The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The TAD package provides some Graph outputs functions
weights <- TAD::AB[, 5:102]
weights_factor <- TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")]
trait_data <- log(TAD::trait[["SLA"]][seq_len(ncol(weights))])
aggregation_factor_name <- c("Year", "Bloc")
statistics_factor_name <- c("Treatment")
regenerate_abundance_df <- TRUE
regenerate_weighted_moments_df <- TRUE
regenerate_stat_per_obs_df <- TRUE
regenerate_stat_per_rand_df <- TRUE
regenerate_stat_skr_df <- TRUE
randomization_number <- 100
seed <- 1312
significativity_threshold <- c(0.025, 0.975)
lin_mod <- "lm"
slope_distance <- TAD:::CONSTANTS$SKEW_UNIFORM_SLOPE_DISTANCE
intercept_distance <- TAD:::CONSTANTS$SKEW_UNIFORM_INTERCEPT_DISTANCE
future::plan(future::multisession)
results <- TAD::launch_analysis_tad(
weights = weights,
weights_factor = weights_factor,
trait_data = trait_data,
randomization_number = randomization_number,
aggregation_factor_name = aggregation_factor_name,
statistics_factor_name = statistics_factor_name,
seed = seed,
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
regenerate_stat_skr_df = TRUE,
significativity_threshold = significativity_threshold,
lin_mod = lin_mod,
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
future::plan(future::sequential)
str(results$weighted_moments)
#> 'data.frame': 9696 obs. of 10 variables:
#> $ Year : Factor w/ 12 levels "2010","2011",..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ Plot : Factor w/ 8 levels "4","6","11","13",..: 2 4 6 8 2 4 6 8 2 4 ...
#> $ Treatment : Factor w/ 2 levels "Mown_NPK","Mown_Unfertilized": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Bloc : Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
#> $ number : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ mean : num 3.19 3.22 3.24 3.2 3.2 ...
#> $ variance : num 0.0233 0.0362 0.0317 0.0515 0.0343 ...
#> $ skewness : num 1.082 1.157 1.911 0.116 1.108 ...
#> $ kurtosis : num 10.78 7.82 7.62 4.67 8.18 ...
#> $ distance_law: num 7.75 4.62 2.11 2.8 5.09 ...
str(results$statistics_per_observation)
#> 'data.frame': 96 obs. of 20 variables:
#> $ Year : Factor w/ 12 levels "2010","2011",..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ Plot : Factor w/ 8 levels "4","6","11","13",..: 2 4 6 8 2 4 6 8 2 4 ...
#> $ Treatment : Factor w/ 2 levels "Mown_NPK","Mown_Unfertilized": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Bloc : Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
#> $ standardized_observedmean : num -0.939 -0.985 -0.632 -0.772 -0.78 ...
#> $ standardized_min_quantilemean : num -2.14 -1.92 -1.94 -1.83 -1.74 ...
#> $ standardized_max_quantilemean : num 2.23 1.94 1.71 1.95 1.74 ...
#> $ significancemean : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
#> $ standardized_observedvariance : num -0.546 -0.397 -0.937 -0.241 -0.487 ...
#> $ standardized_min_quantilevariance: num -0.939 -1.052 -1.482 -1.36 -1.302 ...
#> $ standardized_max_quantilevariance: num 2.03 2.33 2.04 2.32 2.5 ...
#> $ significancevariance : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
#> $ standardized_observedskewness : num 1.034 1.402 2.854 0.358 1.349 ...
#> $ standardized_min_quantileskewness: num -2.22 -2.39 -1.82 -2.04 -2.14 ...
#> $ standardized_max_quantileskewness: num 2 1.84 1.74 1.87 1.89 ...
#> $ significanceskewness : logi FALSE FALSE TRUE FALSE FALSE FALSE ...
#> $ standardized_observedkurtosis : num 1.723 0.966 2.092 1.052 2.439 ...
#> $ standardized_min_quantilekurtosis: num -0.928 -1.015 -0.778 -1.049 -0.99 ...
#> $ standardized_max_quantilekurtosis: num 2.53 2.35 2.6 2.88 2.33 ...
#> $ significancekurtosis : logi FALSE FALSE FALSE FALSE TRUE FALSE ...
moments_graph <- TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159")
)
moments_graphstr(results$weighted_moments)
#> 'data.frame': 9696 obs. of 10 variables:
#> $ Year : Factor w/ 12 levels "2010","2011",..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ Plot : Factor w/ 8 levels "4","6","11","13",..: 2 4 6 8 2 4 6 8 2 4 ...
