The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Romeb implements robust median‑based Bayesian
growth curve modeling that accommodate the three classical missing‑data
mechanisms—MCAR, MAR and MNAR-and complete data, particularly beneficial
when data are nonnormally distributed or include outliers. A detailed
tutorial can be found in Tang & Tong (2025).
The main interface is
Romeb(
Missing_Type, # "MNAR", "MAR", "MCAR", or "no missing"
data, # matrix / data frame
time, # Numeric vector of measurement times (e.g., c(0,1,2,3)).
seed, # reproducibility seed
K = 0, # number of auxiliary variables
chain = 1, # number of MCMC chains
Niter = 6000, # iterations per chain
burnIn = 3000 # burn‑in iterations
)| Argument | Description |
|---|---|
Missing_Type |
Character string specifying the assumed missing‑data mechanism. One
of "MNAR", "MAR", "MCAR",
"no missing". |
data |
Matrix or data frame. If K = 0, all
columns are treated as outcomes y; otherwise the first
K columns are auxiliary variables and the next
Time columns are outcomes. |
time |
Numeric vector of measurement times (e.g., c(0,1,2,3)). |
seed |
Integer seed ensuring reproducibility. |
K |
Non‑negative integer (default 0) giving the number of auxiliary variables. |
chain |
Number of parallel MCMC chains (default 1). |
Niter |
Total iterations per chain (default 6000). |
burnIn |
Iterations discarded as burn‑in (default 3000). |
Running
returns a compact table with the posterior median, Geweke z‑scores, the 95% equal‑tail credible interval, and the 95% highest‑posterior‑density (HPD) interval for each monitored parameter.
Further elements can be accessed directly:
| Element | Content |
|---|---|
Res$quantiles |
Posterior mean, SD, naïve and time‑series SEs, plus selected quantiles for every parameter after burn‑in. |
Res$geweke |
Vector of Geweke diagnostic z‑scores; values within ±1.96 indicate no evidence against lack of convergence. |
Res$credible_intervals |
95% equal‑tail credible intervals (2.5% & 97.5% quantiles). |
Res$hpd_intervals |
95% HPD intervals (shortest 95% region). |
Res$samps_full |
Complete coda::mcmc.list (including burn‑in). Inspect
with coda::traceplot(Res$samps_full[,'par[i]']) for par[i]
. |
Below we illustrate a workflow.
set.seed(123)
Y <- matrix(rnorm(300*5), nrow = 300, ncol = 5) # tiny complete data set
result_full <- Romeb("no missing", data = Y, time = c(0, 1, 2, 3, 4), seed = 123)## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1500
## Unobserved stochastic nodes: 1804
## Total graph size: 14432
##
## Initializing model
## Romeb GCM summary
## ==================
##
## Posterior medians (50% quantiles):
## par[1] par[2] par[3] par[4] par[5]
## 0.010448884 0.008549176 0.171543659 -0.056132922 0.046658630
##
## Geweke test:
## par[1] par[2] par[3] par[4] par[5]
## -0.4295213 0.8113677 0.1677203 -0.2686674 0.5478983
##
## 95% credible intervals:
## 2.5% 97.5%
## par[1] -0.08372728 0.09968858
## par[2] -0.03105851 0.04984433
## par[3] 0.09413207 0.27461789
## par[4] -0.09527199 -0.02609691
## par[5] 0.03244535 0.06536003
##
## 95% hpd intervals:
## par[1] par[2] par[3] par[4] par[5]
## lower -0.08410641 -0.03164083 0.09030855 -0.09251707 0.03161084
## upper 0.09900967 0.04894551 0.26590422 -0.02422712 0.06381646
##
## Use x$samps_full to access full MCMC samples, and coda::traceplot(x$samps_full[,'par[i]']) for the trace plot of par[i].
Note: par [1]: latent intercept, par [2]: latent slope: par [3]: variance of the latent intercept, par [4]: covariance between intercept and slope, par [5]: variance of the latent slope.
Please cite the package as:
Tang,D.and Tong,X.(2025). Romeb: An R Package for Robust Median-Based Bayesian Growth Curve Modeling with Missing Data.
Bibliographic metadata can also be obtained via
citation("Romeb").
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.