The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Multicore Multivariable Isotonic Regression
Version: 0.1.2
Description: The goal of 'McMiso' is to provide functions for isotonic regression when there are multiple independent variables. The functions solve the optimization problem using recursion and leverage parallel computing to improve speed, and are useful for situations with relatively large number of covariates. The estimation method follows the projective Bayes solution described in Cheung and Diaz (2023) <doi:10.1093/jrsssb/qkad014>.
Depends: R (≥ 4.0.0)
Imports: dplyr, future (≥ 1.33.0), stats
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2025-11-18 15:48:18 UTC; yingkuencheung
Author: Cheung Ken [aut, cre]
Maintainer: Cheung Ken <yc632@cumc.columbia.edu>
Repository: CRAN
Date/Publication: 2025-11-21 15:40:08 UTC

Probabilistic Bayesian classifier

Description

Probabilistic Bayesian classifier

Usage

PBclassifier(X, y, method = "DU", a0 = 0.25, b0 = 0.25, t0 = 0.5)

Arguments

X

numeric matrix of doses

y

numeric response vector

method

character, either "DU" or "UD"

a0

numeric, prior alpha

b0

numeric, prior beta

t0

numeric, threshold

Value

A list with class "pbc"

References

Cheung YK, Diaz KM. Monotone response surface of multi-factor condition: estimation and Bayes classifiers. *J R Stat Soc Series B Stat Methodol.* 2023 Apr;85(2):497-522. doi: 10.1093/jrsssb/qkad014. Epub 2023 Mar 22. PMID: 38464683; PMCID: PMC10919322.

Examples

A <- as.matrix(expand.grid(rep(list(0:1), 6)))
set.seed(2025)
X <- A[sample(nrow(A),size=500, replace = TRUE),]
y <- as.numeric(rowSums(X)>=3)
PBclassifier(X,y)

Fit Bayesian misclassification model (binary)

Description

Fit Bayesian misclassification model (binary)

Usage

miso(X, y, incr = 0.01)

Arguments

X

numeric matrix

y

numeric response vector

incr

numeric, increment for threshold grid

Value

A list containing fitted parameters

References

Cheung YK, Diaz KM. Monotone response surface of multi-factor condition: estimation and Bayes classifiers. *J R Stat Soc Series B Stat Methodol.* 2023 Apr;85(2):497-522. doi: 10.1093/jrsssb/qkad014. Epub 2023 Mar 22. PMID: 38464683; PMCID: PMC10919322.

Examples

A <- as.matrix(expand.grid(rep(list(0:1), 6)))
set.seed(2025)
X <- A[sample(nrow(A),size=500, replace = TRUE),]
y <- as.numeric(rowSums(X)>=3)
miso(X,y)

S3 predict method for class "pbc"

Description

S3 predict method for class "pbc"

Usage

## S3 method for class 'pbc'
predict(object, Xnew, ...)

Arguments

object

object of class "pbc"

Xnew

numeric matrix of inputs

...

additional arguments (not used)

Value

List containing predictions

Examples

A <- as.matrix(expand.grid(rep(list(0:1), 6)))
set.seed(2025)
X <- A[sample(nrow(A),size=500, replace = TRUE),]
y <- as.numeric(rowSums(X)>=3)
fit <- PBclassifier(X,y)
predict(fit,X)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.