The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

rpart: Binary Classification

library(mlexperiments)

See https://github.com/kapsner/mlexperiments/blob/main/R/learner_rpart.R for implementation details.

Preprocessing

Import and Prepare Data

library(mlbench)
data("PimaIndiansDiabetes2")
dataset <- PimaIndiansDiabetes2 |>
  data.table::as.data.table() |>
  na.omit()

feature_cols <- colnames(dataset)[1:8]
target_col <- "diabetes"

General Configurations

seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
  # on cran
  ncores <- 2L
} else {
  ncores <- ifelse(
    test = parallel::detectCores() > 4,
    yes = 4L,
    no = ifelse(
      test = parallel::detectCores() < 2L,
      yes = 1L,
      no = parallel::detectCores()
    )
  )
}
options("mlexperiments.bayesian.max_init" = 10L)

Generate Training- and Test Data

data_split <- splitTools::partition(
  y = dataset[, get(target_col)],
  p = c(train = 0.7, test = 0.3),
  type = "stratified",
  seed = seed
)

train_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$train, .SD, .SDcols = feature_cols]
)
train_y <- dataset[data_split$train, get(target_col)]


test_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$test, .SD, .SDcols = feature_cols]
)
test_y <- dataset[data_split$test, get(target_col)]

Generate Training Data Folds

fold_list <- splitTools::create_folds(
  y = train_y,
  k = 3,
  type = "stratified",
  seed = seed
)

Experiments

Prepare Experiments

# required learner arguments, not optimized
learner_args <- list(method = "class")

# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- list(type = "prob")
performance_metric <- metric("auc")
performance_metric_args <- list(positive = "pos")
return_models <- FALSE

# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
  minsplit = seq(2L, 82L, 10L),
  cp = seq(0.01, 0.1, 0.01),
  maxdepth = seq(2L, 30L, 5L)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
  set.seed(123)
  sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
  parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}

# required for bayesian optimization
parameter_bounds <- list(
  minsplit = c(2L, 100L),
  cp = c(0.01, 0.1),
  maxdepth = c(2L, 30L)
)
optim_args <- list(
  iters.n = ncores,
  kappa = 3.5,
  acq = "ucb"
)

Hyperparameter Tuning

Bayesian Optimization

tuner <- mlexperiments::MLTuneParameters$new(
  learner = LearnerRpart$new(),
  strategy = "bayesian",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds

tuner$learner_args <- learner_args
tuner$optim_args <- optim_args

tuner$split_type <- "stratified"

tuner$set_data(
  x = train_x,
  y = train_y
)

tuner_results_bayesian <- tuner$execute(k = 3)
#> 
#> Registering parallel backend using 4 cores.

head(tuner_results_bayesian)
#>    Epoch setting_id minsplit   cp maxdepth gpUtility acqOptimum inBounds Elapsed      Score metric_optim_mean errorMessage method
#> 1:     0          1        2 0.07       22        NA      FALSE     TRUE   0.044 -0.1860709         0.1860709           NA  class
#> 2:     0          2       32 0.02       27        NA      FALSE     TRUE   0.044 -0.1860709         0.1860709           NA  class
#> 3:     0          3       72 0.10        7        NA      FALSE     TRUE   0.044 -0.1860709         0.1860709           NA  class
#> 4:     0          4       32 0.09       27        NA      FALSE     TRUE   0.044 -0.1860709         0.1860709           NA  class
#> 5:     0          5       52 0.02       12        NA      FALSE     TRUE   0.020 -0.1860709         0.1860709           NA  class
#> 6:     0          6        2 0.04        7        NA      FALSE     TRUE   0.021 -0.1860709         0.1860709           NA  class

k-Fold Cross Validation

validator <- mlexperiments::MLCrossValidation$new(
  learner = LearnerRpart$new(),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)

validator$learner_args <- tuner$results$best.setting[-1]

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> CV fold: Fold2
#> 
#> CV fold: Fold3

head(validator_results)
#>     fold performance minsplit   cp maxdepth method
#> 1: Fold1   0.8323638        2 0.07       22  class
#> 2: Fold2   0.7342676        2 0.07       22  class
#> 3: Fold3   0.7959299        2 0.07       22  class

Nested Cross Validation

Inner Bayesian Optimization

validator <- mlexperiments::MLNestedCV$new(
  learner = LearnerRpart$new(),
  strategy = "bayesian",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = seed
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"


validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#> 
#> CV fold: Fold1
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold2
#> CV progress [======================================================================>-----------------------------------] 2/3 ( 67%)
#> 
#> Registering parallel backend using 4 cores.
#> 
#> CV fold: Fold3
#> CV progress [==========================================================================================================] 3/3 (100%)
#>                                                                                                                                     
#> Registering parallel backend using 4 cores.

head(validator_results)
#>     fold performance minsplit   cp maxdepth method
#> 1: Fold1   0.7496034       42 0.02        2  class
#> 2: Fold2   0.6845584       42 0.02        2  class
#> 3: Fold3   0.7959299        2 0.07       22  class

Comparison with Logistic Regression

See https://github.com/kapsner/mlexperiments/blob/main/R/learner_glm.R for implementation details.

validator_glm <- mlexperiments::MLCrossValidation$new(
  learner = LearnerGlm$new(),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)

validator_glm$learner_args <- list(family = binomial(link = "logit"))
validator_glm$predict_args <- list(type = "response")
validator_glm$performance_metric <- performance_metric
validator_glm$performance_metric_args <- performance_metric_args
validator_glm$return_models <- TRUE

validator_glm$set_data(
  x = train_x,
  y = train_y
)

validator_glm_results <- validator_glm$execute()
#> 
#> CV fold: Fold1
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
#> 
#> CV fold: Fold2
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.
#> 
#> CV fold: Fold3
#> Parameter 'ncores' is ignored for learner 'LearnerGlm'.

head(validator_glm_results)
#>     fold performance
#> 1: Fold1   0.8746695
#> 2: Fold2   0.8751983
#> 3: Fold3   0.8801583

Test Fold Equality

mlexperiments::validate_fold_equality(
  experiments = list(validator, validator_glm)
)
#> 
#> Testing for identical folds in 1 and 2.
#> 
#> Testing for identical folds in 2 and 1.

Predict Outcome in Holdout Test Dataset

preds_rpart <- mlexperiments::predictions(
  object = validator,
  newdata = test_x
)

preds_glm <- mlexperiments::predictions(
  object = validator_glm,
  newdata = test_x
)

Evaluate Performance on Holdout Test Dataset

perf_rpart <- mlexperiments::performance(
  object = validator,
  prediction_results = preds_rpart,
  y_ground_truth = test_y,
  type = "binary"
)

perf_glm <- mlexperiments::performance(
  object = validator_glm,
  prediction_results = preds_glm,
  y_ground_truth = test_y,
  type = "binary"
)
# combine results for plotting
final_results <- rbind(
  cbind(algorithm = "rpart", perf_rpart),
  cbind(algorithm = "glm", perf_glm)
)
p <- ggpubr::ggdotchart(
  data = final_results,
  x = "algorithm",
  y = "auc",
  color = "model",
  rotate = TRUE
)
p
Model Comparison
Model Comparison

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.