type occurs

For type 3 data, observations are assumed to include both certain detections (false positives assumed
not to occur) and uncertain detections that may include false positive detections. When only this
data type occurs, the estimator is the same as the multiple detection state model described in Miller
et al. (2011). Three observation parameters occur for this data type: p - true positive detection
probability, fp - false positive detection probability, and b - the probability a true positive detection
was designated as certain.

When both type 1 and type 2 data occur, the estimator is equivalent to the multiple detection method
model described in Miller et al. (2011). The frog data example in the same paper uses an analysis
where type 1 (dipnet surveys) and type 3 (call surveys) data were used.

Data in the y matrix of the unmarked frame should be all 0s and 1s for type 1 and type 2 data. For
type 3 data, uncertain detections are given a value of 1 and certain detections a value of 2.

Value

unmarkedFitOccuFP object describing the model fit.

occuFP 83

Author(s)

David Miller

References

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

Miller, D.A., J.D. Nichols, B.T. McClintock, E.H.C. Grant, L.L. Bailey, and L.A. Weir. 2011.
Improving occupancy estimation when two types of observational error occur: non-detection and
species misidentification. Ecology 92:1422-1428.

Royle, J.A., and W.A. Link. 2006. Generalized site occupancy models allowing for false positive
and false negative errors. Ecology 87:835-841.

See Also

unmarked, unmarkedFrameOccuFP, modSel, parboot

Examples

n = 100
o = 10
o1 = 5
y = matrix(0,n,o)
p = .7
r = .5
fp = 0.05
y[1:(n*.5),(o-o1+1):o] <- rbinom((n*o1*.5),1,p)
y[1:(n*.5),1:(o-o1)] <- rbinom((o-o1)*n*.5,1,r)
y[(n*.5+1):n,(o-o1+1):o] <- rbinom((n*o1*.5),1,fp)
type <- c((o-o1),o1,0) ### vector with the number of each data type
site <- c(rep(1,n*.5*.8),rep(0,n*.5*.2),rep(1,n*.5*.2),rep(0,n*.8*.5))
occ <- matrix(c(rep(0,n*(o-o1)),rep(1,n*o1)),n,o)
site <- data.frame(habitat = site)
occ <- list(METH = occ)

umf1 <- unmarkedFrameOccuFP(y,site,occ, type = type)

m1 <- occuFP(detformula = ~ METH, FPformula = ~1,
stateformula = ~ habitat, data = umf1)

predict(m1, type = 'fp')
coef(m1)
confint(m1, type = 'det')

84 occuMS

occuMS Fit Single-Season and Dynamic Multi-State Occupancy Models

Description

This function fits single-season and dynamic multi-state occupancy models with both the multino-
mial and conditional binomial parameterizations.

Usage

occuMS(detformulas, psiformulas, phiformulas=NULL, data,
parameterization=c("multinomial","condbinom"),
starts, method="BFGS", se=TRUE, engine=c("C","R"), silent=FALSE, ...)

Arguments

detformulas Character vector of formulas for detection probabilities. See details for a de-
scription of how to order these formulas.

psiformulas Character vector of formulas for occupancy probabilities. See details for a de-
scription of how to order these formulas.

phiformulas Character vector of formulas for state transition probabilities. Only used if you
are fitting a dynamic model. See details for a description of how to order these
formulas.

data An unmarkedFrameOccuMS object
parameterization

Either "multinomial" for the multinomial parameterization (MacKenzie et al.
2009) which allows an arbitrary number of occupancy states, or "condbinom"
for the conditional binomial parameterization (Nichols et al. 2007) which re-
quires exactly 3 occupancy states. See details.

starts Vector of parameter starting values.

method Optimization method used by optim.

se Logical specifying whether or not to compute standard errors.

engine Either "C" to use fast C++ code or "R" to use native R code during the optimiza-
tion.

silent Boolean; if TRUE, suppress warnings.

... Additional arguments to optim, such as lower and upper bounds

Details

Traditional occupancy models fit data with exactly two states: detection and non-detection (MacKen-
zie et al. 2002). The occuMS function fits models to occupancy data for which there are greater than
2 states (Nichols et al 2007, MacKenzie et al. 2009). For example, detections may be further di-
vided into multiple biologically relevant categories, e.g. breeding vs. non-breeding, or some/many

occuMS 85

individuals present. As with detection status, classification of these additional occupancy states is
likely to be imperfect.

Multiple parameterizations for multi-state occupancy models have been proposed. The occuMS
function fits two at present: the "conditional binomial" parameterization of Nichols et al. (2007),
and the more general "multinomial" parameterization of MacKenzie et al. (2009). Both single-
season and dynamic models are possible with occuMS (MacKenzie et al. 2009).

The conditional binomial parameterization (parameterization = 'condbinom') models occupancy
and the presence or absence of an additional biological state of interest given the species is present
(typically breeding status). Thus, there should be exactly 3 occupancy states in the data: 0 (non-
detection); 1 (detection, no evidence of breeding); or 2 (detection, evidence of breeding).

Two state parameters are estimated: ψ, the probability of occupancy, and R, the probability of
successful reproduction given an occupied state (although this could be some other binary biological
condition). Covariates (in siteCovs) can be supplied for either or both of these parameters with the
stateformulas argument, which takes a character vector of R-style formulas with length = 2, with
formulas in the order (ψ, R). For example, to fit a model where ψ varies with a landcover covariate
and R is constant, stateformulas = c('~landcover','~1').

There are three detection parameters associated with the conditional binomial parameterization:
p1, the probability of detecting the species given true state 1; p2, the probability of detecting the
species given true state 2; and δ, the probability of detecting state 2 (i.e., breeding), given that
the species has been detected. See MacKenzie et al. (2009), pages 825-826 for more details. As
with occupancy, covariates (in obsCovs) can be supplied for these detection probabilities with the
detformulas argument, which takes a character vector of formulas with length = 3 in the order
(p1, p2, δ). So, to fit a model where p1 varies with temperature and the other two parameters are
constant, detformulas = c('~temp','~1','~1').

The multinomial parameterization (parameterization = "multinomial") is more general, allow-
ing an arbitrary number of occupancy states S. S - 1 occupancy probabilities ψ are estimated.
Thus, if there are S = 4 occupancy states (0, 1, 2, 3), occuMS estimates ψ1, ψ2, and ψ3 (the prob-
ability of state 0 can be obtained by subtracting the others from 1). Covariates can be supplied
for each occupancy probability with a character vector with length S − 1, e.g. stateformulas =
c('~landcover','~1','~1') where ψ1 varies with landcover and ψ2 and ψ3 are constant.

The number of detection probabilities estimated quickly expands as S increases, equal to S × (S −
1)/2. In the simplest case (when S = 3), there are 3 detection probabilities: p11, the probabil-
ity of detecting state 1 given true state 1; p12, the probability of detecting state 1 given true state
2; and p22, the probability of detecting state 2 given true state 2. Covariates can be supplied for
any or all of these detection probabilities with the detformulas argument, which takes a char-
acter vector of formulas with length = 3 in the order (p11, p12, p22). So, to fit a model where
p11 varies with temperature and the other two detection probabilities are constant, detformulas
= c('~temp','~1','~1'). If there were S = 4 occupancy states, there are 6 estimated detection
probabilities and the order is (p11, p12, p13, p22, p23, p33), and so on. See MacKenzie et al. (2009)
for a more detailed explanation.

Dynamic (multi-season) models can be fit as well for both parameterizations (MacKenzie et al.
2009). In a standard dynamic occupancy model, additional parameters for probabilities of colo-
nization (i.e., state 0 -> 1) and extinction (1 -> 0) are estimated. In a multi-state context, we must
estimate a transition probability matrix (φ) between all possible states. You can provide formulas
for some of the probabilities in this matrix using the phiformulas argument. The approach differs
depending on parameterization.

86 occuMS

For the conditional binomial parameterization, phiformulas is a character vector of length 6. The
first three elements are formulas for the probability a site is occupied at time t given that it was
previously in states 0, 1, or 2 at time t − 1 (phi0, phi1, phi2). Elements 4-6 are formulas for
the probability of reproduction (or other biological state) given state 0, 1, or 2 at time t − 1 (R0,
R1, R2). See umf@phiOrder$cond_binom for a reminder of the correct order, where umf is your
unmarkedFrameOccuMS.

For the multinomial parameterization, phiformulas can be used to provide formulas for some
transitions between different occupancy states. You can’t give formulas for the probabilities of
remaining in the same state between seasons to keep the model identifiable. Thus, if there are
3 possible states (0, 1, 2), phiformulas should contain 6 formulas for the following transitions:
p(0->1), p(0->2), p(1->0), p(1->2), p(2->0), p(2->1), in that order (and similar for more
than 3 states). The remaining probabilities of staying in the same state between seasons can be ob-
tained via subtraction. See umf@phiOrder$multinomial for the correct order matching the number
of states in your dataset.

See unmarkedFrame and unmarkedFrameOccuMS for a description of how to supply data to the data
argument.

Value

unmarkedFitOccuMS object describing the model fit.

Author(s)

Ken Kellner <contact@kenkellner.com>

References

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

MacKenzie, D. I., Nichols, J. D., Seamans, M. E., and R. J. Gutierrez, 2009. Modeling species
occurrence dynamics with multiple states and imperfect detection. Ecology 90: 823-835.

Nichols, J. D., Hines, J. E., Mackenzie, D. I., Seamans, M. E., and R. J. Gutierrez. 2007. Occupancy
estimation and modeling with multiple states and state uncertainty. Ecology 88: 1395-1400.

See Also

unmarked, unmarkedFrameOccuMS

Examples

Not run:

#Simulate data

#Parameters
N <- 500; J <- 5; S <- 3
site_covs <- matrix(rnorm(N*2),ncol=2)

occuMS 87

obs_covs <- matrix(rnorm(N*J*2),ncol=2)
a1 <- -0.5; b1 <- 1; a2 <- -0.6; b2 <- -0.7

##################################
Multinomial parameterization
##################################

p11 <- -0.4; p12 <- -1.09; p22 <- -0.84
truth <- c(a1,b1,a2,b2,p11,0,p12,p22)

#State process
lp <- matrix(NA,ncol=S,nrow=N)
for (n in 1:N){

lp[n,2] <- exp(a1+b1*site_covs[n,1])
lp[n,3] <- exp(a2+b2*site_covs[n,2])
lp[n,1] <- 1

}
psi_mat <- lp/rowSums(lp)

z <- rep(NA,N)
for (n in 1:N){

z[n] <- sample(0:2, 1, replace=T, prob=psi_mat[n,])
}

probs_raw <- matrix(c(1,0,0,1,exp(p11),0,1,exp(p12),exp(p22)),nrow=3,byrow=T)
probs_raw <- probs_raw/rowSums(probs_raw)

y <- matrix(0,nrow=N,ncol=J)
for (n in 1:N){

probs <- switch(z[n]+1,
probs_raw[1,],
probs_raw[2,],
probs_raw[3,])

if(z[n]>0){
y[n,] <- sample(0:2, J, replace=T, probs)

}
}

#Construct unmarkedFrame
umf <- unmarkedFrameOccuMS(y=y,siteCovs=as.data.frame(site_covs),

obsCovs=as.data.frame(obs_covs))

#Formulas

#3 states, so detformulas is a character vector of formulas of
#length 3 in following order:
#1) p[11]: prob of detecting state 1 given true state 1
#2) p[12]: prob of detecting state 1 given true state 2
#3) p[22]: prob of detecting state 2 given true state 2
detformulas <- c('~V1','~1','~1')
#If you had 4 states, it would be p[11],p[12],p[13],p[22],p[23],p[33] and so on

88 occuMS

#3 states, so stateformulas is a character vector of length 2 in following order:
#1) psi[1]: probability of state 1
#2) psi[2]: probability of state 2
#You can get probability of state 0 (unoccupied) as 1 - psi[1] - psi[2]
stateformulas <- c('~V1','~V2')

#Fit model
fit <- occuMS(detformulas, stateformulas, data=umf,

parameterization="multinomial")

#Look at results
fit
#Compare with truth
cbind(truth=truth,estimate=coef(fit))

#Generate predicted values
lapply(predict(fit,type='psi'),head)
lapply(predict(fit,type='det'),head)

#Fit a null model
detformulas <- rep('~1',3)
stateformulas <- rep('~1',2)
fit_null <- occuMS(detformulas, stateformulas, data=umf,

parameterization="multinomial")

#Compare fits
modSel(fitList(fit,fit_null))

###
Conditional binomial parameterization
###

p11 <- 0.4; p12 <- 0.6; p22 <- 0.8
truth_cb <- c(a1,b1,a2,b2,qlogis(p11),0,qlogis(c(p12,p22)))

#Simulate data

#State process
psi_mat <- matrix(NA,ncol=S,nrow=N)
for (n in 1:N){

psi_mat[n,2] <- plogis(a1+b1*site_covs[n,1])
psi_mat[n,3] <- plogis(a2+b2*site_covs[n,2])

}
psi_bin <- matrix(NA,nrow=nrow(psi_mat),ncol=ncol(psi_mat))
psi_bin[,1] <- 1-psi_mat[,2]
psi_bin[,2] <- (1-psi_mat[,3])*psi_mat[,2]
psi_bin[,3] <- psi_mat[,2]*psi_mat[,3]
z <- rep(NA,N)
for (n in 1:N){

z[n] <- sample(0:2, 1, replace=T, prob=psi_bin[n,])
}

#Detection process

occuMS 89

y_cb <- matrix(0,nrow=N,ncol=J)
for (n in 1:N){

#p11 = p1; p12 = p2; p22 = delta
probs <- switch(z[n]+1,

c(1,0,0),
c(1-p11,p11,0),
c(1-p12,p12*(1-p22),p12*p22))

if(z[n]>0){
y_cb[n,] <- sample(0:2, J, replace=T, probs)

}
}

#Build unmarked frame
umf2 <- unmarkedFrameOccuMS(y=y_cb,siteCovs=as.data.frame(site_covs),

obsCovs=as.data.frame(obs_covs))

#Formulas

#detformulas is a character vector of formulas of length 3 in following order:
#1) p[1]: prob of detecting species given true state 1
#2) p[2]: prob of detecting species given true state 2
#3) delta: prob of detecting state 2 (eg breeding) given species was detected
detformulas <- c('~V1','~1','~1')

#stateformulas is a character vector of length 2 in following order:
#1) psi: probability of occupancy
#2) R: probability state 2 (eg breeding) given occupancyc
stateformulas <- c('~V1','~V2')

#Fit model
fit_cb <- occuMS(detformulas, stateformulas, data=umf2,

parameterization='condbinom')

#Look at results
fit_cb
#Compare with truth
cbind(truth=truth_cb,estimate=coef(fit_cb))

#Generate predicted values
lapply(predict(fit_cb,type='psi'),head)
lapply(predict(fit_cb,type='det'),head)

##################################
Dynamic (multi-season) model
##################################

#Simulate data---
N <- 500 #Number of sites
T <- 3 #Number of primary periods
J <- 5 #Number of secondary periods
S <- 3 #Number of occupancy states (0,1,2)

90 occuMS

#Generate covariates
site_covs <- as.data.frame(matrix(rnorm(N*2),ncol=2))
yearly_site_covs <- as.data.frame(matrix(rnorm(N*T*2),ncol=2))
obs_covs <- as.data.frame(matrix(rnorm(N*J*T*2),ncol=2))

#True parameter values
b <- c(

#Occupancy parameters
a1=-0.5, b1=1, a2=-0.6, b2=-0.7,
#Transition prob (phi) parameters
phi01=0.7, phi01_cov=-0.5, phi02=-0.5, phi10=1.2,
phi12=0.3, phi12_cov=1.1, phi20=-0.3, phi21=1.4, phi21_cov=0,
#Detection prob parameters
p11=-0.4, p11_cov=0, p12=-1.09, p22=-0.84

)

#Generate occupancy probs (multinomial parameterization)
lp <- matrix(1, ncol=S, nrow=N)
lp[,2] <- exp(b[1]+b[2]*site_covs[,1])
lp[,3] <- exp(b[3]+b[4]*site_covs[,2])
psi <- lp/rowSums(lp)

#True occupancy state matrix
z <- matrix(NA, nrow=N, ncol=T)

#Initial occupancy
for (n in 1:N){

z[n,1] <- sample(0:(S-1), 1, prob=psi[n,])
}

#Raw phi probs
phi_raw <- matrix(NA, nrow=N*T, ncol=S^2-S)
phi_raw[,1] <- exp(b[5]+b[6]*yearly_site_covs[,1]) #p[0->1]
phi_raw[,2] <- exp(b[7]) #p[0->2]
phi_raw[,3] <- exp(b[8]) #p[1->0]
phi_raw[,4] <- exp(b[9]+b[10]*yearly_site_covs[,2]) #p[1->2]
phi_raw[,5] <- exp(b[11]) #p[2->0]
phi_raw[,6] <- exp(b[12]+b[13]*yearly_site_covs[,1])

#Generate states in times 2..T
px <- 1
for (n in 1:N){

for (t in 2:T){
phi_mat <- matrix(c(1, phi_raw[px,1], phi_raw[px,2], # phi|z=0

phi_raw[px,3], 1, phi_raw[px,4], # phi|z=1
phi_raw[px,5], phi_raw[px,6], 1), # phi|z=2

nrow=S, byrow=T)
phi_mat <- phi_mat/rowSums(phi_mat)
z[n, t] <- sample(0:(S-1), 1, prob=phi_mat[z[n,(t-1)]+1,])
px <- px + 1
if(t==T) px <- px + 1 #skip last datapoint for each site

}
}

occuMS 91

#Raw p probs
p_mat <- matrix(c(1, 0, 0, #p|z=0

1, exp(b[14]), 0, #p|z=1
1, exp(b[16]), exp(b[17])), #p|z=2

nrow=S, byrow=T)
p_mat <- p_mat/rowSums(p_mat)

#Simulate observation data
y <- matrix(0, nrow=N, ncol=J*T)
for (n in 1:N){

yx <- 1
for (t in 1:T){
if(z[n,t]==0){

yx <- yx + J
next

}
for (j in 1:J){

y[n, yx] <- sample(0:(S-1), 1, prob=p_mat[z[n,t]+1,])
yx <- yx+1

}
}

}
#---

#Model fitting

#Build UMF
umf <- unmarkedFrameOccuMS(y=y, siteCovs=site_covs,

obsCovs=obs_covs,
yearlySiteCovs=yearly_site_covs,
numPrimary=3)

summary(umf)

#Formulas
#Initial occupancy
psiformulas <- c('~V1','~V2') #on psi[1] and psi[2]

#Transition probs
#Guide to order:
umf@phiOrder$multinomial
phiformulas <- c('~V1','~1','~1','~V2','~1','~V1')

#Detection probability
detformulas <- c('~V1','~1','~1') #on p[1|1], p[1|2], p[2|2]

#Fit model
(fit <- occuMS(detformulas=detformulas, psiformulas=psiformulas,

phiformulas=phiformulas, data=umf))

#Compare with truth
compare <- cbind(b,coef(fit),

coef(fit)-1.96*SE(fit),coef(fit)+1.96*SE(fit))

92 occuMulti

colnames(compare) <- c('truth','estimate','lower','upper')
round(compare,3)

#Estimated phi matrix for site 1
phi_est <- predict(fit, 'phi', se.fit=F)
phi_est <- sapply(phi_est, function(x) x$Predicted[1])
phi_est_mat <- matrix(NA, nrow=S, ncol=S)
phi_est_mat[c(4,7,2,8,3,6)] <- phi_est
diag(phi_est_mat) <- 1 - rowSums(phi_est_mat,na.rm=T)

#Actual phi matrix for site 1
phi_act_mat <- diag(S)
phi_act_mat[c(4,7,2,8,3,6)] <- phi_raw[1,]
phi_act_mat <- phi_act_mat/rowSums(phi_act_mat)

#Compare
cat('Estimated phi\n')
phi_est_mat
cat('Actual phi\n')
phi_act_mat

#Rough check of model fit
fit_sim <- simulate(fit, nsim=20)
hist(sapply(fit_sim,mean),col='gray')
abline(v=mean(umf@y),col='red',lwd=2)
#line should fall near middle of histogram

End(Not run)

occuMulti Fit the Rota et al. (2016) Multi-species Occupancy Model

Description

This function fits the multispecies occupancy model of Rota et al (2016).

Usage

occuMulti(detformulas, stateformulas, data, maxOrder, penalty=0, boot=30,
starts, method="BFGS", se=TRUE, engine=c("C","R"), silent=FALSE, ...)

Arguments

detformulas Character vector of formulas for the detection models, one per species.

stateformulas Character vector of formulas for the natural parameters. To fix a natural param-
eter at 0, specify the corresponding formula as "0" or "~0".

data An unmarkedFrameOccuMulti object

occuMulti 93

maxOrder Optional; specify maximum interaction order. Defaults to number of species
(all possible interactions). Reducing this value may speed up optimization if
you aren’t interested in higher-order interactions.

penalty Penalty term for likelihood. The total penalty is calculated as penalty * 0.5 *
sum(paramvals^2). Defaults to 0 (no penalty).

boot Number of bootstrap samples to use to generate the variance-covariance matrix
when penalty > 0.

starts Vector of parameter starting values.

method Optimization method used by optim.

se Logical specifying whether or not to compute standard errors.

engine Either "C" to use fast C++ code or "R" to use native R code during the optimiza-
tion.

silent Boolean; if TRUE, suppress warnings.

... Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccuMulti for a description of how to supply data to the
data argument.

occuMulti fits the multispecies occupancy model from Rota et al. (2016), for two or more interact-
ing species. The model generalizes the standard single-species occupancy model from MacKenzie
et al. (2002). The latent occupancy state at site i for a set of s potentially interacting species is a
vector Zi of length s containing a sequence of the values 0 or 1. For example, when s = 2, the
possible states are [11], [10], [01], or [00], corresponding to both species present, only species 1 or
species 2 present, or both species absent, respectively. The latent state modeled as a multivariate
Bernoulli random variable:

Zi ∼ MVB(ψi)

where ψi is a vector of length 2s containing the probability of each possible combination of 0s and
1s, such that

∑
ψi = 1.

For s = 2, the corresponding natural parameters f are

f1 = log

(
ψ10

ψ00

)
f2 = log

(
ψ01

ψ00

)
f12 = log

(
ψ11ψ00

ψ10ψ01

)
The natural parameters can then be modeled as linear functions of covariates. Covariates for each f
must be specified with the stateformulas argument, which takes a character vector of individual
formulas of length equal to the number of natural parameters (which in turn depends on the number
of species in the model).

94 occuMulti

The observation process is similar to the standard single-species occupancy model, except that the
observations yij at site i on occasion j are vectors of length s and there are independent values of
detection probability p for each species s:

yij |Zi ∼ MVB(Zipsij)

Independent detection models (potentially containing different covariates) must be provided for
each species with the detformulas argument, which takes a character vector of individual formulas
with length equal to the number of species s.

If you are having problems with separation or boundary estimates (indicated by very large parameter
estimates and SEs), use of penalized likelihood may help: see Clipp et al. (2021). occuMulti
supports use of the Bayes-inspired penalty of Hutchinson et al. (2015). You can set the penalty
value manually using the penalty argument, or identify the optimal penalty using K-fold cross
validation with the optimizePenalty function. See example below.

