
Package ‘stepmetrics’
September 16, 2025

Type Package
Title Calculate Step and Cadence Metrics from Wearable Data
Version 1.0.1
Description Provides functions to calculate step- and cadence-based metrics from

timestamped accelerometer and wearable device data. Supports CSV and AGD files from
'ActiGraph' devices, CSV files from 'Fitbit' devices, and step counts derived
with R package 'GGIR' <https://github.com/wadpac/GGIR>, with automatic handling
of epoch lengths from 1 to 60 seconds. Metrics include total steps, cadence
peaks, minutes and steps in predefined cadence bands, and time and steps in
moderate-to-vigorous physical activity (MVPA). Methods and thresholds are
informed by the literature, e.g.,
Tudor-Locke and Rowe (2012) <doi:10.2165/11599170-000000000-00000>,
Barreira et al. (2012) <doi:10.1249/MSS.0b013e318254f2a3>,
and Tudor-Locke et al. (2018) <doi:10.1136/bjsports-2017-097628>.
The package record is also available on Zenodo (2023) <doi:10.5281/zenodo.7858094>.

License AGPL (>= 3)
Depends R (>= 3.5.0)
Encoding UTF-8
RoxygenNote 7.3.2
Imports PhysicalActivity, tools, stats, utils
Suggests testthat (>= 3.0.0), RSQLite, spelling
Config/testthat/edition 3

URL https://github.com/jhmigueles/stepmetrics

BugReports https://github.com/jhmigueles/stepmetrics/issues

Language en-US
NeedsCompilation no
Author Jairo H Migueles [aut, cre],

Elroy J Aguiar [fnd] (Funding and data support),
University of Alabama [fnd]

Maintainer Jairo H Migueles <jairo@jhmigueles.com>
Repository CRAN
Date/Publication 2025-09-16 06:40:02 UTC

1

https://github.com/wadpac/GGIR
https://doi.org/10.2165/11599170-000000000-00000
https://doi.org/10.1249/MSS.0b013e318254f2a3
https://doi.org/10.1136/bjsports-2017-097628
https://doi.org/10.5281/zenodo.7858094
https://github.com/jhmigueles/stepmetrics
https://github.com/jhmigueles/stepmetrics/issues

2 define_day_indices

Contents
define_day_indices . 2
get_cadence_bands . 3
get_cadence_peaks . 4
isGGIRoutput . 5
readFile . 6
step.metrics . 8

Index 10

define_day_indices Generate sequential day indices from ISO 8601 timestamps

Description

Converts a vector of ISO 8601 timestamps into sequential day indices (1, 2, 3, . . .), where each
unique calendar date corresponds to a unique integer. This is useful for looping over or summarizing
data by day when working with minute-level time series from wearables.

Usage

define_day_indices(ts)

Arguments

ts Character vector of ISO 8601 timestamps (e.g., ‘"2024-06-26T23:45:00+0100"‘).
Time zone offsets are handled correctly when converting to ‘Date‘.

Value

An integer vector of the same length as ‘ts‘, where each element gives the index of the day the
timestamp belongs to. The first unique date encountered is assigned index ‘1‘, the second ‘2‘, and
so on.

See Also

[as.POSIXct()], [as.Date()]

Examples

ts <- c("2024-06-26T23:45:00+0100",
"2024-06-27T00:15:00+0100",
"2024-06-27T14:30:00+0100")

define_day_indices(ts)
Returns: c(1, 2, 2)

get_cadence_bands 3

get_cadence_bands Calculate minutes and steps spent in cadence bands

Description

Splits a minute-based vector of cadence values (steps per minute) into predefined bands and reports
both:

• the number of minutes spent in each band

• the number of steps accumulated in each band

Usage

get_cadence_bands(x, bands = c(0, 1, 20, 40, 60, 80, 100, 120, Inf))

Arguments

x Numeric vector of cadence values (steps per minute), where each element rep-
resents one minute of the day.

bands Numeric vector of break points that define the cadence bands. Defaults to c(0,
1, 20, 40, 60, 80, 100, 120, Inf), which produces the bands 0, 1–19, 20–39,
40–59, 60–79, 80–99, 100–119, and ≥120 spm.

Value

A list with three elements:

minutes Named numeric vector with minutes spent in each band.

steps Named numeric vector with steps accumulated in each band.

names Character vector of variable names in the format "CAD_band_<lower>_<upper>_spm".

Examples

Simulate 1 day of cadence values (1440 minutes)
set.seed(123)
cad <- sample(0:150, size = 1440, replace = TRUE)

out <- get_cadence_bands(cad)
out$minutes # minutes in each band
out$steps # steps in each band

4 get_cadence_peaks

get_cadence_peaks Calculate cadence peak metrics

Description

Cadence peaks represent the mean steps-per-minute (spm) achieved during the highest-activity min-
utes of a day. For example, the 30-minute cadence peak is the average cadence across the 30 highest
cadence minutes of that day, regardless of whether they occur consecutively.

