The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(PriorGen)## Loading required package: rootSolve
## Loading required package: nleqslv
findbeta(themedian = 0.5,lower.v = T,percentile = 0.999,percentile.value = 0.999)## $parameters
## a b
## 1 1
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0005798 0.2548675 0.5011664 0.5009285 0.7471612 0.9999125
##
## $input
## themedian percentile percentile.value
## 0.500 0.999 0.999
##
## attr(,"class")
## [1] "PriorGen"
#findbeta(themode = 0.5,lower.v = T,percentile = 0.80,percentile.value = 0.95)
fb_per=findbeta(themean = 0.5,lower.v = T,percentile = 0.90,percentile.value = 0.95)
fb_per$parameters## a b
## 0.6658199 0.6658199
fb_per$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000004 0.1923723 0.4975507 0.4977591 0.8030204 0.9999862
fb_per$input## themean percentile percentile.value
## 0.50 0.90 0.95
print_PriorGen(fb_per)## [1] "The desired Beta distribution that satisfies the specified conditions is: Beta(0.67,0.67). Verification: The percentile value 0.95 corresponds to the 90th percentile"
library(PriorGen)
findbeta_raw(themedian = 0.5,therange = c(0,1))## $parameters
## a b
## 1 1
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000875 0.2528388 0.4988336 0.4990715 0.7451325 0.9994202
##
## $input
## themedian scalemetric_var_or_range
## 0.5 1.0
##
## attr(,"class")
## [1] "PriorGen"
#findbeta_raw(themode = 0.5,therange = c(0,1))
fb_raw=findbeta_raw(themean = 0.8,thevariance = 0.2)
fb_raw$parameters## a b
## 5.157879 1.289470
fb_raw$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1156 0.7171 0.8315 0.8004 0.9130 0.9997
fb_raw$input## themean scalemetric_var_or_range
## 0.8000000 0.0408861
library(PriorGen)
findbeta_abstract(themean.cat = "Low",thevariance.cat = "High") ## $parameters
## a b
## 2.136044 4.984102
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.004837 0.178582 0.281257 0.301772 0.404865 0.869466
##
## $input
## themean scalemetric percentile.value
## 0.3000 0.1075 0.9990
##
## attr(,"class")
## [1] "PriorGen"
#findbeta_abstract(themean.cat = "Very low",thevariance.cat = "Low")
fb_abstract=findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
fb_abstract$parameters## a b
## 2.136044 4.984102
fb_abstract$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.004837 0.178582 0.281257 0.301772 0.404865 0.869466
fb_abstract$input## themean scalemetric percentile.value
## 0.3000 0.1075 0.9990
library(PriorGen)
#findbeta_panel(themedian.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
findbeta_panel(themode.vec = c(0.2,0.02,0.5,0.03,0.04,0.05)) ## $parameters
## a b
## 4.570939 22.935768
##
## $summary
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01882 0.11591 0.15828 0.16678 0.20848 0.51874
##
## $input
## themode percentile scalevalue percentile.value
## 0.1400 0.9999 0.4800 0.4990
##
## attr(,"class")
## [1] "PriorGen"
fb_panel=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
fb_panel$parameters## a b
## 11.90200 73.11232
fb_panel$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04516 0.11378 0.13739 0.14026 0.16347 0.30894
fb_panel$input## themean percentile scalevalue percentile.value
## 0.1400000 0.9999000 0.0355600 0.2773494
library(PriorGen)
fb_qq=findbetaqq(percentile.value1 = 0.3,percentile1 = 0.20,
percentile.value2 = 0.7,percentile2 = 0.97)
fb_qq$parameters## a b
## 4.754100 6.398365
fb_qq$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06502 0.32446 0.42170 0.42666 0.52329 0.89435
fb_qq$input## percentile.value1 percentile1 percentile.value2 percentile2
## 0.30 0.20 0.70 0.97
library(PriorGen)
fb_mupsi_RS=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
percentile.value=0.30, psi.percentile=0.90,
percentile.median=0.60, percentile95value=0.80,root.method="multiroot")
fb_mupsi_RS$parameters## NULL
fb_mupsi_RS$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000000 0.008379 0.085610 0.203784 0.320677 0.999995
fb_mupsi_RS$input## themean percentile percentile.value psi.percentile
## 0.20 0.99 0.30 0.90
## percentile.median percentile95value
## 0.60 0.80
fb_mupsi_NL=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
percentile.value=0.30, psi.percentile=0.90,
percentile.median=0.60, percentile95value=0.80,root.method="nleqslv")
fb_mupsi_RS$parameters## NULL
fb_mupsi_NL$parameters## NULL
# Results are similarlibrary(PriorGen)
fb_mupsi_raw=findbetamupsi_raw(themean=0.20,thevariance = 0.05, thepsi=0.15)
fb_mupsi_raw$parameters## NULL
fb_mupsi_raw$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000000 0.0000000 0.0000103 0.1935947 0.1337335 1.0000000
fb_mupsi_raw$input## themean thevariances percentile percentile.value
## 0.2000000 0.0500000 0.9999000 0.3645263
## thepsi
## 0.1500000
library(PriorGen)
