The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Introduction to numspellR

Joko Nursiyono

Overview

numspellR is a tool to detect numeric persistence (“spells”) and rigidity patterns in numeric data. It works with numeric vectors and data frames.

Installation

# Install from your local package
# install.packages("numspellR")
library(numspellR)
# example
df <- data.frame(
  time = 1:8,
  value = c(5, 5, 5, 5, 6, 6, 6, 7)
)

numspellr(df, lang = "indonesia")
##      structure avg_spell median_spell max_spell stability_ratio
## 1 seri_numerik       3.5          3.5         4           0.875
##   elasticity_index adjustment_frequency spell_concentration persistence_status
## 1       0.05238095                 0.25           0.5102041        Sangat Kaku
##                                                                                                                                                                                                                                                                                     interpretation
## 1 Rata-rata nilai bertahan sekitar 3.5 periode sebelum mengalami perubahan.   Perubahan cukup sering terjadi.  Perubahan terjadi secara bertahap.  Periode stagnan terkonsentrasi pada beberapa fase panjang.  Variabel menunjukkan penyesuaian terbatas dan cenderung lambat merespons perubahan.
##      id variable
## 1 value    value
# example
df <- data.frame(
  time = 1:8,
  value = c(5, 5, 5, 5, 6, 6, 6, 7)
)

numspellr(df, lang = "english")
##        structure avg_spell median_spell max_spell stability_ratio
## 1 numeric_series       3.5          3.5         4           0.875
##   elasticity_index adjustment_frequency spell_concentration
## 1       0.05238095                 0.25           0.5102041
##      persistence_status
## 1 Very High Persistence
##                                                                                                                                                                                                                             interpretation
## 1 The series shows numeric persistence. Values remain unchanged for about 3.5 periods on average. Adjustments occur periodically. Changes tend to be sizable. From a policy perspective, this indicates strong rigidity and slow response.
##      id variable
## 1 value    value

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.