The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Provides a unified tidyverse-compatible interface to R's machine learning packages. Wraps established implementations from 'glmnet', 'randomForest', 'xgboost', 'e1071', 'rpart', 'gbm', 'nnet', 'cluster', 'dbscan', and others - providing consistent function signatures, tidy tibble output, and unified 'ggplot2'-based visualization. The underlying algorithms are unchanged; 'tidylearn' simply makes them easier to use together. Access raw model objects via the $fit slot for package-specific functionality. Methods include random forests Breiman (2001) <doi:10.1023/A:1010933404324>, LASSO regression Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>, elastic net Zou and Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, support vector machines Cortes and Vapnik (1995) <doi:10.1007/BF00994018>, and gradient boosting Friedman (2001) <doi:10.1214/aos/1013203451>.
| Version: | 0.1.0 |
| Depends: | R (≥ 3.6.0) |
| Imports: | dplyr (≥ 1.0.0), ggplot2 (≥ 3.3.0), tibble (≥ 3.0.0), tidyr (≥ 1.0.0), purrr (≥ 0.3.0), rlang (≥ 0.4.0), magrittr, stats, e1071, gbm, glmnet, nnet, randomForest, rpart, rsample, ROCR, yardstick, cluster (≥ 2.1.0), dbscan (≥ 1.1.0), MASS, smacof (≥ 2.1.0) |
| Suggests: | arules, arulesViz, car, caret, DT, GGally, ggforce, gridExtra, keras, knitr, lmtest, mclust, moments, NeuralNetTools, onnx, parsnip, recipes, reticulate, rmarkdown, rpart.plot, scales, shiny, shinydashboard, tensorflow, testthat (≥ 3.0.0), workflows, xgboost |
| Published: | 2026-02-06 |
| DOI: | 10.32614/CRAN.package.tidylearn |
| Author: | Cesaire Tobias [aut, cre] |
| Maintainer: | Cesaire Tobias <cesaire at sheetsolved.com> |
| BugReports: | https://github.com/ces0491/tidylearn/issues |
| License: | MIT + file LICENSE |
| URL: | https://github.com/ces0491/tidylearn |
| NeedsCompilation: | no |
| Citation: | tidylearn citation info |
| Materials: | README, NEWS |
| CRAN checks: | tidylearn results |
| Package source: | tidylearn_0.1.0.tar.gz |
| Windows binaries: | r-devel: tidylearn_0.1.0.zip, r-release: not available, r-oldrel: not available |
| macOS binaries: | r-release (arm64): tidylearn_0.1.0.tgz, r-oldrel (arm64): tidylearn_0.1.0.tgz, r-release (x86_64): tidylearn_0.1.0.tgz, r-oldrel (x86_64): tidylearn_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=tidylearn to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.