The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N)
lambdas_true = c(-1, 1.8, .277, .055)
Alphas <- sim_alphas(model="HO_sep",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 29 29 103 143 46
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Test_order = Test_order, Test_versions = Test_versions,
chain_length=100,burn_in=30,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM = hmcdm(Y_sim,Q_matrix,"DINA_HO",Design_array,
chain_length=100,burn_in=30,
theta_propose = 2,deltas_propose = c(.45,.35,.25,.06))
#> 0
output_HMDCM
#>
#> Model: DINA_HO
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 30
summary(output_HMDCM)
#>
#> Model: DINA_HO
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.07685 0.17243
#> 0.18488 0.07224
#> 0.11893 0.09148
#> 0.11457 0.25188
#> 0.23254 0.14521
#> ... 45 more items
#>
#> Transition Parameters:
#> lambdas_EAP
#> λ0 -1.3192
#> λ1 1.8989
#> λ2 0.2050
#> λ3 0.1283
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1459
#> 0001 0.1697
#> 0010 0.1465
#> 0011 0.2256
#> 0100 0.2020
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 19338.99
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4997
#> M2: 0.49
#> total scores: 0.6243
a <- summary(output_HMDCM)
a$ss_EAP
#> [,1]
#> [1,] 0.07685255
#> [2,] 0.18488425
#> [3,] 0.11892786
#> [4,] 0.11456749
#> [5,] 0.23254269
#> [6,] 0.18006215
#> [7,] 0.12160810
#> [8,] 0.21652203
#> [9,] 0.19235236
#> [10,] 0.14879741
#> [11,] 0.20244524
#> [12,] 0.15301554
#> [13,] 0.14864318
#> [14,] 0.16782918
#> [15,] 0.08299005
#> [16,] 0.12658188
#> [17,] 0.17201443
#> [18,] 0.11441438
#> [19,] 0.21313259
#> [20,] 0.15480563
#> [21,] 0.23201792
#> [22,] 0.22040852
#> [23,] 0.18641166
#> [24,] 0.15644341
#> [25,] 0.15068218
#> [26,] 0.14069133
#> [27,] 0.15763156
#> [28,] 0.26286838
#> [29,] 0.20866321
#> [30,] 0.16014609
#> [31,] 0.20695261
#> [32,] 0.18302578
#> [33,] 0.16749500
#> [34,] 0.19857339
#> [35,] 0.17062041
#> [36,] 0.11672392
#> [37,] 0.19205306
#> [38,] 0.11277445
#> [39,] 0.16949512
#> [40,] 0.15137924
#> [41,] 0.22840721
#> [42,] 0.17458218
#> [43,] 0.11333775
#> [44,] 0.16533007
#> [45,] 0.15727484
#> [46,] 0.22936398
#> [47,] 0.13081081
#> [48,] 0.18149035
#> [49,] 0.22000283
#> [50,] 0.19266879
a$lambdas_EAP
#> [,1]
#> λ0 -1.3191652
#> λ1 1.8988731
#> λ2 0.2049675
#> λ3 0.1282824
mean(a$PPP_total_scores)
#> [1] 0.6232245
mean(upper.tri(a$PPP_item_ORs))
#> [1] 0.49
mean(a$PPP_item_means)
#> [1] 0.4968571a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2133.712 NA 15036.72 1323.997 18494.42
#> D(theta_bar) 1891.812 NA 14468.75 1289.299 17649.86
#> DIC 2375.612 NA 15604.68 1358.694 19338.99
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.3857143 1.0000000 0.67142857 0.4714286 0.8000000
#> [2,] 0.5000000 0.8714286 0.02857143 1.0000000 0.2285714
#> [3,] 0.5571429 0.5000000 1.00000000 1.0000000 0.7714286
#> [4,] 0.3857143 0.8000000 0.81428571 0.9714286 0.5142857
#> [5,] 0.8857143 0.5428571 0.88571429 0.5428571 0.7714286
#> [6,] 0.9285714 0.6142857 0.92857143 0.1142857 1.0000000
head(a$PPP_item_means)
#> [1] 0.3714286 0.5142857 0.4714286 0.5285714 0.3571429 0.4000000
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] NA 0.6857143 0.9857143 0.5428571 0.3714286 0.6857143 0.3857143 0.5285714
#> [2,] NA NA 0.3285714 0.8000000 0.2571429 0.7571429 0.6428571 0.6285714
#> [3,] NA NA NA 0.4000000 0.7285714 0.1285714 0.8142857 0.9142857
#> [4,] NA NA NA NA 0.9142857 0.6571429 0.9285714 0.4142857
#> [5,] NA NA NA NA NA 0.5714286 0.5285714 0.9142857
#> [6,] NA NA NA NA NA NA 0.8571429 0.5285714
#> [,9] [,10] [,11] [,12] [,13] [,14] [,15]
#> [1,] 0.4285714 0.1285714 0.6285714 0.74285714 0.57142857 0.4857143 0.6428571
#> [2,] 0.5571429 0.5428571 0.8000000 0.80000000 0.17142857 0.3857143 0.4428571
#> [3,] 0.8285714 0.2857143 0.8285714 0.18571429 0.37142857 0.7000000 0.9142857
#> [4,] 0.6714286 0.2428571 0.4000000 0.80000000 0.37142857 0.5142857 0.4571429
