The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Boost Math - Statistical Distributions

Statistics

The Statistical Distributions section of the Boost Math library cover a broad range of areas

Arcsine Distribution

# Arcsine distribution with default parameters
dist <- arcsine_distribution()
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.5
logcdf(dist, 0.5)
#> [1] -0.6931472
pdf(dist, 0.5)
#> [1] 0.6366198
logpdf(dist, 0.5)
#> [1] -0.4515827
hazard(dist, 0.5)
#> [1] 1.27324
chf(dist, 0.5)
#> [1] 0.6931472
mean(dist)
#> [1] 0.5
median(dist)
#> [1] 0.5
range(dist)
#> [1] 0 1
quantile(dist, 0.2)
#> [1] 0.0954915
standard_deviation(dist)
#> [1] 0.3535534
support(dist)
#> [1] 0 1
variance(dist)
#> [1] 0.125
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 1.5
kurtosis_excess(dist)
#> [1] -1.5

# Convenience functions
arcsine_pdf(0.5)
#> [1] 0.6366198
arcsine_lpdf(0.5)
#> [1] -0.4515827
arcsine_cdf(0.5)
#> [1] 0.5
arcsine_lcdf(0.5)
#> [1] -0.6931472
arcsine_quantile(0.5)
#> [1] 0.5

Bernoulli Distribution

# Bernoulli distribution with p_success = 0.5
dist <- bernoulli_distribution(0.5)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.8183099
logcdf(dist, 0.5)
#> [1] -0.2005142
pdf(dist, 0.5)
#> [1] 0.6366198
logpdf(dist, 0.5)
#> [1] -0.4515827
hazard(dist, 0.5)
#> [1] 3.503877
chf(dist, 0.5)
#> [1] 1.705453
mean(dist)
#> [1] 0.5
median(dist)
#> [1] 0
mode(dist)
#> [1] 1
range(dist)
#> [1] 0 1
quantile(dist, 0.2)
#> [1] 0
standard_deviation(dist)
#> [1] 0.5
support(dist)
#> [1] 0 1
variance(dist)
#> [1] 0.25
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 1
kurtosis_excess(dist)
#> [1] -2

# Convenience functions
bernoulli_pdf(1, 0.5)
#> [1] 0.5
bernoulli_lpdf(1, 0.5)
#> [1] -0.6931472
bernoulli_cdf(1, 0.5)
#> [1] 1
bernoulli_lcdf(1, 0.5)
#> [1] 0
bernoulli_quantile(0.5, 0.5)
#> [1] 0

Beta Distribution

# Beta distribution with shape parameters alpha = 2, beta = 5
dist <- beta_distribution(2, 5)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.890625
logcdf(dist, 0.5)
#> [1] -0.1158318
pdf(dist, 0.5)
#> [1] 0.9375
logpdf(dist, 0.5)
#> [1] -0.06453852
hazard(dist, 0.5)
#> [1] 8.571429
chf(dist, 0.5)
#> [1] 2.212973
mean(dist)
#> [1] 0.2857143
median(dist)
#> [1] 0.26445
mode(dist)
#> [1] 0.2
range(dist)
#> [1] 0 1
quantile(dist, 0.2)
#> [1] 0.1398807
standard_deviation(dist)
#> [1] 0.1597191
support(dist)
#> [1] 0 1
variance(dist)
#> [1] 0.0255102
skewness(dist)
#> [1] 0.5962848
kurtosis(dist)
#> [1] 2.88
kurtosis_excess(dist)
#> [1] -0.12

# Convenience functions
beta_pdf(0.5, 2, 5)
#> [1] 0.9375
beta_lpdf(0.5, 2, 5)
#> [1] -0.06453852
beta_cdf(0.5, 2, 5)
#> [1] 0.890625
beta_lcdf(0.5, 2, 5)
#> [1] -0.1158318
beta_quantile(0.5, 2, 5)
#> [1] 0.26445

Binomial Distribution

# Binomial dist ribution with n = 10, prob = 0.5
dist <- binomial_distribution(10, 0.5)
# Apply generic functions
cdf(dist, 2)
#> [1] 0.0546875
logcdf(dist, 2)
#> [1] -2.90612
pdf(dist, 2)
#> [1] 0.04394531
logpdf(dist, 2)
#> [1] -3.124809
hazard(dist, 2)
#> [1] 0.0464876
chf(dist, 2)
#> [1] 0.05623972
mean(dist)
#> [1] 5
median(dist)
#> [1] 5
mode(dist)
#> [1] 5
range(dist)
#> [1]  0 10
quantile(dist, 0.2)
#> [1] 3
standard_deviation(dist)
#> [1] 1.581139
support(dist)
#> [1]  0 10
variance(dist)
#> [1] 2.5
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 2.8
kurtosis_excess(dist)
#> [1] -0.2

# Convenience functions
binomial_pdf(3, 10, 0.5)
#> [1] 0.1171875
binomial_lpdf(3, 10, 0.5)
#> [1] -2.14398
binomial_cdf(3, 10, 0.5)
#> [1] 0.171875
binomial_lcdf(3, 10, 0.5)
#> [1] -1.760988
binomial_quantile(0.5, 10, 0.5)
#> [1] 5

Cauchy Distribution

# Cauchy distribution with location = 0, scale = 1
dist <- cauchy_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6475836
logcdf(dist, 0.5)
#> [1] -0.4345074
pdf(dist, 0.5)
#> [1] 0.2546479
logpdf(dist, 0.5)
#> [1] -1.367873
hazard(dist, 0.5)
#> [1] 0.7225768
chf(dist, 0.5)
#> [1] 1.042942
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -1.376382
support(dist)
#> [1] -Inf  Inf

