
MULTI- AND MIXED-PRECISION COMPUTATIONS IN R
(MPCR)

Contents

1. Introduction 1
2. Installation 2
2.1. Installation in R 2
2.2. Installation in C++ 2
2.3. BLAS and LAPACK Libraries 2
3. Methodology 3
3.1. Data Type Promotion 3
4. Basic Usage 3
5. Maximum Likelihood Estimation of Matérn Covariance

Function: A Real-Life Example 4
6. Benchmarks 9
References 9

1. Introduction

Double-precision was once standard in scientific computations like weather fore-
casting [4], numerical linear algebra [1], and quantum models[5]. However, there
is growing interest in using lower precision to reduce costs and improve perfor-
mance in hardware acceleration, execution time, memory, and energy use. This
approach has significantly impacted various fields, including numerical linear al-
gebra, quantum chemistry, computational fluid dynamics, and deep learning.

MPCR is a package in R designed for multi- and mixed-precision computations,
accommodating 64-bit and 32-bit data structures. This flexibility enables fast
execution across various applications. The package enhances performance by op-
timizing operations in both precision levels, which is achieved by integrating with
high-speed BLAS and LAPACK libraries like MKL and OpenBLAS. Including a
32-bit option caters to applications where high precision is unnecessary, accelerat-
ing computational processes whenever feasible. The package also provides support
for tile-based algorithms in three linear algebra operations: CHOL(), TRSM(),
and GEMM(). The tile-based algorithm splits the matrix into smaller tiles, fa-
cilitating parallelization through a predefined Directed Acyclic Graph (DAG) for
each operation [3]. OpenMP enhances the efficiency of these operations, leverag-
ing multi-core parallelism. In this case, MPCR facilitates mixed-precision execu-
tion by permitting varying precision levels for different tiles [2]. This approach
is advantageous in numerous applications, as it maintains the accuracy of the

1

application while accelerating execution in scenarios where single-precision alone
does not significantly affect the accuracy of the application.

2. Installation

One of the notable additions in MPCR is the enhanced capability to execute
and install the package seamlessly on both C++ and R environments. This ex-
tended functionality provides developers with increased flexibility, enabling them
to run, test, and incorporate the package effortlessly into any existing C++ or R
project.

2.1. Installation in R. You can install the stable version from CRAN using the
usual install.packages():

install.packages("MPCR")

You can also install the latest release from GitHub using the following command:

remotes::install_github("stsds/MPCR")

2.2. Installation in C++. To build the code as a C++ code with testing en-
abled, run the following:

cd MPCR/

./config.sh -t

./clean_build.sh

2.3. BLAS and LAPACK Libraries. A significant enhancement in the MPCR
package involves its streamlined integration with an optimized BLAS/LAPACK
library. Typically, most existing R packages link with RBLAS by default, and
when an optimized library is necessary, users must make R environment modifi-
cations (e.g., building R from scratch with a different BLAS backend or altering
RBLAS symbolic linking). This approach demands a comprehensive understand-
ing of the modification process. Moreover, any library previously using RBLAS
will be automatically directed to the newly linked library, introducing potential
complexities.

In contrast, MPCR offers a distinct approach to choosing the BLAS/LAPACK
library backend. The package first searches for any available BLAS backend on the
system (e.g., MKL, OpenBLAS, ATLAS, etc..). If found, MPCR seamlessly links
with the located BLAS backend. Alternatively, if no existing backend is found,
the package autonomously installs and links OpenBLAS in its dedicated space
without any alterations to the system environment. Once the package installation
is complete, there is no need for any further system modifications. Additionally,
the behavior of other packages dependent on RBLAS remains unaffected by the

2

changes introduced by MPCR. This method simplifies the utilization of optimized
libraries and enhances the overall user experience.

3. Methodology

The package is entirely crafted in pure C++, seamlessly integrated with R
through the Rcpp package. This approach yields numerous advantages, enriching
the overall design of the package in multiple dimensions. This design facilitates
the following:

(1) Enables fast and optimized development in C++ without the need for any
in-depth Rcpp knowledge.

(2) Leverage the high-performance capabilities of C++ and write efficient
code. This integration enhances the ability of R packages to handle large
datasets more effectively, enabling improved efficiency in data processing.

(3) By leveraging C++ templates, the package provides seamless and rapid
support for additional operations or precision adjustments, ensuring flex-
ibility and ease of customization when required.

3.1. Data Type Promotion. In MPCR, two primary promotion strategies are
employed. For normal MPCR matrix/vector operations, promotion is executed to
match the higher precision input. For instance, the operation involving single- and
double-precision inputs results in a double-precision output. The BLAS/LAPACK
operations in linear algebra operations necessitate the same precision input. There-
fore, if an operation involves single and double-precision inputs, the single-precision
input is promoted to double-precision before the operation is executed.

In the case of MPCR-Tile matrices, the promotion strategy differs. The preci-
sion of the output tile determines the promotion of input tiles. For example, if
single- and double-precision tiles are used as input and the output tile is single-
precision, the double-precision tile will be de-promoted to single-precision.

4. Basic Usage

This flow shows how the MPCR package can be used to create MPCR ob-
jects, i.e., vectors and matrices, and perform some basic operations on these data
structures.