#> $ Treatment : Factor w/ 2 levels "Mown_NPK","Mown_Unfertilized": 1 1 1 1 1 1 1 1 1 1 ...
#> $ Bloc : Factor w/ 2 levels "1","2": 1 1 2 2 1 1 2 2 1 1 ...
#> $ number : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ mean : num 3.19 3.22 3.24 3.2 3.2 ...
#> $ variance : num 0.0233 0.0362 0.0317 0.0515 0.0343 ...
#> $ skewness : num 1.082 1.157 1.911 0.116 1.108 ...
#> $ kurtosis : num 10.78 7.82 7.62 4.67 8.18 ...
#> $ distance_law: num 7.75 4.62 2.11 2.8 5.09 ...
skr_graph <- TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
skr_graph
#> Warning: Removed 5 rows containing non-finite outside the scale range
#> (`stat_smooth()`).
#> Warning: Removed 5 rows containing missing values or values outside the scale range
#> (`geom_point()`).str(results$ses_skr)
#> 'data.frame': 2 obs. of 13 variables:
#> $ slope_ses : num -1.71 -1.7
#> $ slope_signi : logi TRUE TRUE
#> $ intercept_ses : num 7.9253 -0.0909
#> $ intercept_signi : logi TRUE FALSE
#> $ rsquare_ses : num -1.21 -1.13
#> $ rsquare_signi : logi FALSE FALSE
#> $ tad_stab_ses : num 2.3 -2.13
#> $ tad_stab_signi : logi TRUE TRUE
#> $ tad_eve_ses : num 4.21 -2.17
#> $ tad_eve_signi : logi TRUE TRUE
#> $ cv_tad_eve_ses : num -1.03 -1.61
#> $ cv_tad_eve_signi: logi FALSE TRUE
#> $ Treatment : chr "Mown_NPK" "Mown_Unfertilized"
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = slope_distance,
intercept_distance = intercept_distance
)
skr_param_graph
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
results <- TAD::launch_analysis_tad(
weights = weights,
weights_factor = weights_factor,
trait_data = trait_data,
randomization_number = randomization_number,
aggregation_factor_name = aggregation_factor_name,
statistics_factor_name = statistics_factor_name,
seed = seed,
regenerate_abundance_df = TRUE,
regenerate_weighted_moments_df = TRUE,
regenerate_stat_per_obs_df = TRUE,
regenerate_stat_per_rand_df = TRUE,
regenerate_stat_skr_df = TRUE,
significativity_threshold = significativity_threshold,
lin_mod = lin_mod,
slope_distance = slope_distance,
intercept_distance = (intercept_distance <- 1.90)
)
str(results$ses_skr)
#> 'data.frame': 2 obs. of 13 variables:
#> $ slope_ses : num -1.71 -1.7
#> $ slope_signi : logi TRUE TRUE
#> $ intercept_ses : num 7.9253 -0.0909
#> $ intercept_signi : logi TRUE FALSE
#> $ rsquare_ses : num -1.21 -1.13
#> $ rsquare_signi : logi FALSE FALSE
#> $ tad_stab_ses : num 2.3 -2.13
#> $ tad_stab_signi : logi TRUE TRUE
#> $ distance_to_family_ses : num 4.17 -2.18
#> $ distance_to_family_signi : logi TRUE TRUE
#> $ cv_distance_to_family_ses : num -1.05 -1.6
#> $ cv_distance_to_family_signi: logi FALSE TRUE
#> $ Treatment : chr "Mown_NPK" "Mown_Unfertilized"
skr_param_graph <- TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = 1,
intercept_distance = intercept_distance
)
skr_param_graph
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).
#> Removed 1 row containing missing values or values outside the scale range
#> (`geom_point()`).Here is a simple code to generate all graphs based on their name:
TAD::moments_graph(
moments_df = results$weighted_moments,
statistics_per_observation = results$statistics_per_observation,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = "./moments_graph.png",
do_return = FALSE
)
TAD::skr_graph(
moments_df = results$weighted_moments,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
output_path = "./skr_graph.png",
slope_distance = 1,
intercept_distance = 1.86,
do_return = FALSE
)
TAD::skr_param_graph(
skr_param = results$ses_skr,
statistics_factor_name = statistics_factor_name,
statistics_factor_name_breaks = c("Mown_Unfertilized", "Mown_NPK"),
statistics_factor_name_col = c("#1A85FF", "#D41159"),
slope_distance = 1,
intercept_distance = 1.86,
save_skr_param_graph = "./skr_param_graph.png",
do_return = FALSE
)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.