# Convenience functions
cauchy_pdf(0)
#> [1] 0.3183099
cauchy_lpdf(0)
#> [1] -1.14473
cauchy_cdf(0)
#> [1] 0.5
cauchy_lcdf(0)
#> [1] -0.6931472
cauchy_quantile(0.5)
#> [1] 0

Chi-Squared Distribution

# Chi-Squared distribution with 3 degrees of freedom
dist <- chi_squared_distribution(3)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.08110859
logcdf(dist, 0.5)
#> [1] -2.511966
pdf(dist, 0.5)
#> [1] 0.2196956
logpdf(dist, 0.5)
#> [1] -1.515512
hazard(dist, 0.5)
#> [1] 0.2390877
chf(dist, 0.5)
#> [1] 0.08458732
mean(dist)
#> [1] 3
median(dist)
#> [1] 2.365974
mode(dist)
#> [1] 1
range(dist)
#> [1]   0 Inf
quantile(dist, 0.2)
#> [1] 1.005174
standard_deviation(dist)
#> [1] 2.44949
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 6
skewness(dist)
#> [1] 1.632993
kurtosis(dist)
#> [1] 7
kurtosis_excess(dist)
#> [1] 4

# Convenience functions
chi_squared_pdf(2, 3)
#> [1] 0.2075537
chi_squared_lpdf(2, 3)
#> [1] -1.572365
chi_squared_cdf(2, 3)
#> [1] 0.4275933
chi_squared_lcdf(2, 3)
#> [1] -0.8495828
chi_squared_quantile(0.5, 3)
#> [1] 2.365974

Exponential Distribution

# Exponential distribution with rate parameter lambda = 2
dist <- exponential_distribution(2)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6321206
logcdf(dist, 0.5)
#> [1] -0.4586751
pdf(dist, 0.5)
#> [1] 0.7357589
logpdf(dist, 0.5)
#> [1] -0.3068528
hazard(dist, 0.5)
#> [1] 2
chf(dist, 0.5)
#> [1] 1
mean(dist)
#> [1] 0.5
median(dist)
#> [1] 0.3465736
mode(dist)
#> [1] 0
range(dist)
#> [1]   0 Inf
quantile(dist, 0.2)
#> [1] 0.1115718
standard_deviation(dist)
#> [1] 0.5
support(dist)
#> [1] 2.225074e-308 1.797693e+308
variance(dist)
#> [1] 0.25
skewness(dist)
#> [1] 2
kurtosis(dist)
#> [1] 9
kurtosis_excess(dist)
#> [1] 6

# Convenience functions
exponential_pdf(1, 2)
#> [1] 0.2706706
exponential_lpdf(1, 2)
#> [1] -1.306853
exponential_cdf(1, 2)
#> [1] 0.8646647
exponential_lcdf(1, 2)
#> [1] -0.1454135
exponential_quantile(0.5, 2)
#> [1] 0.3465736

Extreme Value Distribution

# Extreme Value distribution with location = 0, scale = 1
dist <- extreme_value_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.5452392
logcdf(dist, 0.5)
#> [1] -0.6065307
pdf(dist, 0.5)
#> [1] 0.3307043
logpdf(dist, 0.5)
#> [1] -1.106531
hazard(dist, 0.5)
#> [1] 0.727205
chf(dist, 0.5)
#> [1] 0.7879837
mean(dist)
#> [1] 0.5772157
median(dist)
#> [1] 0.3665129
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -0.475885
standard_deviation(dist)
#> [1] 1.28255
support(dist)
#> [1] -1.797693e+308  1.797693e+308
variance(dist)
#> [1] 1.644934
skewness(dist)
#> [1] 1.139547
kurtosis(dist)
#> [1] 5.4
kurtosis_excess(dist)
#> [1] 2.4

# Convenience functions
extreme_value_pdf(0)
#> [1] 0.3678794
extreme_value_lpdf(0)
#> [1] -1
extreme_value_cdf(0)
#> [1] 0.3678794
extreme_value_lcdf(0)
#> [1] -1
extreme_value_quantile(0.5)
#> [1] 0.3665129

F Distribution

# Fisher F distribution with df1 = 5, df2 = 10
dist <- fisher_f_distribution(5, 10)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.2299751
logcdf(dist, 0.5)
#> [1] -1.469784
pdf(dist, 0.5)
#> [1] 0.687607
logpdf(dist, 0.5)
#> [1] -0.3745378
hazard(dist, 0.5)
#> [1] 0.8929673
chf(dist, 0.5)
#> [1] 0.2613325
mean(dist)
#> [1] 1.25
median(dist)
#> [1] 0.9319332
mode(dist)
#> [1] 0.5
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.4563364
standard_deviation(dist)
#> [1] 1.163687
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 1.354167
skewness(dist)
#> [1] 3.86702
kurtosis(dist)
#> [1] 53.86154
kurtosis_excess(dist)
#> [1] 50.86154

# Convenience functions
fisher_f_pdf(1, 5, 10)
#> [1] 0.4954798
fisher_f_lpdf(1, 5, 10)
#> [1] -0.7022287
fisher_f_cdf(1, 5, 10)
#> [1] 0.5348806
fisher_f_lcdf(1, 5, 10)
#> [1] -0.6257118
fisher_f_quantile(0.5, 5, 10)
#> [1] 0.9319332