Value

unmarkedFitOccuMulti object describing the model fit.

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Clipp, H. L., Evans, A., Kessinger, B. E., Kellner, K. F., and C. T. Rota. 2021. A penalized likeli-
hood for multi-species occupancy models improves predictions of species interactions. Ecology.

Hutchinson, R. A., J. V. Valente, S. C. Emerson, M. G. Betts, and T. G. Dietterich. 2015. Penalized
Likelihood Methods Improve Parameter Estimates in Occupancy Models. Methods in Ecology and
Evolution. DOI: 10.1111/2041-210X.12368

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

Rota, C.T., et al. 2016. A multi-species occupancy model for two or more interacting species.
Methods in Ecology and Evolution 7: 1164-1173.

See Also

unmarked, unmarkedFrameOccuMulti

Examples

Not run:
#Simulate 3 species data
N <- 1000
nspecies <- 3
J <- 5

occuMulti 95

occ_covs <- as.data.frame(matrix(rnorm(N * 10),ncol=10))
names(occ_covs) <- paste('occ_cov',1:10,sep='')

det_covs <- list()
for (i in 1:nspecies){

det_covs[[i]] <- matrix(rnorm(N*J),nrow=N)
}
names(det_covs) <- paste('det_cov',1:nspecies,sep='')

#True vals
beta <- c(0.5,0.2,0.4,0.5,-0.1,-0.3,0.2,0.1,-1,0.1)
f1 <- beta[1] + beta[2]*occ_covs$occ_cov1
f2 <- beta[3] + beta[4]*occ_covs$occ_cov2
f3 <- beta[5] + beta[6]*occ_covs$occ_cov3
f4 <- beta[7]
f5 <- beta[8]
f6 <- beta[9]
f7 <- beta[10]
f <- cbind(f1,f2,f3,f4,f5,f6,f7)
z <- expand.grid(rep(list(1:0),nspecies))[,nspecies:1]
colnames(z) <- paste('sp',1:nspecies,sep='')
dm <- model.matrix(as.formula(paste0("~.^",nspecies,"-1")),z)

psi <- exp(f %*% t(dm))
psi <- psi/rowSums(psi)

#True state
ztruth <- matrix(NA,nrow=N,ncol=nspecies)
for (i in 1:N){

ztruth[i,] <- as.matrix(z[sample(8,1,prob=psi[i,]),])
}

p_true <- c(0.6,0.7,0.5)

fake y data
y <- list()

for (i in 1:nspecies){
y[[i]] <- matrix(NA,N,J)
for (j in 1:N){
for (k in 1:J){

y[[i]][j,k] <- rbinom(1,1,ztruth[j,i]*p_true[i])
}

}
}
names(y) <- c('coyote','tiger','bear')

#Create the unmarked data object
data = unmarkedFrameOccuMulti(y=y,siteCovs=occ_covs,obsCovs=det_covs)

#Summary of data object
summary(data)
plot(data)

96 occuMulti

Look at f parameter design matrix
data@fDesign

Formulas for state and detection processes

Length should match number/order of columns in fDesign
occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov3','~1','~1','~1','~1')

#Length should match number/order of species in data@ylist
detFormulas <- c('~1','~1','~1')

fit <- occuMulti(detFormulas,occFormulas,data)

#Look at output
fit

plot(fit)

#Compare with known values
cbind(c(beta,log(p_true/(1-p_true))),fit@opt$par)

#predict method
lapply(predict(fit,'state'),head)
lapply(predict(fit,'det'),head)

#marginal occupancy
head(predict(fit,'state',species=2))
head(predict(fit,'state',species='bear'))
head(predict(fit,'det',species='coyote'))

#probability of co-occurrence of two or more species
head(predict(fit, 'state', species=c('coyote','tiger')))

#conditional occupancy
head(predict(fit,'state',species=2,cond=3)) #tiger | bear present
head(predict(fit,'state',species='tiger',cond='bear')) #tiger | bear present
head(predict(fit,'state',species='tiger',cond='-bear')) #bear absent
head(predict(fit,'state',species='tiger',cond=c('coyote','-bear')))

#residuals (by species)
lapply(residuals(fit),head)

#ranef (by species)
ranef(fit, species='coyote')

#parametric bootstrap
bt <- parboot(fit,nsim=30)

#update model
occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov2+occ_cov3','~1','~1','~1','~1')
fit2 <- update(fit,stateformulas=occFormulas)

occuPEN 97

#List of fitted models
fl <- fitList(fit,fit2)
coef(fl)

#Model selection
modSel(fl)

#Fit model while forcing some natural parameters to be 0
#For example: fit model with no species interactions
occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov2+occ_cov3','0','0','0','0')
fit3 <- occuMulti(detFormulas,occFormulas,data)

#Alternatively, you can force all interaction parameters above a certain
#order to be zero with maxOrder. This will be faster.
occFormulas <- c('~occ_cov1','~occ_cov2','~occ_cov2+occ_cov3')
fit4 <- occuMulti(detFormulas,occFormulas,data,maxOrder=1)

#Add Bayes penalty term to likelihood. This is useful if your parameter
#estimates are very large, eg because of separation.
fit5 <- occuMulti(detFormulas, occFormulas, data, penalty=1)

#Find optimal penalty term value from a range of possible values using
#K-fold cross validation, and re-fit the model
fit_opt <- optimizePenalty(fit5, penalties=c(0,1,2))

End(Not run)

occuPEN Fit the MacKenzie et al. (2002) Occupancy Model with the penalized
likelihood methods of Hutchinson et al. (2015)

Description

This function fits the occupancy model of MacKenzie et al (2002) with the penalized methods of
Hutchinson et al (2015).

Usage

occuPEN(formula, data, knownOcc=numeric(0), starts, method="BFGS",
engine=c("C", "R"), lambda=0, pen.type = c("Bayes","Ridge","MPLE"), ...)

Arguments

formula Double right-hand side formula describing covariates of detection and occu-
pancy in that order.

data An unmarkedFrameOccu object

98 occuPEN

knownOcc Vector of sites that are known to be occupied. These should be supplied as row
numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a
priori.

starts Vector of parameter starting values.

method Optimization method used by optim.

engine Either "C" or "R" to use fast C++ code or native R code during the optimization.

lambda Penalty weight parameter.

pen.type Which form of penalty to use.

... Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccu for a description of how to supply data to the data
argument.

occuPEN fits the standard occupancy model based on zero-inflated binomial models (MacKenzie et
al. 2006, Royle and Dorazio 2008) using the penalized likelihood methods described in Hutchinson
et al. (2015). See occu for model details. occuPEN returns parameter estimates that maximize
a penalized likelihood in which the penalty is specified by the pen.type argument. The penalty
function is weighted by lambda.

The MPLE method includes an equation for computing lambda (Moreno & Lele, 2010). If the
value supplied does not equal match the one computed with this equation, the supplied value is
used anyway (with a warning).

Value

unmarkedFitOccuPEN object describing the model fit.

Author(s)

Rebecca A. Hutchinson

References

Hutchinson, R. A., J. V. Valente, S. C. Emerson, M. G. Betts, and T. G. Dietterich. 2015. Penalized
Likelihood Methods Improve Parameter Estimates in Occupancy Models. Methods in Ecology and
Evolution. DOI: 10.1111/2041-210X.12368

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

MacKenzie, D. I. et al. 2006. Occupancy Estimation and Modeling. Amsterdam: Academic Press.

Moreno, M. and S. R. Lele. 2010. Improved estimation of site occupancy using penalized likeli-
hood. Ecology 91: 341-346.

Royle, J. A. and R. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic
Press.

occuPEN 99

See Also

unmarked, unmarkedFrameOccu, occu, computeMPLElambda, occuPEN_CV, nonparboot

Examples

Simulate occupancy data
set.seed(344)
nSites <- 100
nReps <- 2
covariates <- data.frame(veght=rnorm(nSites),

habitat=factor(c(rep('A', nSites/2), rep('B', nSites/2))))

psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)

y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {

y[i,] <- rbinom(nReps, 1, z[i]*p[i])
}

Organize data and look at it
umf <- unmarkedFrameOccu(y = y, siteCovs = covariates)
obsCovs(umf) <- covariates
head(umf)
summary(umf)

Fit some models
fmMLE <- occu(~veght+habitat ~veght+habitat, umf)
fm1pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=0.33,pen.type="Ridge")
fm2pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=1,pen.type="Bayes")

MPLE:
fm3pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=0.5,pen.type="MPLE")
MPLElambda = computeMPLElambda(~veght+habitat ~veght+habitat, umf)
fm4pen <- occuPEN(~veght+habitat ~veght+habitat, umf,lambda=MPLElambda,pen.type="MPLE")

nonparametric bootstrap for uncertainty analysis:
fm1pen <- nonparboot(fm1pen,B=20) # should use more samples
vcov(fm1pen,method="nonparboot")

100 occuPEN_CV

occuPEN_CV Fit the MacKenzie et al. (2002) Occupancy Model with the penalized
likelihood methods of Hutchinson et al. (2015) using cross-validation

Description

This function fits the occupancy model of MacKenzie et al (2002) with the penalized methods of
Hutchinson et al (2015) using k-fold cross-validation to choose the penalty weight.

Usage

occuPEN_CV(formula, data, knownOcc=numeric(0), starts, method="BFGS",
engine=c("C", "R"), lambdaVec=c(0,2^seq(-4,4)),
pen.type = c("Bayes","Ridge"), k = 5, foldAssignments = NA,
...)

Arguments

formula Double right-hand side formula describing covariates of detection and occu-
pancy in that order.

data An unmarkedFrameOccu object
knownOcc Vector of sites that are known to be occupied. These should be supplied as row

numbers of the y matrix, eg, c(3,8) if sites 3 and 8 were known to be occupied a
priori.

starts Vector of parameter starting values.
method Optimization method used by optim.
engine Either "C" or "R" to use fast C++ code or native R code during the optimization.
lambdaVec Vector of values to try for lambda.
pen.type Which form of penalty to use.
k Number of folds for k-fold cross-validation.
foldAssignments

Vector containing the number of the fold that each site falls into. Length of the
vector should be equal to the number of sites, and the vector should contain k
unique values. E.g. for 9 sites and 3 folds, c(1,2,3,1,2,3,1,2,3) or c(1,1,1,2,2,2,3,3,3).

... Additional arguments to optim, such as lower and upper bounds

Details

See unmarkedFrame and unmarkedFrameOccu for a description of how to supply data to the data
argument.

This function wraps k-fold cross-validation around occuPEN_CV for the "Bayes" and "Ridge" penal-
ties of Hutchinson et al. (2015). The user may specify the number of folds (k), the values to try
(lambdaVec), and the assignments of sites to folds (foldAssignments). If foldAssignments is not
provided, the assignments are done pseudo-randomly, and the function attempts to put some sites
with and without positive detections in each fold. This randomness introduces variability into the
results of this function across runs; to eliminate the randomness, supply foldAssignments.

occuPEN_CV 101

Value

unmarkedFitOccuPEN_CV object describing the model fit.

Author(s)

Rebecca A. Hutchinson

References

Hutchinson, R. A., J. V. Valente, S. C. Emerson, M. G. Betts, and T. G. Dietterich. 2015. Penalized
Likelihood Methods Improve Parameter Estimates in Occupancy Models. Methods in Ecology and
Evolution. DOI: 10.1111/2041-210X.12368

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.

See Also

unmarked, unmarkedFrameOccu, occu, occuPEN, nonparboot

Examples

Simulate occupancy data
set.seed(646)
nSites <- 60
nReps <- 2
covariates <- data.frame(veght=rnorm(nSites),

habitat=factor(c(rep('A', 30), rep('B', 30))))

psipars <- c(-1, 1, -1)
ppars <- c(1, -1, 0)
X <- model.matrix(~veght+habitat, covariates) # design matrix
psi <- plogis(X %*% psipars)
p <- plogis(X %*% ppars)

y <- matrix(NA, nSites, nReps)
z <- rbinom(nSites, 1, psi) # true occupancy state
for(i in 1:nSites) {

y[i,] <- rbinom(nReps, 1, z[i]*p[i])
}

Organize data and look at it
umf <- unmarkedFrameOccu(y = y, siteCovs = covariates)
obsCovs(umf) <- covariates
head(umf)
summary(umf)

Not run:

Fit some models

102 occuRN

fmMLE <- occu(~veght+habitat ~veght+habitat, umf)
fmMLE@estimates

fm1penCV <- occuPEN_CV(~veght+habitat ~veght+habitat,
umf,pen.type="Ridge", foldAssignments=rep(1:5,ceiling(nSites/5))[1:nSites])

fm1penCV@lambdaVec
fm1penCV@chosenLambda
fm1penCV@estimates

fm2penCV <- occuPEN_CV(~veght+habitat ~veght+habitat,
umf,pen.type="Bayes",foldAssignments=rep(1:5,ceiling(nSites/5))[1:nSites])
fm2penCV@lambdaVec
fm2penCV@chosenLambda
fm2penCV@estimates

nonparametric bootstrap for uncertainty analysis:
bootstrap is wrapped around the cross-validation
fm2penCV <- nonparboot(fm2penCV,B=10) # should use more samples
vcov(fm2penCV,method="nonparboot")

Mean squared error of parameters:
mean((c(psipars,ppars)-c(fmMLE[1]@estimates,fmMLE[2]@estimates))^2)
mean((c(psipars,ppars)-c(fm1penCV[1]@estimates,fm1penCV[2]@estimates))^2)
mean((c(psipars,ppars)-c(fm2penCV[1]@estimates,fm2penCV[2]@estimates))^2)

End(Not run)

occuRN Fit the occupancy model of Royle and Nichols (2003)

Description

Fit the occupancy model of Royle and Nichols (2003), which relates probability of detection of the
species to the number of individuals available for detection at each site. Probability of occupancy is
a derived parameter: the probability that at least one individual is available for detection at the site.

Usage

occuRN(formula, data, K=25, starts, method="BFGS", se=TRUE,
engine=c("C","R"), threads=1, ...)

Arguments

formula double right-hand side formula describing covariates of detection and abun-
dance, in that order.

data Object of class unmarkedFrameOccu supplying data to the model.

occuRN 103

K the upper summation index used to numerically integrate out the latent abun-
dance. This should be set high enough so that it does not affect the parameter
estimates. Computation time will increase with K.

starts initial values for the optimization.

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

engine Either "C" to use fast C++ code or "R" to use native R code during the optimiza-
tion.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

This function fits the latent abundance mixture model described in Royle and Nichols (2003).

The number of animals available for detection at site i is modelled as Poisson:

Ni ∼ Poisson(λi)

We assume that all individuals at site i during sample j have identical detection probabilities, rij ,
and that detections are independent. The species will be recorded if at least one individual is de-
tected. Thus, the detection probability for the species is linked to the detection probability for an
individual by

pij = 1− (1− rij)Ni

Note that if Ni = 0, then pij = 0, and increasing values of Ni lead to higher values of pij The
equation for the detection history is then:

yij ∼ Bernoulli(pij)

Covariates of λi are modelled with the log link and covariates of rij are modelled with the logit
link.

Value

unmarkedFit object describing the model fit.

Author(s)

Ian Fiske

References

Royle, J. A. and Nichols, J. D. (2003) Estimating Abundance from Repeated Presence-Absence
Data or Point Counts. Ecology, 84(3) pp. 777–790.

104 occuTTD

Examples

Not run:

data(birds)
woodthrushUMF <- unmarkedFrameOccu(woodthrush.bin)
survey occasion-specific detection probabilities
(fm.wood.rn <- occuRN(~ obsNum ~ 1, woodthrushUMF))

Empirical Bayes estimates of abundance at each site
re <- ranef(fm.wood.rn)
plot(re)

End(Not run)

occuTTD Fit Single-Season and Dynamic Time-to-detection Occupancy Models

Description

Fit time-to-detection occupancy models of Garrard et al. (2008, 2013), either single-season or
dynamic. Time-to-detection can be modeled with either an exponential or Weibull distribution.

Usage

occuTTD(psiformula= ~1, gammaformula = ~ 1, epsilonformula = ~ 1,
detformula = ~ 1, data, ttdDist = c("exp", "weibull"),
linkPsi = c("logit", "cloglog"), starts, method="BFGS", se=TRUE,
engine = c("C", "R"), ...)

Arguments

psiformula Right-hand sided formula for the initial probability of occupancy at each site.

gammaformula Right-hand sided formula for colonization probability.

epsilonformula Right-hand sided formula for extinction probability.

detformula Right-hand sided formula for mean time-to-detection.

data unmarkedFrameOccuTTD object that supplies the data (see unmarkedFrameOccuTTD).

ttdDist Distribution to use for time-to-detection; either "exp" for the exponential, or
"weibull" for the Weibull, which adds an additional shape parameter k.

linkPsi Link function for the occupancy model. Options are "logit" for the standard
occupancy model or "cloglog" for the complimentary log-log link, which re-
lates occupancy to site-level abundance.

starts optionally, initial values for parameters in the optimization.

occuTTD 105

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

engine Either "C" or "R" to use fast C++ code or native R code during the optimization.

... Additional arguments to optim, such as lower and upper bounds

Details

Estimates site occupancy and detection probability from time-to-detection (TTD) data, e.g. time to
first detection of a particular bird species during a point count or time-to-detection of a plant species
while searching a quadrat (Garrard et al. 2008). Time-to-detection can be modeled as an exponential
(ttdDist="exp") or Weibull (ttdDist="weibull") random variable with rate parameter λ and, for
the Weibull, an additional shape parameter k. Note that occuTTD puts covariates on λ and not 1/λ,
i.e., the expected time between events.

In the case where there are no detections before the maximum sample time at a site (surveyLength)
is reached, we are not sure if the site is unoccupied or if we just didn’t wait long enough for a
detection. We therefore must censor the exponential or Weibull distribution at the maximum survey
length, Tmax. Thus, assuming true site occupancy at site i is zi, an exponential distribution for the
TTD yi, and that di = 1 indicates yi is censored (Kery and Royle 2016):

di = zi ∗ I(yi > Tmaxi) + (1− zi)

and

yi|zi ∼ Exponential(λi), di = 0

yi|zi =Missing, di = 1

Because in unmarked values of NA are typically used to indicate missing values that were a result
of the sampling structure (e.g., lost data), we indicate a censored yi in occuTTD instead by setting
yi = Tmaxi in the y matrix provided to unmarkedFrameOccuTTD. You can provide either a single
value of Tmax to the surveyLength argument of unmarkedFrameOccuTTD, or provide a matrix,
potentially with a unique value of Tmax for each value of y. Note that in the latter case the value
of y that will be interpreted by occuTTD as a censored observation (i.e., Tmax) will differ between
observations!

Occupancy and detection can be estimated with only a single survey per site, unlike a traditional
occupancy model that requires at least two replicated surveys at at least some sites. However,
occuTTD also supports multiple surveys per site using the model described in Garrard et al. (2013).
Furthermore, multi-season dynamic models are supported, using the same basic structure as for
standard occupancy models (see colext).

When linkPsi = "cloglog", the complimentary log-log link function is used for psi instead of the
logit link. The cloglog link relates occupancy probability to the intensity parameter of an under-
lying Poisson process (Kery and Royle 2016). Thus, if abundance at a site is can be modeled as
Ni Poisson(λi), where log(λi) = α+β ∗x, then presence/absence data at the site can be modeled
as Zi Binomial(ψi) where cloglog(ψi) = α+ β ∗ x.

Value

unmarkedFitOccuTTD object describing model fit.

106 occuTTD

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Garrard, G.E., Bekessy, S.A., McCarthy, M.A. and Wintle, B.A. 2008. When have we looked hard
enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral
Ecology 33: 986-998.

Garrard, G.E., McCarthy, M.A., Williams, N.S., Bekessy, S.A. and Wintle, B.A. 2013. A general
model of detectability using species traits. Methods in Ecology and Evolution 4: 45-52.

Kery, Marc, and J. Andrew Royle. 2016. Applied Hierarchical Modeling in Ecology, Volume 1.
Academic Press.

See Also

unmarked, unmarkedFrameOccuTTD

Examples

Not run:

Single season model
N <- 500; J <- 1

#Simulate occupancy
scovs <- data.frame(elev=c(scale(runif(N, 0,100))),

forest=runif(N,0,1),
wind=runif(N,0,1))

beta_psi <- c(-0.69, 0.71, -0.5)
psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi)
z <- rbinom(N, 1, psi)

#Simulate detection
Tmax <- 10 #Same survey length for all observations
beta_lam <- c(-2, -0.2, 0.7)
rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam)
ttd <- rexp(N, rate)
ttd[z==0] <- Tmax #Censor at unoccupied sites
ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length

#Build unmarkedFrame
umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs)

#Fit model
fit <- occuTTD(psiformula=~elev+forest, detformula=~elev+wind, data=umf)

#Predict psi values
predict(fit, type='psi', newdata=data.frame(elev=0.5, forest=1))

occuTTD 107

#Predict lambda values
predict(fit, type='det', newdata=data.frame(elev=0.5, wind=0))

#Calculate p, probability species is detected at a site given it is present
#for a value of lambda. This is equivalent to eq 4 of Garrard et al. 2008
lam <- predict(fit, type='det', newdata=data.frame(elev=0.5, wind=0))$Predicted
pexp(Tmax, lam)

#Estimated p for all observations
head(getP(fit))

Dynamic model

N <- 1000; J <- 2; T <- 2
scovs <- data.frame(elev=c(scale(runif(N, 0,100))),

forest=runif(N,0,1),
wind=runif(N,0,1))

beta_psi <- c(-0.69, 0.71, -0.5)
psi <- plogis(cbind(1, scovs$elev, scovs$forest) %*% beta_psi)
z <- matrix(NA, N, T)
z[,1] <- rbinom(N, 1, psi)

#Col/ext process
ysc <- data.frame(forest=rep(scovs$forest, each=T),

elev=rep(scovs$elev, each=T))
c_b0 <- -0.4; c_b1 <- 0.3
gam <- plogis(c_b0 + c_b1 * scovs$forest)
e_b0 <- -0.7; e_b1 <- 0.4
ext <- plogis(e_b0 + e_b1 * scovs$elev)

for (i in 1:N){
for (t in 1:(T-1)){
if(z[i,t]==1){

#ext
z[i,t+1] <- rbinom(1, 1, (1-ext[i]))

} else {
#col
z[i,t+1] <- rbinom(1,1, gam[i])

}
}

}

#Simulate detection
ocovs <- data.frame(obs=rep(c('A','B'),N*T))
Tmax <- 10
beta_lam <- c(-2, -0.2, 0.7)
rate <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam)
#Add second observer at each site
rateB <- exp(cbind(1, scovs$elev, scovs$wind) %*% beta_lam - 0.5)
#Across seasons
rate2 <- as.numeric(t(cbind(rate, rateB, rate, rateB)))
ttd <- rexp(N*T*2, rate2)

108 optimizePenalty-methods

ttd <- matrix(ttd, nrow=N, byrow=T)
ttd[ttd>Tmax] <- Tmax
ttd[z[,1]==0,1:2] <- Tmax
ttd[z[,2]==0,3:4] <- Tmax

umf <- unmarkedFrameOccuTTD(y = ttd, surveyLength = Tmax,
siteCovs = scovs, obsCovs=ocovs,
yearlySiteCovs=ysc, numPrimary=2)

dim(umf@y) #num sites, (num surveys x num primary periods)

fit <- occuTTD(psiformula=~elev+forest,detformula=~elev+wind+obs,
gammaformula=~forest, epsilonformula=~elev,
data=umf,se=T,engine="C")

truth <- c(beta_psi, c_b0, c_b1, e_b0, e_b1, beta_lam, -0.5)

#Compare to truth
cbind(coef(fit), truth)

End(Not run)

optimizePenalty-methods

Identify Optimal Penalty Parameter Value

Description

Identify the optimal value of the penalty term for unmarked models that support penalized like-
lihood. For each potential value of the penalty term, K-fold cross validation is performed. Log-
likelihoods for the test data in each fold are calculated and summed. The penalty term that max-
imizes the sum of the fold log-likelihoods is selected as the optimal value. Finally, the model is
re-fit with the full dataset using the selected penalty term. Right now only Bayes-inspired penalty
of Hutchinson et al. (2015) is supported.

