The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
deduped contains one main function
deduped() which speeds up slow, vectorized functions by
only performing computations on the unique values of the input and
expanding the results at the end. A convenience wrapper,
with_deduped(), was added in version 0.3.0 to allow piping
an existing expression.
You can install the released version of deduped from CRAN with:
install.packages("deduped")And the development version from GitHub:
if(!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("orgadish/deduped")library(deduped)
set.seed(0)
slow_tolower <- function(x) {
for (i in x) {
Sys.sleep(0.0005)
}
tolower(x)
}deduped()
# Create a vector with significant duplication.
unique_vec <- sample(LETTERS, 5)
duplicated_vec <- sample(rep(unique_vec, 50))
length(duplicated_vec)
#> [1] 250
system.time({ x1 <- slow_tolower(duplicated_vec) })
#> user system elapsed
#> 0.00 0.00 3.88
system.time({ x2 <- deduped(slow_tolower)(duplicated_vec) })
#> user system elapsed
#> 0.10 0.00 0.24
all.equal(x1, x2)
#> [1] TRUENote: As of version 0.3.0, you could also use
slow_tolower(duplicated_vec) |> with_deduped().
deduped(lapply)()deduped() can also be combined with
lapply() or purrr::map().
unique_list <- lapply(1:3, function(j) sample(LETTERS, j, replace = TRUE))
str(unique_list)
#> List of 3
#> $ : chr "E"
#> $ : chr [1:2] "L" "O"
#> $ : chr [1:3] "N" "O" "Q"
# Create a list with significant duplication.
duplicated_list <- sample(rep(unique_list, 50))
length(duplicated_list)
#> [1] 150
system.time({ y1 <- lapply(duplicated_list, slow_tolower) })
#> user system elapsed
#> 0.03 0.00 4.68
system.time({ y2 <- deduped(lapply)(duplicated_list, slow_tolower) })
#> user system elapsed
#> 0.00 0.00 0.09
all.equal(y1, y2)
#> [1] TRUEThese binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.