Gamma Distribution

# Gamma distribution with shape = 3, scale = 4
dist <- gamma_distribution(3, 4)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.0002964775
logcdf(dist, 0.5)
#> [1] -8.123539
pdf(dist, 0.5)
#> [1] 0.001723627
logpdf(dist, 0.5)
#> [1] -6.363325
hazard(dist, 0.5)
#> [1] 0.001724138
chf(dist, 0.5)
#> [1] 0.0002965215
mean(dist)
#> [1] 12
median(dist)
#> [1] 10.69624
mode(dist)
#> [1] 8
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 6.140177
standard_deviation(dist)
#> [1] 6.928203
support(dist)
#> [1] 2.225074e-308 1.797693e+308
variance(dist)
#> [1] 48
skewness(dist)
#> [1] 1.154701
kurtosis(dist)
#> [1] 5
kurtosis_excess(dist)
#> [1] 2

# Convenience functions
gamma_pdf(2, 3, 4)
#> [1] 0.01895408
gamma_lpdf(2, 3, 4)
#> [1] -3.965736
gamma_cdf(2, 3, 4)
#> [1] 0.01438768
gamma_lcdf(2, 3, 4)
#> [1] -4.241383
gamma_quantile(0.5, 3, 4)
#> [1] 10.69624

Geometric Distribution

# Geometric distribution with probability of success prob = 0.5
dist <- geometric_distribution(0.5)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6464466
logcdf(dist, 0.5)
#> [1] -0.4362647
pdf(dist, 0.5)
#> [1] 0.3535534
logpdf(dist, 0.5)
#> [1] -1.039721
hazard(dist, 0.5)
#> [1] 1
chf(dist, 0.5)
#> [1] 1.039721
mean(dist)
#> [1] 1
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0
standard_deviation(dist)
#> [1] 1.414214
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 2
skewness(dist)
#> [1] 2.12132
kurtosis(dist)
#> [1] 9.5
kurtosis_excess(dist)
#> [1] 6.5

# Convenience functions
geometric_pdf(3, 0.5)
#> [1] 0.0625
geometric_lpdf(3, 0.5)
#> [1] -2.772589
geometric_cdf(3, 0.5)
#> [1] 0.9375
geometric_lcdf(3, 0.5)
#> [1] -0.06453852
geometric_quantile(0.5, 0.5)
#> [1] 0

Holtsmark Distribution

# Holtsmark distribution with location 0 and scale 1
dist <- holtsmark_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6394042
logcdf(dist, 0.5)
#> [1] -0.4472184
pdf(dist, 0.5)
#> [1] 0.2622968
logpdf(dist, 0.5)
#> [1] -1.338278
hazard(dist, 0.5)
#> [1] 0.7273985
chf(dist, 0.5)
#> [1] 1.019998
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -1.234616
standard_deviation(dist)
#> [1] Inf
support(dist)
#> [1] -Inf  Inf
variance(dist)
#> [1] Inf

# Convenience functions
holtsmark_pdf(3)
#> [1] 0.03150942
holtsmark_lpdf(3)
#> [1] -3.457469
holtsmark_cdf(3)
#> [1] 0.9484022
holtsmark_lcdf(3)
#> [1] -0.05297661
holtsmark_quantile(0.5)
#> [1] 0

Hyperexponential Distribution

# Hyperexponential distribution with probabilities = c(0.5, 0.5) and rates = c(1, 2)
dist <- hyperexponential_distribution(c(0.5, 0.5), c(1, 2))
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.5127949
logcdf(dist, 0.5)
#> [1] -0.6678792
pdf(dist, 0.5)
#> [1] 0.6711448
logpdf(dist, 0.5)
#> [1] -0.3987704
hazard(dist, 0.5)
#> [1] 1.377541
chf(dist, 0.5)
#> [1] 0.7190702
mean(dist)
#> [1] 0.75
median(dist)
#> [1] 0.4812118
mode(dist)
#> [1] 0
range(dist)
#> [1]   0 Inf
quantile(dist, 0.2)
#> [1] 0.1506519
standard_deviation(dist)
#> [1] 0.8291562
support(dist)
#> [1] 2.225074e-308 1.797693e+308
variance(dist)
#> [1] 0.6875
skewness(dist)
#> [1] 2.466911
kurtosis(dist)
#> [1] 12.47107
kurtosis_excess(dist)
#> [1] 9.471074

# Convenience functions
hyperexponential_pdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.08598328
hyperexponential_lpdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -2.453602
hyperexponential_cdf(2, c(0.5, 0.5), c(1, 2))
#> [1] 0.9231745
hyperexponential_lcdf(2, c(0.5, 0.5), c(1, 2))
#> [1] -0.07993696
hyperexponential_quantile(0.5, c(0.5, 0.5), c(1, 2))
#> [1] 0.4812118

Hypergeometric Distribution

# Hypergeometric distribution with r = 5, n = 10, N = 20
dist <- hypergeometric_distribution(5, 10, 20)
# Apply generic functions
cdf(dist, 4)
#> [1] 0.9837461
logcdf(dist, 4)
#> [1] -0.01638741
pdf(dist, 4)
#> [1] 0.1354489
logpdf(dist, 4)
#> [1] -1.999161
hazard(dist, 4)
#> [1] 8.333333
chf(dist, 4)
#> [1] 4.119424
mean(dist)
#> [1] 2.5
median(dist)
#> [1] 3
mode(dist)
#> [1] 3
range(dist)
#> [1] 0 5
quantile(dist, 0.2)
#> [1] 1
standard_deviation(dist)
#> [1] 0.9933993
support(dist)
#> [1] 0 5
variance(dist)
#> [1] 0.9868421
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 5.756863
kurtosis_excess(dist)
#> [1] 2.756863

# Convenience functions
hypergeometric_pdf(3, 5, 10, 20)
#> [1] 0.3482972
hypergeometric_lpdf(3, 5, 10, 20)
#> [1] -1.054699
hypergeometric_cdf(3, 5, 10, 20)
#> [1] 0.8482972
hypergeometric_lcdf(3, 5, 10, 20)
#> [1] -0.1645242
hypergeometric_quantile(0.5, 5, 10, 20)
#> [1] 3

