Package ‘ergm.sign’

November 21, 2025

Type Package
Title Exponential-Family Models for Signed Networks
Version 0.1.0

Description
Extends the 'ergm.multi' packages from the Statnet suite to fit (temporal) exponential-family ran-
dom graph models for signed networks. The framework models positive and negative ties as in-
terdependent, which allows estimation and testing of structural balance theory. The pack-
age also includes options for descriptive summaries, visualization, and simulation of signed net-
works. See Krivitsky, Koehly, and Marcum (2020) <doi:10.1007/s11336-020-09720-
7> and Fritz, C., Mehrl, M., Thurner, P. W., & Kauermann, G. (2025) <doi:10.1017/pan.2024.21>.

Encoding UTF-8
LazyData true
LazyLoad yes
RoxygenNote 7.3.3
RdMacros Rdpack

Imports statnet.common, network, ergm, ergm.multi, dplyr, magrittr,
tergm, Rdpack, intergraph, graphlayouts, vegan, igraph, purrr,
graphics, methods, utils

LinkingTo ergm.multi, ergm
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr

Depends R (>=3.5.0)

License MIT + file LICENSE
NeedsCompilation yes

Author Marc Schalberger [cre],
Cornelius Fritz [aut],
Pavel Krivitsky [ctb]

Maintainer Marc Schalberger <m. schalberger@fu-berlin.de>
Repository CRAN
Date/Publication 2025-11-21 15:20:02 UTC

https://doi.org/10.1007/s11336-020-09720-7
https://doi.org/10.1007/s11336-020-09720-7
https://doi.org/10.1017/pan.2024.21

2 Contents

Contents
dse-ergmTerm e 3
dsf-ergmTerm 4
CIZMLSIZN oot e e e 5
ese-ergmTerm 5
esf-ergmTerm L 6
fixL-ergmConstraint e e e e 7
GOF . . . 7
gwdse-ergmTerm 8
gwdsf-ergmTerm 10
gwese-ergmTerm L. e 11
gwesf-ergmTerm L 12
gwnse-ergmTerm e 13
gwnsf-ergmTerm L 15
InitErgmTerm.delese L 16
InitErgmTerm.delesf L 17
InitErgmTerm.delnodematch oL 17
InitErgmTerm.delrecip L o 18
InitErgmTerm.gwdelese o 18
InitErgmTerm.gwdelesf L 19
InitErgmTerm.Neg e 20
InitErgmTerm.Pos L 20
mMple_SigN e e 20
NetWOrK.SIZN o o e e 21
networks.sign e e 22
nse-ergmTerm e e e e e 23
nsf-ergmTerm oL e 24
plot.dynamic.sign Lo 25
plotstatic.sign L e 26
rebels . . . L 28
rebels_pooled 28
snctrl ..o e 29
] 010) 1 0 o 32
SUMMAry.StatiC.SIZN o . e e e e e e e e e e e e e 33
summary_formula.dynamic.sign oL 34
tribes . . .o e 34
UnLayer o e e e 35

Index 36

dse-ergmTerm 3

dse-ergmTerm Dyadwise shared enemies

Description

This term adds one network statistic to the model for each element in ‘d* where the 7 th such statistic
equals the number of dyads in the network with exactly ‘d[i]* shared enemies. For a directed
network, multiple shared enemies definitions are possible.

Usage

binary: dse(d, type="OTP", in_order=FALSE)

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (*"OTP"*): vertex
k is an OTP shared partner of ordered pair (¢, 7) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (¢, j) iff
J — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (4, j) iff i <+ k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(‘“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff K — i,k — j. By default,
outgoing two-paths (‘"OTP") are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

dsf-ergmTerm

dsf-ergmTerm Dyadwise shared friends

Description

This term adds one network statistic to the model for each element in ‘d* where the 7 th such statistic
equals the number of dyads in the network with exactly ‘d[i]‘ shared friends. For a directed network,
multiple shared friends definitions are possible.

Usage

binary: dsf(d, type="OTP", in_order=FALSE)

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent‘ package): - Outgoing Two-path (‘"OTP"*): vertex
k is an OTP shared partner of ordered pair (¢, j) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (3, j) iff
j — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (4, j) iff i <+ k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(‘“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff & — i,k — j. By default,
outgoing two-paths (‘"OTP") are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

ergm.sign 5

ergm.sign ergm.sign: A Package for Exponential Random Graph Models for
Signed Networks

Description

The ergm.sign package implements tools to simulate and estimate Signed Exponential Random
Graph Models and Temporal Signed Exponential Random Graph Models.

Author(s)

Marc Schalberger

ese-ergmTerm Edgewise shared enemies

Description

This term adds one network statistic to the model for each element in ‘d* where the ¢ th such
statistic equals the number of edges in the network with exactly ‘d[i]* shared enemies. For a directed
network, multiple shared enemy definitions are possible.

Usage
binary: ese(d, type="OTP", L.base=NULL, in_order=FALSE)

Arguments
d a vector of distinct integers
type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"* (default for directed), ‘"ITP"‘, ‘"RTP"*, *"OSP"‘, and
“"ISP"*; has no effect for undirected. See the section below on Shared partner
types for details.
base specify the base of the triad, either by *+’ and ’-* or 1 and -1
Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (*"OTP"*): vertex
k is an OTP shared partner of ordered pair (i, j) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (¢, j) iff
j — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (¢, j) iff i <> k <> j. - Outgoing Shared Partner (‘"OSP"*):

6 esf-ergmTerm

vertex k is an OSP shared partner of ordered pair (¢, j) iff ¢ — k, j — k. - Incoming Shared Partner
(“"ISP"): vertex k is an ISP shared partner of ordered pair (4, 5) iff & — i,k — j. By default,
outgoing two-paths (‘"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

esf-ergmTerm Edgewise shared friends

Description

This term adds one network statistic to the model for each element in ‘d* where the ¢ th such statistic
equals the number of edges in the network with exactly ‘d[i]‘ shared friends. For a directed network,
multiple shared friend definitions are possible.

Usage

binary: esf(d, type="OTP", L.base=NULL, in_order=FALSE)

Arguments
d a vector of distinct integers
type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"* (default for directed), ‘"ITP"‘, “"RTP"*, “"OSP"‘, and
“"ISP"“; has no effect for undirected. See the section below on Shared partner
types for details.
base specify the base of the triad, either by "+’ and ’-* or 1 and -1
Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (*"OTP"): vertex
k is an OTP shared partner of ordered pair (¢, 7) iff i — k — j. Also known as "transitive shared
partner". - Incoming Two-path (‘“"ITP"‘): vertex k is an ITP shared partner of ordered pair (¢, j) iff

fixL-ergmConstraint 7

j — k — 4. Also known as "cyclical shared partner" - Reciprocated Two-path (*"RTP"*): vertex k
is an RTP shared partner of ordered pair (i, j) iff i <> k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(‘“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff & — i,k — j. By default,
outgoing two-paths (*"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

fixL-ergmConstraint Logical layer constraint

Description

This layer-aware constraint limits the sample space to those networks for which the specified logical
layers are unchanged

Usage
fixL(Ls)

See Also

[‘ergmConstraint‘] for index of constraints and hints currently visible to the package.

GoF Conduct Goodness-of-Fit Diagnostics for a Signed ERGM

Description

Computes the goodness-of-fit (GoF) for a fitted signed exponential random graph model (SERGM).
The function simulates new networks using the fitted model and compares key network statistics
from the observed network with those from the simulated ones.

