The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

iris-NIW-vignette

library(tip)
# Import the iris dataset
data(iris)

# The first 4 columns are the data whereas
# the 5th column refers to the true labels
X <- data.matrix(iris[,c("Sepal.Length",
                         "Sepal.Width",
                         "Petal.Length",
                         "Petal.Width")])

# Extract the true labels (optional)
# True labels are only necessary for constructing network 
# graphs that incorporate the true labels; this is often
# for research. 
true_labels <- iris[,"Species"]

# Compute the distance matrix
distance_matrix <- data.matrix(dist(X))

# Compute the temperature parameter estiamte
temperature <- 1/median(distance_matrix[upper.tri(distance_matrix)])

# For each subject, compute the point estimate for the number of similar 
# subjects using  univariate multiple change point detection (i.e.)
init_num_neighbors = get_cpt_neighbors(.distance_matrix = distance_matrix)

# Set the number of burn-in iterations in the Gibbs samlper
# A very good result for Iris may be obtained by setting burn <- 1000
burn <- 5

# Set the number of sampling iterations in the Gibbs sampler
# A very good result for Iris may be obtained by setting samples <- 1000
samples <- 5

# Set the subject names
names_subjects <- paste(1:dim(iris)[1])

# Run TIP clustering using only the prior
# --> That is, the likelihood function is constant
tip1 <- tip(.data = data.matrix(X),
            .burn = burn,
            .samples = samples,
            .similarity_matrix = exp(-1.0*temperature*distance_matrix),
            .init_num_neighbors = init_num_neighbors,
            .likelihood_model = "NIW", 
            .subject_names = names_subjects,
            .num_cores = 1)
#> Bayesian Clustering: Table Invitation Prior Gibbs Sampler
#> burn-in: 5
#> samples: 5
#> Likelihood Model: NIW
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=========                                                             |  12%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |==========================                                            |  38%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |============================================                          |  62%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |=============================================================         |  88%
  |                                                                            
  |======================================================================| 100%
# Produce plots for the Bayesian Clustering Model
tip_plots <- plot(tip1)
# View the posterior distribution of the number of clusters
tip_plots$histogram_posterior_number_of_clusters

# View the trace plot with respect to the posterior number of clusters
tip_plots$trace_plot_posterior_number_of_clusters

# Extract posterior cluster assignments using the Posterior Expected Adjusted Rand (PEAR) index
cluster_assignments <- mcclust::maxpear(psm = tip1@posterior_similarity_matrix)$cl

# If the true labels are available, then show the cluster result via a contigency table
table(data.frame(true_label = true_labels,
                 cluster_assignment = cluster_assignments))
#>             cluster_assignment
#> true_label    1  2  3  4  5
#>   setosa     50  0  0  0  0
#>   versicolor  0 41  2  4  3
#>   virginica   0 13 37  0  0
# Create the one component graph with minimum entropy
partition_list <- partition_undirected_graph(.graph_matrix = tip1@posterior_similarity_matrix,
                                             .num_components = 1,
                                             .step_size = 0.001)
# Associate class labels and colors for the plot
class_palette_colors <- c("setosa" = "blue",
                          "versicolor" = 'green',
                          "virginica" = "orange")

# Associate class labels and shapes for the plot
class_palette_shapes <- c("setosa" = 19,
                          "versicolor" = 18,
                          "virginica" = 17)

# Visualize the posterior similarity matrix by constructing a graph plot of 
# the one-cluster graph. The true labels are used here (below they are not).
ggnet2_network_plot(.matrix_graph = partition_list$partitioned_graph_matrix,
                .subject_names = NA,
                .subject_class_names = true_labels,
                .class_colors = class_palette_colors,
                .class_shapes = class_palette_shapes,
                .node_size = 2,
                .add_node_labels = FALSE)
#> Warning: Duplicated override.aes is ignored.

# If true labels are not available, then construct a network plot
# of the one-cluster graph without any class labels.
# Note: Subject labels may be suppressed using .add_node_labels = FALSE.  
ggnet2_network_plot(.matrix_graph = partition_list$partitioned_graph_matrix,
                .subject_names = names_subjects,
                .node_size = 2,
                .add_node_labels = TRUE)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.