The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

The First-order Integer-valued Autoregressive (INAR(1)) model with zero-inflated (ZI-INAR(1)) and hurdle (H-INAR(1)) innovations is widely used in studying integer-valued time-series data, such as crime count and heatwave frequency. This work implemented the INAR(1) models in Stan.

Installation

You can install ZIHINAR1 from GitHub with:

remotes::install_github("fushengyy/ZIHINAR1")

\[Available Soon\] Or you can install the released version of HeckmanStan from CRAN with:

install.packages("ZIHINAR1")

Basic Features get_stanfit()

The package contains main function named get_stanfit().

stan_fit <- get_stanfit(mod_type, distri, y, n_pred = 4,
                        thin = 2, chains = 1, iter = 2000, warmup = iter/2,
                        seed = NA)

Example

The following are examples showing how to fit the INAR(1) model when data is generated from a zero-inflated Negative Binomial (ZINB) distribution.

library(ZIHINAR1)
y_data <- data_simu(n = 100, alpha = 0.5, rho = 0.3, theta = c(5, 2), 
                    mod_type = "zi", distri = "nb")
stan_fit <- get_stanfit(mod_type = "zi", distri = "nb", y = y_data, n_pred = 5, 
                        iter = 2000, chains = 1, warmup = 500, 
                        thin = 2, seed = 42)
#> 
#> SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.002477 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 24.77 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
#> Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
#> Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
#> Chain 1: Iteration:  501 / 2000 [ 25%]  (Sampling)
#> Chain 1: Iteration:  700 / 2000 [ 35%]  (Sampling)
#> Chain 1: Iteration:  900 / 2000 [ 45%]  (Sampling)
#> Chain 1: Iteration: 1100 / 2000 [ 55%]  (Sampling)
#> Chain 1: Iteration: 1300 / 2000 [ 65%]  (Sampling)
#> Chain 1: Iteration: 1500 / 2000 [ 75%]  (Sampling)
#> Chain 1: Iteration: 1700 / 2000 [ 85%]  (Sampling)
#> Chain 1: Iteration: 1900 / 2000 [ 95%]  (Sampling)
#> Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 3.767 seconds (Warm-up)
#> Chain 1:                9.449 seconds (Sampling)
#> Chain 1:                13.216 seconds (Total)
#> Chain 1:
get_est(distri = "nb", stan_fit = stan_fit)
#> 
#> 
#> Table: Parameter Estimates
#> 
#>             Mean       SD   Median     Q2.5    Q97.5     Rhat   95%_HPD_Lower   95%_HPD_Upper
#> -------  -------  -------  -------  -------  -------  -------  --------------  --------------
#> alpha     0.5434   0.0407   0.5450   0.4620   0.6123   1.0010          0.4605          0.6113
#> rho       0.2573   0.1131   0.2506   0.0404   0.4742   1.0006          0.0437          0.4753
#> lambda    4.9955   0.7772   4.9750   3.6025   6.5105   0.9987          3.6044          6.5105
#> phi       2.2278   1.2160   1.9962   0.7745   4.9245   0.9993          0.5618          4.3624
get_mod_sel(y = y_data, mod_type = "zi", distri = "nb", stan_fit = stan_fit)
#> 
#> 
#> Table: Model Selection Criteria
#> 
#>      EAIC       EBIC        DIC      WAIC1      WAIC2
#> ---------  ---------  ---------  ---------  ---------
#>  554.6341   565.0146   555.8627   550.0862   550.3367
get_pred(stan_fit = stan_fit)
#> 
#> 
#> Table: Summary of Predictions
#> 
#>             Mode   Median   IQR   Min   Max
#> ---------  -----  -------  ----  ----  ----
#> y_pred.1       6      7.0     5     1    42
#> y_pred.2       6      7.0     7     0    38
#> y_pred.3       6      7.5     7     0    33
#> y_pred.4       5      7.0     7     0    35
#> y_pred.5       6      7.0     7     0    30

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.