The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette demonstrates dependency-aware grid search over group sequential designs using gsDesignTune.
gsDesignTune()gsDesignTune() wraps gsDesign::gsDesign()
for tuning basic group sequential designs.
job <- gsDesignTune(
k = 3,
test.type = 2,
alpha = 0.025,
beta = 0.10,
timing = tune_values(list(c(0.33, 0.67, 1), c(0.5, 0.75, 1))),
upper = SpendingFamily$new(
SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
SpendingSpec$new(sfHSD, par = tune_seq(-4, 4, length_out = 3))
)
)
job$run(strategy = "grid", parallel = FALSE)
res <- job$results()
head(res)
#> upper_setting timing upper_fun upper_par config_id status error_message
#> 1 function.... 0.33, 0..... sfLDOF 0 1 ok <NA>
#> 2 function.... 0.5, 0.75, 1 sfLDOF 0 2 ok <NA>
#> 3 function.... 0.33, 0..... sfHSD -4 3 ok <NA>
#> 4 function.... 0.5, 0.75, 1 sfHSD -4 4 ok <NA>
#> 5 function.... 0.33, 0..... sfHSD 0 5 ok <NA>
#> 6 function.... 0.5, 0.75, 1 sfHSD 0 6 ok <NA>
#> warnings cache_key design_rds call_args k test.type
#> 1 <NA> 2a02c8567abd8c7ed8822d4940901162 <NA> 3, 2, 0..... 3 2
#> 2 <NA> a9c397fd736584ab0260cd83ceaeba5e <NA> 3, 2, 0..... 3 2
#> 3 <NA> e7580124f44920908f1d2135656f0ab1 <NA> 3, 2, 0..... 3 2
#> 4 <NA> f4451293194cac770d2ec4b1ee82d8ac <NA> 3, 2, 0..... 3 2
#> 5 <NA> 6f382b0daa41a36567f87d7907c8596c <NA> 3, 2, 0..... 3 2
#> 6 <NA> 6e4d4614c851b42a6d3f1d663bfab362 <NA> 3, 2, 0..... 3 2
#> alpha beta n_I final_n_I upper_z lower_z upper_p
#> 1 0.025 0.1 0.333977.... 1.012053 3.7307, .... -3.7307,.... 1e-04, 0....
#> 2 0.025 0.1 0.509137.... 1.018275 2.9626, .... -2.9626,.... 0.0015, ....
#> 3 0.025 0.1 0.335043.... 1.015284 3.0162, .... -3.0162,.... 0.0013, ....
#> 4 0.025 0.1 0.509227.... 1.018456 2.75, 2..... -2.75, -.... 0.003, 0....
#> 5 0.025 0.1 0.365230.... 1.106759 2.3977, .... -2.3977,.... 0.0082, ....
#> 6 0.025 0.1 0.555438.... 1.110878 2.2414, .... -2.2414,.... 0.0125, ....
#> lower_p power en upper_name
#> 1 1e-04, 0.... 0.9 1.007862.... Lan-DeMets O'Brien-Fleming approximation
#> 2 0.0015, .... 0.9 1.012586.... Lan-DeMets O'Brien-Fleming approximation
#> 3 0.0013, .... 0.9 1.010154.... Hwang-Shih-DeCani
#> 4 0.003, 0.... 0.9 1.012404.... Hwang-Shih-DeCani
#> 5 0.0082, .... 0.9 1.088314.... Hwang-Shih-DeCani
#> 6 0.0125, .... 0.9 1.093520.... Hwang-Shih-DeCani
#> lower_name bound_summary final_n max_n
#> 1 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 1.012053 1.012053
#> 2 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 1.018275 1.018275
#> 3 Hwang-Shih-DeCani c("IA 1:.... 1.015284 1.015284
#> 4 Hwang-Shih-DeCani c("IA 1:.... 1.018456 1.018456
#> 5 Hwang-Shih-DeCani c("IA 1:.... 1.106759 1.106759
#> 6 Hwang-Shih-DeCani c("IA 1:.... 1.110878 1.110878
#> upper_z1 lower_z1
#> 1 3.7307 -3.7307
#> 2 2.9626 -2.9626
#> 3 3.0162 -3.0162
#> 4 2.7500 -2.7500
#> 5 2.3977 -2.3977
#> 6 2.2414 -2.2414best <- job$best("final_n", direction = "min")
head(best, 10)