This function calculates cadence peaks for user-specified intervals and also reports how many of the
minutes within each interval contain zero steps (useful for quality checks).

Usage

get_cadence_peaks(x, peaks = c(1, 30, 60))

Arguments

x Numeric vector of cadence values (steps per minute) for the day of interest. Each
element should represent one minute.

peaks Numeric vector of integers specifying which cadence peaks to compute. For
example, ‘c(1, 30, 60)‘ (default) produces the 1-minute, 30-minute, and 60-
minute cadence peaks.

Details

Cadence peaks are calculated by:

1. Sorting all minute-level cadence values in descending order.

2. Selecting the top *n* minutes, where *n* = peak length.

3. Averaging those values to compute the cadence peak.

4. Counting how many of those top *n* minutes contain zero steps.

Value

A list with two elements:

values Numeric vector with cadence peak values (spm) followed by the corresponding counts of
zero-minute values within each peak window.

names Character vector of variable names corresponding to the ‘values‘, in the format:

• ‘"CAD_pk<peak>_spm"‘ for the cadence peak value
• ‘"CAD_nZeroes_pk<peak>"‘ for the number of zero minutes

See Also

[get_cadence_bands()]

isGGIRoutput 5

Examples

Simulate one day of cadence values (1440 minutes)
set.seed(123)
cad <- sample(0:150, size = 1440, replace = TRUE)

Calculate 1-min, 30-min, and 60-min cadence peaks
get_cadence_peaks(cad, peaks = c(1, 30, 60))

isGGIRoutput Check if a directory is a valid GGIR output folder for stepmetrics

Description

Determines whether a given directory corresponds to a valid GGIR output directory that can be used
with stepmetrics. Several conditions are checked in sequence:

1. Path exists and is a directory.

2. Directory name begins with ‘"output_"‘.

3. Contains a ‘meta/‘ subfolder.

4. Contains a ‘meta/ms2.out/‘ subfolder (GGIR part 2 milestone data).

5. Contains at least one ‘*.RData‘ file in ‘ms2.out‘.

6. The loaded object IMP$metashort includes a step column (with ‘"step"‘ in its name).

If any of these checks fail, the function returns FALSE and issues a warning describing the missing
requirement.

Usage

isGGIRoutput(path)

Arguments

path Character. Path to the directory to be tested.

Value

Logical scalar. Returns TRUE if the directory appears to be valid GGIR output suitable for stepmet-
rics, otherwise FALSE.

Note

- A warning is issued if the directory looks like GGIR output but is missing required parts (e.g., part
2 milestone data or step counts in IMP$metashort). - This function loads the first available RData
file in meta/ms2.out/ to verify the presence of step counts.

6 readFile

See Also

[step.metrics()]

Examples

Not run:
GGIR output folder
ggir_output_dir = system.file("extdata", "testfiles_GGIR", "output_test", package = "stepmetrics")
isGGIRoutput(ggir_output_dir)

Non-GGIR directory
isGGIRoutput("C:/mystudy/rawdata/")

End(Not run)

readFile Read and standardize minute-level step data for one participant

Description

Reads one or more files for a single participant and returns a clean, minute-level data frame with two
columns: ‘timestamp‘ and ‘steps‘. The function auto-detects common file formats and timestamp
layouts, fixes ActiGraph CSV headers/metadata when present, and aggregates to a 60-second epoch
if input data are recorded at sub-minute resolution.

Supported input formats

• CSV: generic CSVs and ActiGraph exports (header lines and delimiters auto-detected; handles
date/time split columns).

• AGD: ActiGraph binary files via PhysicalActivity.

• RData: GGIR output (IMP$metashort).

Usage

readFile(path, time_format = c())

Arguments

path Character vector. Path(s) to the file(s) containing timestamp and step data for
one participant. When multiple files are provided, they are concatenated in the
order given.

time_format Character (optional). Explicit timestamp format string (as used by strptime)
to override auto-detection for CSV inputs. If NULL, common formats are tried
automatically.

readFile 7

Details

• CSV handling: The function detects and skips ActiGraph header lines (typically 10), infers
the field separator (comma/semicolon), and reconstructs a single timestamp when date and
time are stored in separate columns. If no explicit timestamp column exists (rare ActiGraph
cases), it reconstructs one from the file metadata (start time + epoch).

• AGD handling: AGD files are read with readActigraph; the recording start and epoch length
are obtained from the embedded database and used to build a regular timestamp sequence.

• Step column detection: The column containing step counts is inferred by matching names
containing "step" or "value"; if multiple candidates are present, the column with higher vari-
ability is chosen.

• Epoch standardization: If the input epoch is shorter than 60 seconds, rows are aggregated by
summing steps to 1-minute bins. Epochs longer than 60 seconds are currently unsupported.

