The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Extending ergmito

George G. Vega Yon

2023-06-13

The ergmito’s workhorse are two other functions: (1) ergm’s ergm.allstats which is used to compute the support of model’s sufficient statistics, and (2) ergmito_formulae which is a wrapper of that same function, and that returns a list including the following two functions: loglike and grad, the functions to calculate the joint log-likelihood of the model and its gradient.

library(ergmito)
data(fivenets)
model_object <- ergmito_formulae(fivenets ~ edges + ttriad)

# Printing the model object
model_object
#> ergmito log-likelihood function
#> Number of networks:  5 
#> Model:  fivenets ~ edges + ttriad 
#> Available elements by using the $ operator:
#> loglik: function (params, ..., as_prob = FALSE, total = TRUE) grad  : function (params, ...)

# Printing the log-likelihood function
model_object$loglik
#> function (params, ..., as_prob = FALSE, total = TRUE) 
#> {
#>     if (total) {
#>         ans <- sum(exact_loglik(ergmito_ptr, params = params, 
#>             ..., as_prob = as_prob))
#>         if (!as_prob && !is.finite(ans)) 
#>             return(-.Machine$double.xmax * 1e-100)
#>         else return(ans)
#>     }
#>     else {
#>         exact_loglik(ergmito_ptr, params = params, ..., as_prob = as_prob)
#>     }
#> }
#> <bytecode: 0x55ad78f358a8>
#> <environment: 0x55ad82b1fd60>

Besides of the log-likelihood function and the gradient function, ergmito_formulae also returns We can take a look at each component from our previous object:

# The vectors of weights
str(model_object$stats_weights)
#> List of 5
#>  $ : num [1:40] 66 12 168 72 48 196 120 1 88 1 ...
#>  $ : num [1:40] 66 12 168 72 48 196 120 1 88 1 ...
#>  $ : num [1:40] 66 12 168 72 48 196 120 1 88 1 ...
#>  $ : num [1:40] 66 12 168 72 48 196 120 1 88 1 ...
#>  $ : num [1:40] 66 12 168 72 48 196 120 1 88 1 ...

# The matrices of the sufficient statistics
str(model_object$stats_statmat)
#> List of 5
#>  $ : num [1:40, 1:2] 2 1 4 8 7 3 6 12 6 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2] "edges" "ttriple"
#>  $ : num [1:40, 1:2] 2 1 4 8 7 3 6 12 6 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2] "edges" "ttriple"
#>  $ : num [1:40, 1:2] 2 1 4 8 7 3 6 12 6 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2] "edges" "ttriple"
#>  $ : num [1:40, 1:2] 2 1 4 8 7 3 6 12 6 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2] "edges" "ttriple"
#>  $ : num [1:40, 1:2] 2 1 4 8 7 3 6 12 6 0 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : NULL
#>   .. ..$ : chr [1:2] "edges" "ttriple"

# The target statistic
model_object$target_stats
#>      edges ttriple
#> [1,]     2       0
#> [2,]     7       4
#> [3,]     4       0
#> [4,]     5       2
#> [5,]     2       0

All this is closely related to the output object from the function ergm.allstats. The next section shows how all this works together to estimate the model parameters using Metropolis-Hastings MCMC.

Example: Bayesian inference with fivenets

Suppose that we have a prior regarding the distribution of the fivenets model: The edges parameter is normally distributed with mean -1 and variance 2, while the nodematch("female") term has the same distribution but with mean 1. We can implement this model using a Metropolis-Hastings ratio. First, we need to define the log of the posterior distribution:

# Analyzing the model
model_object <- ergmito_formulae(fivenets ~ edges + nodematch("female")) 

# Defining the logposterior
logposterior <- function(p) {
  model_object$loglik(params = p) + 
  sum(dnorm(p, mean = c(-1,1), sd = sqrt(2), log = TRUE))
}
 

For this example, we are using the fmcmc R package. Here is how we put everything together:

# Loading the required R packages
library(fmcmc)
library(coda)

# Is it working?
logposterior(c(-1, 1))
#> [1] -38.24283

# Now, calling the MCMC function from the fmcmc R package
ans <- MCMC(
  fun     = logposterior,
  initial = c(0, 0),
  # 5,000 steps sampling one of every ten iterations
  nsteps  = 5000,
  thin    = 10,
  # We are using a normal transition kernel with .5 scale and updates are done
  # one variable at a time in a random order
  kernel = kernel_normal(scale = .5, scheme = "random")
  )

We can now visualize our results. Since the resulting object is of class mcmc.list, which is implemented in the coda R package for MCMC diagnostics, we can use all the methods included in the package:

plot(ans)

summary(ans)
#> 
#> Iterations = 10:5000
#> Thinning interval = 10 
#> Number of chains = 1 
#> Sample size per chain = 500 
#> 
#> 1. Empirical mean and standard deviation for each variable,
#>    plus standard error of the mean:
#> 
#>        Mean     SD Naive SE Time-series SE
#> par1 -1.614 0.4896  0.02190        0.06164
#> par2  1.458 0.5972  0.02671        0.06958
#> 
#> 2. Quantiles for each variable:
#> 
#>         2.5%    25%    50%    75%   97.5%
#> par1 -2.5556 -1.989 -1.586 -1.246 -0.7719
#> par2  0.2576  1.034  1.439  1.893  2.6050

Finally, we can compare this result with what we obtain from the ergmito function

summary(ergmito(fivenets ~ edges + nodematch("female")))
#> Warning: The observed statistics (target.statistics) are near or at the
#> boundary of its support, i.e. the Maximum Likelihood Estimates maynot exist or
#> be hard to be estimated. In particular, the statistic(s) "edges",
#> "nodematch.female".
#> 
#> ERGMito estimates (MLE)
#> This model includes 5 networks.
#> 
#> formula:
#>   fivenets ~ edges + nodematch("female")
#> 
#>                  Estimate Std. Error z value Pr(>|z|)   
#> edges            -1.70475    0.54356 -3.1363 0.001711 **
#> nodematch.female  1.58697    0.64305  2.4679 0.013592 * 
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> AIC: 73.34109    BIC: 77.52978    (Smaller is better.)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.