Inverse Chi-Squared Distribution

# Inverse Chi-Squared distribution with 10 degrees of freedom, scale = 1
dist <- inverse_chi_squared_distribution(10, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.02925269
logcdf(dist, 0.5)
#> [1] -3.531784
pdf(dist, 0.5)
#> [1] 0.3783327
logpdf(dist, 0.5)
#> [1] -0.9719812
hazard(dist, 0.5)
#> [1] 0.3897335
chf(dist, 0.5)
#> [1] 0.02968908
mean(dist)
#> [1] 1.25
median(dist)
#> [1] 1.070455
mode(dist)
#> [1] 0.8333333
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.7439393
standard_deviation(dist)
#> [1] 0.7216878
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 0.5208333
skewness(dist)
#> [1] 3.464102
kurtosis(dist)
#> [1] 45
kurtosis_excess(dist)
#> [1] 42

# Convenience functions
inverse_chi_squared_pdf(2, 10, 1)
#> [1] 0.1670024
inverse_chi_squared_lpdf(2, 10, 1)
#> [1] -1.789747
inverse_chi_squared_cdf(2, 10, 1)
#> [1] 0.891178
inverse_chi_squared_lcdf(2, 10, 1)
#> [1] -0.1152111
inverse_chi_squared_quantile(0.5, 10, 1)
#> [1] 1.070455

Inverse Gamma Distribution

# Inverse Gamma distribution with shape = 5, scale = 4
dist <- inverse_gamma_distribution(5, 4)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.0996324
logcdf(dist, 0.5)
#> [1] -2.306268
pdf(dist, 0.5)
#> [1] 0.9160366
logpdf(dist, 0.5)
#> [1] -0.08769894
hazard(dist, 0.5)
#> [1] 1.017403
chf(dist, 0.5)
#> [1] 0.1049522
mean(dist)
#> [1] 1
median(dist)
#> [1] 0.8563644
mode(dist)
#> [1] 0.6666667
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.5951514
standard_deviation(dist)
#> [1] 0.5773503
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 0.3333333
skewness(dist)
#> [1] 3.464102
kurtosis(dist)
#> [1] 45
kurtosis_excess(dist)
#> [1] 42

# Convenience functions
inverse_gamma_pdf(2, 5, 4)
#> [1] 0.09022352
inverse_gamma_lpdf(2, 5, 4)
#> [1] -2.405465
inverse_gamma_cdf(2, 5, 4)
#> [1] 0.947347
inverse_gamma_lcdf(2, 5, 4)
#> [1] -0.05408985
inverse_gamma_quantile(0.5, 5, 4)
#> [1] 0.8563644

Inverse Gaussian Distribution

# Inverse Gaussian distribution with mu = 3, lambda = 4
dist <- inverse_gaussian_distribution(3, 4)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.01617264
logcdf(dist, 0.5)
#> [1] -4.124435
pdf(dist, 0.5)
#> [1] 0.1403174
logpdf(dist, 0.5)
#> [1] -1.963848
hazard(dist, 0.5)
#> [1] 0.142624
chf(dist, 0.5)
#> [1] 0.01630484
mean(dist)
#> [1] 3
median(dist)
#> [1] 2.202698
mode(dist)
#> [1] 1.140598
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 1.161488
standard_deviation(dist)
#> [1] 2.598076
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 6.75
skewness(dist)
#> [1] 2.598076
kurtosis(dist)
#> [1] 8.25
kurtosis_excess(dist)
#> [1] 11.25

# Convenience functions
inverse_gaussian_pdf(2, 3, 4)
#> [1] 0.2524295
inverse_gaussian_lpdf(2, 3, 4)
#> [1] -1.376623
inverse_gaussian_cdf(2, 3, 4)
#> [1] 0.4512408
inverse_gaussian_lcdf(2, 3, 4)
#> [1] -0.7957542
inverse_gaussian_quantile(0.5, 3, 4)
#> [1] 2.202698

Kolmogorov-Smirnov Distribution

# Kolmogorov-Smirnov distribution with sample size n = 10
dist <- kolmogorov_smirnov_distribution(10)
# Apply generic functions
cdf(dist, 2)
#> [1] 1
logcdf(dist, 2)
#> [1] 0
pdf(dist, 2)
#> [1] 2.887762e-33
logpdf(dist, 2)
#> [1] -74.92483
hazard(dist, 2)
#> [1] 80
chf(dist, 2)
#> [1] 79.30685
mean(dist)
#> [1] 0.2747169
median(dist)
#> [1] 0.2617017
mode(dist)
#> [1] 0.2325754
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.2039076
standard_deviation(dist)
#> [1] 0.08232448
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 0.00677732
skewness(dist)
#> [1] 0.8604261
kurtosis(dist)
#> [1] 3.881619
kurtosis_excess(dist)
#> [1] 0.881619

# Convenience functions
kolmogorov_smirnov_pdf(0.5, 10)
#> [1] 0.2695176
kolmogorov_smirnov_lpdf(0.5, 10)
#> [1] -1.311122
kolmogorov_smirnov_cdf(0.5, 10)
#> [1] 0.9865241
kolmogorov_smirnov_lcdf(0.5, 10)
#> [1] -0.01356751
kolmogorov_smirnov_quantile(0.5, 10)
#> [1] 0.2617017

Landau Distribution

# Landau distribution with location 0 and scale 1
dist <- landau_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.4842393
logcdf(dist, 0.5)
#> [1] -0.7251762
pdf(dist, 0.5)
#> [1] 0.2123185
logpdf(dist, 0.5)
#> [1] -1.549668
hazard(dist, 0.5)
#> [1] 0.4116608
chf(dist, 0.5)
#> [1] 0.6621123
median(dist)
#> [1] 0.5756301
mode(dist)
#> [1] -0.4293145
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -0.5948319
support(dist)
#> [1] -Inf  Inf