Usage

GoF (model, nsim = 200, seed = NULL)

8 gwdse-ergmTerm

Arguments
model A fitted signed ERGM (SERGM) object.
nsim Integer; number of simulated networks to generate. Defaults to 200.
seed Optional integer seed for reproducibility. Passed to set. seed.
Details

The following diagnostics are plotted:
* Positive degree distribution
* Negative degree distribution
* Edgewise shared enemies distribution (positive edges)
» Edgewise shared enemies distribution (negative edges)
» Edgewise shared friends distribution (positive edges)

» Edgewise shared friends distribution (negative edges)

Value

Produces six diagnostic boxplots comparing observed and simulated statistics for the fitted model.

See Also

ergm, mple_sign

Examples

data("tribes")
fit <- mple_sign(tribes ~ Pos(~edges) + Neg(~edges))
GoF (fit, nsim = 100)

gwdse-ergmTerm Geometrically weighted dyadwise shared enemies distribution

Description

This term adds one network statistic to the model equal to the geometrically weighted dyadwise
shared enemies distribution with decay parameter. Note that the GWDSE statistic is equal to the sum
of GWNSE plus GWESE. For a directed network, multiple shared friend definitions are possible.

Usage

binary: gwdse(decay, fixed=FALSE, cutoff=30, type="OTP", in_order=FALSE)

gwdse-ergmTerm 9

Arguments

decay nonnegative decay parameter for the shared enemy or selected directed analogue
count; required if ‘fixed=TRUE* and ignored with a warning otherwise.

fixed optional argument indicating whether the ‘decay‘ parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is ‘FALSE® , which means the scale parameter is not
fixed and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying DSE terms to use in com-
puting the statistics when ‘fixed=FALSE®, in order to reduce the computational
burden. Its default value can also be controlled by the ‘gw.cutoff‘ term option
control parameter. (See ‘?control.ergm®.)

type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"‘ (default for directed), ‘"ITP"*, ‘"RTP"*, *"OSP"*, and
“"ISP"*; has no effect for undirected. See the section below on Shared partner
types for details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (‘"OTP"*): vertex
k is an OTP shared partner of ordered pair (i, j) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (i, j) iff
j — k — 1. Also known as "cyclical shared partner" - Reciprocated Two-path (*"RTP"*): vertex k
is an RTP shared partner of ordered pair (i, 7) iff i <+ k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(“"ISP"): vertex k is an ISP shared partner of ordered pair (4, j) iff & — i,k — j. By default,
outgoing two-paths (*"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

10 gwdsf-ergmTerm

gwdsf-ergmTerm Geometrically weighted dyadwise shared friends distribution

Description

This term adds one network statistic to the model equal to the geometrically weighted dyadwise
shared friends distribution with decay parameter. Note that the GWDSF statistic is equal to the sum
of GWNSF plus GWESEF. For a directed network, multiple shared friend definitions are possible.

Usage

binary: gwdsf(decay, fixed=FALSE, cutoff=30, type="OTP", in_order=FALSE)

Arguments

decay nonnegative decay parameter for the shared friend or selected directed analogue
count; required if ‘fixed=TRUE® and ignored with a warning otherwise.

fixed optional argument indicating whether the ‘decay‘ parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is ‘FALSE‘ , which means the scale parameter is not
fixed and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying DSF terms to use in com-
puting the statistics when ‘fixed=FALSE®, in order to reduce the computational
burden. Its default value can also be controlled by the ‘gw.cutoff® term option
control parameter. (See ‘?control.ergm®.)

type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"* (default for directed), ‘"ITP"‘, ‘"RTP"*, *"OSP"‘, and
“"ISP"*; has no effect for undirected. See the section below on Shared partner
types for details.

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type® argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent‘ package): - Outgoing Two-path (*"OTP"*): vertex
k is an OTP shared partner of ordered pair (i, 7) iff i — k — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (3, j) iff
j — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (4, j) iff i > k <> j. - Outgoing Shared Partner (‘"OSP"¢):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — &, j — k. - Incoming Shared Partner
(“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff k& — i,k — j. By default,
outgoing two-paths (‘"OTP") are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

gwese-ergmTerm 11

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

gwese-ergmTerm Geometrically weighted edgewise shared enemy distribution

Description

This term adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared en-
emy distribution with decay parameter. For a directed network, multiple shared enemy definitions
are possible.

Usage

binary: gwese(decay, fixed=FALSE, cutoff=30, type="0TP", base=NULL, in_order=FALSE)

Arguments

decay nonnegative decay parameter for the shared enemy or selected directed analogue
count; required if ‘fixed=TRUE* and ignored with a warning otherwise.

fixed optional argument indicating whether the ‘decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is ‘FALSE‘ , which means the scale parameter is not
fixed and thus the model is a curved exponential family.

cutoff This optional argument sets the number of underlying ESE terms to use in com-
puting the statistics when ‘fixed=FALSE®, in order to reduce the computational
burden. Its default value can also be controlled by the ‘gw.cutoff* term option
control parameter. (See ‘?control.ergm®.)

type A string indicating the type of shared partner or path to be considered for di-

rected networks: ‘"OTP"* (default for directed), <"ITP"‘, ‘"RTP"*, “"OSP"‘, and
“"ISP"“; has no effect for undirected. See the section below on Shared partner
types for details.

base specify the base of the triad, either by +’ and ’-* or 1 and -1

12 gwesf-ergmTerm

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (‘"OTP"*): vertex
k is an OTP shared partner of ordered pair (i, j) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (i, j) iff
j — k — 1. Also known as "cyclical shared partner" - Reciprocated Two-path (*"RTP"*): vertex k
is an RTP shared partner of ordered pair (i, 7) iff i <> k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(“"ISP"): vertex k is an ISP shared partner of ordered pair (4, j) iff & — i,k — j. By default,
outgoing two-paths (*"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

gwesf-ergmTerm Geometrically weighted edgewise shared friend distribution

Description

This term adds a statistic equal to the geometrically weighted edgewise (not dyadwise) shared friend
distribution with decay parameter. For a directed network, multiple shared friend definitions are
possible.

Usage

binary: gwesf(decay, fixed=FALSE, cutoff=30, type="0TP", base=NULL, in_order=FALSE)

Arguments
decay nonnegative decay parameter for the shared friend or selected directed analogue
count; required if ‘fixed=TRUE* and ignored with a warning otherwise.
fixed optional argument indicating whether the ‘decay‘ parameter is fixed at the given

value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is ‘FALSE* , which means the scale parameter is not
fixed and thus the model is a curved exponential family.

gwnse-ergmTerm 13

cutoff This optional argument sets the number of underlying ESF terms to use in com-
puting the statistics when ‘fixed=FALSE®, in order to reduce the computational
burden. Its default value can also be controlled by the ‘gw.cutoff‘ term option
control parameter. (See ‘?control.ergm®.)

type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"* (default for directed), ‘"ITP"‘, ‘"RTP"*, "OSP"‘, and
“"ISP"“; has no effect for undirected. See the section below on Shared partner
types for details.

base specify the base of the triad, either by "+’ and ’-* or 1 and -1

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (*"OTP"): vertex
k is an OTP shared partner of ordered pair (¢, 7) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (¢, j) iff
j — k — 1. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (4, j) iff i <+ k <> j. - Outgoing Shared Partner (‘"OSP"¢):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(‘“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff & — i,k — j. By default,
outgoing two-paths (*"OTP") are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm ‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

gwnse-ergmTerm Geometrically weighted non-edgewise shared enemey distribution

Description

This term adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads
that do not have an edge) shared enemy distribution with decay parameter. For a directed network,
multiple shared enemy definitions are possible.