#> [5,] 0.5857143 0.5571429 0.5428571 0.01428571 0.21428571 0.6142857 0.2000000
#> [6,] 0.8000000 0.6857143 0.8571429 0.60000000 0.01428571 0.3428571 0.2428571
#> [,16] [,17] [,18] [,19] [,20] [,21] [,22]
#> [1,] 0.7571429 0.75714286 0.9285714 0.6000000 0.5571429 0.2285714 0.25714286
#> [2,] 0.4571429 0.24285714 0.8857143 0.1857143 0.7857143 0.5142857 0.34285714
#> [3,] 0.6714286 0.25714286 0.8571429 0.7571429 0.7571429 0.6571429 0.42857143
#> [4,] 0.6142857 0.62857143 0.7571429 0.6857143 0.7285714 0.6571429 0.50000000
#> [5,] 0.5285714 0.02857143 0.9571429 0.2285714 0.7428571 0.6428571 0.42857143
#> [6,] 0.4428571 0.62857143 0.8000000 0.5285714 0.6000000 0.2142857 0.08571429
#> [,23] [,24] [,25] [,26] [,27] [,28] [,29]
#> [1,] 0.5000000 0.01428571 0.08571429 0.04285714 0.8714286 0.08571429 0.8000000
#> [2,] 0.2857143 0.31428571 0.52857143 0.18571429 0.1285714 0.42857143 0.1857143
#> [3,] 0.8142857 0.82857143 0.32857143 0.41428571 0.9285714 0.20000000 0.8571429
#> [4,] 0.2000000 0.38571429 0.15714286 0.00000000 1.0000000 0.88571429 0.8857143
#> [5,] 0.5142857 0.20000000 0.54285714 0.17142857 0.9857143 0.54285714 0.6857143
#> [6,] 0.2000000 0.28571429 0.01428571 0.10000000 0.5142857 0.07142857 0.1857143
#> [,30] [,31] [,32] [,33] [,34] [,35] [,36]
#> [1,] 0.1142857 0.18571429 0.4285714 0.8714286 0.2714286 0.45714286 0.47142857
#> [2,] 0.2000000 0.45714286 0.3714286 0.7714286 0.2571429 0.52857143 0.47142857
#> [3,] 0.4428571 0.04285714 0.5285714 0.6000000 0.7000000 0.08571429 0.07142857
#> [4,] 0.7428571 0.64285714 0.2142857 0.1571429 0.1285714 0.44285714 0.27142857
#> [5,] 0.8714286 0.67142857 0.7142857 0.7571429 0.8285714 0.60000000 0.92857143
#> [6,] 0.4714286 0.18571429 0.3142857 0.5857143 0.1857143 0.54285714 0.47142857
#> [,37] [,38] [,39] [,40] [,41] [,42] [,43]
#> [1,] 0.3142857 0.15714286 0.7142857 0.3285714 0.45714286 0.9857143 0.1000000
#> [2,] 0.3142857 0.64285714 0.4714286 0.6571429 0.07142857 0.5285714 0.5857143
#> [3,] 0.3285714 0.04285714 0.2142857 0.6285714 0.51428571 0.7285714 0.5000000
#> [4,] 0.2285714 0.72857143 0.1142857 0.8000000 0.78571429 0.5857143 0.2000000
#> [5,] 0.9857143 0.45714286 0.4571429 0.4571429 0.62857143 0.2428571 0.2857143
#> [6,] 0.1571429 0.88571429 0.2000000 0.6285714 0.14285714 0.7000000 0.8857143
#> [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.4142857 0.9428571 0.5428571 0.57142857 0.2571429 0.17142857 0.6571429
#> [2,] 0.7000000 0.3571429 0.5857143 0.28571429 0.2571429 0.40000000 0.3428571
#> [3,] 0.4857143 0.8142857 0.7142857 0.91428571 0.4428571 0.17142857 0.8571429
#> [4,] 0.7000000 0.5571429 0.3142857 0.04285714 0.1285714 0.78571429 0.6714286
#> [5,] 0.4000000 0.8714286 0.7142857 0.85714286 0.5428571 0.54285714 0.4428571
#> [6,] 0.8428571 0.5714286 0.4571429 0.04285714 0.2000000 0.08571429 0.4285714
library(bayesplot)
pp_check(output_HMDCM)pp_check(output_HMDCM, plotfun="hist", type="item_OR")
#> Note: in most cases the default test statistic 'mean' is too weak to detect anything of interest.
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.pp_check(output_HMDCM, plotfun="stat_2d", type="item_mean")
#> Note: in most cases the default test statistic 'mean' is too weak to detect anything of interest.Checking convergence of the two independent MCMC chains with
different initial values using coda package.
# output_HMDCM1 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
# chain_length=100, burn_in=30,
# theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
# output_HMDCM2 = hmcdm(Y_sim, Q_matrix, "DINA_HO", Design_array,
# chain_length=100, burn_in=30,
# theta_propose = 2, deltas_propose = c(.45,.35,.25,.06))
#
# library(coda)
#
# x <- mcmc.list(mcmc(t(rbind(output_HMDCM1$ss, output_HMDCM1$gs, output_HMDCM1$lambdas))),
# mcmc(t(rbind(output_HMDCM2$ss, output_HMDCM2$gs, output_HMDCM2$lambdas))))
#
# gelman.diag(x, autoburnin=F)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.