# Convenience functions
landau_pdf(3)
#> [1] 0.05863949
landau_lpdf(3)
#> [1] -2.836347
landau_cdf(3)
#> [1] 0.7792967
landau_lcdf(3)
#> [1] -0.2493635
landau_quantile(0.5)
#> [1] 0.5756301

Laplace Distribution

# Laplace distribution with location = 0, scale = 1
dist <- laplace_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6967347
logcdf(dist, 0.5)
#> [1] -0.3613506
pdf(dist, 0.5)
#> [1] 0.3032653
logpdf(dist, 0.5)
#> [1] -1.193147
hazard(dist, 0.5)
#> [1] 1
chf(dist, 0.5)
#> [1] 1.193147
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -0.9162907
standard_deviation(dist)
#> [1] 1.414214
support(dist)
#> [1] -Inf  Inf
variance(dist)
#> [1] 2
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 6
kurtosis_excess(dist)
#> [1] 3

# Convenience functions
laplace_pdf(0)
#> [1] 0.5
laplace_lpdf(0)
#> [1] -0.6931472
laplace_cdf(0)
#> [1] 0.5
laplace_lcdf(0)
#> [1] -0.6931472
laplace_quantile(0.5)
#> [1] 0

Logistic Distribution

# Logistic distribution with location = 0, scale = 1
dist <- logistic_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6224593
logcdf(dist, 0.5)
#> [1] -0.474077
pdf(dist, 0.5)
#> [1] 0.2350037
logpdf(dist, 0.5)
#> [1] -1.448154
hazard(dist, 0.5)
#> [1] 0.6224593
chf(dist, 0.5)
#> [1] 0.974077
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -1.386294
standard_deviation(dist)
#> [1] 1.813799
support(dist)
#> [1] -1.797693e+308  1.797693e+308
variance(dist)
#> [1] 3.289868
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 4.2
kurtosis_excess(dist)
#> [1] 1.2

# Convenience functions
logistic_pdf(0)
#> [1] 0.25
logistic_lpdf(0)
#> [1] -1.386294
logistic_cdf(0)
#> [1] 0.5
logistic_lcdf(0)
#> [1] -0.6931472
logistic_quantile(0.5)
#> [1] 0

Log Normal Distribution

# Log Normal distribution with location = 0, scale = 1
dist <- lognormal_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.2441086
logcdf(dist, 0.5)
#> [1] -1.410142
pdf(dist, 0.5)
#> [1] 0.6274961
logpdf(dist, 0.5)
#> [1] -0.4660179
hazard(dist, 0.5)
#> [1] 0.8301405
chf(dist, 0.5)
#> [1] 0.2798576
mean(dist)
#> [1] 1.648721
median(dist)
#> [1] 1
mode(dist)
#> [1] 0.3678794
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.4310112
standard_deviation(dist)
#> [1] 2.161197
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 4.670774
skewness(dist)
#> [1] 6.184877
kurtosis(dist)
#> [1] 113.9364
kurtosis_excess(dist)
#> [1] 110.9364

# Convenience functions
lognormal_pdf(0)
#> [1] 0
lognormal_lpdf(0)
#> [1] -Inf
lognormal_cdf(0)
#> [1] 0
lognormal_lcdf(0)
#> [1] -Inf
lognormal_quantile(0.5)
#> [1] 1

Map-Airy Distribution

# Map-Airy distribution with location 0 and scale 1
dist <- mapairy_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.7527466
logcdf(dist, 0.5)
#> [1] -0.2840266
pdf(dist, 0.5)
#> [1] 0.1477024
logpdf(dist, 0.5)
#> [1] -1.912556
hazard(dist, 0.5)
#> [1] 0.5973726
chf(dist, 0.5)
#> [1] 1.397342
mean(dist)
#> [1] 0
median(dist)
#> [1] -0.7167107
mode(dist)
#> [1] -1.161587
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -1.834427
standard_deviation(dist)
#> [1] Inf
support(dist)
#> [1] -Inf  Inf
variance(dist)
#> [1] Inf

# Convenience functions
mapairy_pdf(3)
#> [1] 0.02799732
mapairy_lpdf(3)
#> [1] -3.575647
mapairy_cdf(3)
#> [1] 0.9316961
mapairy_lcdf(3)
#> [1] -0.07074859
mapairy_quantile(0.5)
#> [1] -0.7167107

Negative Binomial Distribution

# Negative Binomial distribution with successes = 5, success_fraction = 0.5
dist <- negative_binomial_distribution(5, 0.5)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.06449911
logcdf(dist, 0.5)
#> [1] -2.741104
pdf(dist, 0.5)
#> [1] 0.05437955
logpdf(dist, 0.5)
#> [1] -2.911767
hazard(dist, 0.5)
#> [1] 0.05812881
chf(dist, 0.5)
#> [1] 0.06667318
mean(dist)
#> [1] 5
median(dist)
#> [1] 4
mode(dist)
#> [1] 4
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 1
standard_deviation(dist)
#> [1] 3.162278
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 10
skewness(dist)
#> [1] 0.9486833
kurtosis(dist)
#> [1] 4.3
kurtosis_excess(dist)
#> [1] 1.3

# Convenience functions
negative_binomial_pdf(3, 5, 0.5)
#> [1] 0.1367188
negative_binomial_lpdf(3, 5, 0.5)
#> [1] -1.989829
negative_binomial_cdf(3, 5, 0.5)
#> [1] 0.3632812
negative_binomial_lcdf(3, 5, 0.5)
#> [1] -1.012578
negative_binomial_quantile(0.5, 5, 0.5)
#> [1] 4