14 gwnse-ergmTerm

Usage
binary: gwnse(decay, fixed=FALSE, cutoff=30, type="0TP", base=NULL, in_order=FALSE)

Arguments
decay nonnegative decay parameter for the shared enemy or selected directed analogue
count; required if ‘fixed=TRUE® and ignored with a warning otherwise.
fixed optional argument indicating whether the ‘decay‘ parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is ‘FALSE‘ , which means the scale parameter is not
fixed and thus the model is a curved exponential family.
cutoff This optional argument sets the number of underlying NSE terms to use in com-
puting the statistics when ‘fixed=FALSE®, in order to reduce the computational
burden. Its default value can also be controlled by the ‘gw.cutoff‘ term option
control parameter. (See ‘?control.ergm®.)
type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"‘ (default for directed), ‘"ITP"*, ‘"RTP"*, *"OSP"*, and
“"ISP"*; has no effect for undirected. See the section below on Shared partner
types for details.
base specify the base of the triad, either by "+’ and ’-* or 1 and -1
Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (*"OTP"*): vertex
k is an OTP shared partner of ordered pair (i, j) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"): vertex k is an ITP shared partner of ordered pair (i, j) iff
j — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (¢, j) iff i <> k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(“"ISP"*): vertex k is an ISP shared partner of ordered pair (¢, j) iff ¥ — ¢,k — j. By defaul,
outgoing two-paths (*"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

gwnsf-ergmTerm 15

gwnsf-ergmTerm Geometrically weighted non-edgewise shared friend distribution

Description

This term adds a statistic equal to the geometrically weighted nonedgewise (that is, over dyads
that do not have an edge) shared friend distribution with decay parameter. For a directed network,
multiple shared friend definitions are possible.

Usage

binary: gwnsf(decay, fixed=FALSE, cutoff=30, type="OTP", base=NULL, in_order=FALSE)

Arguments
decay nonnegative decay parameter for the shared friend or selected directed analogue
count; required if ‘fixed=TRUE* and ignored with a warning otherwise.
fixed optional argument indicating whether the ‘decay parameter is fixed at the given
value, or is to be fit as a curved exponential-family model (see Hunter and Hand-
cock, 2006). The default is ‘FALSE‘ , which means the scale parameter is not
fixed and thus the model is a curved exponential family.
cutoff This optional argument sets the number of underlying NSF terms to use in com-
puting the statistics when ‘fixed=FALSE®, in order to reduce the computational
burden. Its default value can also be controlled by the ‘gw.cutoff‘ term option
control parameter. (See ‘?control.ergm®.)
type A string indicating the type of shared partner or path to be considered for di-
rected networks: ‘"OTP"‘ (default for directed), <"ITP"*, ‘"RTP"*, *"OSP"*, and
“"ISP"“; has no effect for undirected. See the section below on Shared partner
types for details.
base specify the base of the triad, either by +’ and ’-* or 1 and -1
Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type® argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent‘ package): - Outgoing Two-path (*"OTP"*): vertex
k is an OTP shared partner of ordered pair (4, 7) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (3, j) iff
j — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (4, j) iff ¢ <> k <> j. - Outgoing Shared Partner (‘"OSP"°):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — &, j — k. - Incoming Shared Partner
(“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff & — i,k — j. By default,
outgoing two-paths (‘"OTP") are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

16 InitErgmTerm.delese

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

InitErgmTerm.delese Delayed edgewise shared enemies

Description

This term adds one network statistic to the model that counts the number of positive or negative
edges in the current network whose endpoints had exactly ‘d‘ shared enemies (common negative
ties) in the previous network.

For directed networks, different definitions of shared enemies can be specified using the ‘type*
argument. For undirected networks, only one configuration applies.

Usage

binary: delese(d = 1, base = "+", type = "OTP")

Arguments
d Integer. The exact number of shared enemies to count for edges in the current
network.
base Character indicating which edges in the current network are used as the base:
“"+"¢ for positive ties or ‘"-"* for negative ties.
type For directed networks, the definition of shared enemies:
"OTP" Outgoing two-path (\(i->k ->j\))
"ITP" Incoming two-path (\(j ->k->1i\))
"RTP" Reciprocated two-path (\(i<-k <-j\))
"OSP" Outgoing shared partner (\(i->k,j->k\))
"ISP" Incoming shared partner (\(k -> 1, k ->j\))
Ignored for undirected networks.
Details

For each edge in the current network (positive or negative, depending on ‘base), this term checks
how many nodes were connected negatively to both endpoints in the previous network.

InitErgmTerm.delest 17

InitErgmTerm.delesf Delayed edgewise shared friends

Description

This term adds one network statistic to the model that counts the number of positive or negative
edges in the current network whose endpoints had exactly ‘d* shared friends (common positive ties)
in the previous network.

For directed networks, different definitions of shared friends can be specified using the ‘type* argu-
ment. For undirected networks, only one configuration applies.

Usage

binary: delese(d = 1, base = "+", type = "OTP")

Arguments
d Integer. The exact number of shared friends to count for edges in the current
network.
base Character indicating which edges in the current network are used as the base:
“"+"¢ for positive ties or ‘"-"* for negative ties.
type For directed networks, the definition of shared friends:
"OTP" Outgoing two-path (\(i->k->j\))
"ITP" Incoming two-path (\(j ->k->1i\))
"RTP" Reciprocated two-path (\(i<-k <-j\))
"OSP" Outgoing shared partner (\(i->k,j->k\))
"ISP" Incoming shared partner \(k ->1, k->j\))
Ignored for undirected networks.
Details

For each edge in the current network (positive or negative, depending on ‘base), this term checks
how many nodes were connected positively to both endpoints in the previous network.

InitErgmTerm.delnodematch
Delayed node matching on attribute (lag-1)

Description

Create a nodematch term where node attributes come from the previous network’s node attribute
‘attr. The previous network used is the one indexed by the current ‘GroupID* (equivalent to ‘lag=1°
previously). This constructs a temporary node attribute ‘delnodecov_<attr>* on the current network
(copied from the previous net) and calls ‘nodematch® on that attribute.

18 InitErgmTerm.gwdelese

Usage

binary: delnodematch(attr)

Arguments

attr character attribute name to copy from the previous network into the current.

InitErgmTerm.delrecip Delayed reciprocity

Description

For the current network layer ‘base’, this term equals 1 for each directed edge i->j currently present
where the reverse edge j->i was present in the previous network’s same layer. The previous network
used is the one indexed by the current ‘GroupID* (i.e., the behaviour is the same as the prior ‘lag=1°
implementation). The term is provided as an edgecov (1/0).

Usage

binary: delrecip(base)

Arguments

base character or numeric name/identifier of the layer to examine in the current net-
work.

InitErgmTerm.gwdelese Geometrically weighted delayed edgewise shared enemies

Description

This term calculates the number of shared enemies based on the previous network. It then applies a
geometric transformation to these counts to reduce the influence of large counts. Specifically, if the
decay parameter decay is provided, the weighting function used is

f(k, decay) =1—- (1 _ e—clecay)k7

where k is the count of shared partners and decay controls how quickly the weight decreases as
counts increase.