Value

A data.frame with two columns:

timestamp Character vector of ISO-8601 datetimes ("YYYY-MM-DDTHH:MM:SS(+/-)ZZZZ") for CSV/AGD
inputs. For GGIR RData inputs, timestamps are carried through as present in IMP$metashort.

steps Numeric vector of steps per minute. If the source data have sub-minute epochs, values are
summed to 60-second bins. Epochs longer than 60 seconds are not supported and trigger an
error.

Time zones

For CSV/AGD inputs, timestamps are returned in ISO-8601 with an explicit offset. If time_format
is provided, it is passed directly to strptime for parsing; otherwise a set of common formats is
attempted.

See Also

step.metrics, get_cadence_bands

Examples

Fitbit csv
fitbit_csv = system.file("extdata", "testfiles_fitbit",

"S001_d1_1min_epoch.csv", package = "stepmetrics")
df <- readFile(fitbit_csv)

ActiGraph AGD
actigraph_agd = system.file("extdata", "testfiles_agd", "3h30sec.agd", package = "stepmetrics")
df <- readFile(actigraph_agd)

8 step.metrics

step.metrics Calculate and export daily and person-level step and cadence metrics

Description

This function processes epoch-level step count files (raw exports or GGIR output) and derives a
comprehensive set of **daily** and **person-level** metrics. Metrics include total steps, cadence
peaks, time and steps accumulated in predefined cadence bands, and time and steps in moderate,
vigorous, and moderate-to-vigorous physical activity (MPA, VPA, MVPA).

The function writes two types of summary CSVs:

• Day-level: One file per participant per day, stored in ‘outputdir/daySummary/‘.

• Person-level: A single file with aggregated averages across valid days per participant, stored
as ‘outputdir/personSummary.csv‘.

Usage

step.metrics(
datadir,
outputdir = "./",
idloc = "_",
cadence_bands = c(0, 1, 20, 40, 60, 80, 100, 120, Inf),
cadence_peaks = c(1, 30, 60),
cadence_MOD = 100,
cadence_VIG = 130,
includedaycrit = 10,
includeawakecrit = NULL,
includedaylengthcrit = 23,
exclude_pk30_0 = TRUE,
exclude_pk60_0 = TRUE,
time_format = NULL,
verbose = TRUE

)

Arguments

datadir Character. Path to the directory containing the step data. If processing GGIR
output, provide the GGIR output folder (its name starts with ‘"output_"‘); the
function will then look inside ‘meta/ms2.out/‘.

outputdir Character. Directory where results should be stored. Subfolders will be created
as needed (‘daySummary/‘).

idloc Character (default = ‘"_"‘). Delimiter used to extract participant IDs from file-
names (ID is expected before this string).

cadence_bands Numeric vector (default = ‘c(0, 1, 20, 40, 60, 80, 100, 120, Inf)‘). Breakpoints
(in steps/min) used to compute time and steps per cadence band.

step.metrics 9

cadence_peaks Numeric vector (default = ‘c(1, 30, 60)‘). Cadence peak values (e.g., peak 30 =
mean of the top 30 cadence minutes).

cadence_MOD Numeric (default = 100). Threshold cadence (steps/min) for moderate physical
activity.

cadence_VIG Numeric (default = 130). Threshold cadence (steps/min) for vigorous physical
activity.

includedaycrit Numeric (default = 10). Minimum wear time in hours for a day to be considered
valid.

includeawakecrit

Numeric (default = NULL). If GGIR part 5 outputs are available, use the pro-
portion of awake time instead of wear time to define valid days.

includedaylengthcrit

Numeric (default = 23). Minimum day length (hours) for a day to be valid (only
relevant if using GGIR part 5 outputs).

exclude_pk30_0 Logical (default = TRUE).

exclude_pk60_0 Logical (default = TRUE). Exclude days with zero values in the 60-minute ca-
dence peak.

time_format Character (default = NULL). Time format used when reading non-GGIR step
files.

verbose Logical (default = TRUE). Whether to print progress messages.

Details

For each participant and day, the function computes:

• Total steps per day

• Cadence peak metrics (e.g., peak 1, 30, 60 minutes)

• Minutes and steps in each cadence band

• Minutes in MPA, VPA, and MVPA

• Steps accumulated in MPA, VPA, and MVPA

• Recording duration, valid wear time, and awake time (if GGIR available)

Person-level outputs include plain, weighted (weekday/weekend), and stratified (weekday/weekend
separately) averages of all variables.

Value

This function does not return an object. It writes:

• <ID>_DaySum.csv in ‘outputdir/daySummary/‘ with daily metrics.

• personSummary.csv in ‘outputdir/‘ with person-level averages.

Examples

datadir = system.file("extdata", "testfiles_fitbit", package = "stepmetrics")
step.metrics(datadir = datadir, outputdir = tempdir())

Index

define_day_indices, 2

get_cadence_bands, 3, 7
get_cadence_peaks, 4

isGGIRoutput, 5

readActigraph, 7
readFile, 6

step.metrics, 7, 8
strptime, 6, 7

10

	define_day_indices
	get_cadence_bands
	get_cadence_peaks
	isGGIRoutput
	readFile
	step.metrics
	Index