#> upper_setting timing upper_fun upper_par config_id status error_message
#> 1 function.... 0.33, 0..... sfLDOF 0 1 ok <NA>
#> 3 function.... 0.33, 0..... sfHSD -4 3 ok <NA>
#> 2 function.... 0.5, 0.75, 1 sfLDOF 0 2 ok <NA>
#> 4 function.... 0.5, 0.75, 1 sfHSD -4 4 ok <NA>
#> 5 function.... 0.33, 0..... sfHSD 0 5 ok <NA>
#> 6 function.... 0.5, 0.75, 1 sfHSD 0 6 ok <NA>
#> 8 function.... 0.5, 0.75, 1 sfHSD 4 8 ok <NA>
#> 7 function.... 0.33, 0..... sfHSD 4 7 ok <NA>
#> warnings cache_key design_rds call_args k test.type
#> 1 <NA> 2a02c8567abd8c7ed8822d4940901162 <NA> 3, 2, 0..... 3 2
#> 3 <NA> e7580124f44920908f1d2135656f0ab1 <NA> 3, 2, 0..... 3 2
#> 2 <NA> a9c397fd736584ab0260cd83ceaeba5e <NA> 3, 2, 0..... 3 2
#> 4 <NA> f4451293194cac770d2ec4b1ee82d8ac <NA> 3, 2, 0..... 3 2
#> 5 <NA> 6f382b0daa41a36567f87d7907c8596c <NA> 3, 2, 0..... 3 2
#> 6 <NA> 6e4d4614c851b42a6d3f1d663bfab362 <NA> 3, 2, 0..... 3 2
#> 8 <NA> e976042d0e8e2b27179997359fee7ab1 <NA> 3, 2, 0..... 3 2
#> 7 <NA> 92b57bf5daf6e42077127fba752ee177 <NA> 3, 2, 0..... 3 2
#> alpha beta n_I final_n_I upper_z lower_z upper_p
#> 1 0.025 0.1 0.333977.... 1.012053 3.7307, .... -3.7307,.... 1e-04, 0....
#> 3 0.025 0.1 0.335043.... 1.015284 3.0162, .... -3.0162,.... 0.0013, ....
#> 2 0.025 0.1 0.509137.... 1.018275 2.9626, .... -2.9626,.... 0.0015, ....
#> 4 0.025 0.1 0.509227.... 1.018456 2.75, 2..... -2.75, -.... 0.003, 0....
#> 5 0.025 0.1 0.365230.... 1.106759 2.3977, .... -2.3977,.... 0.0082, ....
#> 6 0.025 0.1 0.555438.... 1.110878 2.2414, .... -2.2414,.... 0.0125, ....
#> 8 0.025 0.1 0.675309.... 1.350620 2.0137, .... -2.0137,.... 0.022, 0....
#> 7 0.025 0.1 0.451412.... 1.367918 2.0822, .... -2.0822,.... 0.0187, ....
#> lower_p power en upper_name
#> 1 1e-04, 0.... 0.9 1.007862.... Lan-DeMets O'Brien-Fleming approximation
#> 3 0.0013, .... 0.9 1.010154.... Hwang-Shih-DeCani
#> 2 0.0015, .... 0.9 1.012586.... Lan-DeMets O'Brien-Fleming approximation
#> 4 0.003, 0.... 0.9 1.012404.... Hwang-Shih-DeCani
#> 5 0.0082, .... 0.9 1.088314.... Hwang-Shih-DeCani
#> 6 0.0125, .... 0.9 1.093520.... Hwang-Shih-DeCani
#> 8 0.022, 0.... 0.9 1.319407.... Hwang-Shih-DeCani
#> 7 0.0187, .... 0.9 1.329142.... Hwang-Shih-DeCani
#> lower_name bound_summary final_n max_n
#> 1 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 1.012053 1.012053
#> 3 Hwang-Shih-DeCani c("IA 1:.... 1.015284 1.015284
#> 2 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 1.018275 1.018275
#> 4 Hwang-Shih-DeCani c("IA 1:.... 1.018456 1.018456
#> 5 Hwang-Shih-DeCani c("IA 1:.... 1.106759 1.106759
#> 6 Hwang-Shih-DeCani c("IA 1:.... 1.110878 1.110878
#> 8 Hwang-Shih-DeCani c("IA 1:.... 1.350620 1.350620
#> 7 Hwang-Shih-DeCani c("IA 1:.... 1.367918 1.367918
#> upper_z1 lower_z1
#> 1 3.7307 -3.7307
#> 3 3.0162 -3.0162
#> 2 2.9626 -2.9626
#> 4 2.7500 -2.7500
#> 5 2.3977 -2.3977
#> 6 2.2414 -2.2414
#> 8 2.0137 -2.0137
#> 7 2.0822 -2.0822gsSurvTune()gsSurvTune() wraps gsDesign::gsSurv() for
tuning time-to-event designs.