Usage

binary: gwdelese(decay, base, type = "OTP")

InitErgmTerm.gwdelest 19

Arguments
decay Numeric decay parameter controlling weighting intensity. If NULL, raw counts
are used.
base Character indicating which edges in the current network are used as the base:
“"+"* for positive ties or *"-"* for negative ties.
type Character specifying which shared partner pattern to use; one of "OTP" (out-

going two-path), "ITP" (incoming two-path), "RTP" (reciprocated two-path),
"OSP" (outgoing shared partner), "ISP" (incoming shared partner).

InitErgmTerm.gwdelesf Geometrically weighted delayed edgewise shared friends

Description
This term calculates the number of shared friends based on the previous network. It then applies a

geometric transformation to these counts to reduce the influence of large counts. Specifically, if the
decay parameter decay is provided, the weighting function used is

f(k’, decay) =1—- (1 _ e—decay)k-

b

where k is the count of shared partners and decay controls how quickly the weight decreases as
counts increase. If decay is no

Usage

binary: gwdelesf(decay, base, type = "OTP")

Arguments
decay Numeric decay parameter controlling weighting intensity. If NULL, raw counts
are used.
base Character indicating which edges in the current network are used as the base:
“"+"¢ for positive ties or ‘"-"* for negative ties.
type Character specifying which shared partner pattern to use; one of "OTP" (out-

going two-path), "ITP" (incoming two-path), "RTP" (reciprocated two-path),
"OSP" (outgoing shared partner), "ISP"” (incoming shared partner).

20

mple_sign

InitErgmTerm.Neg Evaluation of negative edges

Description

Evaluates the terms in ‘formula‘ of the negative edges and sums the results elementwise.

Usage

binary: Neg(formula)

Arguments
formula a one-sided [ergm()]-style formula with the terms to be evaluated
InitErgmTerm.Pos Evaluation of positive edges
Description

Evaluates the terms in ‘formula‘ of the positive edges and sums the results elementwise.

Usage

binary: Pos(formula)

Arguments
formula a one-sided [ergm()]-style formula with the terms to be evaluated
mple_sign Fit an ERGM with MPLE using a logistic regression model
Description

Returns a fitted logistic regression model used to calculate the maximum pseudolikelihood estimate

(MPLE) of an exponential random graph model (ERGM).

Usage

mple_sign(formula, control = control.ergm(), seed = NULL, ...)

network.sign 21

Arguments
formula An ERGM formula with the network on the left-hand side.
control A list of control parameters for ergmMPLE. By default, the covariance method is
set to "Godambe".
seed Optional integer to set the random seed for reproducibility when simulating net-
works for Godambe covariance estimation.
Additional arguments passed to ergmMPLE.
Details

The MPLE is calculated by first computing matrices of positive and negative change statistics.
These are then used to estimate the MPLE via logistic regression. Optionally, the covariance can be
estimated using the Godambe method.

Value

An object of class ergm.

See Also

ergmMPLE, ergm, glm

Examples

data(tribes)
mple_sign(tribes ~ Pos(~edges) + Neg(~edges))

network.sign Create Signed Network Object

Description

Turn adjacency matrices or edgelists into static or dynamic signed networks.

Usage

network.sign(
mat = NULL,
pos.mat = NULL,
neg.mat = NULL,
directed = FALSE,
loops = FALSE,
matrix.type = c("adjacency”, "edgelist"),
vertex.names = NULL,
vertex.attr = NULL,
dual.sign = FALSE,

22 networks.sign

timepoints = NULL,

tie.breaker = c("zero", "positive"”, "negative"”, "first"”, "last"),
)
Arguments

mat (List of) signed adjacency matrices or edgelists. For dynamic networks, provide
a list. Adjacency matrices must contain only -1, 0, or 1. Edgelists must have
three columns: "From", "To", and "Sign".

pos.mat Optional. Positive adjacency matrix or list of matrices.

neg.mat Optional. Negative adjacency matrix or list of matrices. If provided, these are
treated as two separate layers of the same network.

directed Logical; should edges be interpreted as directed? Defaults to FALSE.

loops Logical; should loops be allowed? Defaults to FALSE.

matrix.type Either "adjacency" or "edgelist".

vertex.names Optional. A vector or list of vertex names.

vertex.attr Optional. Additional vertex attributes.

dual.sign Logical. Allow positive and negative edges simultaneously between the same
pair.

timepoints Optional. Pooling definition for dynamic networks.

tie.breaker How to resolve ties when pooling signed matrices.

Additional arguments passed to ‘network::network".

Value

A signed network of class ‘static.sign® or ‘dynamic.sign‘.

networks.sign Combine Signed Networks into a Multi- or Dynamic-Network Object

Description

Creates a composite network object from multiple signed networks, suitable for ERGM modeling.
Can represent either a multilayer or dynamic signed network structure.

Usage

networks.sign(..., dynamic = FALSE, dual.sign = FALSE)

nse-ergmTerm 23

Arguments
One or more signed networks (objects of class "static.sign"), or alist of such
networks.
dynamic Logical. If TRUE, treat input as a dynamic network; otherwise as a multilayer
network. Defaults to FALSE.
dual.sign Logical. If TRUE, disables the layer fixing constraint. Defaults to FALSE.
Value

A combined network object of class "multi.sign” or "dynamic.sign"”, with the appropriate
ERGM constraint formula.

Examples

data("tribes")
multi_net <- networks.sign(tribes, tribes)
dyn_net <- networks.sign(list(tribes, tribes), dynamic = TRUE)

nse-ergmTerm Non-edgewise shared enemies

Description

This term adds one network statistic to the model for each element in ‘d* where the ¢ th such statistic
equals the number of non-edges in the network with exactly ‘d[i]* shared enemies. For a directed
network, multiple shared enemy definitions are possible.

Usage

binary: nse(d, type="OTP", base=NULL, in_order=FALSE)

Arguments
d a vector of distinct integers
type A string indicating the type of shared partner or path to be considered for di-

rected networks: ‘"OTP"* (default for directed), <"ITP"‘, ‘"RTP"*, “"OSP"‘, and
“"ISP"“; has no effect for undirected. See the section below on Shared partner
types for details.

>

base specify the base of the triad, either by *+’ and ’-* or 1 and -1

24 nst-ergmTerm

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (‘"OTP"*): vertex
k is an OTP shared partner of ordered pair (i, j) iff i — k& — j. Also known as "transitive shared
partner". - Incoming Two-path (‘"ITP"‘): vertex k is an ITP shared partner of ordered pair (i, j) iff
j — k — 1. Also known as "cyclical shared partner" - Reciprocated Two-path (*"RTP"*): vertex k
is an RTP shared partner of ordered pair (i, 7) iff i <> k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(“"ISP"): vertex k is an ISP shared partner of ordered pair (4, j) iff & — i,k — j. By default,
outgoing two-paths (*"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also

[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

nsf-ergmTerm Non-edgewise shared friends

Description

This term adds one network statistic to the model for each element in ‘d* where the ¢ th such statistic
equals the number of non-edges in the network with exactly ‘d[i]‘ shared friends. For a directed
network, multiple shared friend definitions are possible.

Usage

binary: nsf(d, type="OTP", base=NULL, in_order=FALSE)

Arguments
d a vector of distinct integers
type A string indicating the type of shared partner or path to be considered for di-

rected networks: ‘"OTP"‘ (default for directed), ‘"ITP"*, ‘"RTP"*, *"OSP"*, and
“"ISP"*; has no effect for undirected. See the section below on Shared partner
types for details.

