The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

The conversim package provides tools for analyzing
similarity between conversations, with a focus on calculating topic,
lexical, semantic, stylistic, and sentiment similarities. This package
can handle comparisons between two long speeches, a sequence of
conversations in one or multiple dyads. Some utility functions are also
provided that allow researchers to explore and visualize conversational
patterns.
You can install conversim on CRAN:
install.packages("conversim")library(conversim)
load(system.file("extdata", "dyad_example_data.Rdata", package = "conversim"))
load(system.file("extdata", "speeches_data.RData", package = "conversim"))Below are examples of how to use the main functions in the
conversim package.
# preprocess_text function
preprocessed_A <- preprocess_text(speeches_data$text[1])
preprocessed_B <- preprocess_text(speeches_data$text[2])
# topic_similarity function
lda_similarity <- topic_similarity(speeches_data$text[1], speeches_data$text[2], method = "lda", num_topics = 5)
lsa_similarity <- topic_similarity(speeches_data$text[1], speeches_data$text[2], method = "lsa", num_topics = 5)
# lexical_similarity function
lex_similarity <- lexical_similarity(preprocessed_A, preprocessed_B)
# semantic_similarity function
tfidf_similarity <- semantic_similarity(speeches_data$text[1], speeches_data$text[2], method = "tfidf")
word2vec_similarity <- semantic_similarity(speeches_data$text[1], speeches_data$text[2], method = "word2vec")
# structural_similarity function
struct_similarity <- structural_similarity(strsplit(speeches_data$text[1], "\n")[[1]], strsplit(speeches_data$text[2], "\n")[[1]])
# stylistic_similarity function
style_similarity <- stylistic_similarity(speeches_data$text[1], speeches_data$text[2])
# sentiment_similarity function
sent_similarity <- sentiment_similarity(speeches_data$text[1], speeches_data$text[2])# Preprocess the conversations from multiple dyads
preprocessed_data <- preprocess_dyads(dyad_example_data)
# Select one dyad for comparison
conversation <- preprocessed_data %>% filter(dyad_id == 1) %>% select(speaker_id, processed_text)
# Calculate topic similarity sequence
topic_sim <- topic_sim_seq(conversation, method = "lda", num_topics = 2, window_size = 3)
## Lexical Similarity Sequence
lexical_sim <- lex_sim_seq(conversation, window_size = 3)
## Semantic Similarity Sequence
semantic_sim <- sem_sim_seq(conversation, method = "tfidf", window_size = 3)
## Stylistic Similarity Sequence
stylistic_sim <- style_sim_seq(conversation, window_size = 3)
## Sentiment Similarity Sequence
sentiment_sim <- sent_sim_seq(conversation, window_size = 3)# Preprocess the conversations from multiple dyads
preprocessed_data <- preprocess_dyads(dyad_example_data)
# Calculate topic similarity for multiple dyads
topic_sim_results <- topic_sim_dyads(preprocessed_data, method = "lda", num_topics = 3, window_size = 2)
# Calculate lexical similarity for multiple dyads
lexical_sim_results <- lexical_sim_dyads(preprocessed_data, window_size = 2)
# Calculate semantic similarity for multiple dyads
semantic_sim_results <- semantic_sim_dyads(preprocessed_data, method = "tfidf", window_size = 2)
# Calculate structural similarity for multiple dyads
structural_sim_results <- structural_sim_dyads(preprocessed_data)
# Calculate stylistic similarity for multiple dyads
stylistic_sim_results <- stylistic_sim_dyads(preprocessed_data)
# Calculate sentiment similarity for multiple dyads
sentiment_sim_results <- sentiment_sim_dyads(preprocessed_data)
# Calculate participant similarity for multiple dyads
participant_sim_results <- participant_sim_dyads(preprocessed_data)
# Calculate timing similarity for multiple dyads
timing_sim_results <- timing_sim_dyads(preprocessed_data)For more tutorials, please visit liu-chao.site/conversim
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.