job_surv <- gsSurvTune(
k = 3,
test.type = 4,
alpha = 0.025,
beta = 0.10,
timing = tune_values(list(c(0.33, 0.67, 1), c(0.5, 0.75, 1))),
hr = tune_seq(0.60, 0.75, length_out = 3),
upper = SpendingFamily$new(
SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
SpendingSpec$new(sfHSD, par = tune_seq(-4, 4, length_out = 3))
),
lower = SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
lambdaC = log(2) / 6,
eta = 0.01,
gamma = c(2.5, 5, 7.5, 10),
R = c(2, 2, 2, 6),
T = 18,
minfup = 6,
ratio = 1
)
job_surv$run(strategy = "grid", parallel = FALSE)
res_surv <- job_surv$results()
head(res_surv)
#> upper_setting lower_setting timing hr upper_fun upper_par lower_fun
#> 1 function.... function.... 0.33, 0..... 0.600 sfLDOF 0 sfLDOF
#> 2 function.... function.... 0.33, 0..... 0.675 sfLDOF 0 sfLDOF
#> 3 function.... function.... 0.33, 0..... 0.750 sfLDOF 0 sfLDOF
#> 4 function.... function.... 0.5, 0.75, 1 0.600 sfLDOF 0 sfLDOF
#> 5 function.... function.... 0.5, 0.75, 1 0.675 sfLDOF 0 sfLDOF
#> 6 function.... function.... 0.5, 0.75, 1 0.750 sfLDOF 0 sfLDOF
#> lower_par config_id status error_message warnings
#> 1 0 1 ok <NA> <NA>
#> 2 0 2 ok <NA> <NA>
#> 3 0 3 ok <NA> <NA>
#> 4 0 4 ok <NA> <NA>
#> 5 0 5 ok <NA> <NA>
#> 6 0 6 ok <NA> <NA>
#> cache_key design_rds call_args k test.type alpha
#> 1 5e919de024dfb2788159f8d1d5b4b299 <NA> 3, 4, 0..... 3 4 0.025
#> 2 5b94658197250fa81f222cd42981cee2 <NA> 3, 4, 0..... 3 4 0.025
#> 3 8585e7574c0938da43ca29335694d0ac <NA> 3, 4, 0..... 3 4 0.025
#> 4 04219b7dccfa06033ebf8e07528d56c3 <NA> 3, 4, 0..... 3 4 0.025
#> 5 bc6aa57478df46ab3cc6c0a819c2fa26 <NA> 3, 4, 0..... 3 4 0.025
#> 6 9bc0588d4895878555a71a64d4fa7104 <NA> 3, 4, 0..... 3 4 0.025
#> beta n_I final_n_I upper_z lower_z upper_p
#> 1 0.1 56.24907.... 170.4517 3.7307, .... -0.719, .... 1e-04, 0....
#> 2 0.1 95.02760.... 287.9624 3.7307, .... -0.719, .... 1e-04, 0....
#> 3 0.1 177.4604.... 537.7591 3.7307, .... -0.719, .... 1e-04, 0....
#> 4 0.1 87.06008.... 174.1202 2.9626, .... 0.3316, .... 0.0015, ....
#> 5 0.1 147.0799.... 294.1598 2.9626, .... 0.3316, .... 0.0015, ....
#> 6 0.1 274.6662.... 549.3326 2.9626, .... 0.3316, .... 0.0015, ....