Currently the only fitting function that supports optimizePenalty is occuMulti for multispecies
occupancy modeling; see Clipp et al. (2021).

Usage

S4 method for signature 'unmarkedFitOccuMulti'
optimizePenalty(
object, penalties = c(0, 2^seq(-4, 4)), k = 5, boot = 30, ...)

Arguments

object A fitted model inheriting class unmarkedFit

penalties Vector of possible penalty values, all of which must be >= 0

ovendata 109

k Number of folds to use for k-fold cross validation

boot Number of bootstrap samples to use to generate the variance-covariance matrix
for the final model.

... Other arguments, currently ignored

Value

unmarkedFit object of same type as input, with the optimal penalty value applied.

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Clipp, H. L., Evans, A., Kessinger, B. E., Kellner, K. F., and C. T. Rota. 2021. A penalized likeli-
hood for multi-species occupancy models improves predictions of species interactions. Ecology.

Hutchinson, R. A., J. V. Valente, S. C. Emerson, M. G. Betts, and T. G. Dietterich. 2015. Penalized
Likelihood Methods Improve Parameter Estimates in Occupancy Models. Methods in Ecology and
Evolution. DOI: 10.1111/2041-210X.12368

ovendata Removal data for the Ovenbird

Description

Removal sampling data collected for the Ovenbird (Seiurus aurocapillus).

Usage

data(ovendata)

Format

The format is: chr "ovendata.list" which consists of

data matrix of removal counts

covariates data frame of site-level covariates

Source

J.A. Royle (see reference below)

References

Royle, J. A. (2004). Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation, 27(1), 375-386.

110 parboot

Examples

data(ovendata)
str(ovendata.list)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])), type = "removal")

parboot Parametric bootstrap method for fitted models inheriting class.

Description

Simulate datasets from a fitted model, refit the model, and generate a sampling distribution for a
user-specified fit-statistic.

Arguments

object a fitted model inheriting class "unmarkedFit"

statistic a function returning a vector of fit-statistics. First argument must be the fitted
model. Default is sum of squared residuals.

nsim number of bootstrap replicates

report print fit statistic every ’report’ iterations during resampling

seed set seed for reproducible bootstrap

parallel logical (default = TRUE) indicating whether to compute bootstrap on multiple
cores, if present. If TRUE, suppresses reporting of bootstrapped statistics. De-
faults to serial calculation when nsim < 100. Parallel computation is likely to be
slower for simple models when nsim < ~500, but should speed up the bootstrap
of more complicated models.

ncores integer (default = one less than number of available cores) number of cores to
use when bootstrapping in parallel.

... Additional arguments to be passed to statistic

Details

This function simulates datasets based upon a fitted model, refits the model, and evaluates a user-
specified fit-statistic for each simulation. Comparing this sampling distribution to the observed
statistic provides a means of evaluating goodness-of-fit or assessing uncertainty in a quantity of
interest.

Value

An object of class parboot with three slots:

call parboot call

t0 Numeric vector of statistics for original fitted model.

t.star nsim by length(t0) matrix of statistics for each simulation fit.

parboot 111

Author(s)

Richard Chandler <rbchan@uga.edu> and Adam Smith

See Also

ranef

Examples

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
tlength = lengths*1000, survey = "line", unitsIn = "m")

})

Fit a model
(fm <- distsamp(~area ~habitat, ltUMF))

Function returning three fit-statistics.
fitstats <- function(fm, na.rm=TRUE) {

observed <- getY(fm@data)
expected <- fitted(fm)
resids <- residuals(fm)
sse <- sum(resids^2, na.rm=na.rm)
chisq <- sum((observed - expected)^2 / expected, na.rm=na.rm)
freeTuke <- sum((sqrt(observed) - sqrt(expected))^2, na.rm=na.rm)
out <- c(SSE=sse, Chisq=chisq, freemanTukey=freeTuke)
return(out)

}

(pb <- parboot(fm, fitstats, nsim=25, report=1))
plot(pb, main="")

Finite-sample inference for a derived parameter.
Population size in sampled area

Nhat <- function(fm) {
sum(bup(ranef(fm, K=50)))
}

set.seed(345)
(pb.N <- parboot(fm, Nhat, nsim=25, report=5))

Compare to empirical Bayes confidence intervals
colSums(confint(ranef(fm, K=50)))

112 pcount

pcount Fit the N-mixture model of Royle (2004)

Description

Fit the N-mixture model of Royle (2004)

Usage

pcount(formula, data, K, mixture=c("P", "NB", "ZIP"),
starts, method="BFGS", se=TRUE, engine=c("C", "R", "TMB"), threads=1, ...)

Arguments

formula Double right-hand side formula describing covariates of detection and abun-
dance, in that order

data an unmarkedFramePCount object supplying data to the model.

K Integer upper index of integration for N-mixture. This should be set high enough
so that it does not affect the parameter estimates. Note that computation time
will increase with K.

mixture character specifying mixture: "P", "NB", or "ZIP".

starts vector of starting values

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

engine Either "C", "R", or "TMB" to use fast C++ code, native R code, or TMB (re-
quired for random effects) during the optimization.

threads Set the number of threads to use for optimization in C++, if OpenMP is available
on your system. Increasing the number of threads may speed up optimization in
some cases by running the likelihood calculation in parallel. If threads=1 (the
default), OpenMP is disabled.

... Additional arguments to optim, such as lower and upper bounds

Details

This function fits N-mixture model of Royle (2004) to spatially replicated count data.

See unmarkedFramePCount for a description of how to format data for pcount.

This function fits the latent N-mixture model for point count data (Royle 2004, Kery et al 2005).

The latent abundance distribution, f(N |θ) can be set as a Poisson, negative binomial, or zero-
inflated Poisson random variable, depending on the setting of the mixture argument, mixture =
"P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of Ni

pcount 113

is λi. If Ni ∼ NB, then an additional parameter, α, describes dispersion (lower α implies higher
variance). For the ZIP distribution, the mean is λi(1−ψ), where psi is the zero-inflation parameter.

The detection process is modeled as binomial: yij ∼ Binomial(Ni, pij).

Covariates of λi use the log link and covariates of pij use the logit link.

Value

unmarkedFit object describing the model fit.

Author(s)

Ian Fiske and Richard Chandler

References

Royle, J. A. (2004) N-Mixture Models for Estimating Population Size from Spatially Replicated
Counts. Biometrics 60, pp. 108–105.

Kery, M., Royle, J. A., and Schmid, H. (2005) Modeling Avaian Abundance from Replicated Counts
Using Binomial Mixture Models. Ecological Applications 15(4), pp. 1450–1461.

Johnson, N.L, A.W. Kemp, and S. Kotz. (2005) Univariate Discrete Distributions, 3rd ed. Wiley.

See Also

unmarkedFramePCount, pcountOpen, ranef, parboot

Examples

Not run:

Simulate data
set.seed(35)
nSites <- 100
nVisits <- 3
x <- rnorm(nSites) # a covariate
beta0 <- 0
beta1 <- 1
lambda <- exp(beta0 + beta1*x) # expected counts at each site
N <- rpois(nSites, lambda) # latent abundance
y <- matrix(NA, nSites, nVisits)
p <- c(0.3, 0.6, 0.8) # detection prob for each visit
for(j in 1:nVisits) {

y[,j] <- rbinom(nSites, N, p[j])
}

Organize data
visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE)

umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x),
obsCovs=list(visit=visitMat))

114 pcount.spHDS

summary(umf)

Fit a model
fm1 <- pcount(~visit-1 ~ x, umf, K=50)
fm1

plogis(coef(fm1, type="det")) # Should be close to p

Empirical Bayes estimation of random effects
(fm1re <- ranef(fm1))
plot(fm1re, subset=site %in% 1:25, xlim=c(-1,40))
sum(bup(fm1re)) # Estimated population size
sum(N) # Actual population size

Real data
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
(fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest, mallardUMF, K=30))
(fm.mallard.nb <- pcount(~ date + I(date^2) ~ length + elev, mixture = "NB", mallardUMF, K=30))

End(Not run)

pcount.spHDS Fit spatial hierarchical distance sampling model.

Description

Function fits an N-mixture model for a discrete state space with raster covariates, and a detection
function which decreases with distance from the observer, assumed to be at the centre. See Kery &
Royle (2016) Section 9.8.4 for details.

Usage

pcount.spHDS(formula, data, K, mixture = c("P", "NB", "ZIP"), starts,
method = "BFGS", se = TRUE, ...)

Arguments

formula Double right-hand side formula describing covariates of detection and abun-
dance, in that order.
Detection model should be specified without an intercept, for example: ~ -1 +
I(dist^2), where dist is a covariate giving the distance of each cell of the
raster from the observer. Internally this forces the intercept p(0) = 1, conven-
tional for distance sampling models (see Kery & Royle (2016) for explanation).

pcount.spHDS 115

More general models work but may not honor that constraint. e.g., ~ 1,~ dist,~
I(dist^2),~ dist + I(dist^2)

data an unmarkedFramePCount object supplying data to the model.

K Integer upper index of integration for N-mixture. This should be set high enough
so that it does not affect the parameter estimates. Note that computation time
will increase with K.

mixture character specifying mixture: Poisson (P), Negative-Binomial (NB), or Zero
Inflated Poisson (ZIP).

starts vector of starting values

method Optimization method used by optim.

se logical specifying whether or not to compute standard errors.

... Additional arguments to optim, such as lower and upper bounds

Value

unmarkedFit object describing the model fit.

Author(s)

Kery & Royle

References

Kery & Royle (2016) Applied Hierarachical Modeling in Ecology Section 9.8.4

Examples

Simulate some data to analyse
This is based on Kery and Royle (2016) section 9.8.3
See AHMbook::sim.spatialDS for more simulation options.

We will simulate distance data for a logit detection function with sigma = 1,
for a 6x6 square, divided into a 30 x 30 grid of pixels (900 in all), with the
observer in the centre.

set.seed(2017)

1. Create coordinates for 30 x 30 grid
grx <- seq(0.1, 5.9, 0.2) # mid-point coordinates
gr <- expand.grid(grx, grx) # data frame with coordinates of pixel centres

2a. Simulate spatially correlated Habitat covariate
Get the pair-wise distances between pixel centres
tmp <- as.matrix(dist(gr)) # a 900 x 900 matrix
Correlation is a negative exponential function of distance, with scale parameter = 1
V <- exp(-tmp/1)
Habitat <- crossprod(t(chol(V)), rnorm(900))

2b. Do a detection covariate: the distance of each pixel centre from the observer

116 pcountOpen

dist <- sqrt((gr[,1]-3)^2 + (gr[,2]-3)^2)

3. Simulate the true population
Probability that an animal is in a pixel depends on the Habitat covariate, with
coefficient beta:
beta <- 1
probs <- exp(beta*Habitat) / sum(exp(beta*Habitat))
Allocate 600 animals to the 900 pixels, get the pixel ID for each animal
pixel.id <- sample(1:900, 600, replace=TRUE, prob=probs)

4. Simulate the detection process
Get the distance of each animal from the observer
(As an approximation, we'll treat animals as if they are at the pixel centre.)
d <- dist[pixel.id]
Calculate probability of detection with logit detection function with
sigma <- 1
p <- 2*plogis(-d^2/(2*sigma^2))
Simulate the 1/0 detection/nondetection vector
y <- rbinom(600, 1, p)
Check the number of animals detected
sum(y)
Select the pixel IDs for the animals detected and count the number in each pixel
detected.pixel.id <- pixel.id[y == 1]
pixel.count <- tabulate(detected.pixel.id, nbins=900)

5. Prepare the data for unmarked
Centre the Habitat covariate
Habitat <- Habitat - mean(Habitat)
Construct the unmarkedFramePCount object
umf <- unmarkedFramePCount(y=cbind(pixel.count), # y needs to be a 1-column matrix

siteCovs=data.frame(dist=dist, Habitat=Habitat))
summary(umf)

6. Fit some models
(fm0 <- pcount.spHDS(~ -1 + I(dist^2) ~ 1, umf, K = 20))
(fm1 <- pcount.spHDS(~ -1 + I(dist^2) ~ Habitat, umf, K = 20))
The true Habitat coefficient (beta above) = 1
fm1 has much lower AIC; look at the population estimate
sum(predict(fm1, type="state")[, 1])

pcountOpen Fit the open N-mixture models of Dail and Madsen and extensions

Description

Fit the models of Dail and Madsen (2011) and Hostetler and Chandler (in press), which are gener-
alized forms of the Royle (2004) N-mixture model for open populations.

pcountOpen 117

Usage

pcountOpen(lambdaformula, gammaformula, omegaformula, pformula,
data, mixture = c("P", "NB", "ZIP"), K, dynamics=c("constant", "autoreg",
"notrend", "trend", "ricker", "gompertz"), fix=c("none", "gamma", "omega"),
starts, method = "BFGS", se = TRUE, immigration = FALSE,
iotaformula = ~1, ...)

Arguments

lambdaformula Right-hand sided formula for initial abundance
gammaformula Right-hand sided formula for recruitment rate (when dynamics is "constant",

"autoreg", or "notrend") or population growth rate (when dynamics is "trend",
"ricker", or "gompertz")

omegaformula Right-hand sided formula for apparent survival probability (when dynamics is
"constant", "autoreg", or "notrend") or equilibrium abundance (when dynamics
is "ricker" or "gompertz")

pformula Right-hand sided formula for detection probability
data An object of class unmarkedFramePCO. See details
mixture character specifying mixture: "P", "NB", or "ZIP" for the Poisson, negative

binomial, and zero-inflated Poisson distributions.
K Integer defining upper bound of discrete integration. This should be higher than

the maximum observed count and high enough that it does not affect the param-
eter estimates. However, the higher the value the slower the compuatation.

dynamics Character string describing the type of population dynamics. "constant" indi-
cates that there is no relationship between omega and gamma. "autoreg" is
an auto-regressive model in which recruitment is modeled as gamma*N[i,t-1].
"notrend" model gamma as lambda*(1-omega) such that there is no temporal
trend. "trend" is a model for exponential growth, N[i,t] = N[i,t-1]*gamma,
where gamma in this case is finite rate of increase (normally referred to as
lambda). "ricker" and "gompertz" are models for density-dependent population
growth. "ricker" is the Ricker-logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-
N[i,t-1]/omega)), where gamma is the maximum instantaneous population growth
rate (normally referred to as r) and omega is the equilibrium abundance (nor-
mally referred to as K). "gompertz" is a modified version of the Gompertz-
logistic model, N[i,t] = N[i,t-1]*exp(gamma*(1-log(N[i,t-1]+1)/log(omega+1))),
where the interpretations of gamma and omega are similar to in the Ricker
model.

fix If "omega", omega is fixed at 1. If "gamma", gamma is fixed at 0.
starts vector of starting values
method Optimization method used by optim.
se logical specifying whether or not to compute standard errors.
immigration logical specifying whether or not to include an immigration term (iota) in popu-

lation dynamics.
iotaformula Right-hand sided formula for average number of immigrants to a site per time

step
... additional arguments to be passed to optim.

118 pcountOpen

Details

These models generalize the Royle (2004) N-mixture model by relaxing the closure assumption.
The models include two or three additional parameters: gamma, either the recruitment rate (births
and immigrations), the finite rate of increase, or the maximum instantaneous rate of increase;
omega, either the apparent survival rate (deaths and emigrations) or the equilibrium abundance
(carrying capacity); and iota, the number of immigrants per site and year. Estimates of population
size at each time period can be derived from these parameters, and thus so can trend estimates. Or,
trend can be estimated directly using dynamics="trend".

When immigration is set to FALSE (the default), iota is not modeled. When immigration is set to
TRUE and dynamics is set to "autoreg", the model will separately estimate birth rate (gamma) and
number of immigrants (iota). When immigration is set to TRUE and dynamics is set to "trend",
"ricker", or "gompertz", the model will separately estimate local contributions to population growth
(gamma and omega) and number of immigrants (iota).

The latent abundance distribution, f(N |θ) can be set as a Poisson, negative binomial, or zero-
inflated Poisson random variable, depending on the setting of the mixture argument, mixture =
"P", mixture = "NB", mixture = "ZIP" respectively. For the first two distributions, the mean of Ni

is λi. If Ni ∼ NB, then an additional parameter, α, describes dispersion (lower α implies higher
variance). For the ZIP distribution, the mean is λi(1−ψ), where psi is the zero-inflation parameter.

For "constant", "autoreg", or "notrend" dynamics, the latent abundance state following the ini-
tial sampling period arises from a Markovian process in which survivors are modeled as Sit ∼
Binomial(Nit−1, ωit), and recruits follow Git ∼ Poisson(γit). Alternative population dynamics
can be specified using the dynamics and immigration arguments.

The detection process is modeled as binomial: yijt ∼ Binomial(Nit, pijt).

λi, γit, and ιit are modeled using the the log link. pijt is modeled using the logit link. ωit is either
modeled using the logit link (for "constant", "autoreg", or "notrend" dynamics) or the log link (for
"ricker" or "gompertz" dynamics). For "trend" dynamics, ωit is not modeled.

Value

An object of class unmarkedFitPCO.

Warning

This function can be extremely slow, especially if there are covariates of gamma or omega. Consider
testing the timing on a small subset of the data, perhaps with se=FALSE. Finding the lowest value
of K that does not affect estimates will also help with speed.

Note

When gamma or omega are modeled using year-specific covariates, the covariate data for the final
year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be
supplied to unmarkedFramePCO using the primaryPeriod argument.

Secondary sampling periods are optional, but can greatly improve the precision of the estimates.

pcountOpen 119

Author(s)

Richard Chandler <rbchan@uga.edu> and Jeff Hostetler

References

Royle, J. A. (2004) N-Mixture Models for Estimating Population Size from Spatially Replicated
Counts. Biometrics 60, pp. 108–105.

Dail, D. and L. Madsen (2011) Models for Estimating Abundance from Repeated Counts of an
Open Metapopulation. Biometrics. 67, pp 577-587.

Hostetler, J. A. and R. B. Chandler (2015) Improved State-space Models for Inference about Spatial
and Temporal Variation in Abundance from Count Data. Ecology 96:1713-1723.

See Also

pcount, unmarkedFramePCO

Examples

Simulation
No covariates, constant time intervals between primary periods, and
no secondary sampling periods

set.seed(3)
M <- 50
T <- 5
lambda <- 4
gamma <- 1.5
omega <- 0.8
p <- 0.7
y <- N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)
N[,1] <- rpois(M, lambda)
for(t in 1:(T-1)) {
S[,t] <- rbinom(M, N[,t], omega)
G[,t] <- rpois(M, gamma)
N[,t+1] <- S[,t] + G[,t]
}
y[] <- rbinom(M*T, N, p)

Prepare data
umf <- unmarkedFramePCO(y = y, numPrimary=T)
summary(umf)

Fit model and backtransform
(m1 <- pcountOpen(~1, ~1, ~1, ~1, umf, K=20)) # Typically, K should be higher

(lam <- coef(backTransform(m1, "lambda"))) # or
lam <- exp(coef(m1, type="lambda"))

120 piFuns

gam <- exp(coef(m1, type="gamma"))
om <- plogis(coef(m1, type="omega"))
p <- plogis(coef(m1, type="det"))

Not run:
Finite sample inference. Abundance at site i, year t
re <- ranef(m1)
devAskNewPage(TRUE)
plot(re, layout=c(5,5), subset = site %in% 1:25 & year %in% 1:2,

xlim=c(-1,15))
devAskNewPage(FALSE)

(N.hat1 <- colSums(bup(re)))

Expected values of N[i,t]
N.hat2 <- matrix(NA, M, T)
N.hat2[,1] <- lam
for(t in 2:T) {

N.hat2[,t] <- om*N.hat2[,t-1] + gam
}

rbind(N=colSums(N), N.hat1=N.hat1, N.hat2=colSums(N.hat2))

End(Not run)

piFuns Compute multinomial cell probabilities

Description

Compute the cell probabilities used in the multinomial-Poisson models multinomPois and gmult-
mix. These functions use piFuns internally to calculate multinomial likelihoods from the occasion-
wise detection probabilities. The only reason to call them directly is to check their behaviour.

Usage

removalPiFun(p)
doublePiFun(p)

Arguments

p matrix of detection probabilities at each site for each observation

Details

These two functions are provided as examples of possible functions to calculate multinomial cell
probabilities. Users may write their own functions for specific sampling designs (see the example).

plotEffects 121

Value

For removalPiFun, a matrix of cell probabilities for each site and sampling period.

For doublePiFun, a matrix of cell probabilities for each site and observer combination. Column
one is probability observer 1 but not observer 2 detects the object, column two is probability that
observer 2 but not observer 1 detects the object, and column 3 is probability of both detecting.

See Also

makePiFuns for factory functions to create customised piFuns.

Examples

(pRem <- matrix(0.5, nrow=3, ncol=3)) # Capture probabilities
removalPiFun(pRem) # Cell probs

(pDouble <- matrix(0.5, 3, 2)) # Observer detection probs
doublePiFun(pDouble) # Cell probs

A user-defined piFun calculating removal probs when time intervals differ.
Here 10-minute counts were divided into 2, 3, and 5 minute intervals.
This function could be supplied to unmarkedFrameMPois along with the obsToY
argument shown below.

instRemPiFun <- function(p) {
M <- nrow(p)
J <- ncol(p)
pi <- matrix(NA, M, J)
p[,1] <- pi[,1] <- 1 - (1 - p[,1])^2
p[,2] <- 1 - (1 - p[,2])^3
p[,3] <- 1 - (1 - p[,3])^5
for(i in 2:J) {
pi[,i] <- pi[, i - 1]/p[, i - 1] * (1 - p[, i - 1]) * p[, i]
}
return(pi)
}

instRemPiFun(pRem)

Associated obsToY matrix required by unmarkedFrameMPois
o2y <- diag(3) # if y has 3 columns
o2y[upper.tri(o2y)] <- 1
o2y

plotEffects Plot marginal effects of covariates in unmarked models

122 plotEffects

Description

This function generates a plot visualizing the effects of a single covariate on a parameter (e.g.
occupancy, abundance) in an unmarked model. If the covariate is numeric, the result is a line plot
with an error ribbon where the x-axis is the range of the covariate and the y-axis is the predicted
parameter value. If the covariate is an R factor (i.e., categorical), the x-axis instead contains each
unique value of the covariate.