>

base specify the base of the triad, either by *+’ and ’-* or 1 and -1

plot.dynamic.sign 25

Shared partner types

While there is only one shared partner configuration in the undirected case, nine distinct configu-
rations are possible for directed graphs, selected using the ‘type‘ argument. Currently, terms may
be defined with respect to five of these configurations; they are defined here as follows (using ter-
minology from Butts (2008) and the ‘relevent® package): - Outgoing Two-path (‘"OTP"*): vertex
k is an OTP shared partner of ordered pair (¢, 7) iff i — k& — j. Also known as "transitive shared
partner”. - Incoming Two-path (‘"TTP"*): vertex k is an ITP shared partner of ordered pair (4, j) iff
j — k — i. Also known as "cyclical shared partner" - Reciprocated Two-path (‘"RTP"*): vertex k
is an RTP shared partner of ordered pair (i, j) iff i <> k <> j. - Outgoing Shared Partner (‘"OSP"*):
vertex k is an OSP shared partner of ordered pair (7, j) iff i — k, j — k. - Incoming Shared Partner
(‘“"ISP"): vertex k is an ISP shared partner of ordered pair (i, j) iff & — i,k — j. By default,
outgoing two-paths (‘"OTP"*) are calculated. Note that Robins et al. (2009) define closely related
statistics to several of the above, using slightly different terminology.

Note

This term takes an additional term option (see [‘options?ergm‘][ergm-options]), ‘cache.sp‘, con-
trolling whether the implementation will cache the number of shared partners for each dyad in the
network; this is usually enabled by default.

See Also
[‘ergmTerm‘] for index of model terms currently visible to the package.

Keywords: directed, undirected, binary

plot.dynamic.sign Visualization for Dynamic Signed Networks

Description

plot.dynamic.sign() visualizes a dynamic signed network over multiple timepoints.

Usage
S3 method for class 'dynamic.sign'
plot(
X!
col_pos = "#008000",
col_neg = "#E3000F",
neg.lty = 1,
inv_weights = TRUE,
time = NULL,

titles = NULL,
fix.pos = TRUE,

26 plot.static.sign

Arguments
X A signed network object of class dynamic.sign.
col_pos Color for positive edges. Default is "green3’.
col_neg Color for negative edges. Default is 'red3’.
neg.lty Line type for negative edges. Default is "solid". Other options are "dotted" and

"dashed".

inv_weights Logical. If TRUE, edge weights are inverted (1/weights) so positive edges pull
nodes closer together. Default is TRUE.

time A vector of integers indicating which timepoints should be visualized. Defaults
to all.

titles A character vector of names for the timepoints.

fix.pos Logical. If TRUE, the layout is fixed across timepoints based on the first time-

point. Default is TRUE.

Additional arguments passed to the plot function.

Value

A list of plots, one for each selected timepoint.

Layout

Uses a force-directed graph layout based on stress majorization, implemented in the graphlayouts
package via layout_with_stress(). Similar to Kamada-Kawai, but generally faster and with
better results.

plot.static.sign Visualization for Signed Networks

Description

Functions to visualize signed networks in static or dynamic form.

Usage
S3 method for class 'static.sign'
plot(
X,
col_pos = "#008000",
col_neg = "#E3000F",
neg.lty = 1,
inv_weights = TRUE,
coord = NULL,

plot.static.sign 27

Arguments
X A signed network object of class static.sign.
col_pos Color for positive edges. Default is green3’.
col_neg Color for negative edges. Default is 'red3’.
neg.lty Line type for negative edges. Default is "solid". Other options are "dotted" and

"dashed".

inv_weights Logical. If TRUE, edge weights are inverted (1/weights) so positive edges pull
nodes closer together. Default is TRUE.

coord Optional matrix of coordinates for node positions. If NULL, layout is computed
using stress majorization.

Additional arguments passed to the plot function.

Value

A plot of the signed network.

Layout

Uses a force-directed graph layout based on stress majorization, implemented in the graphlayouts
package via layout_with_stress(). Similar to Kamada-Kawai, but generally faster and with
better results.

Static signed networks

plot.static.sign() visualizes a single (static) signed network.

References

Gansner ER, Koren Y, North S (2004). “Graph drawing by stress majorization.” In International
Symposium on Graph Drawing, 239-250. Springer.

See Also

UnLayer, layout_with_stress

Examples

data("tribes")
plot(tribes, col_pos = "green”, col_neg = "red")

28 rebels_pooled

rebels Conflict Events in Syrian Civil War

Description
A dynamic network of combat events in the Syrian civil war between 2017 and 2025. The raw data
comes from the Armed Conflict Location & Event Data Project Raleigh et al. (2010).

Format

An undirected dynamic. sign object with no loops and eight timepoints.

References

Fritz C, Mehrl M, Thurner PW, Kauermann G (2023). “All that glitters is not gold: Relational
events models with spurious events.” Network Science, 11(2), 184-204., Raleigh C, Linke r, Hegre
H, Karlsen J (2010). “Introducing ACLED: An armed conflict location and event dataset.” Journal
of peace research, 47(5), 651-660.

Examples

data(rebels)

rebels_pooled Conflict Events in Syrian Civil War

Description

A pooled dynamic network of combat events in the Syrian civil war between 2017 and 2019 with 4
timepoints. The raw data comes from the Armed Conflict Location & Event Data Project Raleigh
et al. (2010).

Format

An undirected dynamic. sign object with no loops and eight timepoints.

References

Fritz C, Mehrl M, Thurner PW, Kauermann G (2023). “All that glitters is not gold: Relational
events models with spurious events.” Network Science, 11(2), 184-204., Raleigh C, Linke r, Hegre
H, Karlsen J (2010). “Introducing ACLED: An armed conflict location and event dataset.” Journal
of peace research, 47(5), 651-660.

Examples

data(rebels)

snctrl 29

snctrl Statnet Control

Description

A utility to facilitate argument completion of control lists, reexported from ‘statnet.common®.

Currently recognised control parameters

This list is updated as packages are loaded and unloaded.

Package ergm:

control.ergm drop, init, init.method, main.method, force.main, main.hessian, checkpoint,
resume, MPLE.samplesize, init.MPLE.samplesize, MPLE. type, MPLE.maxit, MPLE.nonvar,
MPLE.nonident, MPLE.nonident.tol, MPLE.covariance.samplesize, MPLE.covariance.method,
MPLE.covariance.sim.burnin, MPLE.covariance.sim.interval, MPLE.check, MPLE.constraints.ignore,
MCMC. prop, MCMC.prop.weights, MCMC.prop.args, MCMC.interval, MCMC.burnin, MCMC. samplesize,
MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.buri
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max, MCMC.effectiveSize.burnin.nmin,
MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max, MCMC.return.stats, MCMC.runtime. traceplot, MCMC.maxedges,
MCMC. addto.se, MCMC. packagenames, SAN.maxit, SAN.nsteps.times, SAN, MCMLE. termination,
MCMLE .maxit, MCMLE.conv.min.pval, MCMLE.confidence, MCMLE.confidence.boost, MCMLE. confidence.boo
MCMLE . confidence.boost.lag, MCMLE.NR.maxit, MCMLE.NR.reltol, obs.MCMC.mul, obs.MCMC.samplesize.m
obs.MCMC.samplesize, obs.MCMC.effectiveSize, obs.MCMC.interval.mul, obs.MCMC.interval,
obs.MCMC.burnin.mul, obs.MCMC.burnin, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args,
obs.MCMC. impute.min_informative, obs.MCMC. impute.default_density, MCMLE.min.depfac,
MCMLE . sampsize.boost.pow, MCMLE.MCMC.precision, MCMLE.MCMC.max.ESS.frac, MCMLE.metric,
MCMLE .method, MCMLE. dampening, MCMLE.dampening.min.ess, MCMLE.dampening.level,
MCMLE.steplength.margin, MCMLE.steplength, MCMLE.steplength.parallel, MCMLE. sequential,
MCMLE .density.guard.min, MCMLE.density.guard, MCMLE.effectiveSize, obs.MCMLE.effectiveSize,
MCMLE.interval, MCMLE.burnin, MCMLE.samplesize.per_theta, MCMLE.samplesize.min,
MCMLE . samplesize, obs.MCMLE.samplesize.per_theta, obs.MCMLE.samplesize.min,
obs.MCMLE.samplesize, obs.MCMLE. interval, obs.MCMLE.burnin, MCMLE.steplength.solver,
MCMLE . last.boost, MCMLE.steplength.esteq, MCMLE.steplength.miss.sample, MCMLE. steplength.min,
MCMLE.effectiveSize.interval_drop, MCMLE.save_intermediates, MCMLE.nonvar, MCMLE.nonident,
MCMLE .nonident.tol, SA.phasel_n, SA.initial_gain, SA.nsubphases, SA.min_iterations,
SA.max_iterations, SA.phase3_n, SA.interval, SA.burnin, SA.samplesize, CD.samplesize.per_theta,
obs.CD.samplesize.per_theta, CD.nsteps, CD.multiplicity, CD.nsteps.obs, CD.multiplicity.obs,
CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method, CD.dampening,
CD.dampening.min.ess, CD.dampening.level, CD.steplength.margin, CD.steplength,
CD.adaptive.epsilon, CD.steplength.esteq, CD.steplength.miss.sample, CD.steplength.min,
CD.steplength.parallel, CD.steplength.solver, loglik, term.options, seed, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.ergm.bridge bridge.nsteps, bridge.target.se, bridge.bidirectional, drop,
MCMC.burnin, MCMC.burnin.between, MCMC. interval, MCMC.samplesize, obs.MCMC.burnin,
obs.MCMC.burnin.between, obs.MCMC.interval, obs.MCMC.samplesize, MCMC.prop, MCMC.prop.weights,

snctrl

MCMC.prop.args, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args, MCMC.maxedges,
MCMC. packagenames, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT, ...

control.ergm.godfather term.options

control.ergm3 drop, init, init.method, main.method, force.main, main.hessian, checkpoint,
resume, MPLE.samplesize, init.MPLE.samplesize, MPLE. type, MPLE.maxit, MPLE.nonvar,
MPLE.nonident, MPLE.nonident.tol, MPLE.covariance.samplesize, MPLE.covariance.method,
MPLE.covariance.sim.burnin, MPLE.covariance.sim.interval, MPLE.check, MPLE.constraints.ignore,
MCMC. prop, MCMC.prop.weights, MCMC.prop.args, MCMC.interval, MCMC.burnin, MCMC. samplesize,
MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns, MCMC.effectiveSize.buri
MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max, MCMC.effectiveSize.burnin.nmin,
MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC, MCMC.effectiveSize.burnin.scl,
MCMC.effectiveSize.order.max, MCMC.return.stats, MCMC.runtime. traceplot, MCMC.maxedges,
MCMC. addto.se, MCMC. packagenames, SAN.maxit, SAN.nsteps.times, SAN, MCMLE. termination,
MCMLE .maxit, MCMLE.conv.min.pval, MCMLE.confidence, MCMLE.confidence.boost, MCMLE. confidence.boo
MCMLE . confidence.boost.lag, MCMLE.NR.maxit, MCMLE.NR.reltol, obs.MCMC.mul, obs.MCMC.samplesize.m
obs.MCMC.samplesize, obs.MCMC.effectiveSize, obs.MCMC.interval.mul, obs.MCMC.interval,
obs.MCMC.burnin.mul, obs.MCMC.burnin, obs.MCMC.prop, obs.MCMC.prop.weights, obs.MCMC.prop.args,
obs.MCMC. impute.min_informative, obs.MCMC. impute.default_density, MCMLE.min.depfac,
MCMLE . sampsize.boost.pow, MCMLE .MCMC.precision, MCMLE.MCMC.max.ESS. frac, MCMLE.metric,
MCMLE .method, MCMLE. dampening, MCMLE .dampening.min.ess, MCMLE.dampening. level,
MCMLE.steplength.margin, MCMLE.steplength, MCMLE.steplength.parallel, MCMLE. sequential,
MCMLE .density.guard.min, MCMLE.density.guard, MCMLE.effectiveSize, obs.MCMLE.effectiveSize,
MCMLE.interval, MCMLE.burnin, MCMLE. samplesize.per_theta, MCMLE.samplesize.min,
MCMLE . samplesize, obs.MCMLE.samplesize.per_theta, obs.MCMLE.samplesize.min,
obs.MCMLE.samplesize, obs.MCMLE.interval, obs.MCMLE.burnin, MCMLE.steplength.solver,
MCMLE.last.boost, MCMLE.steplength.esteq, MCMLE.steplength.miss.sample, MCMLE. steplength.min,
MCMLE.effectiveSize.interval_drop, MCMLE.save_intermediates, MCMLE.nonvar, MCMLE.nonident,
MCMLE .nonident.tol, SA.phasel_n, SA.initial_gain, SA.nsubphases, SA.min_iterations,
SA.max_iterations, SA.phase3_n, SA.interval, SA.burnin, SA.samplesize, CD.samplesize.per_theta,
obs.CD.samplesize.per_theta, CD.nsteps, CD.multiplicity, CD.nsteps.obs, CD.multiplicity.obs,
CD.maxit, CD.conv.min.pval, CD.NR.maxit, CD.NR.reltol, CD.metric, CD.method, CD.dampening,
CD.dampening.min.ess, CD.dampening.level, CD.steplength.margin, CD.steplength,
CD.adaptive.epsilon, CD.steplength.esteq, CD.steplength.miss.sample, CD.steplength.min,
CD.steplength.parallel, CD.steplength.solver, loglik, term.options, seed, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.gof.ergm nsim, MCMC.burnin, MCMC.interval, MCMC.batch, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.maxedges, MCMC. packagenames, MCMC.runtime. traceplot, network.output,
seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT

control.gof.formula nsim, MCMC.burnin, MCMC. interval, MCMC.batch, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.maxedges, MCMC. packagenames, MCMC.runtime. traceplot, network.output,
seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT

control.loglLik.ergm bridge.nsteps, bridge.target.se, bridge.bidirectional, drop,
MCMC.burnin, MCMC.interval, MCMC.samplesize, obs.MCMC.samplesize, obs.MCMC.interval,
obs.MCMC.burnin, MCMC.prop, MCMC.prop.weights, MCMC.prop.args, obs.MCMC.prop,
obs.MCMC.prop.weights, obs.MCMC.prop.args, MCMC.maxedges, MCMC. packagenames,
term.options, seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT,