#> lower_p power en upper_name
#> 1 0.7639, .... 0.9 108.7925.... Lan-DeMets O'Brien-Fleming approximation
#> 2 0.7639, .... 0.9 183.7948.... Lan-DeMets O'Brien-Fleming approximation
#> 3 0.7639, .... 0.9 343.2300.... Lan-DeMets O'Brien-Fleming approximation
#> 4 0.3701, .... 0.9 106.7777.... Lan-DeMets O'Brien-Fleming approximation
#> 5 0.3701, .... 0.9 180.3910.... Lan-DeMets O'Brien-Fleming approximation
#> 6 0.3701, .... 0.9 336.8735.... Lan-DeMets O'Brien-Fleming approximation
#> lower_name bound_summary final_events
#> 1 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 170.4517
#> 2 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 287.9624
#> 3 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 537.7591
#> 4 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 174.1202
#> 5 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 294.1598
#> 6 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 549.3326
#> max_events n_total final_n_total analysis_time upper_z1 lower_z1
#> 1 170.4517 216, 296.... 296 9.582183.... 3.7307 -0.7190
#> 2 287.9624 352, 482.... 482 9.554795.... 3.7307 -0.7190
#> 3 537.7591 634, 874.... 874 9.524268.... 3.7307 -0.7190
#> 4 174.1202 284, 302.... 302 11.48078.... 2.9626 0.3316
#> 5 294.1598 462, 492.... 492 11.45171.... 2.9626 0.3316
#> 6 549.3326 834, 892.... 892 11.41939.... 2.9626 0.3316gsSurvCalendarTune()gsSurvCalendarTune() is similar to
gsSurvTune(), but you specify planned calendar times of
analyses via calendarTime instead of information
timing.
job_cal <- gsSurvCalendarTune(
test.type = 4,
alpha = 0.025,
beta = 0.10,
calendarTime = tune_values(list(c(12, 24, 36), c(9, 18, 27))),
spending = tune_choice("information", "calendar"),
hr = tune_seq(0.60, 0.75, length_out = 3),
upper = SpendingFamily$new(
SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
SpendingSpec$new(sfHSD, par = tune_seq(-4, 4, length_out = 3))
),
lower = SpendingSpec$new(sfLDOF, par = tune_fixed(0)),
lambdaC = log(2) / 6,
eta = 0.01,
gamma = c(2.5, 5, 7.5, 10),
R = c(2, 2, 2, 6),
minfup = 18,
ratio = 1
)
job_cal$run(strategy = "grid", parallel = FALSE)
res_cal <- job_cal$results()
head(res_cal)
#> upper_setting lower_setting calendarTime spending hr upper_fun
#> 1 function.... function.... 12, 24, 36 information 0.600 sfLDOF
#> 2 function.... function.... 12, 24, 36 information 0.675 sfLDOF
#> 3 function.... function.... 12, 24, 36 information 0.750 sfLDOF
#> 4 function.... function.... 12, 24, 36 calendar 0.600 sfLDOF
#> 5 function.... function.... 12, 24, 36 calendar 0.675 sfLDOF
#> 6 function.... function.... 12, 24, 36 calendar 0.750 sfLDOF
#> upper_par lower_fun lower_par config_id status error_message warnings
#> 1 0 sfLDOF 0 1 ok <NA> <NA>
#> 2 0 sfLDOF 0 2 ok <NA> <NA>
#> 3 0 sfLDOF 0 3 ok <NA> <NA>
#> 4 0 sfLDOF 0 4 ok <NA> <NA>
#> 5 0 sfLDOF 0 5 ok <NA> <NA>
#> 6 0 sfLDOF 0 6 ok <NA> <NA>
#> cache_key design_rds call_args k test.type alpha
#> 1 04ceef8a37465aeb1941067d8d34f1f8 <NA> 4, 0.025.... 3 4 0.025
#> 2 5f4af16b3eda4ea07df499f2cb2505d6 <NA> 4, 0.025.... 3 4 0.025
#> 3 5fa33bd69dc3aa025743081af7ada6f1 <NA> 4, 0.025.... 3 4 0.025
#> 4 7e58415c5a24209eb2796b503e708c55 <NA> 4, 0.025.... 3 4 0.025
#> 5 24143227e497c5aaffb5eda95e125273 <NA> 4, 0.025.... 3 4 0.025
#> 6 87f2aed2d7ee96bba1352882f58e9c44 <NA> 4, 0.025.... 3 4 0.025
#> beta timing n_I final_n_I upper_z lower_z
#> 1 0.1 0.234953.... 40.57744.... 172.7038 4.4783, .... -1.5645,....
#> 2 0.1 0.239261.... 70.11502.... 293.0477 4.4352, .... -1.5165,....
#> 3 0.1 0.243794.... 133.8101.... 548.8641 4.3911, .... -1.467, ....
#> 4 0.1 0.234953.... 38.77267.... 165.0225 3.7103, .... -1.0234,....
