The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
unifiedml## Loading required package: doParallel
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: parallel
## Loading required package: R6
## Loading required package: Matrix
## Loaded glmnet 4.1-10
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
library(e1071)
# ------------------------------------------------------------
# REGRESSION EXAMPLES
# ------------------------------------------------------------
cat("\n=== REGRESSION EXAMPLES ===\n\n")##
## === REGRESSION EXAMPLES ===
# Example 1: Synthetic data (numeric y → automatic regression)
set.seed(123)
X <- MASS::Boston[, -ncol(MASS::Boston)]
y <- MASS::Boston$medv
# glmnet regression
cat("1. Ridge Regression (glmnet) - Auto-detected: Regression\n")## 1. Ridge Regression (glmnet) - Auto-detected: Regression
mod1 <- Model$new(glmnet::glmnet) # No task parameter needed!
mod1$fit(X, y, alpha = 0, lambda = 0.1)
mod1$print()## Model Object
## ------------
## Model function: self$model_fn
## Fitted: TRUE
## Task: regression
## Training samples: 506
## Features: 13
##
## Predictions:
## 1 2 3 4 5 6
## 30.12476 25.01360 30.57030 28.68765 28.04710 25.31151
##
## Model Summary - Numerical Derivatives
## ======================================
## Task: regression
## Samples: 506 | Features: 13
## Step size (h): 0.01
##
## Feature Mean_Derivative Std_Error t_value p_value Significance
## crim -1.032452e-01 7.837905e-15 -1.317256e+13 0 ***
## zn 4.322719e-02 5.216968e-15 8.285883e+12 0 ***
## indus 2.743581e-03 1.273890e-14 2.153704e+11 0 ***
## chas 2.753495e+00 6.050646e-15 4.550745e+14 0 ***
## nox -1.656232e+01 1.293028e-14 -1.280894e+15 0 ***
## rm 3.868607e+00 9.300418e-15 4.159605e+14 0 ***
## age -4.129908e-04 1.108270e-14 -3.726444e+10 0 ***
## dis -1.411492e+00 4.776813e-15 -2.954882e+14 0 ***
## rad 2.655385e-01 7.851465e-15 3.382025e+13 0 ***
## tax -1.038490e-02 8.323530e-15 -1.247656e+12 0 ***
## ptratio -9.325559e-01 6.254096e-15 -1.491112e+14 0 ***
## black 9.272792e-03 3.489110e-15 2.657638e+12 0 ***
## lstat -5.149643e-01 4.667193e-15 -1.103371e+14 0 ***
##
## Significance codes: 0 '***' 0.01 '**' 0.05 '*' 0.1 ' ' 1
## | | | 0% | |============== | 20% | |============================ | 40% | |========================================== | 60% | |======================================================== | 80% | |======================================================================| 100%
## [1] 5.255488 6.050598 6.147428 5.054657 4.942869
##
## Mean RMSE: 5.490208
##
## 2. Random Forest Regression - Auto-detected: Regression
mod2 <- Model$new(randomForest::randomForest) # No task parameter!
mod2$fit(X, y, ntree = 50)
mod2$print()## Model Object
## ------------
## Model function: self$model_fn
## Fitted: TRUE
## Task: regression
## Training samples: 506
## Features: 13
##
## Model Summary - Numerical Derivatives
## ======================================
## Task: regression
## Samples: 506 | Features: 13
## Step size (h): 0.01
##
## Feature Mean_Derivative Std_Error t_value p_value Significance
## crim 0.27808959 0.329662424 0.8435587 3.993155e-01
## zn 0.00000000 0.000000000 NaN NaN <NA>
## indus 0.03961792 0.030839187 1.2846616 1.994995e-01 *
## chas 0.00000000 0.000000000 NaN NaN <NA>
## nox -7.59855104 1.939451552 -3.9178865 1.016265e-04 ***
## rm 4.33226614 0.538906676 8.0389914 6.471192e-15 ***
## age -0.02569829 0.023089867 -1.1129682 2.662516e-01
## dis -0.71310569 0.405677973 -1.7578122 7.938528e-02 **
## rad 0.01739130 0.017453435 0.9964402 3.195135e-01
## tax -0.01361660 0.008303022 -1.6399573 1.016368e-01 *
## ptratio -0.03075099 0.024143264 -1.2736881 2.033599e-01
## black 0.05649539 0.045334095 1.2462009 2.132684e-01
## lstat -0.47499012 0.124407440 -3.8180202 1.512437e-04 ***
##
## Significance codes: 0 '***' 0.01 '**' 0.05 '*' 0.1 ' ' 1
# ------------------------------------------------------------
# CLASSIFICATION EXAMPLES
# ------------------------------------------------------------
cat("\n\n=== CLASSIFICATION EXAMPLES ===\n\n")##
##
## === CLASSIFICATION EXAMPLES ===
# Example: Iris dataset (factor y → automatic classification)
data(iris)
# Binary classification with factor
cat("3. Binary Classification with Factor Response\n")## 3. Binary Classification with Factor Response
iris_binary <- iris[iris$Species %in% c("setosa", "versicolor"), ]
X_binary <- as.matrix(iris_binary[, 1:4])
y_binary <- iris_binary$Species # factor → classification
# Multi-class classification
cat("4. Multi-class Classification\n")## 4. Multi-class Classification
X_multi <- as.matrix(iris[, 1:4])
y_multi <- iris$Species # factor with 3 levels → multi-class classification
mod4 <- Model$new(randomForest::randomForest) # No task parameter!
mod4$fit(X_multi, y_multi, ntree = 50)
mod4$print()## Model Object
## ------------
## Model function: self$model_fn
## Fitted: TRUE
## Task: classification
## Training samples: 150
## Features: 4
## Classes: setosa, versicolor, virginica
## Class distribution:
##
## setosa versicolor virginica
## 50 50 50
## | | | 0% | |============== | 20% | |============================ | 40% | |========================================== | 60% | |======================================================== | 80% | |======================================================================| 100%
## [1] 0.9666667 0.9333333 1.0000000 0.9666667 0.9333333
##
## Mean Accuracy: 0.96
y_multi_numeric <- as.numeric(y_multi)
mod4 <- Model$new(glmnet::glmnet) # No task parameter!
mod4$fit(X_multi, y_multi_numeric, family="multinomial")
mod4$print()## Model Object
## ------------
## Model function: self$model_fn
## Fitted: TRUE
## Task: regression
## Training samples: 150
## Features: 4
## | | | 0% | |============== | 20% | |============================ | 40% | |========================================== | 60% | |======================================================== | 80% | |======================================================================| 100%
## [1] 0.3186251 0.3500136 0.3191357 0.2776998 0.3485864
##
## Mean Accuracy: 0.3228121
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.