All covariates in the model besides the one being plotted are held either at their median value (if
they are numeric) or at their reference level (if they are factors).

Some types of unmarked models may require additional arguments, which are passed to the match-
ing predict method. For example, unmarkedFitOccuMulti models require the species argument
to be included in the function call in order to work properly.

If you want to customize a plot, the easiest approach is to get data formatted for plotting using
plotEffectsData, and use that. If you want to see and/or modify the code used by plotEffects
to generate the default plots, run getMethod("plotEffects", "unmarkedFit") in the R console.

Usage

S4 method for signature 'unmarkedFit'
plotEffects(object, type, covariate, level=0.95, ...)
S4 method for signature 'unmarkedFit'
plotEffectsData(object, type, covariate, level=0.95, ...)

Arguments

object A fitted model inheriting class unmarkedFit

type Submodel in which the covariate of interest can be found, for example "state"
or "det". This will depend on the fitted model

covariate The name of the covariate to be plotted, as a character string

level Confidence level for the error ribbons or bars

... Other arguments passed to the predict function, required for some unmarkedFit
types such as unmarkedFitOccuMulti

Value

A plot (plotEffects or a data frame (plotEffectsData) containing values to be used in a plot.

Author(s)

Ken Kellner <contact@kenkellner.com>

Examples

Not run:

Simulate data and build an unmarked frame
set.seed(123)

pointtran 123

dat_occ <- data.frame(x1=rnorm(500))
dat_p <- data.frame(x2=rnorm(500*5))

y <- matrix(NA, 500, 5)
z <- rep(NA, 500)

b <- c(0.4, -0.5, 0.3, 0.5)

re_fac <- factor(sample(letters[1:5], 500, replace=T))
dat_occ$group <- re_fac
re <- rnorm(5, 0, 1.2)
re_idx <- as.numeric(re_fac)

idx <- 1
for (i in 1:500){

z[i] <- rbinom(1,1, plogis(b[1] + b[2]*dat_occ$x1[i] + re[re_idx[i]]))
for (j in 1:5){
y[i,j] <- z[i]*rbinom(1,1,

plogis(b[3] + b[4]*dat_p$x2[idx]))
idx <- idx + 1

}
}

umf <- unmarkedFrameOccu(y=y, siteCovs=dat_occ, obsCovs=dat_p)

Fit model
(fm <- occu(~x2 ~x1 + group, umf))

Plot marginal effects of various covariates
plotEffects(fm, "state", "x1")
plotEffects(fm, "state", "group")
plotEffects(fm, "det", "x2")

Get raw data used for a plot
plotEffectsData(fm, "state", "group")

See code used by plotEffects so you can edit it yourself and customize the plot
methods::getMethod("plotEffects", "unmarkedFit")

End(Not run)

pointtran Simulated point-transect data

Description

Response matrix of animals detected in five distance classes plus two covariates.

Usage

data(pointtran)

124 posteriorSamples

Format

A data frame with 30 observations on the following 7 variables.

dc1 Counts in distance class 1 [0-5 m)

dc2 Counts in distance class 2 [5-10 m)

dc3 Counts in distance class 3 [10-15 m)

dc4 Counts in distance class 4 [15-20 m)

dc5 Counts in distance class 5 [20-25 m)

area a numeric vector

habitat a factor with levels A B C

Examples

data(pointtran)
pointtran

Format for distsamp()
ptUMF <- with(pointtran, {

unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4, dc5),
siteCovs = data.frame(area, habitat),
dist.breaks = seq(0, 25, by=5), survey = "point", unitsIn = "m")
})

posteriorSamples Draw samples from the posterior predictive distribution

Description

Draw samples from the empirical Bayes posterior predictive distribution derived from unmarked
models or ranef objects

Usage

S4 method for signature 'unmarkedRanef'
posteriorSamples(object, nsims=100, ...)
S4 method for signature 'unmarkedFit'
posteriorSamples(object, nsims=100, ...)

Arguments

object An object inheriting class unmarkedRanef or unmarkedFit

nsims Number of draws to make from the posterior predictive distribution

... Other arguments

powerAnalysis 125

Value

unmarkedPostSamples object containing the draws from the posterior predictive distribution. The
draws are in the @samples slot.

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

ranef, predict

Examples

Simulate data under N-mixture model
set.seed(4564)
R <- 20
J <- 5
N <- rpois(R, 10)
y <- matrix(NA, R, J)
y[] <- rbinom(R*J, N, 0.5)

Fit model
umf <- unmarkedFramePCount(y=y)
fm <- pcount(~1 ~1, umf, K=50)

Estimates of conditional abundance distribution at each site
(re <- ranef(fm))

#Draw from the posterior predictive distribution
(ppd <- posteriorSamples(re, nsims=100))

powerAnalysis Conduct a power analysis on an unmarked model

Description

This function uses a simulation-based approach to estimate power for parameters in unmarked mod-
els. At a minimum, users must provide a fitted unmarked model object (preferably fit with simulated
data) which ensures the model has been properly specified, a list of effect sizes for each parameter
in the model (coefs), and the desired Type I error (alpha). It is also possible to get power for a
range of other sample sizes besides the sample size in the fitted model object using the design ar-
gument to subsample within the provided dataset. See the unmarkedPower vignette for more details
and examples.

126 powerAnalysis

Usage

powerAnalysis(object, coefs=NULL, design=NULL, alpha=0.05, nulls=list(),
datalist=NULL,
nsim=ifelse(is.null(datalist), 100, length(datalist)),
parallel=FALSE)

Arguments

object A fitted model inheriting class unmarkedFit. This could potentially be fit using
real data, but ideally you would simulate an appropriate dataset using simulate

coefs A list containing the desired effect sizes for which you want to estimate power.
This list must follow a specific format. There is one named entry in the list per
submodel (e.g., occupancy, detection). To get the required submodel names call
names(object) on your fitted model. Then, each list entry is a named vector
with the names corresponding to the parameter names for that submodel, and
the values corresponding to the desired effect sizes. It may be easier to leave
coefs=NULL, which will generate an error message with a template that you can
fill in.

design An optional list of design/sample size parameters containing at a minimum two
named elements: M, the number of sites, and J the number of observations per
site. If this list is provided, unmarked will subsample the provided dataset to
the specified number of sites and observations, allowing you to test power for
different designs. If your model has multiple primary periods you must also
include T, the number of periods, in the list.

alpha Desired Type I error rate

nulls If provided, a list matching the structure of coefs which defines the null hy-
pothesis value for each parameter. By default the null is 0 for all parameters.

datalist An optional list of previously-simulated datasets, in the form of unmarkedFrames
matching the model type of object, which will be used for the power analysis
simulations.

nsim Number of simulations to conduct

parallel If TRUE, run folds in parallel. This may speed up the power analysis in some
situations

Value

unmarkedPower object containing the results of the power analysis

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

unmarkedPowerList

predict-methods 127

Examples

Not run:

Simulate an occupancy dataset
Covariates to include in simulation
forms <- list(state=~elev, det=~1)

Covariate effects and intercept values
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

Study design
design <- list(M=300, J=8) # 300 sites, 8 occasions per site

Simulate an unmarkedFrameOccu
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)

Fit occupancy model to simulated data
This will contain all the model structure info powerAnalysis needs
The estimates from the model aren't used
template_model <- occu(~1~elev, occu_umf)

If we run powerAnalysis without specifying coefs we'll get a template list
powerAnalysis(template_model)

Set desired effect sizes to pass to coefs
effect_sizes <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

Run power analysis and look at summary
(pa <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05))

Try a smaller sample size in the study design
(pa2 <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05,

design=list(M=100, J=2)))

End(Not run)

predict-methods Methods for Function predict in Package ‘unmarked’

Description

These methods return predicted values from fitted model objects.

Methods

signature(object = "unmarkedFit") "type" must be either ‘state’ or ‘det’.

signature(object = "unmarkedFitColExt") "type" must be ’psi’, ’col’, ’ext’, or ’det’.

128 randomTerms

signature(object = "unmarkedFitGMM") "type" must be ’lambda’, ’psi’, ’det’

signature(object = "unmarkedFitList") "type" depends upon the fitted models

signature(object = "unmarkedRanef") Use this method to generate the empirical Bayes poste-
rior predictive distribution for functions of the random variables (latent abundance or occur-
rence).
In addition to the output object from ranef, you must also supply a custom function to ar-
gument func. The function must take as input a matrix with dimensions M x T, where M is
the number of sites and T is the number of primary periods (T=1 for single-season models).
The output of this function should be a vector or matrix containing the derived parameters of
interest.
You may also manually set the number of draws from the posterior predictive distribution with
argument nsims; the default is 100.
The output of predict will be a vector or array with one more dimension than the output
of the function supplied func, corresponding to the number of draws requested nsims. For
example, if func outputs a scalar, the output of predict will be a vector with length equal to
nsims. If func outputs a 3x2 matrix, the output of predict will be an array with dimensions
3x2xnsims. See ranef for an example.
Alternatively, you can use the posteriorSamples function on the ranef output object to ob-
tain the full posterior predictive distribution. This is useful if you are having trouble designing
your custom function or if you want to obtain multiple different derived parameters from the
same posterior predictive distribution.

randomTerms Extract estimates of random effect terms

Description

Extract estimates and summary statistics of random effect terms from an unmarkedFit model or an
unmarkedEstimate.

Usage

S4 method for signature 'unmarkedEstimate'
randomTerms(object, level=0.95, ...)
S4 method for signature 'unmarkedFit'
randomTerms(object, type, level=0.95, ...)

Arguments

object An object inheriting class unmarkedEstimate or unmarkedFit

level Significance level to use for confidence interval

type If provided, return only random effect terms from the chosen submodel type (as
a character string)

... Other arguments

ranef-methods 129

Value

data.frame containing estimates, SEs, and confidence intervals for random effect terms in the
model.

Author(s)

Ken Kellner <contact@kenkellner.com>

ranef-methods Methods for Function ranef in Package unmarked

Description

Estimate posterior distributions of the random variables (latent abundance or occurrence) using
empirical Bayes methods. These methods return an object storing the posterior distributions of
the latent variables at each site, and for each year (primary period) in the case of open population
models. See unmarkedRanef-class for methods used to manipulate the returned object.

Methods

signature(object = "unmarkedFitOccu") Computes the conditional distribution of occurrence
given the data and the estimates of the fixed effects, Pr(zi = 1|yij , ψ̂i, p̂ij)

signature(object = "unmarkedFitOccuRN") Computes the conditional abundance distribution
given the data and the estimates of the fixed effects, Pr(Ni = k|yij , ψ̂i, r̂ij)k = 0, 1, . . . ,K

signature(object = "unmarkedFitPCount") Pr(Ni = k|yij , λ̂i, p̂ij)k = 0, 1, . . . ,K

signature(object = "unmarkedFitMPois") Pr(Ni = k|yij , λ̂i, p̂ij)k = 0, 1, . . . ,K

signature(object = "unmarkedFitDS") Pr(Ni = k|yi,1:J , λ̂i, σ̂i)k = 0, 1, . . . ,K

signature(object = "unmarkedFitGMM") Pr(Mi = k|yi,1:J,t, λ̂i, φ̂it, p̂ijt)k = 0, 1, . . . ,K

signature(object = "unmarkedFitGDS") Pr(Mi = k|yi,1:J,t, λ̂i, φ̂it, σ̂it)k = 0, 1, . . . ,K

signature(object = "unmarkedFitColExt") Pr(zit = 1|yijt, ψ̂i, γ̂it, ε̂it, p̂ijt)

signature(object = "unmarkedFitPCO") Pr(Nit = k|yijt, λ̂i, γ̂it, ω̂it, ι̂it, p̂ijt)k = 0, 1, ...,K

Warning

Empirical Bayes methods can underestimate the variance of the posterior distribution because they
do not account for uncertainty in the hyperparameters (lambda or psi). Eventually, we hope to add
methods to account for the uncertainty of the hyperparameters.

Note also that the posterior mode appears to exhibit some bias as an estimator or abundance. Con-
sider using the posterior mean instead, even though it will not be an integer in general. More
simulation studies are needed to evaluate the performance of empirical Bayes methods for these
models.

130 ranef-methods

Note

From Carlin and Louis (1996): “... the Bayesian approach to inference depends on a prior distri-
bution for the model parameters. This prior can depend on unknown parameters which in turn may
follow some second-stage prior. This sequence of parameters and priors consitutes a hierarchical
model. The hierarchy must stop at some point, with all remaining prior parameters assumed known.
Rather than make this assumption, the basic empirical Bayes approach uses the observed data to es-
timate these final stage parameters (or to estimate the Bayes rule), and proceeds as in a standard
Bayesian analysis.”

Author(s)

Richard Chandler <rbchan@uga.edu>

References

Laird, N.M. and T.A. Louis. 1987. Empirical Bayes confidence intervals based on bootstrap sam-
ples. Journal of the American Statistical Association 82:739–750.

Carlin, B.P and T.A Louis. 1996. Bayes and Empirical Bayes Methods for Data Analysis. Chapman
and Hall/CRC.

Royle, J.A and R.M. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic
Press.

See Also

unmarkedRanef-class

Examples

Simulate data under N-mixture model
set.seed(4564)
R <- 20
J <- 5
N <- rpois(R, 10)
y <- matrix(NA, R, J)
y[] <- rbinom(R*J, N, 0.5)

Fit model
umf <- unmarkedFramePCount(y=y)
fm <- pcount(~1 ~1, umf, K=50)

Estimates of conditional abundance distribution at each site
(re <- ranef(fm))
Best Unbiased Predictors
bup(re, stat="mean") # Posterior mean
bup(re, stat="mode") # Posterior mode
confint(re, level=0.9) # 90% CI

Plots
plot(re, subset=site %in% c(1:10), layout=c(5, 2), xlim=c(-1,20))

SE-methods 131

Compare estimates to truth
sum(N)
sum(bup(re))

Extract all values in convenient formats
post.df <- as(re, "data.frame")
head(post.df)
post.arr <- as(re, "array")

#Generate posterior predictive distribution for a function
#of random variables using predict()

#First, create a function that operates on a vector of
#length M (if you fit a single-season model) or a matrix of
#dimensions MxT (if a dynamic model), where
#M = nsites and T = n primary periods
#Our function will generate mean abundance for sites 1-10 and sites 11-20
myfunc <- function(x){ #x will be length 20 since M=20

#Mean of first 10 sites
group1 <- mean(x[1:10])
#Mean of sites 11-20
group2 <- mean(x[11:20])

#Naming elements of the output is optional but helpful
return(c(group1=group1, group2=group2))

}

#Get 100 samples of the values calculated in your function
(pr <- predict(re, func=myfunc, nsims=100))

#Summarize posterior
data.frame(mean=rowMeans(pr),

se=apply(pr, 1, stats::sd),
lower=apply(pr, 1, stats::quantile, 0.025),
upper=apply(pr, 1, stats::quantile, 0.975))

#Alternatively, you can return the posterior predictive distribution
#and run operations on it separately
(ppd <- posteriorSamples(re, nsims=100))

SE-methods Methods for Function SE in Package ‘unmarked’

Description

Extract standard errors of parameter estimates from a fitted model.

132 sight2perpdist

Methods

obj = "linCombOrBackTrans" A model prediction

obj = "unmarkedEstimate" See unmarkedEstimate-class

obj = "unmarkedFit" A fitted model

shinyPower Launch a Shiny app to help with power analysis

Description

Launch a Shiny app to test power under various scenarios. Requires the Shiny package to be in-
stalled.

Usage

shinyPower(object, ...)

Arguments

object A template unmarkedFit object; see documentation for powerAnalysis for de-
tails on how to create this

... Currently ignored

Value

No return value, called for its side effects.

sight2perpdist Convert sight distance and sight angle to perpendicular distance.

Description

When distance data are collected on line transects using sight distances and sight angles, they need
to be converted to perpendicular distances before analysis.

Usage

sight2perpdist(sightdist, sightangle)

Arguments

sightdist Distance from observer

sightangle Angle from center line. In degrees between 0 and 180.

sigma 133

Value

Perpendicular distance

See Also

distsamp

Examples

round(sight2perpdist(10, c(0, 45, 90, 135, 180)))

sigma Extract estimates of random effect standard deviations

Description

Extract estimates and summary statistics of random effect standard deviations from an unmarkedFit
model or an unmarkedEstimate.

Usage

S4 method for signature 'unmarkedEstimate'
sigma(object, level=0.95, ...)
S4 method for signature 'unmarkedFit'
sigma(object, type, level=0.95, ...)

Arguments

object An object inheriting class unmarkedEstimate or unmarkedFit

level Significance level to use for confidence interval

type If provided, return only random effect SDs from the chosen submodel type (as a
character string)

... Other arguments

Value

data.frame containing estimates, SEs, and confidence intervals for random effect standard devia-
tions in the model.

Author(s)

Ken Kellner <contact@kenkellner.com>

134 simulate-methods

simulate-methods Methods for Function simulate in Package ‘unmarked’

Description

Simulate data from a fitted model.

Usage

S4 method for signature 'unmarkedFitColExt'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitDS'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitMPois'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitOccu'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitOccuRN'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'unmarkedFitPCount'
simulate(object, nsim, seed, na.rm)
S4 method for signature 'character'
simulate(object, nsim=1, seed=NULL, formulas, coefs=NULL,
design, guide=NULL, ...)

Arguments

object Fitted model of appropriate S4 class

nsim Number of simulations

seed Seed for random number generator. Not currently implemented

na.rm Logical, should missing values be removed?

formulas A named list of formulas, one per submodel (e.g. a formula for occupancy
"state" and a formula for detection "det"). To get the correct submodel names
for a given model, fit an example for that model, and then call names(fitted_model)

coefs A named list of vectors of coefficients associated with the regression intercepts
and slopes for each submodel. List should be named as with formulas above.
Each element of the list should be a named vector, where the names correspond
to the names of the parameters in the model (intercept and covariates). If you
are not sure how to structure this list, just run simulate with coefs=NULL; this
will generate a template list you can copy and fill in.

design A named list of components of the study design. Must include at least M, the
number of sites, and J the number of observations per site. If you are fitting a
model with multiple primary periods you must also provide T, the number of
primary periods.

simulate-methods 135

guide An optional list defining the format (continuous or categorical/factor) and distri-
bution, if continuous, of covariates you want to simulate. By default all covari-
ates are simulated from a standard normal. See example below for an example
of how to specify entries in the guide list.

... Additional arguments that are needed to fully specify the simulated dataset for
a particular model. For example, mixture for pcount models or keyfun for
distsamp models.

Methods

object = "unmarkedFitColExt" A model fit by colext

object = "unmarkedFitDS" A model fit by distsamp

object = "unmarkedFitMPois" A model fit by multinomPois

object = "unmarkedFitOccu" A model fit by occu

object = "unmarkedFitOccuRN" A model fit by occuRN

object = "unmarkedFitPCount" A model fit by pcount

object = "character" An unmarkedFrame of the appropriate type

Examples

Not run:

Simulation of an occupancy dataset from scratch

Formulas for each submodel
occupancy is a function of elevation, detection is intercept-only
forms <- list(state=~elev, det=~1)

Specify list of coefficients - there must be a value for each
covariate plus an intercept for each submodel
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

Study design
design <- list(M=300, J=8) # 300 sites, 8 occasions per site

If we don't specify coefs, unmarked will generate a template you can copy and use
simulate("occu", formulas=forms, design=design)

Generate unmarkedFrameOccu
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)
head(occu_umf) # note one covariate, elev

What if we wanted to add a categorical/factor covariate or
customize the distribution of elev?
Use the guide argument

Updated formulas with new covariate
forms2 <- list(state=~elev+landcover, det=~1)

136 SSE

Guide
landcover is factor, you must provide the levels
guide <- list(landcover=factor(levels=c("forest","grass")),

elev=list(dist=rnorm, mean=2, sd=0.5)) # custom distribution

Updated coefficients list
coefs2 <- list(state=c(intercept=0, elev=-0.4, landcovergrass=0.2), det=c(intercept=0))

Simulate new dataset
head(simulate("occu", formulas=forms2, coefs=coefs2, design=design, guide=guide))
Note new categorical covariate

For some models you may want to specify other arguments, such as 'mixture'
for pcount or 'keyfun' for distsamp
See the documentation for the associated fitting function and unmarkedFrame
for what arguments are possible to include for a given model
head(simulate("pcount", formulas=forms, coefs=coefs, design=design, mixture="NB"))

End(Not run)

SSE Compute Sum of Squared Residuals for a Model Fit.

Description

Compute the sum of squared residuals for an unmarked fit object. This is useful for a parboot.

Usage

SSE(fit, ...)

Arguments

fit An unmarked fit object.

... Additional arguments to be passed to statistic

Value

A numeric value for the models SSE.

See Also

parboot

Switzerland 137

Switzerland Swiss landscape data

Description

Spatially-referenced data on elevation, forest cover, and water at a 1km-sq resolution.

Usage

data(Switzerland)

Format

A data frame with 42275 observations on the following 5 variables.

x Easting (m)

y Northing (m)

elevation a numeric vector (m)

forest a numeric vector (percent cover)

water a numeric vector (percent cover)

Details

Forest and water coverage (in percent area) was computed using the 1992-97 landcover dataset of
the Swiss Federal Statistical Office (http://www.bfs.admin.ch). Median elevation (in metres) was
computed using a median aggregation of the digital elevation model of the Swiss Federal Statistical
Office.

x and y are the coordinates of the center of each 1km2 pixel.

The coordinate reference system intentionally not specified.

These data can only be used for non-profit projects. Otherwise, written permission must be obtained
from the Swiss Federal Statistical Office

Source

Swiss Federal Statistical Office (http://www.bfs.admin.ch)

Examples

library(lattice)
data(Switzerland)
str(Switzerland)

levelplot(elevation ~ x + y, Switzerland, aspect="iso",
col.regions=terrain.colors(100))

Not run:

138 unmarkedEstimate-class

library(raster)
el.r <- rasterFromXYZ(Switzerland[,c("x","y","elevation")], crs =
"+proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333
+k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel
+towgs84=674.374,15.056,405.346,0,0,0,0 +units=m +no_defs")
plot(el.r)
spplot(el.r)

End(Not run)

unmarkedEstimate-class

Class "unmarkedEstimate"

Description

Contains parameter estimates, covariance matrix, and metadata

Objects from the Class

Creating these objects is done internally not by users.