snctrl 31

control.san SAN.maxit, SAN.tau, SAN.invcov, SAN.invcov.diag, SAN.nsteps.alloc, SAN.nsteps,
SAN.samplesize, SAN.prop, SAN.prop.weights, SAN.prop.args, SAN.packagenames,
SAN.ignore.finite.offsets, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT

control.simulate MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights, MCMC.prop.args,
MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxruns,
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC. packagenames, MCMC.runtime. traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.ergm MCMC.burnin, MCMC.interval, MCMC.scale, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxr
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC. packagenames, MCMC.runtime. traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.formula MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxr
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC. packagenames, MCMC.runtime. traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

control.simulate.formula.ergm MCMC.burnin, MCMC.interval, MCMC.prop, MCMC.prop.weights,
MCMC.prop.args, MCMC.batch, MCMC.effectiveSize, MCMC.effectiveSize.damp, MCMC.effectiveSize.maxr
MCMC.effectiveSize.burnin.pval, MCMC.effectiveSize.burnin.min, MCMC.effectiveSize.burnin.max,
MCMC.effectiveSize.burnin.nmin, MCMC.effectiveSize.burnin.nmax, MCMC.effectiveSize.burnin.PC,
MCMC.effectiveSize.burnin.scl, MCMC.effectiveSize.order.max, MCMC.maxedges,
MCMC. packagenames, MCMC.runtime. traceplot, network.output, term.options, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT, ...

Package ergm.multi:

control.gofN nsim, obs.twostage, array.max, simulate, obs.simulate, parallel, parallel.type,
parallel.version.check, parallel.inherit.MT

control.gofN.ergm nsim, obs.twostage, array.max, simulate, obs.simulate, parallel,
parallel.type, parallel.version.check, parallel.inherit.MT

Package tergm:

control.simulate.formula.tergm MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval,
MCMC.burnin.add, MCMC.prop, MCMC.prop.weights, MCMC.prop.args, MCMC.maxedges,
MCMC.maxchanges, term.options, MCMC.packagenames

control.simulate.network MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval, MCMC.burnin.add,
MCMC. prop.form, MCMC.prop.diss, MCMC.prop.weights.form, MCMC.prop.weights.diss,
MCMC.prop.args.form, MCMC.prop.args.diss, MCMC.maxedges, MCMC.maxchanges, term.options,
MCMC. packagenames

32 sponsor

control.simulate.stergm MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval, MCMC.burnin.add,
MCMC. prop.form, MCMC.prop.diss, MCMC.prop.weights.form, MCMC.prop.weights.diss,
MCMC.prop.args.form, MCMC.prop.args.diss, MCMC.maxedges, MCMC.maxchanges, term.options,
MCMC. packagenames

control.simulate.tergm MCMC.burnin.min, MCMC.burnin.max, MCMC.burnin.pval, MCMC.burnin.add,
MCMC. prop, MCMC.prop.weights, MCMC.prop.args, MCMC.maxedges, MCMC.maxchanges,
term.options, MCMC.packagenames

control.stergm init.form, init.diss, init.method, force.main, MCMC.prop.form, MCMC.prop.diss,
MCMC.prop.weights.form, MCMC.prop.args.form, MCMC.prop.weights.diss, MCMC.prop.args.diss,
MCMC.maxedges, MCMC.maxchanges, MCMC.packagenames, CMLE.MCMC.burnin, CMLE.MCMC. interval,
CMLE.ergm, CMLE.form.ergm, CMLE.diss.ergm, CMLE.NA.impute, CMLE. term.check.override,
EGMME.main.method, EGMME.initialfit.control, EGMME.MCMC.burnin.min, EGMME.MCMC.burnin.max,
EGMME .MCMC.burnin.pval, EGMME.MCMC.burnin.add, MCMC.burnin, MCMC.burnin.mul,
SAN.maxit, SAN.nsteps.times, SAN, SA.restarts, SA.burnin, SA.plot.progress, SA.max.plot.points,
SA.plot.stats, SA.init.gain, SA.gain.decay, SA.runlength, SA.interval.mul, SA.init.interval,
SA.min.interval, SA.max.interval, SA.phasel.minruns, SA.phasel.tries, SA.phasel.jitter,
SA.phasel.max.q, SA.phasel.backoff.rat, SA.phase2.levels.max, SA.phase2.levels.min,
SA.phase2.max.mc.se, SA.phase2.repeats, SA.stepdown.maxn, SA.stepdown.p, SA.stop.p,
SA.stepdown.ct, SA.phase2.backoff.rat, SA.keep.oh, SA.keep.min.runs, SA.keep.min,
SA.phase2.jitter.mul, SA.phase2.maxreljump, SA.guard.mul, SA.par.eff.pow, SA.robust,
SA.oh.memory, SA.refine, SA.se, SA.phase3.samplesize.runs, SA.restart.on.err,
term.options, seed, parallel, parallel.type, parallel.version.check, parallel.inherit.MT,

control.tergm init, init.method, force.main, MCMC.prop, MCMC.prop.weights, MCMC.prop.args,
MCMC.maxedges, MCMC.maxchanges, MCMC.packagenames, CMLE.MCMC.burnin, CMLE.MCMC. interval,
CMLE.ergm, CMLE.NA.impute, CMLE.term.check.override, EGMME.main.method, EGMME.initialfit.control
EGMME .MCMC.burnin.min, EGMME.MCMC.burnin.max, EGMME .MCMC.burnin.pval, EGMME .MCMC.burnin.add,
MCMC.burnin, MCMC.burnin.mul, SAN.maxit, SAN.nsteps.times, SAN, SA.restarts, SA.burnin,
SA.plot.progress, SA.max.plot.points, SA.plot.stats, SA.init.gain, SA.gain.decay,
SA.runlength, SA.interval.mul, SA.init.interval, SA.min.interval, SA.max.interval,
SA.phasel.minruns, SA.phasel.tries, SA.phasel.jitter, SA.phasel.max.q, SA.phasel.backoff.rat,
SA.phase2.levels.max, SA.phase2.levels.min, SA.phase2.max.mc.se, SA.phase2.repeats,
SA.stepdown.maxn, SA.stepdown.p, SA.stop.p, SA.stepdown.ct, SA.phase2.backoff.rat,
SA.keep.oh, SA.keep.min.runs, SA.keep.min, SA.phase2.jitter.mul, SA.phase2.maxreljump,
SA.guard.mul, SA.par.eff.pow, SA.robust, SA.oh.memory, SA.refine, SA.se, SA.phase3.samplesize.run
SA.restart.on.err, term.options, seed, parallel, parallel.type, parallel.version.check,
parallel.inherit.MT

control.tergm.godfather term.options

See Also

[statnet.common::snctrl()]

sponsor Common Sponsor Data for Syrian Civil War Factions

summary.static.sign 33

Description
A data frame containing binary indicators for whether each faction in the Syrian civil war is spon-
sored by a common external actor.

Format

A matrix with 68 rows and 68 columns.

References

Fritz C, Mehrl M, Thurner PW, Kauermann G (2023). “All that glitters is not gold: Relational
events models with spurious events.” Network Science, 11(2), 184-204.

Examples

data(sponsor)

summary.static.sign Network Attributes for Signed Networks

Description

Print descriptive statistics of a signed network.

Usage

S3 method for class 'static.sign'
summary (object, ...)

S3 method for class 'dynamic.sign'

summary(object, time = NULL, names = NULL, ...)
Arguments
object A signed network object of class dynamic.sign.