fb_mupsi_abstract=findbetamupsi_abstract(themean="Average",thevariance = "Very high",
psi.percentile=0.90,percentile.median=0.999,
percentile95value=0.9999)
fb_mupsi_abstract$parameters## NULL
fb_mupsi_abstract$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00000 0.05677 0.64303 0.54865 0.99077 1.00000
fb_mupsi_abstract$input## themean percentile percentile.value psi.percentile
## 0.5500000 0.9999000 0.9974181 0.9000000
## percentile.median percentile95value
## 0.9990000 0.9999000
library(PriorGen)
fb_mupsi_panel=findbetamupsi_panel(themean=c(0.1,0.5,0.6,0.3,0.05,0.01,0.3),
psi.percentile=0.90, percentile.median=0.50,
percentile95value=0.60)
fb_mupsi_panel$parameters## NULL
fb_mupsi_panel$summary## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000001 0.1293974 0.2387243 0.2681315 0.3763673 0.9607058
fb_mupsi_panel$input## themean percentile percentile.value psi.percentile
## 0.2657143 0.9999000 0.4656722 0.9000000
## percentile.median percentile95value
## 0.5000000 0.6000000
library(PriorGen)
fb_pr=findbeta(themean = 0.5,lower.v = T,percentile = 0.999,percentile.value = 0.999)
plot(fb_pr,main="Elicited beta prior \n(Percentile)",ylab = "Density",lwd=3,type="l",xlab="")
# Plot for finbeta_raw
library(PriorGen)
fb_raw=findbeta_raw(themean = 0.5,thevariance = 0.5)
plot(fb_raw,main="Elicited beta prior \n(Raw)",ylab = "Density",lwd=3,type="l",xlab="")
# Plot for findbeta_abstract
library(PriorGen)
fb_abstract=findbeta_abstract(themean.cat = "Low",thevariance.cat = "High")
plot(fb_abstract,main="Elicited beta prior \n(Abstract)",ylab = "Density",lwd=3,type="l",xlab="")
library(PriorGen)
fb_panel1=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.03,0.04,0.05))
fb_panel2=findbeta_panel(themean.vec = c(0.2,0.02,0.5,0.4,0.04,0.05))
plot(fb_panel1,main="Elicited beta prior \n(Panel)",ylab = "Density",lwd=3,type="l",xlab="")
lines(fb_panel2,lwd=3,type="l",lty=2)
legend("topright",c("Panel 1", "Panel 2"),lty = c(1,2),lwd=3)
library(PriorGen)
fb_qq=findbetaqq(percentile.value1 = 0.3,percentile1 = 0.20,
percentile.value2 = 0.7,percentile2 = 0.97)
plot(fb_qq,main="Elicited beta prior \n(Percentiles method)",ylab = "Density",lwd=3,type="l",xlab="")
library(PriorGen)
fb_mupsi=findbetamupsi(themean=0.20, percentile=0.99, lower.v=TRUE,
percentile.value=0.30, psi.percentile=0.90,
percentile.median=0.50, percentile95value=0.60)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
fb_mupsi1=findbetamupsi(themean=0.30, percentile=0.8, lower.v=TRUE,
percentile.value=0.30, psi.percentile=0.90,
percentile.median=0.70, percentile95value=0.80)
lines(fb_mupsi1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Basic","Basic1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
fb_mupsi_raw=findbetamupsi_raw(themean=0.20, thevariance = 0.1, thepsi=0.15)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_abstract$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_abstract$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_raw,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
fb_mupsi_raw1=findbetamupsi_raw(themean=0.30, thevariance = 0.15, thepsi=0.15)
lines(fb_mupsi_raw1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Raw","Raw1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
fb_mupsi_abstract=findbetamupsi_abstract(themean="Low", thevariance = "High",
psi.percentile=0.90, percentile.median=0.95, percentile95value=0.98)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_abstract$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_abstract$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_abstract,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
fb_mupsi_abstract1=findbetamupsi_abstract(themean="Very low", thevariance = "Average",
psi.percentile=0.90,percentile.median=0.95,
percentile95value=0.98)
lines(fb_mupsi_abstract1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Abstract","Abstract1"),col=c("black","gray"),lty=1:2,lwd=3)
library(PriorGen)
fb_mupsi_panel=findbetamupsi_panel(themean=c(0.1,0.5,0.05,0.01,0.4,0.2), psi.percentile=0.90,
percentile.median=0.50, percentile95value=0.60)
#par(mfrow=c(1,3))
#plot(density(fb_mupsi_panel$param_upper$at),lwd=3,main="Density plot for samples of a=mu*psi") #
#plot(density(fb_mupsi_panel$param_upper$bt),lwd=3,main="Density plot for samples of b=mu*(1-psi)") #
plot(fb_mupsi_panel,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",xlab="")
fb_mupsi_panel1=findbetamupsi_panel(themean=c(0.1,0.5,0.05,0.01,0.6,0.65), psi.percentile=0.90,
percentile.median=0.80, percentile95value=0.90)
lines(fb_mupsi_panel1,main="Elicited beta prior \n(Hierarchical top level)",
ylab = "Density",lwd=3,type="l",lty=2,col="gray")
legend("topright",c("Panel","Panel1"),col=c("black","gray"),lty=1:2,lwd=3)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.