Slots

name: Object of class "character" storing parameter names

short.name: Object of class "character" storing abbreviated parameter names

estimates: Object of class "numeric"

covMat: Object of class "matrix"

covMatBS: Object of class "matrix"

fixed: Object of class "numeric"

invlink: Object of class "character"

invlinkGrad: Object of class "character"

randomVarInfo: Object of class "list"

Methods

backTransform signature(obj = "unmarkedEstimate")

coef signature(object = "unmarkedEstimate")

confint signature(object = "unmarkedEstimate")

linearComb signature(obj = "unmarkedEstimate",coefficients = "matrixOrVector")

SE signature(obj = "unmarkedEstimate")

show signature(object = "unmarkedEstimate")

vcov signature(object = "unmarkedEstimate")

unmarkedEstimateList-class 139

Note

These methods are typically called within a call to a method for unmarkedFit-class

Examples

showClass("unmarkedEstimate")

unmarkedEstimateList-class

Class "unmarkedEstimateList"

Description

Class to hold multiple unmarkedEstimates in an unmarkedFit

Slots

estimates: A "list" of models.

unmarkedFit-class Class "unmarkedFit"

Description

Contains fitted model information which can be manipulated or extracted using the methods de-
scribed below.

Slots

fitType: Object of class "character"
call: Object of class "call"
formula: Object of class "formula"
data: Object of class "unmarkedFrame"
sitesRemoved: Object of class "numeric"
estimates: Object of class "unmarkedEstimateList"
AIC: Object of class "numeric"
opt: Object of class "list" containing results from optim

negLogLike: Object of class "numeric"
nllFun: Object of class "function"
knownOcc: unmarkedFitOccu only: sites known to be occupied
K: unmarkedFitPCount only: upper bound used in integration
mixture: unmarkedFitPCount only: Mixing distribution
keyfun: unmarkedFitDS only: detection function used by distsamp
unitsOut: unmarkedFitDS only: density units

140 unmarkedFit-class

Methods

[signature(x = "unmarkedFit", i = "ANY", j = "ANY",drop = "ANY"): extract one of names(obj),
eg ’state’ or ’det’

backTransform signature(obj = "unmarkedFit"): back-transform parameters to original scale
when no covariate effects are modeled

coef signature(object = "unmarkedFit"): returns parameter estimates. type can be one of
names(obj), eg ’state’ or ’det’. If altNames=TRUE estimate names are more specific.

confint signature(object = "unmarkedFit"): Returns confidence intervals. Must specify type
and method (either "normal" or "profile")

fitted signature(object = "unmarkedFit"): returns expected values of Y

getData signature(object = "unmarkedFit"): extracts data

getP signature(object = "unmarkedFit"): calculates and extracts expected detection probabil-
ities

getFP signature(object = "unmarkedFit"): calculates and extracts expected false positive de-
tection probabilities

getB signature(object = "unmarkedFit"): calculates and extracts expected probabilities a true
positive detection was classified as certain

hessian signature(object = "unmarkedFit"): Returns hessian matrix

linearComb signature(obj = "unmarkedFit",coefficients = "matrixOrVector"): Returns
estimate and SE on original scale when covariates are present

mle signature(object = "unmarkedFit"): Same as coef(fit)?

names signature(x = "unmarkedFit"): Names of parameter levels

nllFun signature(object = "unmarkedFit"): returns negative log-likelihood used to estimate
parameters

parboot signature(object = "unmarkedFit"): Parametric bootstrapping method to assess goodness-
of-fit

plot signature(x = "unmarkedFit", y = "missing"): Plots expected vs. observed values

predict signature(object = "unmarkedFit"): Returns predictions and standard errors for orig-
inal data or for covariates in a new data.frame

profile signature(fitted = "unmarkedFit"): used by confint method=’profile’

residuals signature(object = "unmarkedFit"): returns residuals

sampleSize signature(object = "unmarkedFit"): returns number of sites in sample

SE signature(obj = "unmarkedFit"): returns standard errors

show signature(object = "unmarkedFit"): concise results

summary signature(object = "unmarkedFit"): results with more details

update signature(object = "unmarkedFit"): refit model with changes to one or more argu-
ments

vcov signature(object = "unmarkedFit"): returns variance-covariance matrix

smoothed signature(object="unmarkedFitColExt"): Returns the smoothed trajectory from a
colonization-extinction model fit. Takes additional logical argument mean which specifies
whether or not to return the average over sites.

unmarkedFit-class 141

projected signature(object="unmarkedFitColExt"): Returns the projected trajectory from a
colonization-extinction model fit. Takes additional logical argument mean which specifies
whether or not to return the average over sites.

logLik signature(object="unmarkedFit"): Returns the log-likelihood.

LRT signature(m1="unmarkedFit", m2="unmarkedFit"): Returns the chi-squared statistic, degrees-
of-freedom, and p-value from a Likelihood Ratio Test.

Note

This is a superclass with child classes for each fit type

Examples

showClass("unmarkedFit")

Format removal data for multinomPois
data(ovendata)
ovenFrame <- unmarkedFrameMPois(y = ovendata.list$data,
siteCovs = as.data.frame(scale(ovendata.list$covariates[,-1])),
type = "removal")

Fit a couple of models
(fm1 <- multinomPois(~ 1 ~ ufc + trba, ovenFrame))
summary(fm1)

Apply a bunch of methods to the fitted model

Look at the different parameter types
names(fm1)
fm1['state']
fm1['det']

Coefficients from abundance part of the model
coef(fm1, type='state')

Variance-covariance matrix
vcov(fm1, type='state')

Confidence intervals using profiled likelihood
confint(fm1, type='state', method='profile')

Expected values
fitted(fm1)

Original data
getData(fm1)

Detection probabilities
getP(fm1)

log-likelihood
logLik(fm1)

142 unmarkedFitList-class

Back-transform detection probability to original scale
backTransform only works on models with no covariates or
in conjunction with linearComb (next example)
backTransform(fm1, type ='det')

Predicted abundance at specified covariate values
(lc <- linearComb(fm1, c(Int = 1, ufc = 0, trba = 0), type='state'))
backTransform(lc)

Assess goodness-of-fit
parboot(fm1)
plot(fm1)

Predict abundance at specified covariate values.
newdat <- data.frame(ufc = 0, trba = seq(-1, 1, length=10))
predict(fm1, type='state', newdata=newdat)

Number of sites in the sample
sampleSize(fm1)

Fit a new model without covariates
(fmNull <- update(fm1, formula = ~1 ~1))

Likelihood ratio test
LRT(fm1, fmNull)

unmarkedFitList-class Class "unmarkedFitList"

Description

Class to hold multiple fitted models from one of unmarked’s fitting functions

Objects from the Class

Objects can be created by using the fitList function.

Slots

fits: A "list" of models.

Methods

coef signature(object = "unmarkedFitList"): Extract coefficients
SE signature(object = "unmarkedFitList"): Extract standard errors
modSel signature(object = "unmarkedFitList"): Model selection
predict signature(object = "unmarkedFitList"): Model-averaged prediction

unmarkedFrame 143

Note

Model-averaging regression coefficients is intentionally not implemented.

See Also

fitList, unmarkedFit

Examples

showClass("unmarkedFitList")

data(linetran)
(dbreaksLine <- c(0, 5, 10, 15, 20))
lengths <- linetran$Length * 1000

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat), dist.breaks = dbreaksLine,
tlength = lengths, survey = "line", unitsIn = "m")
})

fm1 <- distsamp(~ 1 ~1, ltUMF)
fm2 <- distsamp(~ area ~1, ltUMF)
fm3 <- distsamp(~ 1 ~area, ltUMF)

fl <- fitList(Null=fm1, A.=fm2, .A=fm3)
fl

coef(fl)
SE(fl)

ms <- modSel(fl, nullmod="Null")
ms

unmarkedFrame Create an unmarkedFrame, or one of its child classes.

Description

Constructor for unmarkedFrames.

Usage

unmarkedFrame(y, siteCovs=NULL, obsCovs=NULL, mapInfo, obsToY)

144 unmarkedFrame

Arguments

y An MxJ matrix of the observed measured data, where M is the number of sites
and J is the maximum number of observations per site.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with MxJ rows in site-major order.

obsToY optional matrix specifying relationship between observation-level covariates and
response matrix

mapInfo geographic coordinate information. Currently ignored.

Details

unmarkedFrame is the S4 class that holds data structures to be passed to the model-fitting functions
in unmarked.

An unmarkedFrame contains the observations (y), covariates measured at the observation level
(obsCovs), and covariates measured at the site level (siteCovs). For a data set with M sites and J
observations at each site, y is an M x J matrix. obsCovs and siteCovs are both data frames (see
data.frame). siteCovs has M rows so that each row contains the covariates for the corresponding
sites. obsCovs has M*obsNum rows so that each covariates is ordered by site first, then observation
number. Missing values are coded with NA in any of y, siteCovs, or obsCovs.

Additionally, unmarkedFrames contain metadata: obsToY, mapInfo. obsToY is a matrix describing
relationship between response matrix and observation-level covariates. Generally this does not need
to be supplied by the user; however, it may be needed when using multinomPois. For example,
double observer sampling, y has 3 columns corresponding the observer 1, observer 2, and both, but
there were only two independent observations. In this situation, y has 3 columns, but obsToY must
be specified.

Several child classes of unmarkedFrame require addional metadata. For example, unmarkedFrameDS
is used to organize distsance sampling data for the distsamp function, and it has arguments dist.breaks,
tlength, survey, and unitsIn, which specify the distance interval cut points, transect lengths, "line"
or "point" transect, and units of measure, respectively.

All site-level covariates are automatically copied to obsCovs so that site level covariates are avail-
able at the observation level.

Value

an unmarkedFrame object

See Also

unmarkedFrame-class, unmarkedFrameOccu, unmarkedFramePCount, unmarkedFrameDS

Examples

Set up data for pcount()

unmarkedFrame-class 145

data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
summary(mallardUMF)

Set up data for occu()
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)

Set up data for distsamp()
data(linetran)
ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")
})
summary(ltUMF)

Set up data for multinomPois()
data(ovendata)
ovenFrame <- unmarkedFrameMPois(ovendata.list$data,
siteCovs=as.data.frame(scale(ovendata.list$covariates[,-1])),
type = "removal")
summary(ovenFrame)

Not run:
Set up data for colext()
frogUMF <- formatMult(masspcru)
summary(frogUMF)

End(Not run)

unmarkedFrame-class Class "unmarkedFrame"

Description

Methods for manipulating, summarizing and viewing unmarkedFrames

Objects from the Class

Objects can be created by calls to the constructor function unmarkedFrame. These objects are
passed to the data argument of the fitting functions.

146 unmarkedFrame-class

Slots

y: Object of class "matrix"

obsCovs: Object of class "optionalDataFrame"

siteCovs: Object of class "optionalDataFrame"

mapInfo: Object of class "optionalMapInfo"

obsToY: Object of class "optionalMatrix"

Methods

[signature(x = "unmarkedFrame", i = "numeric", j = "missing", drop = "missing"): ...

[signature(x = "unmarkedFrame", i = "numeric", j = "numeric", drop = "missing"): ...

[signature(x = "unmarkedFrame", i = "missing", j = "numeric", drop = "missing"): ...

coordinates signature(object = "unmarkedFrame"): extract coordinates

getY signature(object = "unmarkedFrame"): extract y matrix

numSites signature(object = "unmarkedFrame"): extract M

numY signature(object = "unmarkedFrame"): extract ncol(y)

obsCovs signature(object = "unmarkedFrame"): extract observation-level covariates

obsCovs<- signature(object = "unmarkedFrame"): add or modify observation-level covariates

obsNum signature(object = "unmarkedFrame"): extract number of observations

obsToY signature(object = "unmarkedFrame"):

obsToY<- signature(object = "unmarkedFrame"): ...

plot signature(x = "unmarkedFrame", y = "missing"): visualize response variable. Takes ad-
ditional argument panels which specifies how many panels data should be split over.

projection signature(object = "unmarkedFrame"): extract projection information

show signature(object = "unmarkedFrame"): view data as data.frame

siteCovs signature(object = "unmarkedFrame"): extract site-level covariates

siteCovs<- signature(object = "unmarkedFrame"): add or modify site-level covariates

summary signature(object = "unmarkedFrame"): summarize data

getL signature(object = "unmarkedFrameOccuCOP"): extract L

Note

This is a superclass with child classes for each fitting function.

See Also

unmarkedFrame, unmarkedFit, unmarked-package

unmarkedFrameDS 147

Examples

List all the child classes of unmarkedFrame
showClass("unmarkedFrame")

Organize data for pcount()
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)

Vizualize it
plot(mallardUMF)

mallardUMF

Summarize it
summary(mallardUMF)

str(mallardUMF)

numSites(mallardUMF)

numY(mallardUMF)

obsNum(mallardUMF)

Extract components of data
getY(mallardUMF)

obsCovs(mallardUMF)
obsCovs(mallardUMF, matrices = TRUE)

siteCovs(mallardUMF)

mallardUMF[1:5,] # First 5 rows in wide format

mallardUMF[,1:2] # First 2 observations

unmarkedFrameDS Organize data for the distance sampling model of Royle et al. (2004)
fit by distsamp

148 unmarkedFrameDS

Description

Organizes count data along with the covariates and metadata. This S4 class is required by the data
argument of distsamp

Usage

unmarkedFrameDS(y, siteCovs=NULL, dist.breaks, tlength, survey,
unitsIn, mapInfo)

Arguments

y An RxJ matrix of count data, where R is the number of sites (transects) and J is
the number of distance classes.

siteCovs A data.frame of covariates that vary at the site level. This should have R rows
and one column per covariate

dist.breaks vector of distance cut-points delimiting the distance classes. It must be of length
J+1.

tlength A vector of length R containing the trasect lengths. This is ignored when sur-
vey="point".

survey Either "point" or "line" for point- and line-transects.

unitsIn Either "m" or "km" defining the measurement units for both dist.breaks and
tlength

.

mapInfo Currently ignored

Details

unmarkedFrameDS is the S4 class that holds data to be passed to the distsamp model-fitting func-
tion.

Value

an object of class unmarkedFrameDS

Note

If you have continuous distance data, they must be "binned" into discrete distance classes, which
are delimited by dist.breaks.

References

Royle, J. A., D. K. Dawson, and S. Bates (2004) Modeling abundance effects in distance sampling.
Ecology 85, pp. 1591-1597.

See Also

unmarkedFrame-class, unmarkedFrame, distsamp

unmarkedFrameDSO 149

Examples

Fake data
R <- 4 # number of sites
J <- 3 # number of distance classes

db <- c(0, 10, 20, 30) # distance break points

y <- matrix(c(
5,4,3, # 5 detections in 0-10 distance class at this transect
0,0,0,
2,1,1,
1,1,0), nrow=R, ncol=J, byrow=TRUE)

y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

umf <- unmarkedFrameDS(y=y, siteCovs=site.covs, dist.breaks=db, survey="point",
unitsIn="m") # organize data

umf # look at data
summary(umf) # summarize
fm <- distsamp(~1 ~1, umf) # fit a model

unmarkedFrameDSO Create an object of class unmarkedFrameDSO that contains data used
by distsampOpen.

Description

Organizes distance sampling data and experimental design information from multiple primary peri-
ods along with associated covariates. This S4 class is required by the data argument of distsampOpen

Usage

unmarkedFrameDSO(y, siteCovs=NULL, yearlySiteCovs=NULL, numPrimary,
primaryPeriod, dist.breaks, tlength, survey, unitsIn)

Arguments

y An MxJT matrix of the repeated count data, where M is the number of sites (i.e.,
points or transects), J is the number of distance classes and T is the maximum
number of primary sampling periods per site

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

150 unmarkedFrameDSO

yearlySiteCovs Either a named list of MxT data.frames, or a site-major data.frame with MT
rows and 1 column per covariate

numPrimary Maximum number of observed primary periods for each site

primaryPeriod An MxJT matrix of integers indicating the primary period of each observation

dist.breaks vector of distance cut-points delimiting the distance classes. It must be of length
J+1

tlength A vector of length R containing the transect lengths. This is ignored when sur-
vey="point"

survey Either "point" or "line" for point- and line-transects

unitsIn Either "m" or "km" defining the measurement units for both dist.breaks and
tlength

Details

unmarkedFrameDSO is the S4 class that holds data to be passed to the distsampOpen model-fitting
function. Unlike most unmarked functions, obsCovs cannot be supplied.

If you have continuous distance data, they must be "binned" into discrete distance classes, which
are delimited by dist.breaks.

When gamma or omega are modeled using year-specific covariates, the covariate data for the final
year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be
supplied using the primaryPeriod argument.

Value

an object of class unmarkedFrameDSO

See Also

unmarkedFrame-class, unmarkedFrame, distsampOpen

Examples

Fake data
M <- 4 # number of sites
J <- 3 # number of distance classes
T <- 2 # number of primary periods

db <- c(0, 10, 20, 30) # distance break points

y <- matrix(c(
5,4,3, 6,2,1, # In bin 1: 5 detections in primary period 1, 6 in period 2
0,0,0, 0,1,0,
2,1,1, 0,0,0,
1,1,0, 1,1,1), nrow=M, ncol=J*T, byrow=TRUE)

y

unmarkedFrameGDR 151

Primary periods of observations
In this case there are no gaps
primPer <- matrix(as.integer(c(

1,2,
1,2,
1,2,
1,2)), nrow=M, ncol=T, byrow=TRUE)

#Site covs: M rows and 1 column per covariate
site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

#Yearly site covs on gamma/omega
ysc <- list(

x3 = matrix(c(
1,2,
1,2,
1,2,
1,2), nrow=M, ncol=T, byrow=TRUE))

umf <- unmarkedFrameDSO(y=y, siteCovs=site.covs, yearlySiteCovs=ysc,
numPrimary=T, primaryPeriod=primPer,
dist.breaks=db, survey="point", unitsIn="m")

umf # look at data
summary(umf) # summarize

unmarkedFrameGDR Organize data for the combined distance and removal point-count
model of Amundson et al. (2014) fit by gdistremoval

Description

Organize data for the combined distance and removal point-count model of Amundson et al. (2014)
fit by gdistremoval

Usage

unmarkedFrameGDR(yDistance, yRemoval, numPrimary=1, siteCovs=NULL, obsCovs=NULL,
yearlySiteCovs=NULL, dist.breaks, unitsIn, period.lengths=NULL)

Arguments

yDistance An MxTJ matrix of count data, where M is the number of sites (points), T is the
number of primary periods (can be 1) and J is the number of distance classes

yRemoval An MxTJ matrix of count data, where M is the number of sites (points), T is
the number of primary periods (can be 1) and J is the number of time removal
periods

152 unmarkedFrameGDR

numPrimary Number of primary periods in the dataset

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs A data.frame of covariates that vary at the site level. This should have MxTJ
rows and one column per covariate. These covariates are used only by the re-
moval part of the model

yearlySiteCovs A data.frame of covariates that vary by site and primary period. This should
have MxT rows and one column per covariate

dist.breaks vector of distance cut-points delimiting the distance classes. It must be of length
J+1

unitsIn Either "m" or "km" defining the measurement units for dist.breaks

period.lengths Optional vector of time lengths of each removal period. Each value in the vector
must be a positive integer, and the total length of the vector must be equal to
the number of removal periods J. If this is not provided (the default), then all
periods are assumed to have an equal length of 1 time unit

Details

unmarkedFrameGDR is the S4 class that holds data to be passed to the gdistremoval model-fitting
function.

Value

an object of class unmarkedFrameGDR

Note

If you have continuous distance data, they must be "binned" into discrete distance classes, which
are delimited by dist.breaks.

Author(s)

Ken Kellner <contact@kenkellner.com>

References

Amundson, C.L., Royle, J.A. and Handel, C.M., 2014. A hierarchical model combining distance
sampling and time removal to estimate detection probability during avian point counts. The Auk
131: 476-494.

See Also

unmarkedFrame-class, unmarkedFrame, gdistremoval

unmarkedFrameMMO 153

unmarkedFrameMMO Create an object of class unmarkedFrameMMO that contains data
used by multmixOpen.

Description

Organizes count data and experimental design information from multiple primary periods along
with associated covariates. This S4 class is required by the data argument of multmixOpen

Usage

unmarkedFrameMMO(y, siteCovs=NULL, obsCovs=NULL, yearlySiteCovs=NULL,
numPrimary, type, primaryPeriod)

Arguments

y An MxJT matrix of the repeated count data, where M is the number of sites (i.e.,
points or transects), J is the number of distance classes and T is the maximum
number of primary sampling periods per site

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with MxJT rows in site-major order.

yearlySiteCovs Either a named list of MxT data.frames, or a site-major data.frame with MT
rows and 1 column per covariate

numPrimary Maximum number of observed primary periods for each site

type Either "removal" for removal sampling, "double" for standard double observer
sampling, or "depDouble" for dependent double observer sampling

primaryPeriod An MxJT matrix of integers indicating the primary period of each observation

Details

unmarkedFrameMMO is the S4 class that holds data to be passed to the multmixOpen model-fitting
function.

Options for the detection process (type) include equal-interval removal sampling ("removal"),
double observer sampling ("double"), or dependent double-observer sampling ("depDouble").
Note that unlike the related functions multinomPois and gmultmix, custom functions for the de-
tection process (i.e., piFuns) are not supported. To request additional options contact the author.

When gamma or omega are modeled using year-specific covariates, the covariate data for the final
year will be ignored; however, they must be supplied.

If the time gap between primary periods is not constant, an M by T matrix of integers should be
supplied using the primaryPeriod argument.

154 unmarkedFrameMMO

Value

an object of class unmarkedFrameMMO

See Also

unmarkedFrame-class, unmarkedFrame, multmixOpen

Examples

#Generate some data
set.seed(123)
lambda=4; gamma=0.5; omega=0.8; p=0.5
M <- 100; T <- 5
y <- array(NA, c(M, 3, T))
N <- matrix(NA, M, T)
S <- G <- matrix(NA, M, T-1)

for(i in 1:M) {
N[i,1] <- rpois(1, lambda)
y[i,1,1] <- rbinom(1, N[i,1], p) # Observe some
Nleft1 <- N[i,1] - y[i,1,1] # Remove them
y[i,2,1] <- rbinom(1, Nleft1, p) # ...
Nleft2 <- Nleft1 - y[i,2,1]
y[i,3,1] <- rbinom(1, Nleft2, p)

for(t in 1:(T-1)) {
S[i,t] <- rbinom(1, N[i,t], omega)
G[i,t] <- rpois(1, gamma)
N[i,t+1] <- S[i,t] + G[i,t]
y[i,1,t+1] <- rbinom(1, N[i,t+1], p) # Observe some
Nleft1 <- N[i,t+1] - y[i,1,t+1] # Remove them
y[i,2,t+1] <- rbinom(1, Nleft1, p) # ...
Nleft2 <- Nleft1 - y[i,2,t+1]
y[i,3,t+1] <- rbinom(1, Nleft2, p)

}
}
y=matrix(y, M)

#Create some random covariate data
sc <- data.frame(x1=rnorm(100))

#Create unmarked frame
umf <- unmarkedFrameMMO(y=y, numPrimary=5, siteCovs=sc, type="removal")

summary(umf)

unmarkedFrameMPois 155

unmarkedFrameMPois Organize data for the multinomial-Poisson mixture model of Royle
(2004) fit by multinomPois

Description

Organizes count data along with the covariates. This S4 class is required by the data argument of
multinomPois

Usage

unmarkedFrameMPois(y, siteCovs=NULL, obsCovs=NULL, type, obsToY,
mapInfo, piFun)

Arguments

y An RxJ matrix of count data, where R is the number of sites (transects) and J is
the maximum number of observations per site.

siteCovs A data.frame of covariates that vary at the site level. This should have R rows
and one column per covariate

obsCovs Either a named list of RxJ data.frames or a data.frame with RxJ rows and
one column per covariate. For the latter format, the covariates should be in
site-major order.

type Either "removal" for removal sampling, "double" for standard double observer
sampling, or "depDouble" for dependent double observer sampling. If this ar-
gument not specified, the user must provide an obsToY matrix. See details.

obsToY A matrix describing the relationship between obsCovs and y. This is necessary
because under some sampling designs the dimensions of y do not equal the
dimensions of each observation level covariate. For example, in double observer
sampling there are 3 observations (seen only by observer A, detected only by
observer B, and detected by both), but each observation-level covariate can only
have 2 columns, one for each observer. This matrix is created automatically if
type is specified.

mapInfo Currently ignored

piFun Function used to compute the multinomial cell probabilities from a matrix of
detection probabilities. This is created automatically if type is specified.