Noncentral Beta Distribution

# Noncentral Beta distribution with shape parameters alpha = 2, beta = 3
# and noncentrality parameter lambda = 1
dist <- non_central_beta_distribution(2, 3, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.5977904
logcdf(dist, 0.5)
#> [1] -0.514515
pdf(dist, 0.5)
#> [1] 1.643543
logpdf(dist, 0.5)
#> [1] 0.4968546
hazard(dist, 0.5)
#> [1] 4.086286
chf(dist, 0.5)
#> [1] 0.910782
mean(dist)
#> [1] 0.44664
median(dist)
#> [1] 0.4416064
mode(dist)
#> [1] 0.4262677
range(dist)
#> [1] 0 1
quantile(dist, 0.2)
#> [1] 0.2549084
standard_deviation(dist)
#> [1] 0.2040433
support(dist)
#> [1] 0 1
variance(dist)
#> [1] 0.04163366

# Convenience functions
non_central_beta_pdf(0.5, 2, 3, 1)
#> [1] 1.643543
non_central_beta_lpdf(0.5, 2, 3, 1)
#> [1] 0.4968546
non_central_beta_cdf(0.5, 2, 3, 1)
#> [1] 0.5977904
non_central_beta_lcdf(0.5, 2, 3, 1)
#> [1] -0.514515
non_central_beta_quantile(0.5, 2, 3, 1)
#> [1] 0.4416064

Noncentral Chi-Squared Distribution

# Noncentral Chi-Squared distribution with 3 degrees of freedom and noncentrality
# parameter 1
dist <- non_central_chi_squared_distribution(3, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.05162593
logcdf(dist, 0.5)
#> [1] -2.963731
pdf(dist, 0.5)
#> [1] 0.1446374
logpdf(dist, 0.5)
#> [1] -1.933525
hazard(dist, 0.5)
#> [1] 0.1525109
chf(dist, 0.5)
#> [1] 0.05300627
mean(dist)
#> [1] 4
median(dist)
#> [1] 3.213009
mode(dist)
#> [1] 1.439229
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 1.384937
standard_deviation(dist)
#> [1] 3.162278
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 10
skewness(dist)
#> [1] 1.517893
kurtosis(dist)
#> [1] 6.36
kurtosis_excess(dist)
#> [1] 3.36

# Convenience functions
non_central_chi_squared_pdf(2, 3, 1)
#> [1] 0.172252
non_central_chi_squared_lpdf(2, 3, 1)
#> [1] -1.758797
non_central_chi_squared_cdf(2, 3, 1)
#> [1] 0.3082525
non_central_chi_squared_lcdf(2, 3, 1)
#> [1] -1.176836
non_central_chi_squared_quantile(0.5, 3, 1)
#> [1] 3.213009

Noncentral F Distribution

# Noncentral F distribution with df1 = 10, df2 = 10 and noncentrality
# parameter 1
dist <- non_central_f_distribution(10, 10, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.1142528
logcdf(dist, 0.5)
#> [1] -2.169342
pdf(dist, 0.5)
#> [1] 0.5754471
logpdf(dist, 0.5)
#> [1] -0.552608
hazard(dist, 0.5)
#> [1] 0.6496742
chf(dist, 0.5)
#> [1] 0.1213237
mean(dist)
#> [1] 1.375
median(dist)
#> [1] 1.10075
mode(dist)
#> [1] 0.7349843
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.6363179
standard_deviation(dist)
#> [1] 1.063113
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 1.130208
skewness(dist)
#> [1] 3.609738
kurtosis(dist)
#> [1] 51.0825
kurtosis_excess(dist)
#> [1] 48.0825

# Convenience functions
non_central_f_pdf(1, 5, 2, 1)
#> [1] 0.3051418
non_central_f_lpdf(1, 5, 2, 1)
#> [1] -1.186979
non_central_f_cdf(1, 5, 2, 1)
#> [1] 0.3737987
non_central_f_lcdf(1, 5, 2, 1)
#> [1] -0.9840377
non_central_f_quantile(0.5, 5, 2, 1)
#> [1] 1.507635

Noncentral T Distribution

# Noncentral T distribution with 5 degrees of freedom and noncentrality parameter 1
dist <- non_central_t_distribution(5, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.3021259
logcdf(dist, 0.5)
#> [1] -1.196912
pdf(dist, 0.5)
#> [1] 0.3360046
logpdf(dist, 0.5)
#> [1] -1.090631
hazard(dist, 0.5)
#> [1] 0.4814687
chf(dist, 0.5)
#> [1] 0.3597165
mean(dist)
#> [1] 1.189416
median(dist)
#> [1] 1.052851
mode(dist)
#> [1] 0.8781834
range(dist)
#> [1] -1.797693e+308  1.797693e+308
quantile(dist, 0.2)
#> [1] 0.165306
standard_deviation(dist)
#> [1] 1.385144
support(dist)
#> [1] -1.797693e+308  1.797693e+308
variance(dist)
#> [1] 1.918623
skewness(dist)
#> [1] 1.26633
kurtosis(dist)
#> [1] 13.32067
kurtosis_excess(dist)
#> [1] 10.32067

# Convenience functions
non_central_t_pdf(0, 5, 1)
#> [1] 0.2302431
non_central_t_lpdf(0, 5, 1)
#> [1] -1.46862
non_central_t_cdf(0, 5, 1)
#> [1] 0.1586553
non_central_t_lcdf(0, 5, 1)
#> [1] -1.841022
non_central_t_quantile(0.5, 5, 1)
#> [1] 1.052851

