The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The R package arulesCBA (Hahsler et al. 2019) is an extension of the package arules (Hahsler, Grün, and Hornik 2005) to perform association rule-based classification. The package provides the infrastructure for class association rules and implements associative classifiers based on the following algorithms:
The package also provides the infrastructure for associative classification (supervised discetization, mining class association rules (CARs)), and implements various association rule-based classification strategies (first match, majority voting, weighted voting, etc.). Some algorithms are interfaced by the R package R/Weka (Hornik, Buchta, and Zeileis 2009) and the LUCS-KDD Software Library (Coenen 2013).
The following R packages use arulesCBA: arules, qCBA, tidybins
To cite package ‘arulesCBA’ in publications use:
Hahsler M, Johnson I, Kliegr T, Kuchař J (2019). “Associative Classification in R: arc, arulesCBA, and rCBA.” The R Journal, 11, 254-267. ISSN 2073-4859, doi:10.32614/RJ-2019-048 https://doi.org/10.32614/RJ-2019-048.
@Article{,
title = {{Associative Classification in R: arc, arulesCBA, and rCBA}},
author = {Michael Hahsler and Ian Johnson and Tom{\'{a}}\v{s} Kliegr and Jaroslav Kucha\v{r}},
year = {2019},
journal = {{The R Journal}},
volume = {11},
issue = {2},
pages = {254-267},
issn = {2073-4859},
doi = {10.32614/RJ-2019-048},
}
Stable CRAN version: Install from within R with
install.packages("arulesCBA")Current development version: Install from r-universe.
install.packages("arulesCBA",
repos = c("https://mhahsler.r-universe.dev",
"https://cloud.r-project.org/"))library("arulesCBA")
data("iris")Learn a classifier.
classifier <- CBA(Species ~ ., data = iris)
classifier## CBA Classifier Object
## Formula: Species ~ .
## Number of rules: 6
## Default Class: versicolor
## Classification method: first
## Description: CBA algorithm (Liu et al., 1998)
Inspect the rulebase.
inspect(classifier$rules, linebreak = TRUE)## Warning in seq.default(length = NCOL(quality)): partial argument match of
## 'length' to 'length.out'
## lhs rhs support confidence coverage lift count size coveredTransactions totalErrors
## [1] {Petal.Length=[-Inf,2.45)} => {Species=setosa} 0.33 1.00 0.33 3.0 50 2 50 50
## [2] {Sepal.Length=[6.15, Inf],
## Petal.Width=[1.75, Inf]} => {Species=virginica} 0.25 1.00 0.25 3.0 37 3 37 13
## [3] {Sepal.Length=[5.55,6.15),
## Petal.Length=[2.45,4.75)} => {Species=versicolor} 0.14 1.00 0.14 3.0 21 3 21 13
## [4] {Sepal.Width=[-Inf,2.95),
## Petal.Width=[1.75, Inf]} => {Species=virginica} 0.11 1.00 0.11 3.0 17 3 5 8
## [5] {Petal.Width=[1.75, Inf]} => {Species=virginica} 0.30 0.98 0.31 2.9 45 2 4 6
## [6] {} => {Species=versicolor} 0.33 0.33 1.00 1.0 150 1 33 6
Make predictions for the first few instances of iris.
predict(classifier, head(iris))## [1] setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.