The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

tidylearn: A Unified Tidy Interface to R's Machine Learning Ecosystem

Provides a unified tidyverse-compatible interface to R's machine learning packages. Wraps established implementations from 'glmnet', 'randomForest', 'xgboost', 'e1071', 'rpart', 'gbm', 'nnet', 'cluster', 'dbscan', and others - providing consistent function signatures, tidy tibble output, and unified 'ggplot2'-based visualization. The underlying algorithms are unchanged; 'tidylearn' simply makes them easier to use together. Access raw model objects via the $fit slot for package-specific functionality. Methods include random forests Breiman (2001) <doi:10.1023/A:1010933404324>, LASSO regression Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, elastic net Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, support vector machines Cortes and Vapnik (1995) <doi:10.1007/BF00994018>, and gradient boosting Friedman (2001) <doi:10.1214/aos/1013203451>.

Version: 0.1.0
Depends: R (≥ 3.6.0)
Imports: dplyr (≥ 1.0.0), ggplot2 (≥ 3.3.0), tibble (≥ 3.0.0), tidyr (≥ 1.0.0), purrr (≥ 0.3.0), rlang (≥ 0.4.0), magrittr, stats, e1071, gbm, glmnet, nnet, randomForest, rpart, rsample, ROCR, yardstick, cluster (≥ 2.1.0), dbscan (≥ 1.1.0), MASS, smacof (≥ 2.1.0)
Suggests: arules, arulesViz, car, caret, DT, GGally, ggforce, gridExtra, keras, knitr, lmtest, mclust, moments, NeuralNetTools, onnx, parsnip, recipes, reticulate, rmarkdown, rpart.plot, scales, shiny, shinydashboard, tensorflow, testthat (≥ 3.0.0), workflows, xgboost
Published: 2026-02-06
DOI: 10.32614/CRAN.package.tidylearn
Author: Cesaire Tobias [aut, cre]
Maintainer: Cesaire Tobias <cesaire at sheetsolved.com>
BugReports: https://github.com/ces0491/tidylearn/issues
License: MIT + file LICENSE
URL: https://github.com/ces0491/tidylearn
NeedsCompilation: no
Citation: tidylearn citation info
Materials: README, NEWS
CRAN checks: tidylearn results

Documentation:

Reference manual: tidylearn.html , tidylearn.pdf
Vignettes: Automated Machine Learning with tidylearn (source, R code)
Getting Started with tidylearn (source, R code)
Integration Workflows: Combining Supervised and Unsupervised Learning (source, R code)
Supervised Learning with tidylearn (source, R code)
Unsupervised Learning with tidylearn (source, R code)

Downloads:

Package source: tidylearn_0.1.0.tar.gz
Windows binaries: r-devel: tidylearn_0.1.0.zip, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): tidylearn_0.1.0.tgz, r-oldrel (arm64): tidylearn_0.1.0.tgz, r-release (x86_64): tidylearn_0.1.0.tgz, r-oldrel (x86_64): tidylearn_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=tidylearn to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.