Normal Distribution

# Normal distribution with mean = 0, sd = 1
dist <- normal_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6914625
logcdf(dist, 0.5)
#> [1] -0.3689464
pdf(dist, 0.5)
#> [1] 0.3520653
logpdf(dist, 0.5)
#> [1] -1.043939
hazard(dist, 0.5)
#> [1] 1.141078
chf(dist, 0.5)
#> [1] 1.175912
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -0.8416212
standard_deviation(dist)
#> [1] 1
support(dist)
#> [1] -Inf  Inf
variance(dist)
#> [1] 1
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 3
kurtosis_excess(dist)
#> [1] 0

# Convenience functions
normal_pdf(0)
#> [1] 0.3989423
normal_lpdf(0)
#> [1] -0.9189385
normal_cdf(0)
#> [1] 0.5
normal_lcdf(0)
#> [1] -0.6931472
normal_quantile(0.5)
#> [1] 0

Pareto Distribution

# Pareto distribution with scale = 10, shape = 5
dist <- pareto_distribution(10, 5)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0
logcdf(dist, 0.5)
#> [1] -Inf
pdf(dist, 0.5)
#> [1] 0
logpdf(dist, 0.5)
#> [1] -Inf
hazard(dist, 0.5)
#> [1] 0
chf(dist, 0.5)
#> [1] 0
mean(dist)
#> [1] 12.5
median(dist)
#> [1] 11.48698
mode(dist)
#> [1] 10
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 10.4564
standard_deviation(dist)
#> [1] 3.227486
support(dist)
#> [1]  1.000000e+01 1.797693e+308
variance(dist)
#> [1] 10.41667
skewness(dist)
#> [1] 4.64758
kurtosis(dist)
#> [1] 73.8
kurtosis_excess(dist)
#> [1] 70.8

# Convenience functions
pareto_pdf(1)
#> [1] 1
pareto_lpdf(1)
#> [1] 0
pareto_cdf(1)
#> [1] 0
pareto_lcdf(1)
#> [1] -Inf
pareto_quantile(0.5)
#> [1] 2

Poisson Distribution

# Poisson distribution with lambda = 1
dist <- poisson_distribution(1)
# Apply generic functions
cdf(dist, 5)
#> [1] 0.9994058
logcdf(dist, 5)
#> [1] -0.0005943614
pdf(dist, 5)
#> [1] 0.003065662
logpdf(dist, 5)
#> [1] -5.787492
hazard(dist, 5)
#> [1] 5.159442
chf(dist, 5)
#> [1] 7.42832
mean(dist)
#> [1] 1
median(dist)
#> [1] 1
mode(dist)
#> [1] 1
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0
standard_deviation(dist)
#> [1] 1
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 1
skewness(dist)
#> [1] 1
kurtosis(dist)
#> [1] 4
kurtosis_excess(dist)
#> [1] 1

# Convenience functions
poisson_pdf(0, 1)
#> [1] 0.3678794
poisson_lpdf(0, 1)
#> [1] -1
poisson_cdf(0, 1)
#> [1] 0.3678794
poisson_lcdf(0, 1)
#> [1] -1
poisson_quantile(0.5, 1)
#> [1] 1

Rayleigh Distribution

# Rayleigh distribution with sigma = 1
dist <- rayleigh_distribution(1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.1175031
logcdf(dist, 0.5)
#> [1] -2.141291
pdf(dist, 0.5)
#> [1] 0.4412485
logpdf(dist, 0.5)
#> [1] -0.8181472
hazard(dist, 0.5)
#> [1] 0.5
chf(dist, 0.5)
#> [1] 0.125
mean(dist)
#> [1] 1.253314
median(dist)
#> [1] 1.17741
mode(dist)
#> [1] 1
range(dist)
#> [1]   0 Inf
quantile(dist, 0.2)
#> [1] 0.6680472
standard_deviation(dist)
#> [1] 0.6551364
support(dist)
#> [1]  0.000000e+00 1.797693e+308
variance(dist)
#> [1] 0.4292037
skewness(dist)
#> [1] 0.6311107
kurtosis(dist)
#> [1] 3.245089
kurtosis_excess(dist)
#> [1] 0.2450893

# Convenience functions
rayleigh_pdf(1)
#> [1] 0.6065307
rayleigh_lpdf(1)
#> [1] -0.5
rayleigh_cdf(1)
#> [1] 0.3934693
rayleigh_lcdf(1)
#> [1] -0.9327521
rayleigh_quantile(0.5)
#> [1] 1.17741

SaS Point5 Distribution

# SaS Point5 distribution with location 0 and scale 1
dist <- saspoint5_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6686904
logcdf(dist, 0.5)
#> [1] -0.402434
pdf(dist, 0.5)
#> [1] 0.1707624
logpdf(dist, 0.5)
#> [1] -1.767482
hazard(dist, 0.5)
#> [1] 0.5154165
chf(dist, 0.5)
#> [1] 1.104702
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -2.397479
support(dist)
#> [1] -Inf  Inf

# Convenience functions
saspoint5_pdf(3)
#> [1] 0.02379919
saspoint5_lpdf(3)
#> [1] -3.738104
saspoint5_cdf(3)
#> [1] 0.8164545
saspoint5_lcdf(3)
#> [1] -0.2027841
saspoint5_quantile(0.5)
#> [1] 0