Details

unmarkedFrameMPois is the S4 class that holds data to be passed to the multinomPois model-
fitting function.

Value

an object of class unmarkedFrameMPois

156 unmarkedFrameMPois

References

Royle, J. A. (2004). Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation, 27(1), 375-386.

See Also

unmarkedFrame-class, unmarkedFrame, multinomPois, piFuns

Examples

Fake doulbe observer data
R <- 4 # number of sites
J <- 2 # number of observers

y <- matrix(c(
1,0,3,
0,0,0,
2,0,1,
0,0,2), nrow=R, ncol=J+1, byrow=TRUE)

y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

obs.covs <- list(
x3 = matrix(c(

-1,0,
-2,0,
-3,1,
0,0),
nrow=R, ncol=J, byrow=TRUE),

x4 = matrix(c(
'a','b',
'a','b',
'a','b',
'a','b'),
nrow=R, ncol=J, byrow=TRUE))

obs.covs

Create unmarkedFrame
umf <- unmarkedFrameMPois(y=y, siteCovs=site.covs, obsCovs=obs.covs,

type="double")

The above is the same as:
o2y <- matrix(1, 2, 3)
pifun <- function(p)
{

M <- nrow(p)
pi <- matrix(NA, M, 3)
pi[, 1] <- p[, 1] * (1 - p[, 2])

unmarkedFrameOccu 157

pi[, 2] <- p[, 2] * (1 - p[, 1])
pi[, 3] <- p[, 1] * p[, 2]
return(pi)

}

umf <- unmarkedFrameMPois(y=y, siteCovs=site.covs, obsCovs=obs.covs,
obsToY=o2y, piFun="pifun")

Fit a model
fm <- multinomPois(~1 ~1, umf)

unmarkedFrameOccu Organize data for the single season occupancy models fit by occu and
occuRN

Description

Organizes detection, non-detection data along with the covariates. This S4 class is required by the
data argument of occu and occuRN

Usage

unmarkedFrameOccu(y, siteCovs=NULL, obsCovs=NULL, mapInfo)

Arguments

y An RxJ matrix of the detection, non-detection data, where R is the number of
sites, J is the maximum number of sampling periods per site.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with RxJ rows in site-major order.

mapInfo Currently ignored

Details

unmarkedFrameOccu is the S4 class that holds data to be passed to the occu and occuRN model-
fitting function.

Value

an object of class unmarkedFrameOccu

158 unmarkedFrameOccuCOP

See Also

unmarkedFrame-class, unmarkedFrame, occu, occuRN

Examples

Fake data
R <- 4 # number of sites
J <- 3 # number of visits
y <- matrix(c(

1,1,0,
0,0,0,
1,1,1,
1,0,1), nrow=R, ncol=J, byrow=TRUE)

y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

obs.covs <- list(
x3 = matrix(c(

-1,0,1,
-2,0,0,
-3,1,0,
0,0,0), nrow=R, ncol=J, byrow=TRUE),

x4 = matrix(c(
'a','b','c',
'd','b','a',
'a','a','c',
'a','b','a'), nrow=R, ncol=J, byrow=TRUE))

obs.covs

umf <- unmarkedFrameOccu(y=y, siteCovs=site.covs,
obsCovs=obs.covs) # organize data

umf # look at data
summary(umf) # summarize
fm <- occu(~1 ~1, umf) # fit a model

unmarkedFrameOccuCOP Organize data for the occupancy model using count data fit by
occuCOP

Description

Organizes count data along with the covariates. The unmarkedFrame S4 class required by the data
argument of occuCOP.

unmarkedFrameOccuCOP 159

Usage

unmarkedFrameOccuCOP(y, L, siteCovs = NULL, obsCovs = NULL)

Arguments

y An MxJ matrix of the count data, where M is the number of sites, J is the maxi-
mum number of observation periods (sampling occasions, transects, discretised
sessions...) per site.

L An MxJ matrix of the length of the observation periods. For example, duration
of the sampling occasion in hours, duration of the discretised session in days, or
length of the transect in meters.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs A named list of dataframes of dimension MxJ, with one dataframe per covariate
that varies between sites and observation periods

Details

unmarkedFrameOccuCOP is the unmarkedFrame S4 class that holds data to be passed to the occuCOP
model-fitting function.

Value

an object of class unmarkedFrameOccuCOP

See Also

unmarkedFrame-class, unmarkedFrame, occuCOP

Examples

Fake data
M <- 4 # Number of sites
J <- 3 # Number of observation periods

Count data
(y <- matrix(

c(1, 3, 0,
0, 0, 0,
2, 0, 5,
1, NA, 0),

nrow = M,
ncol = J,
byrow = TRUE

))

Length of observation periods
(L <- matrix(

c(1, 3, NA,
2, 2, 2,

160 unmarkedFrameOccuFP

1, 2, 1,
7, 1, 3),

nrow = M,
ncol = J,
byrow = TRUE

))

Site covariates
(site.covs <- data.frame(

"elev" = rexp(4),
"habitat" = factor(c("forest", "forest", "grassland", "grassland"))

))

Observation covariates (as a list)
(obs.covs.list <- list(

"rain" = matrix(rexp(M * J), nrow = M, ncol = J),
"wind" = matrix(

sample(letters[1:3], replace = TRUE, size = M * J),
nrow = M, ncol = J)

))

Organise data in a unmarkedFrameOccuCOP object
umf <- unmarkedFrameOccuCOP(

y = y,
L = L,
siteCovs = site.covs,
obsCovs = obs.covs.list

)

Extract L
getL(umf)

Look at data
print(umf) # Print the whole data set
print(umf[1, 2]) # Print the data of the 1st site, 2nd observation
summary(umf) # Summarise the data set
plot(umf) # Plot the count of detection events

L is optional, if absent, it will be replaced by a MxJ matrix of 1
unmarkedFrameOccuCOP(

y = y,
siteCovs = site.covs,
obsCovs = obs.covs.list

)

Covariates are optional
unmarkedFrameOccuCOP(y = y)

unmarkedFrameOccuFP Organize data for the single season occupancy models fit by occuFP

unmarkedFrameOccuFP 161

Description

Organizes detection, non-detection data along with the covariates. This S4 class is required by the
data argument of occu and occuRN

Usage

unmarkedFrameOccuFP(y, siteCovs=NULL, obsCovs=NULL, type, mapInfo)

Arguments

y An RxJ matrix of the detection, non-detection data, where R is the number of
sites, J is the maximum number of sampling periods per site.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with RxJ rows in site-major order.

type A vector with 3 values designating the number of occassions where data is of
type 1, type 2, and type 3 - see occuFP for more details about data types.

mapInfo Currently ignored

Details

unmarkedFrameOccuFP is the S4 class that holds data to be passed to the occu and occuRN model-
fitting function.

Value

an object of class unmarkedFrameOccuFP

See Also

unmarkedFrame-class, unmarkedFrame, occuFP

Examples

n = 100
o = 10
o1 = 5
y = matrix(0,n,o)
p = .7
r = .5
fp = 0.05
y[1:(n*.5),(o-o1+1):o] <- rbinom((n*o1*.5),1,p)
y[1:(n*.5),1:(o-o1)] <- rbinom((o-o1)*n*.5,1,r)
y[(n*.5+1):n,(o-o1+1):o] <- rbinom((n*o1*.5),1,fp)
type <- c((o-o1),o1,0) ### vector with the number of each data type
site <- c(rep(1,n*.5*.8),rep(0,n*.5*.2),rep(1,n*.5*.2),rep(0,n*.8*.5))
occ <- matrix(c(rep(0,n*(o-o1)),rep(1,n*o1)),n,o)

162 unmarkedFrameOccuMS

site <- data.frame(habitat = site)
occ <- list(METH = occ)

umf1 <- unmarkedFrameOccuFP(y,site,occ, type = type)

m1 <- occuFP(detformula = ~ METH, FPformula = ~1, stateformula = ~ habitat, data = umf1)

unmarkedFrameOccuMS Organize data for the multi-state occupancy model fit by occuMS

Description

Organizes multi-state occupancy data (currently single-season only) along with covariates. This S4
class is required by the data argument of occuMS

Usage

unmarkedFrameOccuMS(y, siteCovs=NULL, obsCovs=NULL,
numPrimary=1, yearlySiteCovs=NULL)

Arguments

y An MxR matrix of multi-state occupancy data for a species, where M is the
number of sites and R is the maximum number of observations per site (across
all primary and secondary periods, if you have multi-season data). Values in y
should be integers ranging from 0 (non-detection) to the number of total states -
1. For example, if you have 3 occupancy states, y should contain only values 0,
1, or 2.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with MxR rows in the ordered by site-observation (if single-season)
or site-primary period-observation (if multi-season).

numPrimary Number of primary time periods (e.g. seasons) for the dynamic or multi-season
version of the model. There should be an equal number of secondary periods in
each primary period.

yearlySiteCovs A data frame with one column per covariate that varies among sites and primary
periods (e.g. years). It should have MxT rows where M is the number of sites
and T the number of primary periods, ordered by site-primary period. These
covariates only used for dynamic (multi-season) models.

Details

unmarkedFrameOccuMS is the S4 class that holds data to be passed to the occuMS model-fitting
function.

unmarkedFrameOccuMS 163

Value

an object of class unmarkedFrameOccuMS

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

unmarkedFrame-class, unmarkedFrame, occuMS

Examples

Fake data
#Parameters
N <- 100; J <- 3; S <- 3
psi <- c(0.5,0.3,0.2)
p11 <- 0.4; p12 <- 0.25; p22 <- 0.3

#Simulate state
z <- sample(0:2, N, replace=TRUE, prob=psi)

#Simulate detection
y <- matrix(0,nrow=N,ncol=J)
for (n in 1:N){

probs <- switch(z[n]+1,
c(0,0,0),
c(1-p11,p11,0),
c(1-p12-p22,p12,p22))

if(z[n]>0){
y[n,] <- sample(0:2, J, replace=TRUE, probs)

}
}

#Covariates
site_covs <- as.data.frame(matrix(rnorm(N*2),ncol=2)) # nrow = # of sites
obs_covs <- as.data.frame(matrix(rnorm(N*J*2),ncol=2)) # nrow = N*J

#Build unmarked frame
umf <- unmarkedFrameOccuMS(y=y,siteCovs=site_covs,obsCovs=obs_covs)

umf # look at data
summary(umf) # summarize
plot(umf) # visualize
umf@numStates # check number of occupancy states detected

164 unmarkedFrameOccuMulti

unmarkedFrameOccuMulti

Organize data for the multispecies occupancy model fit by occuMulti

Description

Organizes detection, non-detection data for multiple species along with the covariates. This S4 class
is required by the data argument of occuMulti

Usage

unmarkedFrameOccuMulti(y, siteCovs=NULL, obsCovs=NULL,
maxOrder, mapInfo)

Arguments

y A list (optionally a named list) of length S where each element is an MxJ matrix
of the detection, non-detection data for one species, where M is the number of
sites, J is the maximum number of sampling periods per site, and S is the number
of species in the analysis.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with MxJ rows in site-major order.

maxOrder Optional; specify maximum interaction order. Defaults to number of species (all
possible interactions). Reducing this value may speed up creation of unmarked
frame if you aren’t interested in higher-order interactions.

mapInfo Currently ignored

Details

unmarkedFrameOccuMulti is the S4 class that holds data to be passed to the occuMulti model-
fitting function.

Value

an object of class unmarkedFrameOccuMulti

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

unmarkedFrame-class, unmarkedFrame, occuMulti

unmarkedFrameOccuTTD 165

Examples

Fake data
S <- 3 # number of species
M <- 4 # number of sites
J <- 3 # number of visits

y <- list(matrix(rbinom(M*J,1,0.5),M,J), # species 1
matrix(rbinom(M*J,1,0.5),M,J), # species 2
matrix(rbinom(M*J,1,0.2),M,J)) # species 3

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

umf <- unmarkedFrameOccuMulti(y=y, siteCovs=site.covs,
obsCovs=NULL) # organize data

umf # look at data
summary(umf) # summarize
plot(umf) # visualize
#fm <- occu(~1 ~1, umf) # fit a model

unmarkedFrameOccuTTD Create an unmarkedFrameOccuTTD object for the time-to-detection
model fit by occuTTD

Description

Organizes time-to-detection occupancy data along with covariates. This S4 class is required by the
data argument of occuTTD

Usage

unmarkedFrameOccuTTD(y, surveyLength, siteCovs=NULL, obsCovs=NULL,
numPrimary=1, yearlySiteCovs=NULL)

Arguments

y An MxR matrix of time-to-detection data for a species, where M is the num-
ber of sites and R is the maximum number of observations per site (across all
primary periods and observations, if you have multi-season data). Values in y
should be positive.

surveyLength The maximum length of a survey, in the same units as y. You can provide either
a single value (if all surveys had the same max length), or a matrix matching the
dimensions of y (if surveys had different max lengths).

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

166 unmarkedFrameOccuTTD

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with MxR rows in the ordered by site-observation (if single-season)
or site-primary period-observation (if multi-season).

numPrimary Number of primary time periods (e.g. seasons) for the dynamic or multi-season
version of the model. There should be an equal number of secondary periods in
each primary period.

yearlySiteCovs A data frame with one column per covariate that varies among sites and primary
periods (e.g. years). It should have MxT rows where M is the number of sites
and T the number of primary periods, ordered by site-primary period. These
covariates only used for dynamic (multi-season) models.

Details

unmarkedFrameOccuTTD is the S4 class that holds data to be passed to the occuTTD model-fitting
function.

Value

an object of class unmarkedFrameOccuTTD

Note

If the time-to-detection values in y are very large (e.g., because they are expressed as numbers of
seconds) you may have issues fitting models. An easy solution is to convert your units (e.g., from
seconds to decimal minutes) to keep the values as close to 0 as possible.

Author(s)

Ken Kellner <contact@kenkellner.com>

Examples

For a single-season model
N <- 100 #Number of sites
psi <- 0.4 #Occupancy probability
lam <- 7 #Parameter for exponential distribution of time to detection
Tmax <- 10 #Maximum survey length

z <- rbinom(N, 1, psi) #Simulate occupancy
y <- rexp(N, 1/lam) #Simulate time to detection
y[z==0] <- Tmax
y[y>Tmax] <- Tmax

sc <- as.data.frame(matrix(rnorm(N*2),ncol=2)) #Site covs
oc <- as.data.frame(matrix(rnorm(N*2),ncol=2)) #obs covs

umf <- unmarkedFrameOccuTTD(y=y, surveyLength=Tmax, siteCovs=sc, obsCovs=oc)

unmarkedFramePCO 167

unmarkedFramePCO Create an object of class unmarkedFramePCO that contains data used
by pcountOpen.

Description

Organizes repeated count data along with the covariates and possibly the dates on which each survey
was conducted. This S4 class is required by the data argument of pcountOpen

Usage

unmarkedFramePCO(y, siteCovs=NULL, obsCovs=NULL, yearlySiteCovs, mapInfo,
numPrimary, primaryPeriod)

Arguments

y An MxJT matrix of the repeated count data, where M is the number of sites,
J is the maximum number of secondary sampling periods per site and T is the
maximum number of primary sampling periods per site.

siteCovs A data.frame of covariates that vary at the site level. This should have M rows
and one column per covariate

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with MxJT rows in site-major order.

yearlySiteCovs Either a named list of MxT data.frames, or a site-major data.frame with MT
rows and 1 column per covariate.

mapInfo Currently ignored

numPrimary Maximum number of observed primary periods for each site

primaryPeriod matrix of integers indicating the primary period of each survey.

Details

unmarkedFramePCO is the S4 class that holds data to be passed to the pcountOpen model-fitting
function.

The unmarkedFramePCO class is similar to the unmarkedFramePCount class except that it contains
the dates for each survey, which needs to be supplied .

Value

an object of class unmarkedFramePCO

See Also

unmarkedFrame-class, unmarkedFrame, pcountOpen

168 unmarkedFramePCO

Examples

Repeated count data with 5 primary periods and
no secondary sampling periods (ie J==1)
y1 <- matrix(c(

0, 2, 3, 2, 0,
2, 2, 3, 1, 1,
1, 1, 0, 0, 3,
0, 0, 0, 0, 0), nrow=4, ncol=5, byrow=TRUE)

Site-specific covariates
sc1 <- data.frame(x1 = 1:4, x2 = c('A','A','B','B'))

Observation-specific covariates
oc1 <- list(

x3 = matrix(1:5, nrow=4, ncol=5, byrow=TRUE),
x4 = matrix(letters[1:5], nrow=4, ncol=5, byrow=TRUE))

Primary periods of surveys
primaryPeriod1 <- matrix(as.integer(c(

1, 2, 5, 7, 8,
1, 2, 3, 4, 5,
1, 2, 4, 5, 6,
1, 3, 5, 6, 7)), nrow=4, ncol=5, byrow=TRUE)

Create the unmarkedFrame
umf1 <- unmarkedFramePCO(y=y1, siteCovs=sc1, obsCovs=oc1, numPrimary=5,

primaryPeriod=primaryPeriod1)

Take a look
umf1
summary(umf1)

Repeated count data with 4 primary periods and
no 2 secondary sampling periods (ie J=2)
y2 <- matrix(c(

0,0, 2,2, 3,2, 2,2,
2,2, 2,1, 3,2, 1,1,
1,0, 1,1, 0,0, 0,0,
0,0, 0,0, 0,0, 0,0), nrow=4, ncol=8, byrow=TRUE)

Site-specific covariates
sc2 <- data.frame(x1 = 1:4, x2 = c('A','A','B','B'))

Observation-specific covariates

unmarkedFramePCount 169

oc2 <- list(
x3 = matrix(1:8, nrow=4, ncol=8, byrow=TRUE),
x4 = matrix(letters[1:8], nrow=4, ncol=8, byrow=TRUE))

Yearly-site covariates
ysc <- list(

x5 = matrix(c(
1,2,3,4,
1,2,3,4,
1,2,3,4,
1,2,3,4), nrow=4, ncol=4, byrow=TRUE))

Primary periods of surveys
primaryPeriod2 <- matrix(as.integer(c(

1,2,5,7,
1,2,3,4,
1,2,4,5,
1,3,5,6)), nrow=4, ncol=4, byrow=TRUE)

Create the unmarkedFrame
umf2 <- unmarkedFramePCO(y=y2, siteCovs=sc2, obsCovs=oc2,

yearlySiteCovs=ysc,
numPrimary=4, primaryPeriod=primaryPeriod2)

Take a look
umf2
summary(umf2)

unmarkedFramePCount Organize data for the N-mixture model fit by pcount

Description

Organizes repeated count data along with the covariates. This S4 class is required by the data
argument of pcount

Usage

unmarkedFramePCount(y, siteCovs=NULL, obsCovs=NULL, mapInfo)

Arguments

y An RxJ matrix of the repeated count data, where R is the number of sites, J is
the maximum number of sampling periods per site.

siteCovs A data.frame of covariates that vary at the site level. This should have R rows
and one column per covariate

170 unmarkedFramePCount

obsCovs Either a named list of data.frames of covariates that vary within sites, or a
data.frame with RxJ rows in site-major order.

mapInfo Currently ignored

Details

unmarkedFramePCount is the S4 class that holds data to be passed to the pcount model-fitting
function.

Value

an object of class unmarkedFramePCount

See Also

unmarkedFrame-class, unmarkedFrame, pcount

Examples

Fake data
R <- 4 # number of sites
J <- 3 # number of visits
y <- matrix(c(

1,2,0,
0,0,0,
1,1,1,
2,2,1), nrow=R, ncol=J, byrow=TRUE)

y

site.covs <- data.frame(x1=1:4, x2=factor(c('A','B','A','B')))
site.covs

obs.covs <- list(
x3 = matrix(c(

-1,0,1,
-2,0,0,
-3,1,0,
0,0,0), nrow=R, ncol=J, byrow=TRUE),

x4 = matrix(c(
'a','b','c',
'd','b','a',
'a','a','c',
'a','b','a'), nrow=R, ncol=J, byrow=TRUE))

obs.covs

umf <- unmarkedFramePCount(y=y, siteCovs=site.covs,
obsCovs=obs.covs) # organize data

umf # take a l
summary(umf) # summarize data
fm <- pcount(~1 ~1, umf, K=10) # fit a model

unmarkedMultFrame 171

unmarkedMultFrame Create an unmarkedMultFrame, unmarkedFrameGMM, unmarked-
FrameGDS, or unmarkedFrameGPC object

Description

These functions construct unmarkedFrames for data collected during primary and secondary sam-
pling periods.

Usage

unmarkedMultFrame(y, siteCovs, obsCovs, numPrimary, yearlySiteCovs)
unmarkedFrameGMM(y, siteCovs, obsCovs, numPrimary, yearlySiteCovs, type,
obsToY, piFun)

unmarkedFrameGDS(y, siteCovs, numPrimary, yearlySiteCovs, dist.breaks,
survey, unitsIn, tlength)

unmarkedFrameGPC(y, siteCovs, obsCovs, numPrimary, yearlySiteCovs)

Arguments

y A matrix of the observed data.

siteCovs Data frame of covariates that vary at the site level.

obsCovs Data frame of covariates that vary within site-year-observation level.

numPrimary Number of primary time periods (seasons in the multiseason model).

yearlySiteCovs Data frame containing covariates at the site-year level.

type Set to "removal" for constant-interval removal sampling, "double" for standard
double observer sampling, or "depDouble" for dependent double observer sam-
pling. This should be not be specified for other types of survey designs.

obsToY A matrix specifying relationship between observation-level covariates and re-
sponse matrix

piFun A function converting an MxJ matrix of detection probabilities into an MxJ ma-
trix of multinomial cell probabilities.

dist.breaks see unmarkedFrameDS

survey see unmarkedFrameDS

unitsIn see unmarkedFrameDS

tlength see unmarkedFrameDS

172 unmarkedMultFrame

Details

unmarkedMultFrame objects are used by colext.

unmarkedFrameGMM objects are used by gmultmix.

unmarkedFrameGDS objects are used by gdistsamp.

unmarkedFrameGPC objects are used by gpcount.