Additional arguments.

time Integer vector of timepoints to summarize. Defaults to all.
names Character vector of names for timepoints. If NULL, uses "Time 1", "Time 2",
etc.
Value

A data frame or matrix with network attributes.

Static signed networks

summary.static.sign() summarizes a single (static) signed network.

34 tribes

See Also

network.sign, UnLayer

Examples

data("tribes")
summary (tribes)

summary_formula.dynamic.sign
Summary formula method for dynamic signed networks

Description

Calculates statistics for dynamic.sign objects at specified timepoints.

Usage
S3 method for class 'dynamic.sign'
summary_formula(object, at, ..., basis = NULL)
Arguments
object A formula with a dynamic.sign network as LHS.
at Numeric vector of timepoints. Defaults to all if missing.

Additional arguments passed to summary_formula for network objects.

basis Optional dynamic.sign network. If NULL, uses LHS network.

Value

Matrix of statistics for each timepoint.

tribes Read Highland Tribes

Description
A static network of political alliances and enmities among the 16 Gahuku-Gama sub-tribes of East-
ern Central Highlands of New Guinea, documented by Read (1954).

Format

An undirected static.sign object with no loops.

UnLayer 35

References

Taken from UCINET IV, which cites the following: Hage P, Harary F (1983). Structural Models
in Anthropology, Cambridge Studies in Social and Cultural Anthropology. Cambridge University
Press. ISBN 9780521273114., Read KE (1954). “Cultures of the central highlands, New Guinea.”
Southwestern Journal of Anthropology, 10(1), 1-43.

Examples

data(tribes)

UnLayer Multilayer network to single layer network.

Description

Turn a multilayer network object into a single layer network object.

Usage

UnLayer(net, color_pos = "#008000", color_neg = "#E3000F", neg.lty = 2)

Arguments
net A signed network object of class static.sign or dynamic.sign.
color_pos Color for positive edges. Default is *#008000’.
color_neg Color for negative edges. Default is "#E3000F’.
neg.lty Line type for negative edges. Default is 2.
Value

Single layer network object or a list of network objects for dynamic.sign.

See Also

network.sign

Examples

data("tribes")
tribes_sgl <- UnLayer(tribes)

Index

x delayed
InitErgmTerm.delese, 16
InitErgmTerm.delesf, 17
InitErgmTerm.delnodematch, 17
InitErgmTerm.delrecip, 18
InitErgmTerm.gwdelese, 18
InitErgmTerm.gwdelesf, 19

* directed

dse-ergmTerm, 3
dsf-ergmTerm, 4
ese-ergmTerm, 5
esf-ergmTerm, 6

fixL-ergmConstraint, 7

gwdse-ergmTerm, 8
gwdsf-ergmTerm, 10
gwese-ergmTerm, 11
gwesf-ergmTerm, 12
gwnse-ergmTerm, 13
gwnsf-ergmTerm, 15
nse-ergmTerm, 23
nsf-ergmTerm, 24

* layer-aware

fixL-ergmConstraint, 7

* operator

InitErgmTerm.Neg, 20
InitErgmTerm.Pos, 20

* undirected

dse-ergmTerm, 3
dsf-ergmTerm, 4
ese-ergmTerm, 5
esf-ergmTerm, 6

fixL-ergmConstraint, 7

gwdse-ergmTerm, 8

gwdsf-ergmTerm, 10
gwese-ergmTerm, 11
gwesf-ergmTerm, 12
gwnse-ergmTerm, 13
gwnsf-ergmTerm, 15
nse-ergmTerm, 23

36

nsf-ergmTerm,

control.ergm, 29
control.ergm.brid

24

ge, 29

control.ergm.godfather, 30

control.ergm3, 30
control.gof.ergm,
control.gof.formu
control.gofN, 31

control.gofN.ergm
control.loglLik.er
control.san, 3/

control.simulate,
control.simulate
control.simulate
control.simulate.
control.simulate
control.simulate.
control.simulate
control.simulate
control.stergm, 32
control. tergm, 32
control.tergm.god

dse-ergmTerm, 3
dsf-ergmTerm, 4

ergm, 8, 21
ergm.sign, 5
ergmMPLE, 2/
ese-ergmTerm, 5
esf-ergmTerm, 6

fixL-ergmConstrai

glm, 21

GoF, 7
gwdse-ergmTerm, 8
gwdsf-ergmTerm, 10
gwese-ergmTerm, 11
gwesf-ergmTerm, 12

30
1la, 30

, 31
gm, 30

31

.ergm, 31
.formula, 3/

formula.ergm, 31

.formula.tergm, 3/

network, 3/

.stergm, 32
.tergm, 32

father, 32

nt, 7

INDEX

gwnse-ergmTerm, 13
gwnsf-ergmTerm, 15

InitErgmConstraint.fixL
(fixL-ergmConstraint), 7
InitErgmTerm.delese, 16
InitErgmTerm.delesf, 17
InitErgmTerm.delnodematch, 17
InitErgmTerm.delrecip, 18
InitErgmTerm.dse (dse-ergmTerm), 3
InitErgmTerm.dsf (dsf-ergmTerm), 4
InitErgmTerm.ese (ese-ergmTerm), 5
InitErgmTerm.esf (esf-ergmTerm), 6
InitErgmTerm.gwdelese, 18
InitErgmTerm.gwdelesf, 19
InitErgmTerm.gwdse (gwdse-ergmTerm), 8
InitErgmTerm.gwdsf (gwdsf-ergmTerm), 10
InitErgmTerm.gwese (gwese-ergmTerm), 11
InitErgmTerm. gwesf (gwesf-ergmTerm), 12
InitErgmTerm.gwnse (gwnse-ergmTerm), 13
InitErgmTerm.gwnsf (gwnsf-ergmTerm), 15
InitErgmTerm.Neg, 20
InitErgmTerm.nse (nse-ergmTerm), 23
InitErgmTerm.nsf (nsf-ergmTerm), 24
InitErgmTerm.Pos, 20

layout_with_stress, 27
mple_sign, &8, 20

network.sign, 21, 34, 35
networks.sign, 22
nse-ergmTerm, 23
nsf-ergmTerm, 24

plot.dynamic.sign, 25
plot.static.sign, 26

rebels, 28
rebels_pooled, 28

set.seed, 8

snctrl, 29

sponsor, 32

summary.dynamic.sign
(summary.static.sign), 33

summary.static.sign, 33

summary_formula.dynamic.sign, 34

tribes, 34

UnLayer, 27, 34, 35

	dse-ergmTerm
	dsf-ergmTerm
	ergm.sign
	ese-ergmTerm
	esf-ergmTerm
	fixL-ergmConstraint
	GoF
	gwdse-ergmTerm
	gwdsf-ergmTerm
	gwese-ergmTerm
	gwesf-ergmTerm
	gwnse-ergmTerm
	gwnsf-ergmTerm
	InitErgmTerm.delese
	InitErgmTerm.delesf
	InitErgmTerm.delnodematch
	InitErgmTerm.delrecip
	InitErgmTerm.gwdelese
	InitErgmTerm.gwdelesf
	InitErgmTerm.Neg
	InitErgmTerm.Pos
	mple_sign
	network.sign
	networks.sign
	nse-ergmTerm
	nsf-ergmTerm
	plot.dynamic.sign
	plot.static.sign
	rebels
	rebels_pooled
	snctrl
	sponsor
	summary.static.sign
	summary_formula.dynamic.sign
	tribes
	UnLayer
	Index