Skew Normal Distribution

# Skew Normal distribution with location = 0, scale = 1, shape = 0
dist <- skew_normal_distribution(0, 1, 0)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6914625
logcdf(dist, 0.5)
#> [1] -0.3689464
pdf(dist, 0.5)
#> [1] 0.3520653
logpdf(dist, 0.5)
#> [1] -1.043939
hazard(dist, 0.5)
#> [1] 1.141078
chf(dist, 0.5)
#> [1] 1.175912
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -0.8416212
standard_deviation(dist)
#> [1] 1
support(dist)
#> [1] -1.797693e+308  1.797693e+308
variance(dist)
#> [1] 1
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 3
kurtosis_excess(dist)
#> [1] 0

# Convenience functions
skew_normal_pdf(0)
#> [1] 0.3989423
skew_normal_lpdf(0)
#> [1] -0.9189385
skew_normal_cdf(0)
#> [1] 0.5
skew_normal_lcdf(0)
#> [1] -0.6931472
skew_normal_quantile(0.5)
#> [1] 0

Student’s T Distribution

# Student's t distribution with 5 degrees of freedom
dist <- students_t_distribution(5)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.6808506
logcdf(dist, 0.5)
#> [1] -0.3844124
pdf(dist, 0.5)
#> [1] 0.3279185
logpdf(dist, 0.5)
#> [1] -1.11499
hazard(dist, 0.5)
#> [1] 1.027476
chf(dist, 0.5)
#> [1] 1.142096
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -Inf  Inf
quantile(dist, 0.2)
#> [1] -0.9195438
standard_deviation(dist)
#> [1] 1.290994
support(dist)
#> [1] -Inf  Inf
variance(dist)
#> [1] 1.666667
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 9
kurtosis_excess(dist)
#> [1] 6

# Convenience functions
students_t_pdf(0, 5)
#> [1] 0.3796067
students_t_lpdf(0, 5)
#> [1] -0.9686196
students_t_cdf(0, 5)
#> [1] 0.5
students_t_lcdf(0, 5)
#> [1] -0.6931472
students_t_quantile(0.5, 5)
#> [1] 0

Triangular Distribution

# Triangular distribution with lower = -1, mode = 0, upper = 1
dist <- triangular_distribution(-1, 0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.875
logcdf(dist, 0.5)
#> [1] -0.1335314
pdf(dist, 0.5)
#> [1] 0.5
logpdf(dist, 0.5)
#> [1] -0.6931472
hazard(dist, 0.5)
#> [1] 4
chf(dist, 0.5)
#> [1] 2.079442
mean(dist)
#> [1] 0
median(dist)
#> [1] 0
mode(dist)
#> [1] 0
range(dist)
#> [1] -1.797693e+308  1.797693e+308
quantile(dist, 0.2)
#> [1] -0.3675445
standard_deviation(dist)
#> [1] 0.4082483
support(dist)
#> [1] -1  1
variance(dist)
#> [1] 0.1666667
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 2.4
kurtosis_excess(dist)
#> [1] -0.6

# Convenience functions
triangular_pdf(1)
#> [1] 0
triangular_lpdf(1)
#> [1] -Inf
triangular_cdf(1)
#> [1] 1
triangular_lcdf(1)
#> [1] 0
triangular_quantile(0.5)
#> [1] 0

Uniform Distribution

# Uniform distribution with lower = 0, upper = 1
dist <- uniform_distribution(0, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.5
logcdf(dist, 0.5)
#> [1] -0.6931472
pdf(dist, 0.5)
#> [1] 1
logpdf(dist, 0.5)
#> [1] 0
hazard(dist, 0.5)
#> [1] 2
chf(dist, 0.5)
#> [1] 0.6931472
mean(dist)
#> [1] 0.5
median(dist)
#> [1] 0.5
mode(dist)
#> [1] 0
range(dist)
#> [1] -1.797693e+308  1.797693e+308
quantile(dist, 0.2)
#> [1] 0.2
standard_deviation(dist)
#> [1] 0.2886751
support(dist)
#> [1] 0 1
variance(dist)
#> [1] 0.08333333
skewness(dist)
#> [1] 0
kurtosis(dist)
#> [1] 1.8
kurtosis_excess(dist)
#> [1] -1.2

# Convenience functions
uniform_pdf(0.5)
#> [1] 1
uniform_lpdf(0.5)
#> [1] 0
uniform_cdf(0.5)
#> [1] 0.5
uniform_lcdf(0.5)
#> [1] -0.6931472
uniform_quantile(0.5)
#> [1] 0.5

Weibull Distribution

# Weibull distribution with shape = 1, scale = 1
dist <- weibull_distribution(1, 1)
# Apply generic functions
cdf(dist, 0.5)
#> [1] 0.3934693
logcdf(dist, 0.5)
#> [1] -0.9327521
pdf(dist, 0.5)
#> [1] 0.6065307
logpdf(dist, 0.5)
#> [1] -0.5
hazard(dist, 0.5)
#> [1] 1
chf(dist, 0.5)
#> [1] 0.5
mean(dist)
#> [1] 1
median(dist)
#> [1] 0.6931472
mode(dist)
#> [1] 0
range(dist)
#> [1]  0.000000e+00 1.797693e+308
quantile(dist, 0.2)
#> [1] 0.2231436
standard_deviation(dist)
#> [1] 1
support(dist)
#> [1] 2.225074e-308 1.797693e+308
variance(dist)
#> [1] 1
skewness(dist)
#> [1] 2
kurtosis(dist)
#> [1] 9
kurtosis_excess(dist)
#> [1] 6

# Convenience functions
weibull_pdf(1, shape = 1, scale = 1)
#> [1] 0.3678794
weibull_lpdf(1, shape = 1, scale = 1)
#> [1] -1
weibull_cdf(1, shape = 1, scale = 1)
#> [1] 0.6321206
weibull_lcdf(1, shape = 1, scale = 1)
#> [1] -0.4586751
weibull_quantile(0.5, shape = 1, scale = 1)
#> [1] 0.6931472

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.