For a study with M sites, T years, and a maximum of J observations per site-year, the data can
be supplied in a variety of ways but are stored as follows. y is an M × TJ matrix, with each
row corresponding to a site. siteCovs is a data frame with M rows. yearlySiteCovs is a data
frame with MT rows which are in site-major, year-minor order. obsCovs is a data frame with
MTJ rows, which are ordered by site-year-observation, so that a column of obsCovs corresponds
to as.vector(t(y)), element-by-element. The number of years must be specified in numPrimary.

If the data are in long format, the convenience function formatMult is useful for creating the un-
markedMultFrame.

unmarkedFrameGMM and unmarkedFrameGDS are superclasses of unmarkedMultFrame contain-
ing information on the survey design used that resulted in multinomial outcomes. For unmarked-
FrameGMM and constant-interval removal sampling, you can set type="removal" and ignore the
arguments obsToY and piFun. Similarly, for double-observer sampling, setting type="double" or
type="depDouble" will automatically create an appropiate obsToY matrix and piFuns. For all other
situations, the type argument of unmarkedFrameGMM should be ignored and the obsToY and pi-
Fun arguments must be specified. piFun must be a function that converts an MxJ matrix of detection
probabilities into an MxJ matrix of multinomial cell probabilities. obsToY is a matrix describing
how the obsCovs relate to the observed counts y. For further discussion and examples see the help
page for multinomPois and piFuns.

unmarkedFrameGMM and unmarkedFrameGDS objects can be created from an unmarkedMult-
Frame using the "as" conversion method. See examples.

Value

an unmarkedMultFrame or unmarkedFrameGMM object

Note

Data used with colext, gmultmix, and gdistsamp may be collected during a single year, so yearlySite-
Covs may be a misnomer is some cases.

See Also

formatMult, colext, gmultmix, gpcount

Examples

n <- 50 # number of sites
T <- 4 # number of primary periods
J <- 3 # number of secondary periods

site <- 1:50

unmarkedMultFrame 173

years <- data.frame(matrix(rep(2010:2013, each=n), n, T))
years <- data.frame(lapply(years, as.factor))
occasions <- data.frame(matrix(rep(1:(J*T), each=n), n, J*T))

y <- matrix(0:1, n, J*T)

umf <- unmarkedMultFrame(y=y,
siteCovs = data.frame(site=site),
obsCovs=list(occasion=occasions),
yearlySiteCovs=list(year=years),
numPrimary=T)

umfGMM1 <- unmarkedFrameGMM(y=y,
siteCovs = data.frame(site=site),
obsCovs=list(occasion=occasions),
yearlySiteCovs=data.frame(year=c(t(years))),
or: yearlySiteCovs=list(year=years),
numPrimary=T, type="removal")

A user-defined piFun calculating removal probs when time intervals differ.
instRemPiFun <- function(p) {
M <- nrow(p)
J <- ncol(p)
pi <- matrix(NA, M, J)
p[,1] <- pi[,1] <- 1 - (1 - p[,1])^2
p[,2] <- 1 - (1 - p[,2])^3
p[,3] <- 1 - (1 - p[,3])^5
for(i in 2:J) {
pi[,i] <- pi[, i - 1]/p[, i - 1] * (1 - p[, i - 1]) * p[, i]
}
return(pi)
}

Associated obsToY matrix required by unmarkedFrameMPois
o2y <- diag(ncol(y))
o2y[upper.tri(o2y)] <- 1
o2y

umfGMM2 <- unmarkedFrameGMM(y=y,
siteCovs = data.frame(site=site),
obsCovs=list(occasion=occasions),
yearlySiteCovs=data.frame(year=c(t(years))),
numPrimary=T, obsToY=o2y, piFun="instRemPiFun")

str(umfGMM2)

174 unmarkedPower-methods

unmarkedPower-methods Methods for unmarkedPower objects

Description

Various functions to summarize and update unmarkedPower objects

Usage

S4 method for signature 'unmarkedPower'
show(object)
S4 method for signature 'unmarkedPower'
summary(object, ...)
S4 method for signature 'unmarkedPower'
update(object, ...)

Arguments

object An object of class unmarkedPower created with the powerAnalysis function

... For update, arguments to change in the updated power analysis. Not used by
summary

Value

For show and summary, summary output is printed to the console. For update, a new powerAnalysis
object corresponding to the new arguments provided.

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

powerAnalysis

Examples

Not run:

Simulate an occupancy dataset
forms <- list(state=~elev, det=~1)
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))
design <- list(M=300, J=8) # 300 sites, 8 occasions per site
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)

Fit occupancy model to simulated data
template_model <- occu(~1~elev, occu_umf)

unmarkedPowerList 175

Set desired effect sizes to pass to coefs
effect_sizes <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))

Run power analysis
pa <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05)

Look at summary
summary(pa)

Update the analysis with new arguments
(pa2 <- update(pa, alpha=0.01))

End(Not run)

unmarkedPowerList Create or summarize a series of unmarked power analyses

Description

A list of power analyses created with powerAnalysis can be combined using unmarkedPowerList,
allowing comparison e.g. between different study designs/sample sizes. Additionally an unmarkedPowerList
can be created directly from an unmarkedFit template model by specifying a series of study
designs (number of sites, number of observations) as a data.frame. A series of methods for
unmarkedPowerList objects are available including a plot method.

Usage

S4 method for signature 'list'
unmarkedPowerList(object, ...)
S4 method for signature 'unmarkedFit'
unmarkedPowerList(object, coefs, design, alpha=0.05,

nulls=list(), nsim=100, parallel=FALSE, ...)
S4 method for signature 'unmarkedPowerList'
show(object)
S4 method for signature 'unmarkedPowerList'
summary(object, ...)
S4 method for signature 'unmarkedPowerList,ANY'
plot(x, power=NULL, param=NULL, ...)

Arguments

object,x A list of unmarkedPower objects, a fitted model inheriting class unmarkedFit,
or an unmarkedPowerList object, depending on the method

coefs A named list of effect sizes, see documentation for powerAnalysis

176 unmarkedPowerList

design A data.frame with one row per study design to test, and at least 2 named
columns: M for number of sites and J for number of observations. If you have
>1 primary period a T column must also be provided

alpha Type I error rate

nulls If provided, a list matching the structure of coefs which defines the null hy-
pothesis value for each parameter. By default the null is 0 for all parameters.

nsim The number of simulations to run for each scenario/study design

parallel If TRUE, run simulations in parallel

power When plotting, the target power. Draws a horizontal line at a given value of
power on the plot

param When plotting, the model parameter to plot power vs. sample size for. By default
this is the first parameter (which is usually an intercept, so not very interesting)

... Not used

Value

A unmarkedPowerList object, a summary of the object in the console, or a summary plot, depend-
ing on the method

Author(s)

Ken Kellner <contact@kenkellner.com>

See Also

powerAnalysis

Examples

Not run:

Simulate an occupancy dataset and build template model
forms <- list(state=~elev, det=~1)
coefs <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))
design <- list(M=300, J=8) # 300 sites, 8 occasions per site
occu_umf <- simulate("occu", formulas=forms, coefs=coefs, design=design)
template_model <- occu(~1~elev, occu_umf)

Generate two power analysis
effect_sizes <- list(state=c(intercept=0, elev=-0.4), det=c(intercept=0))
pa <- powerAnalysis(template_model, coefs=effect_sizes, alpha=0.05)
pa2 <- powerAnalysis(template_model, effect_sizes, design=list(M=100,J=2))

Build unmarkedPowerList and look at summary
(pl <- unmarkedPowerList(list(pa,pa2)))

Run a bunch of power analyses for different scenarios all at once
scenarios <- expand.grid(M=c(50,200,400),

unmarkedRanef-class 177

J=c(3,5,8))
(pl2 <- unmarkedPowerList(template_model, effect_sizes, design=scenarios, nsim=20))

Look at summary plot for elev effect
plot(pl2, power=0.8, param='elev')

End(Not run)

unmarkedRanef-class Class "unmarkedRanef"

Description

Stores the estimated posterior distributions of the latent abundance or occurrence variables.

Objects from the Class

Objects can be created by calls of the form ranef.

Slots

post: An array with nSites rows and Nmax (K+1) columns and nPrimaryPeriod slices

Methods

bup signature(object = "unmarkedRanef"): Extract the Best Unbiased Predictors (BUPs) of
the latent variables (abundance or occurrence state). Either the posterior mean or median can
be requested using the stat argument.

confint signature(object = "unmarkedRanef"): Compute confidence intervals.
plot signature(x = "unmarkedRanef", y = "missing"): Plot the posteriors using xyplot

show signature(object = "unmarkedRanef"): Display the modes and confidence intervals

Warnings

Empirical Bayes methods can underestimate the variance of the posterior distribution because they
do not account for uncertainty in the hyperparameters (lambda or psi). Simulation studies indicate
that the posterior mode can exhibit (3-5 percent) negatively bias as a point estimator of site-specific
abundance. It appears to be safer to use the posterior mean even though this will not be an integer
in general.

References

Laird, N.M. and T.A. Louis. 1987. Empirical Bayes confidence intervals based on bootstrap sam-
ples. Journal of the American Statistical Association 82:739–750.

Carlin, B.P and T.A Louis. 1996. Bayes and Empirical Bayes Methods for Data Analysis. Chapman
and Hall/CRC.

Royle, J.A and R.M. Dorazio. 2008. Hierarchical Modeling and Inference in Ecology. Academic
Press.

178 vif

See Also

ranef

Examples

showClass("unmarkedRanef")

vcov-methods Methods for Function vcov in Package ‘unmarked’

Description

Extract variance-covariance matrix from a fitted model.

Methods

object = "linCombOrBackTrans" See linearComb-methods

object = "unmarkedEstimate" See unmarkedEstimate-class

object = "unmarkedFit" A fitted model

vif Compute Variance Inflation Factors for an unmarkedFit Object.

Description

Compute the variance inflation factors (VIFs) for covariates in one level of the model (i.e., occu-
pancy or detection). Calculation of VIFs follows the approach of function vif in package car,
using the correlation matrix of fitted model parameters.

Usage

vif(mod, type)

Arguments

mod An unmarked fit object.

type Level of the model for which to calculate VIFs (for example, 'state')

Value

A named vector of variance inflation factor values for each covariate.

[-methods 179

[-methods Methods for bracket extraction [in Package ‘unmarked’

Description

Methods for bracket extraction [in Package ‘unmarked’

Usage

S4 method for signature 'unmarkedEstimateList,ANY,ANY,ANY'
x[i, j, drop]
S4 method for signature 'unmarkedFit,ANY,ANY,ANY'
x[i, j, drop]
S4 method for signature 'unmarkedFrame,numeric,numeric,missing'
x[i, j]
S4 method for signature 'unmarkedFrame,list,missing,missing'
x[i, j]
S4 method for signature 'unmarkedMultFrame,missing,numeric,missing'
x[i, j]
S4 method for signature 'unmarkedMultFrame,numeric,missing,missing'
x[i, j]
S4 method for signature 'unmarkedFrameGMM,numeric,missing,missing'
x[i, j]
S4 method for signature 'unmarkedFrameGDS,numeric,missing,missing'
x[i, j]
S4 method for signature 'unmarkedFramePCO,numeric,missing,missing'
x[i, j]

Arguments

x Object of appropriate S4 class

i Row numbers

j Observation numbers (eg occasions, distance classes, etc...)

drop Not currently used

Methods

x = "unmarkedEstimateList", i = "ANY", j = "ANY", drop = "ANY" Extract a unmarkedEs-
timate object from an unmarkedEstimateList by name (either ’det’ or ’state’)

x = "unmarkedFit", i = "ANY", j = "ANY", drop = "ANY" Extract a unmarkedEstimate object
from an unmarkedFit by name (either ’det’ or ’state’)

x = "unmarkedFrame", i = "missing", j = "numeric", drop = "missing" Extract observations from
an unmarkedFrame.

x = "unmarkedFrame", i = "numeric", j = "missing", drop = "missing" Extract rows from an
unmarkedFrame

180 [-methods

x = "unmarkedFrame", i = "numeric", j = "numeric", drop = "missing" Extract rows and ob-
servations from an unmarkedFrame

x = "unmarkedMultFrame", i = "missing", j = "numeric", drop = "missing" Extract primary
sampling periods from an unmarkedMultFrame

x = "unmarkedFrame", i = "list", j = "missing", drop = "missing" List is the index of obser-
vations to subset for each site.

x = "unmarkedMultFrame", i = "numeric", j = "missing", drop = "missing" Extract rows (sites)
from an unmarkedMultFrame

x = "unmarkedGMM", i = "numeric", j = "missing", drop = "missing" Extract rows (sites) from
an unmarkedFrameGMM object

x = "unmarkedGDS", i = "numeric", j = "missing", drop = "missing" Extract rows (sites) from
an unmarkedFrameGDS object

x = "unmarkedPCO", i = "numeric", j = "missing", drop = "missing" Extract rows (sites) from
an unmarkedFramePCO object

Examples

data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
summary(mallardUMF)

mallardUMF[1:5,]
mallardUMF[,1:2]
mallardUMF[1:5, 1:2]

Index

∗ classes
unmarkedEstimate-class, 138
unmarkedEstimateList-class, 139
unmarkedFit-class, 139
unmarkedFitList-class, 142
unmarkedFrame-class, 145
unmarkedRanef-class, 177

∗ datasets
birds, 9
crossbill, 16
cruz, 20
frogs, 37
gf, 44
issj, 53
jay, 54
linetran, 57
mallard, 60
masspcru, 61
MesoCarnivores, 62
ovendata, 109
pointtran, 123
Switzerland, 137

∗ methods
[-methods, 179
backTransform-methods, 8
coef-methods, 10
confint-methods, 15
fitted-methods, 32
getB-methods, 42
getFP-methods, 43
getP-methods, 43
linearComb-methods, 56
nonparboot-methods, 73
predict-methods, 127
ranef-methods, 129
SE-methods, 131
simulate-methods, 134
vcov-methods, 178

∗ models

colext, 11
computeMPLElambda, 14
distsamp, 24
distsampOpen, 27
gdistremoval, 38
gdistsamp, 40
multinomPois, 64
multmixOpen, 66
nmixTTD, 70
occu, 74
occuCOP, 76
occuFP, 81
occuMS, 84
occuMulti, 92
occuPEN, 97
occuPEN_CV, 100
occuRN, 102
occuTTD, 104
pcount, 112
pcountOpen, 116

∗ model
gmultmix, 44

∗ package
unmarked-package, 4

∗ utilities
csvToUMF, 21
imputeMissing, 52

[,unmarkedEstimateList,ANY,ANY,ANY-method
([-methods), 179

[,unmarkedFit,ANY,ANY,ANY-method
([-methods), 179

[,unmarkedFrame,list,missing,missing-method
([-methods), 179

[,unmarkedFrame,missing,numeric,missing-method
([-methods), 179

[,unmarkedFrame,numeric,missing,missing-method
([-methods), 179

[,unmarkedFrame,numeric,numeric,missing-method
([-methods), 179

181

182 INDEX

[,unmarkedFrameDSO,numeric,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameGDR,logical,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameGDR,missing,numeric,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameGDR,numeric,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameGDS,numeric,missing,missing-method
([-methods), 179

[,unmarkedFrameGMM,numeric,missing,missing-method
([-methods), 179

[,unmarkedFrameGPC,missing,numeric,missing-method
([-methods), 179

[,unmarkedFrameGPC,numeric,missing,missing-method
([-methods), 179

[,unmarkedFrameOccuCOP,missing,numeric,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuCOP,numeric,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuCOP,numeric,numeric,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuMS,numeric,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuMulti,missing,numeric,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuMulti,numeric,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuTTD,missing,numeric,missing-method
(unmarkedFrame-class), 145

[,unmarkedFrameOccuTTD,numeric,missing,missing-method
(unmarkedFrame-class), 145

[,unmarkedFramePCO,missing,numeric,missing-method
([-methods), 179

[,unmarkedFramePCO,numeric,missing,missing-method
([-methods), 179

[,unmarkedMultFrame,missing,numeric,missing-method
([-methods), 179

[,unmarkedMultFrame,numeric,missing,missing-method
([-methods), 179

[,unmarkedPostSamples,ANY,ANY,ANY-method
(posteriorSamples), 124

[-methods, 179

array, 177

backTransform, 73
backTransform (backTransform-methods), 8

backTransform,unmarkedEstimate-method
(backTransform-methods), 8

backTransform,unmarkedFit-method
(backTransform-methods), 8

backTransform,unmarkedLinComb-method
(backTransform-methods), 8

backTransform-methods, 8
birds, 9
bup (unmarkedRanef-class), 177
bup,unmarkedRanef-method

(unmarkedRanef-class), 177

catbird (birds), 9
coef,linCombOrBackTrans-method

(coef-methods), 10
coef,unmarkedEstimate-method

(coef-methods), 10
coef,unmarkedFit-method (coef-methods),

10
coef,unmarkedFitList-method

(unmarkedFitList-class), 142
coef,unmarkedModSel-method (modSel), 63
coef-methods, 10
colext, 5, 11, 33, 48, 105, 135, 172
computeMPLElambda, 14, 99
confint,unmarkedBackTrans-method

(confint-methods), 15
confint,unmarkedEstimate-method

(confint-methods), 15
confint,unmarkedFit-method

(confint-methods), 15
confint,unmarkedLinComb-method

(confint-methods), 15
confint,unmarkedRanef-method

(unmarkedRanef-class), 177
confint-methods, 15
coordinates (unmarkedFrame-class), 145
coordinates,unmarkedFrame-method

(unmarkedFrame-class), 145
coords (unmarkedFrame-class), 145
crossbill, 16
crossVal, 18
crossVal,unmarkedFit-method (crossVal),

18
crossVal,unmarkedFitList-method

(crossVal), 18
crossVal-methods (crossVal), 18
cruz, 20, 53
csvToUMF, 6, 21, 37

INDEX 183

data.frame, 144, 148–150, 152, 153, 155,
157, 159, 161, 162, 164–167, 169,
170

detFuns, 22, 25
distsamp, 5, 23, 24, 30, 33, 34, 41, 56, 133,

135, 139, 144, 148
distsampOpen, 27, 149, 150
doublePiFun, 45, 65
doublePiFun (piFuns), 120
drexp (detFuns), 22
drhaz (detFuns), 22
drhn (detFuns), 22
dxexp (detFuns), 22
dxhaz (detFuns), 22
dxhn (detFuns), 22

fitList, 19, 25, 31, 63, 142, 143
fitted,unmarkedFit-method

(fitted-methods), 32
fitted,unmarkedFitColExt-method

(fitted-methods), 32
fitted,unmarkedFitDailMadsen-method

(fitted-methods), 32
fitted,unmarkedFitDS-method

(fitted-methods), 32
fitted,unmarkedFitGDR-method

(fitted-methods), 32
fitted,unmarkedFitGMM-method

(fitted-methods), 32
fitted,unmarkedFitGOccu-method

(fitted-methods), 32
fitted,unmarkedFitNmixTTD-method

(fitted-methods), 32
fitted,unmarkedFitOccu-method

(fitted-methods), 32
fitted,unmarkedFitOccuCOP-method

(fitted-methods), 32
fitted,unmarkedFitOccuFP-method

(fitted-methods), 32
fitted,unmarkedFitOccuMS-method

(fitted-methods), 32
fitted,unmarkedFitOccuMulti-method

(fitted-methods), 32
fitted,unmarkedFitOccuRN-method

(fitted-methods), 32
fitted,unmarkedFitOccuTTD-method

(fitted-methods), 32
fitted,unmarkedFitPCount-method

(fitted-methods), 32

fitted-methods, 32
formatDistData, 25, 33
formatLong (formatWideLong), 36
formatMult, 12, 35, 172
formatWide (formatWideLong), 36
formatWideLong, 36
formula, 75
frog2001pcru (frogs), 37
frog2001pfer (frogs), 37
frogs, 37

gdistremoval, 38, 152
gdistsamp, 5, 24, 25, 30, 33, 34, 39, 40, 51,

172
getB (getB-methods), 42
getB,unmarkedFitOccuFP-method

(getB-methods), 42
getB-methods, 42
getData (unmarkedFit-class), 139
getData,unmarkedFit-method

(unmarkedFit-class), 139
getFP (getFP-methods), 43
getFP,unmarkedFitOccuFP-method

(getFP-methods), 43
getFP-methods, 43
getL (unmarkedFrameOccuCOP), 158
getL,unmarkedFrameOccuCOP-method

(unmarkedFrameOccuCOP), 158
getP (getP-methods), 43
getP,unmarkedFit-method (getP-methods),

43
getP,unmarkedFitColExt-method

(getP-methods), 43
getP,unmarkedFitDS-method

(getP-methods), 43
getP,unmarkedFitDSO-method

(getP-methods), 43
getP,unmarkedFitGDR-method

(getP-methods), 43
getP,unmarkedFitGDS-method

(getP-methods), 43
getP,unmarkedFitGMM-method

(getP-methods), 43
getP,unmarkedFitGOccu-method

(getP-methods), 43
getP,unmarkedFitGPC-method

(getP-methods), 43
getP,unmarkedFitMMO-method

(getP-methods), 43

184 INDEX

getP,unmarkedFitMPois-method
(getP-methods), 43

getP,unmarkedFitOccuCOP-method
(getP-methods), 43

getP,unmarkedFitOccuFP-method
(getP-methods), 43

getP,unmarkedFitOccuMS-method
(getP-methods), 43

getP,unmarkedFitOccuMulti-method
(getP-methods), 43

getP,unmarkedFitOccuTTD-method
(getP-methods), 43

getP,unmarkedFitPCO-method
(getP-methods), 43

getP-methods, 43
getY (unmarkedFrame-class), 145
getY,unmarkedFit-method

(unmarkedFit-class), 139
getY,unmarkedFitColExt-method

(unmarkedFit-class), 139
getY,unmarkedFitOccu-method

(unmarkedFit-class), 139
getY,unmarkedFitOccuMulti-method

(unmarkedFit-class), 139
getY,unmarkedFitOccuRN-method

(unmarkedFit-class), 139
getY,unmarkedFrame-method

(unmarkedFrame-class), 145
gf, 44
gmultmix, 5, 6, 39, 44, 51, 68, 69, 120, 153,

172
goccu, 47
gpcount, 5, 49, 172
grexp (detFuns), 22
grhaz (detFuns), 22
grhn (detFuns), 22
gxexp (detFuns), 22
gxhaz (detFuns), 22
gxhn (detFuns), 22

head,unmarkedFrame-method
(unmarkedFrame-class), 145

hessian (unmarkedFit-class), 139
hessian,unmarkedFit-method

(unmarkedFit-class), 139
hist,unmarkedFitDS-method

(unmarkedFit-class), 139
hist,unmarkedFrameDS-method

(unmarkedFrame-class), 145

imputeMissing, 52
integrate, 24, 40
issj, 53

jay, 54

lambda2psi, 55
linearComb, 73
linearComb (linearComb-methods), 56
linearComb,unmarkedEstimate,matrixOrVector-method

(linearComb-methods), 56
linearComb,unmarkedFit,matrixOrVector-method

(linearComb-methods), 56
linearComb-methods, 56
linetran, 57
log, 77
logLik (unmarkedFit-class), 139
logLik,unmarkedFit-method