#> 5 0.1 0.239261.... 66.81872.... 279.2707 3.7103, .... -1.0102,....
#> 6 0.1 0.243794.... 127.1925.... 521.7201 3.7103, .... -0.9963,....
#> upper_p lower_p power en
#> 1 0, 0.011.... 0.9412, .... 0.9 132.7343....
#> 2 0, 0.012.... 0.9353, .... 0.9 226.1005....
#> 3 0, 0.012.... 0.9288, .... 0.9 424.9595....
#> 4 1e-04, 0.... 0.8469, .... 0.9 119.9537....
#> 5 1e-04, 0.... 0.8438, .... 0.9 204.1470....
#> 6 1e-04, 0.... 0.8404, .... 0.9 383.4977....
#> upper_name
#> 1 Lan-DeMets O'Brien-Fleming approximation
#> 2 Lan-DeMets O'Brien-Fleming approximation
#> 3 Lan-DeMets O'Brien-Fleming approximation
#> 4 Lan-DeMets O'Brien-Fleming approximation
#> 5 Lan-DeMets O'Brien-Fleming approximation
#> 6 Lan-DeMets O'Brien-Fleming approximation
#> lower_name bound_summary final_events
#> 1 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 172.7038
#> 2 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 293.0477
#> 3 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 548.8641
#> 4 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 165.0225
#> 5 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 279.2707
#> 6 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 521.7201
#> max_events n_total final_n_total analysis_time upper_z1 lower_z1
#> 1 172.7038 128, 212.... 212 12, 24, 36 4.4783 -1.5645
#> 2 293.0477 212, 354.... 354 12, 24, 36 4.4352 -1.5165
#> 3 548.8641 390, 650.... 650 12, 24, 36 4.3911 -1.4670
#> 4 165.0225 122, 204.... 204 12, 24, 36 3.7103 -1.0234
#> 5 279.2707 202, 336.... 336 12, 24, 36 3.7103 -1.0102
#> 6 521.7201 372, 618.... 618 12, 24, 36 3.7103 -0.9963best_surv <- job_surv$best("final_events", direction = "min")
head(best_surv, 10)
#> upper_setting lower_setting timing hr upper_fun upper_par lower_fun
#> 1 function.... function.... 0.33, 0..... 0.600 sfLDOF 0 sfLDOF
#> 7 function.... function.... 0.33, 0..... 0.600 sfHSD -4 sfLDOF
#> 4 function.... function.... 0.5, 0.75, 1 0.600 sfLDOF 0 sfLDOF
#> 10 function.... function.... 0.5, 0.75, 1 0.600 sfHSD -4 sfLDOF
#> 13 function.... function.... 0.33, 0..... 0.600 sfHSD 0 sfLDOF
#> 16 function.... function.... 0.5, 0.75, 1 0.600 sfHSD 0 sfLDOF
#> 22 function.... function.... 0.5, 0.75, 1 0.600 sfHSD 4 sfLDOF
#> 19 function.... function.... 0.33, 0..... 0.600 sfHSD 4 sfLDOF
#> 2 function.... function.... 0.33, 0..... 0.675 sfLDOF 0 sfLDOF
#> 8 function.... function.... 0.33, 0..... 0.675 sfHSD -4 sfLDOF
#> lower_par config_id status error_message warnings
#> 1 0 1 ok <NA> <NA>
#> 7 0 7 ok <NA> <NA>
#> 4 0 4 ok <NA> <NA>
#> 10 0 10 ok <NA> <NA>
#> 13 0 13 ok <NA> <NA>
#> 16 0 16 ok <NA> <NA>
#> 22 0 22 ok <NA> <NA>
#> 19 0 19 ok <NA> <NA>
#> 2 0 2 ok <NA> <NA>
#> 8 0 8 ok <NA> <NA>
#> cache_key design_rds call_args k test.type alpha
#> 1 5e919de024dfb2788159f8d1d5b4b299 <NA> 3, 4, 0..... 3 4 0.025
#> 7 d7889d921ed14ae812e3ed0d2cf3b501 <NA> 3, 4, 0..... 3 4 0.025
#> 4 04219b7dccfa06033ebf8e07528d56c3 <NA> 3, 4, 0..... 3 4 0.025
#> 10 e7314dba5cf8f0e027bfce428760e159 <NA> 3, 4, 0..... 3 4 0.025
#> 13 089bc8d1fee469d6313ea8d01c3918e3 <NA> 3, 4, 0..... 3 4 0.025
#> 16 94a2881403a82b791e8152b97005a523 <NA> 3, 4, 0..... 3 4 0.025
#> 22 4189ddae3301e4cacf176e70e82f2f1c <NA> 3, 4, 0..... 3 4 0.025
#> 19 6b85b2a65593a3ba4370d310e1ffac77 <NA> 3, 4, 0..... 3 4 0.025
#> 2 5b94658197250fa81f222cd42981cee2 <NA> 3, 4, 0..... 3 4 0.025
#> 8 25cc8f2d4d112a17eef1b8d0b6ab8c66 <NA> 3, 4, 0..... 3 4 0.025
#> beta n_I final_n_I upper_z lower_z upper_p
#> 1 0.1 56.24907.... 170.4517 3.7307, .... -0.719, .... 1e-04, 0....