(unmarkedFit-class), 139
LRT (unmarkedFit-class), 139
LRT,unmarkedFit,unmarkedFit-method

(unmarkedFit-class), 139

makeCrPiFun (makePiFuns), 58
makeCrPiFunMb (makePiFuns), 58
makeCrPiFunMh (makePiFuns), 58
makePiFuns, 58, 121
makeRemPiFun (makePiFuns), 58
mallard, 60
mapInfo (unmarkedFrame-class), 145
masspcru, 61
MesoCarnivores, 62
mle (unmarkedFit-class), 139
mle,unmarkedFit-method

(unmarkedFit-class), 139
modSel, 63, 76, 83
modSel,unmarkedFitList-method

(unmarkedFitList-class), 142
modSel-methods (modSel), 63
multinomPois, 5, 46, 56, 64, 68, 69, 120, 135,

144, 153, 155, 156, 172
multmixOpen, 66, 153, 154

names,unmarkedEstimateList-method
(unmarkedEstimateList-class),
139

names,unmarkedFit-method
(unmarkedFit-class), 139

nllFun (unmarkedFit-class), 139

INDEX 185

nllFun,unmarkedFit-method
(unmarkedFit-class), 139

nmixTTD, 70
nonparboot, 12, 15, 99, 101
nonparboot (nonparboot-methods), 73
nonparboot,unmarkedFit-method

(nonparboot-methods), 73
nonparboot,unmarkedFitColExt-method

(nonparboot-methods), 73
nonparboot,unmarkedFitDailMadsen-method

(nonparboot-methods), 73
nonparboot,unmarkedFitDS-method

(nonparboot-methods), 73
nonparboot,unmarkedFitGDR-method

(nonparboot-methods), 73
nonparboot,unmarkedFitGDS-method

(nonparboot-methods), 73
nonparboot,unmarkedFitGMM-method

(nonparboot-methods), 73
nonparboot,unmarkedFitMPois-method

(nonparboot-methods), 73
nonparboot,unmarkedFitNmixTTD-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccu-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccuCOP-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccuMulti-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccuPEN-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccuPEN_CV-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccuRN-method

(nonparboot-methods), 73
nonparboot,unmarkedFitOccuTTD-method

(nonparboot-methods), 73
nonparboot,unmarkedFitPCount-method

(nonparboot-methods), 73
nonparboot-methods, 73
numSites (unmarkedFrame-class), 145
numSites,unmarkedFrame-method

(unmarkedFrame-class), 145
numY (unmarkedFrame-class), 145
numY,unmarkedFrame-method

(unmarkedFrame-class), 145

obsCovs (unmarkedFrame-class), 145

obsCovs,unmarkedFrame-method
(unmarkedFrame-class), 145

obsCovs<- (unmarkedFrame-class), 145
obsCovs<-,unmarkedFrame-method

(unmarkedFrame-class), 145
obsNum (unmarkedFrame-class), 145
obsNum,unmarkedFrame-method

(unmarkedFrame-class), 145
obsToY (unmarkedFrame-class), 145
obsToY,unmarkedFrame-method

(unmarkedFrame-class), 145
obsToY<- (unmarkedFrame-class), 145
obsToY<-,unmarkedFrame-method

(unmarkedFrame-class), 145
occu, 5, 15, 33, 48, 73, 74, 82, 98, 99, 101,

135, 157, 158, 161
occuCOP, 76, 158, 159
occuFP, 5, 81, 161
occuMS, 84, 162, 163
occuMulti, 5, 92, 164
occuPEN, 14, 15, 97, 101
occuPEN_CV, 15, 99, 100
occuRN, 5, 33, 73, 102, 135, 157, 158, 161
occuTTD, 104, 165, 166
optim, 11, 14, 24, 28, 39, 40, 45, 48, 50, 64,

67, 71, 75, 77, 82, 84, 93, 98, 100,
103, 105, 112, 115, 117, 139

optimizePenalty
(optimizePenalty-methods), 108

optimizePenalty,unmarkedFitOccuMulti-method
(optimizePenalty-methods), 108

optimizePenalty-methods, 108
ovendata, 109

parboot, 25, 76, 83, 110, 113, 136
parboot,unmarkedFit-method

(unmarkedFit-class), 139
parboot,unmarkedFitOccuMulti-method

(unmarkedFit-class), 139
pcount, 5, 33, 56, 112, 119, 135, 169, 170
pcount.spHDS, 114
pcountOpen, 5, 6, 113, 116, 167
pcru.bin (frogs), 37
pcru.data (frogs), 37
pcru.y (frogs), 37
pfer.bin (frogs), 37
pfer.data (frogs), 37
pfer.y (frogs), 37
piFuns, 46, 58, 65, 120, 156, 172

186 INDEX

plot,parboot,missing-method (parboot),
110

plot,profile,missing-method
(unmarkedFit-class), 139

plot,unmarkedFit,missing-method
(unmarkedFit-class), 139

plot,unmarkedFitGDR,missing-method
(unmarkedFit-class), 139

plot,unmarkedFitOccuCOP,missing-method
(unmarkedFit-class), 139

plot,unmarkedFitOccuMulti,missing-method
(unmarkedFit-class), 139

plot,unmarkedFrame,missing-method
(unmarkedFrame-class), 145

plot,unmarkedFrameOccuMulti,missing-method
(unmarkedFrame-class), 145

plot,unmarkedFrameOccuTTD,missing-method
(unmarkedFrame-class), 145

plot,unmarkedPowerList,ANY-method
(unmarkedPowerList), 175

plot,unmarkedRanef,missing-method
(unmarkedRanef-class), 177

plotEffects, 121
plotEffects,unmarkedFit-method

(plotEffects), 121
plotEffects-methods (plotEffects), 121
plotEffectsData (plotEffects), 121
plotEffectsData,unmarkedFit-method

(plotEffects), 121
plotEffectsData-methods (plotEffects),

121
pointtran, 123
posteriorSamples, 124, 128
posteriorSamples,unmarkedFit-method

(posteriorSamples), 124
posteriorSamples,unmarkedRanef-method

(posteriorSamples), 124
posteriorSamples-methods

(posteriorSamples), 124
powerAnalysis, 125, 174, 176
predict, 9, 125
predict (predict-methods), 127
predict,ANY-method (predict-methods),

127
predict,unmarkedFit-method

(predict-methods), 127
predict,unmarkedFitColExt-method

(predict-methods), 127

predict,unmarkedFitDSO-method
(predict-methods), 127

predict,unmarkedFitGDR-method
(predict-methods), 127

predict,unmarkedFitGDS-method
(predict-methods), 127

predict,unmarkedFitGMM-method
(predict-methods), 127

predict,unmarkedFitList-method
(predict-methods), 127

predict,unmarkedFitNmixTTD-method
(predict-methods), 127

predict,unmarkedFitOccuFP-method
(predict-methods), 127

predict,unmarkedFitOccuMS-method
(predict-methods), 127

predict,unmarkedFitOccuMulti-method
(predict-methods), 127

predict,unmarkedFitOccuTTD-method
(predict-methods), 127

predict,unmarkedFitPCO-method
(predict-methods), 127

predict,unmarkedFitPCount-method
(predict-methods), 127

predict,unmarkedRanef-method
(predict-methods), 127

predict-methods, 127
profile,unmarkedFit-method

(unmarkedFit-class), 139
projected (unmarkedFit-class), 139
projected,unmarkedFitColExt-method

(unmarkedFit-class), 139
projection (unmarkedFrame-class), 145
projection,unmarkedFrame-method

(unmarkedFrame-class), 145

qlogis, 77

randomTerms, 128
randomTerms,unmarkedEstimate-method

(randomTerms), 128
randomTerms,unmarkedFit-method

(randomTerms), 128
randomTerms-methods (randomTerms), 128
ranef, 25, 111, 113, 125, 128, 177, 178
ranef (ranef-methods), 129
ranef,unmarkedFitColExt-method

(ranef-methods), 129

INDEX 187

ranef,unmarkedFitDailMadsen-method
(ranef-methods), 129

ranef,unmarkedFitDS-method
(ranef-methods), 129

ranef,unmarkedFitGDR-method
(ranef-methods), 129

ranef,unmarkedFitGDS-method
(ranef-methods), 129

ranef,unmarkedFitGMM-method
(ranef-methods), 129

ranef,unmarkedFitGMMorGDS-method
(ranef-methods), 129

ranef,unmarkedFitGOccu-method
(ranef-methods), 129

ranef,unmarkedFitGPC-method
(ranef-methods), 129

ranef,unmarkedFitMPois-method
(ranef-methods), 129

ranef,unmarkedFitNmixTTD-method
(ranef-methods), 129

ranef,unmarkedFitOccu-method
(ranef-methods), 129

ranef,unmarkedFitOccuCOP-method
(ranef-methods), 129

ranef,unmarkedFitOccuFP-method
(ranef-methods), 129

ranef,unmarkedFitOccuMS-method
(ranef-methods), 129

ranef,unmarkedFitOccuMulti-method
(ranef-methods), 129

ranef,unmarkedFitOccuRN-method
(ranef-methods), 129

ranef,unmarkedFitOccuTTD-method
(ranef-methods), 129

ranef,unmarkedFitPCO-method
(ranef-methods), 129

ranef,unmarkedFitPCount-method
(ranef-methods), 129

ranef-methods, 129
removalPiFun, 45, 65
removalPiFun (piFuns), 120
residuals,unmarkedFit-method

(unmarkedFit-class), 139
residuals,unmarkedFitGDR-method

(unmarkedFit-class), 139
residuals,unmarkedFitOccu-method

(unmarkedFit-class), 139
residuals,unmarkedFitOccuCOP-method

(unmarkedFit-class), 139
residuals,unmarkedFitOccuFP-method

(unmarkedFit-class), 139
residuals,unmarkedFitOccuMulti-method

(unmarkedFit-class), 139
residuals,unmarkedFitOccuRN-method

(unmarkedFit-class), 139
residuals,unmarkedFitOccuTTD-method

(unmarkedFit-class), 139

sampleSize (unmarkedFit-class), 139
sampleSize,unmarkedFit-method

(unmarkedFit-class), 139
SE (SE-methods), 131
SE,linCombOrBackTrans-method

(SE-methods), 131
SE,unmarkedEstimate-method

(SE-methods), 131
SE,unmarkedFit-method (SE-methods), 131
SE,unmarkedFitList-method

(unmarkedFitList-class), 142
SE,unmarkedModSel-method (modSel), 63
SE-methods, 131
shinyPower, 132
show,parboot-method (parboot), 110
show,unmarkedBackTrans-method

(backTransform-methods), 8
show,unmarkedCrossVal-method

(crossVal), 18
show,unmarkedCrossValList-method

(crossVal), 18
show,unmarkedEstimate-method

(unmarkedEstimate-class), 138
show,unmarkedEstimateList-method

(unmarkedEstimateList-class),
139

show,unmarkedFit-method
(unmarkedFit-class), 139

show,unmarkedFrame-method
(unmarkedFrame-class), 145

show,unmarkedFrameOccuCOP-method
(unmarkedFrame-class), 145

show,unmarkedFrameOccuMulti-method
(unmarkedFrame-class), 145

show,unmarkedFrameOccuTTD-method
(unmarkedFrame-class), 145

show,unmarkedLinComb-method
(linearComb-methods), 56

show,unmarkedModSel-method (modSel), 63

188 INDEX

show,unmarkedMultFrame-method
(unmarkedFrame-class), 145

show,unmarkedPostSamples-method
(posteriorSamples), 124

show,unmarkedPower-method
(unmarkedPower-methods), 174

show,unmarkedPowerList-method
(unmarkedPowerList), 175

show,unmarkedRanef-method
(unmarkedRanef-class), 177

sight2perpdist, 25, 132
sigma, 133
sigma,unmarkedEstimate-method (sigma),

133
sigma,unmarkedFit-method (sigma), 133
sigma-methods (sigma), 133
simulate,character-method

(simulate-methods), 134
simulate,unmarkedFitColExt-method

(simulate-methods), 134
simulate,unmarkedFitDailMadsen-method

(simulate-methods), 134
simulate,unmarkedFitDS-method

(simulate-methods), 134
simulate,unmarkedFitGDR-method

(simulate-methods), 134
simulate,unmarkedFitGDS-method

(simulate-methods), 134
simulate,unmarkedFitGMM-method

(simulate-methods), 134
simulate,unmarkedFitGOccu-method

(simulate-methods), 134
simulate,unmarkedFitGPC-method

(simulate-methods), 134
simulate,unmarkedFitMPois-method

(simulate-methods), 134
simulate,unmarkedFitNmixTTD-method

(simulate-methods), 134
simulate,unmarkedFitOccu-method

(simulate-methods), 134
simulate,unmarkedFitOccuCOP-method

(simulate-methods), 134
simulate,unmarkedFitOccuFP-method

(simulate-methods), 134
simulate,unmarkedFitOccuMS-method

(simulate-methods), 134
simulate,unmarkedFitOccuMulti-method

(simulate-methods), 134

simulate,unmarkedFitOccuRN-method
(simulate-methods), 134

simulate,unmarkedFitOccuTTD-method
(simulate-methods), 134

simulate,unmarkedFitPCO-method
(simulate-methods), 134

simulate,unmarkedFitPCount-method
(simulate-methods), 134

simulate-methods, 134
siteCovs (unmarkedFrame-class), 145
siteCovs,unmarkedFrame-method

(unmarkedFrame-class), 145
siteCovs<- (unmarkedFrame-class), 145
siteCovs<-,unmarkedFrame-method

(unmarkedFrame-class), 145
smoothed (unmarkedFit-class), 139
smoothed,unmarkedFitColExt-method

(unmarkedFit-class), 139
SSE, 136
SSE,unmarkedFit-method (SSE), 136
SSE,unmarkedFitGDR-method (SSE), 136
SSE,unmarkedFitOccuMulti-method (SSE),

136
SSE-methods (SSE), 136
summary,unmarkedEstimate-method

(unmarkedEstimate-class), 138
summary,unmarkedEstimateList-method

(unmarkedEstimateList-class),
139

summary,unmarkedFit-method
(unmarkedFit-class), 139

summary,unmarkedFitDS-method
(unmarkedFit-class), 139

summary,unmarkedFitList-method
(unmarkedFitList-class), 142

summary,unmarkedFrame-method
(unmarkedFrame-class), 145

summary,unmarkedFrameDS-method
(unmarkedFrame-class), 145

summary,unmarkedFrameOccuCOP-method
(unmarkedFrame-class), 145

summary,unmarkedFrameOccuMulti-method
(unmarkedFrame-class), 145

summary,unmarkedFrameOccuTTD-method
(unmarkedFrame-class), 145

summary,unmarkedModSel-method (modSel),
63

summary,unmarkedMultFrame-method

INDEX 189

(unmarkedFrame-class), 145
summary,unmarkedPower-method

(unmarkedPower-methods), 174
summary,unmarkedPowerList-method

(unmarkedPowerList), 175
Switzerland, 18, 137

unmarked, 15, 22, 72, 76, 78, 83, 86, 94, 99,
101, 106

unmarked (unmarked-package), 4
unmarked-package, 4
unmarkedCrossVal-class (crossVal), 18
unmarkedCrossValList-class (crossVal),

18
unmarkedEstimate

(unmarkedEstimate-class), 138
unmarkedEstimate-class, 138
unmarkedEstimateList-class, 139
unmarkedFit, 19, 78, 139, 143, 146
unmarkedFit (unmarkedFit-class), 139
unmarkedFit-class, 139
unmarkedFitDS-class

(unmarkedFit-class), 139
unmarkedFitDSO-class

(unmarkedFit-class), 139
unmarkedFitGMM-class

(unmarkedFit-class), 139
unmarkedFitList-class, 142
unmarkedFitMMO-class

(unmarkedFit-class), 139
unmarkedFitMPois-class

(unmarkedFit-class), 139
unmarkedFitNmixTTD-class

(unmarkedFit-class), 139
unmarkedFitOccu-class

(unmarkedFit-class), 139
unmarkedFitOccuFP-class

(unmarkedFit-class), 139
unmarkedFitOccuMS-class

(unmarkedFit-class), 139
unmarkedFitOccuMulti-class

(unmarkedFit-class), 139
unmarkedFitOccuPEN-class

(unmarkedFit-class), 139
unmarkedFitOccuPEN_CV-class

(unmarkedFit-class), 139
unmarkedFitOccuTTD-class

(unmarkedFit-class), 139

unmarkedFitPCO-class
(unmarkedFit-class), 139

unmarkedFitPCount-class
(unmarkedFit-class), 139

unmarkedFrame, 5, 34, 75, 77, 82, 86, 93, 98,
100, 143, 145, 146, 148, 150, 152,
154, 156, 158, 159, 161, 163, 164,
167, 170

unmarkedFrame-class, 145
unmarkedFrameDS, 25, 144, 147, 171
unmarkedFrameDS-class

(unmarkedFrame-class), 145
unmarkedFrameDSO, 27, 29, 30, 149
unmarkedFrameDSO-class

(unmarkedFrame-class), 145
unmarkedFrameGDR, 39, 151
unmarkedFrameGDR-class

(unmarkedFrameGDR), 151
unmarkedFrameGDS, 34, 41
unmarkedFrameGDS (unmarkedMultFrame),

171
unmarkedFrameGDS-class

(unmarkedFrame-class), 145
unmarkedFrameGMM, 45, 46
unmarkedFrameGMM (unmarkedMultFrame),

171
unmarkedFrameGMM-class

(unmarkedFrame-class), 145
unmarkedFrameGOccu, 48
unmarkedFrameGOccu (unmarkedMultFrame),

171
unmarkedFrameGPC, 46, 50, 51
unmarkedFrameGPC (unmarkedMultFrame),

171
unmarkedFrameGPC-class

(unmarkedFrame-class), 145
unmarkedFrameMMO, 67–69, 153
unmarkedFrameMMO-class

(unmarkedFrame-class), 145
unmarkedFrameMPois, 65, 155
unmarkedFrameMPois-class

(unmarkedFrame-class), 145
unmarkedFrameOccu, 14, 15, 74–76, 97–102,

144, 157
unmarkedFrameOccu-class

(unmarkedFrame-class), 145
unmarkedFrameOccuCOP, 77, 78, 158
unmarkedFrameOccuFP, 82, 83, 160

190 INDEX

unmarkedFrameOccuMS, 84, 86, 162
unmarkedFrameOccuMS-class

(unmarkedFrame-class), 145
unmarkedFrameOccuMulti, 92–94, 164
unmarkedFrameOccuMulti-class

(unmarkedFrame-class), 145
unmarkedFrameOccuTTD, 71, 72, 104–106,

165
unmarkedFrameOccuTTD-class

(unmarkedFrame-class), 145
unmarkedFramePCO, 117–119, 167
unmarkedFramePCO-class

(unmarkedFrame-class), 145
unmarkedFramePCount, 112, 113, 144, 169
unmarkedFramePCount-class

(unmarkedFrame-class), 145
unmarkedModSel-class (modSel), 63
unmarkedMultFrame, 11, 12, 36, 48, 171
unmarkedMultFrame-class

(unmarkedFrame-class), 145
unmarkedPostSamples-class

(posteriorSamples), 124
unmarkedPower-class

(unmarkedPower-methods), 174
unmarkedPower-methods, 174
unmarkedPowerList, 126, 175
unmarkedPowerList,list-method

(unmarkedPowerList), 175
unmarkedPowerList,unmarkedFit-method

(unmarkedPowerList), 175
unmarkedPowerList-class

(unmarkedPowerList), 175
unmarkedPowerList-methods

(unmarkedPowerList), 175
unmarkedRanef-class, 129, 130, 177
update,unmarkedFit-method

(unmarkedFit-class), 139
update,unmarkedFitColExt-method

(unmarkedFit-class), 139
update,unmarkedFitDailMadsen-method

(unmarkedFit-class), 139
update,unmarkedFitGDR-method

(unmarkedFit-class), 139
update,unmarkedFitGMM-method

(unmarkedFit-class), 139
update,unmarkedFitGOccu-method

(unmarkedFit-class), 139
update,unmarkedFitNmixTTD-method

(unmarkedFit-class), 139
update,unmarkedFitOccuMS-method

(unmarkedFit-class), 139
update,unmarkedFitOccuMulti-method

(unmarkedFit-class), 139
update,unmarkedFitOccuTTD-method

(unmarkedFit-class), 139
update,unmarkedPower-method

(unmarkedPower-methods), 174

vcov, 73
vcov,linCombOrBackTrans-method

(vcov-methods), 178
vcov,unmarkedEstimate-method

(vcov-methods), 178
vcov,unmarkedFit-method (vcov-methods),

178
vcov,unmarkedFitOccuMulti-method

(vcov-methods), 178
vcov-methods, 178
vif, 178

woodthrush (birds), 9

xyplot, 177

yearlySiteCovs (unmarkedMultFrame), 171
yearlySiteCovs,unmarkedMultFrame-method

(unmarkedMultFrame), 171
yearlySiteCovs<- (unmarkedMultFrame),

171
yearlySiteCovs<-,unmarkedMultFrame-method

(unmarkedMultFrame), 171

	unmarked-package
	backTransform-methods
	birds
	coef-methods
	colext
	computeMPLElambda
	confint-methods
	crossbill
	crossVal
	cruz
	csvToUMF
	detFuns
	distsamp
	distsampOpen
	fitList
	fitted-methods
	formatDistData
	formatMult
	formatWideLong
	frogs
	gdistremoval
	gdistsamp
	getB-methods
	getFP-methods
	getP-methods
	gf
	gmultmix
	goccu
	gpcount
	imputeMissing
	issj
	jay
	lambda2psi
	linearComb-methods
	linetran
	makePiFuns
	mallard
	masspcru
	MesoCarnivores
	modSel
	multinomPois
	multmixOpen
	nmixTTD
	nonparboot-methods
	occu
	occuCOP
	occuFP
	occuMS
	occuMulti
	occuPEN
	occuPEN_CV
	occuRN
	occuTTD
	optimizePenalty-methods
	ovendata
	parboot
	pcount
	pcount.spHDS
	pcountOpen
	piFuns
	plotEffects
	pointtran
	posteriorSamples
	powerAnalysis
	predict-methods
	randomTerms
	ranef-methods
	SE-methods
	shinyPower
	sight2perpdist
	sigma
	simulate-methods
	SSE
	Switzerland
	unmarkedEstimate-class
	unmarkedEstimateList-class
	unmarkedFit-class
	unmarkedFitList-class
	unmarkedFrame
	unmarkedFrame-class
	unmarkedFrameDS
	unmarkedFrameDSO
	unmarkedFrameGDR
	unmarkedFrameMMO
	unmarkedFrameMPois
	unmarkedFrameOccu
	unmarkedFrameOccuCOP
	unmarkedFrameOccuFP
	unmarkedFrameOccuMS
	unmarkedFrameOccuMulti
	unmarkedFrameOccuTTD
	unmarkedFramePCO
	unmarkedFramePCount
	unmarkedMultFrame
	unmarkedPower-methods
	unmarkedPowerList
	unmarkedRanef-class
	vcov-methods
	vif
	[-methods
	Index