#> 7 0.1 56.42214.... 170.9762 3.0162, .... -0.7161,.... 0.0013, ....
#> 4 0.1 87.06008.... 174.1202 2.9626, .... 0.3316, .... 0.0015, ....
#> 10 0.1 87.11271.... 174.2254 2.75, 2..... 0.3323, .... 0.003, 0....
#> 13 0.1 61.09307.... 185.1305 2.3977, .... -0.6382,.... 0.0082, ....
#> 16 0.1 93.90369.... 187.8074 2.2414, .... 0.4235, .... 0.0125, ....
#> 22 0.1 111.9806.... 223.9612 2.0137, .... 0.6515, .... 0.022, 0....
#> 19 0.1 74.60758.... 226.0836 2.0822, .... -0.4282,.... 0.0187, ....
#> 2 0.1 95.02760.... 287.9624 3.7307, .... -0.719, .... 1e-04, 0....
#> 8 0.1 95.31999.... 288.8485 3.0162, .... -0.7161,.... 0.0013, ....
#> lower_p power en upper_name
#> 1 0.7639, .... 0.9000000 108.7925.... Lan-DeMets O'Brien-Fleming approximation
#> 7 0.763, 0.... 0.9000000 108.9419.... Hwang-Shih-DeCani
#> 4 0.3701, .... 0.9000000 106.7777.... Lan-DeMets O'Brien-Fleming approximation
#> 10 0.3698, .... 0.9000000 106.7939.... Hwang-Shih-DeCani
#> 13 0.7383, .... 0.9000000 113.8644.... Hwang-Shih-DeCani
#> 16 0.336, 0.... 0.9000000 111.8445.... Hwang-Shih-DeCani
#> 22 0.2574, .... 0.9000000 126.5371.... Hwang-Shih-DeCani
#> 19 0.6658, .... 0.8999999 128.5347.... Hwang-Shih-DeCani
#> 2 0.7639, .... 0.9000000 183.7948.... Lan-DeMets O'Brien-Fleming approximation
#> 8 0.763, 0.... 0.9000000 184.0472.... Hwang-Shih-DeCani
#> lower_name bound_summary final_events
#> 1 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 170.4517
#> 7 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 170.9762
#> 4 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 174.1202
#> 10 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 174.2254
#> 13 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 185.1305
#> 16 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 187.8074
#> 22 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 223.9612
#> 19 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 226.0836
#> 2 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 287.9624
#> 8 Lan-DeMets O'Brien-Fleming approximation c("IA 1:.... 288.8485
#> max_events n_total final_n_total analysis_time upper_z1 lower_z1
#> 1 170.4517 216, 296.... 296 9.582183.... 3.7307 -0.7190
#> 7 170.9762 218, 296.... 296 9.582183.... 3.0162 -0.7161
#> 4 174.1202 284, 302.... 302 11.48078.... 2.9626 0.3316
#> 10 174.2254 284, 302.... 302 11.48078.... 2.7500 0.3323
#> 13 185.1305 234, 320.... 320 9.582183.... 2.3977 -0.6382
#> 16 187.8074 306, 326.... 326 11.48078.... 2.2414 0.4235
#> 22 223.9612 366, 388.... 388 11.48078.... 2.0137 0.6515
#> 19 226.0836 286, 392.... 392 9.582183.... 2.0822 -0.4282
#> 2 287.9624 352, 482.... 482 9.554795.... 3.7307 -0.7190
#> 8 288.8485 352, 484.... 484 9.554795.... 3.0162 -0.7161These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.