Create new MPCR vector with 32-bit precision and size 50

The vector will be allocated with all values equal to 0

MPCR_object <- new(MPCR,50,"single")

To change the vector to matrix representation

Represented in column major format, the following command can be

used

MPCR_object$ToMatrix(5,10)

And to print the MPCR object metadata

Can be access using the properties of the S4 object.
3

MPCR_object$Row #5

MPCR_object$Col #10

MPCR_object$Size #50

MPCR_object$IsMatrix #TRUE

To print the MPCR object values

MPCR_object$PrintValues()

Changing the representation back to vector

MPCR_object$ToVector()

Priting the object summary

MPCR_object

To convert R matrix or vector to MPCR object.

x <- as.MPCR(c(1.21, 0.18, 0.13, 0.41, 0.06, 0.23,

0.18, 0.64, 0.10, -0.16, 0.23, 0.07,

0.13, 0.10, 0.36, -0.10, 0.03, 0.18,

0.41, -0.16, -0.10, 1.05, -0.29, -0.08,

0.06, 0.23, 0.03, -0.29, 1.71, -0.10,

0.23, 0.07, 0.18, -0.08, -0.10, 0.36),

nrow=6,ncol=6,precision="double")

Perform cholesky decomposition on the MPCR matrix

chol_out <- chol(x)

5. Maximum Likelihood Estimation of Matérn Covariance Function:
A Real-Life Example

An example demonstrating the advantages of the MPCR package is its appli-
cation in evaluating high-dimensional likelihood functions, which are commonly
needed in spatial statistics. Suppose we have a 2D Gaussian random field with
14,400 locations, each associated with a single measurement.

Our goal is to fit this Gaussian field using the Matérn spatial covariance func-
tion:

cov{Z(si), Z(sj)} =
σ2

2ν−1Γ (ν)
Mν

(∥si − sj∥
a

)
, (5.1)

parameterized by θ = (ν, a, σ2)⊤, where ν > 0, a > 0, σ2 > 0 are the smoothness,
spatial range, and variance parameters, respectively. Here, Mν(x) = xνKν(x),
Kν(·) is the modified Bessel function of the second kind of order ν, and Γ(·) is
the gamma function.

4

Algorithm 1 Adaptive Precision-Aware Runtime Decision.

1: Compute the Frobenius norm of Σ(θ), i.e., ∥Σ(θ)∥F =√∑n
i=1

∑n
j=1 |Σij(θ)|2.

2: Set the value of NT , the number of tiles in one dimension.
3: Divide Σ(θ) into tiles, i.e., Σij(θ), i = 1, . . . ,M1 and j = 1, . . . ,M2, such

that NT = M1M2.
4: Choose two precisions for the mixed-precision arithmetic and set the values of

the variables ulow and uhigh to their equivalent machine epsilons, e.g., ulow =
2−24 and uhigh = 1e−8.

5: for i = 1 : M1 do
6: for j = 1 : M2 do
7: Compute the Frobenius norm of tile Σij(θ).
8: if ∥Σij(θ)∥F ≤ uhigh∥Σ(θ)∥F/(ulowNT) then
9: Store tile Σij(θ) in the lower (single) precision.
10: else
11: Store tile Σij(θ) in the higher (double) precision.
12: end if
13: end for
14: end for

(1) double-precision
(a) Simulate a sample 2D spatial field from a Matérn spatial covariance

function model.

cov.matern <- function(x, nu, a, sigma_sq){

if(nu == 0.5) return(sigma_sq*exp(-x / a))

ismatrix <- is.matrix(x)

if(ismatrix){nr=nrow(x); nc=ncol(x)}

x <- c(x / a)

output <- rep(1, length(x))

n <- sum(x > 0)

if(n > 0) {

x1 <- x[x > 0]

output[x > 0] <-

(1/((2^(nu - 1)) * gamma(nu))) * (x1^nu) * besselK(x1, nu)

}

if(ismatrix){

output <- matrix(output, nr, nc)

}

return(sigma_sq * output)

}

M <- 120

n.loc <- M*M
5

locs <- cbind(rep(0:(M-1), M)/(M-1), rep(0:(M-1), each=M)/(M-1))

x <- as.matrix(dist(locs)) # distance matrix

theta <- c(1, 0.05, 1) # true parameters

cov.R <- cov.matern(x, theta[1], theta[2], theta[3])

Simulate the spatial field.

library(mgcv)

set.seed(4)

z.R <- rmvn(1, rep(0,M*M), cov.R)

(b) Create a function that computes the value of the negative Gaussian
log-likelihood function. The function nll below takes in the argument
pars, which is an R vector object that represents θ. Moreover, the
parameter values contained in the vector pars are transformed to
ensure that their values remain within their valid ranges.

nll <- function(pars, type, precision){

nu_param = 2 * 1 / (1 + exp(-pars[1]))

a_param = exp(pars[2])

sigma_param = exp(pars[3])

#Creating the covariance matrix as R-double-precision

V <- cov.matern(x, nu_param, a_param, sigma_param)

if(type == 'FULL'){

if(precision == 'MPCR-Double'){

#Casting the covariance matrix as MPCR double-precision

cov_mpcr <- as.MPCR(V, nrow=M*M, ncol=M*M, precision='double')

L <- chol(cov_mpcr)

d <- log(diag(L))

log.det.cov <- 2*d$Sum()

z.mpcr <- as.MPCR(z.R, nrow=M*M, ncol=1, precision='single')

inner_product <- MPCR.trsm(a=L, b=z.mpcr, side='L',

upper_triangle=T, transpose=T, alpha=1)

inner.prod <- inner_product$SquareSum()

}else if(precision == 'R-Double'){

L <- t(chol(V))

log.det.cov <- 2*sum(log(diag(L)))

z.new <- forwardsolve(L, z.R)

inner.prod <- sum(z.new^2)

}

}else if(type == 'BANDED'){

cov.tile <- new(MPCRTile, nr, nc, tr, tc, V, prec.cov.banded)

NOTE: the result of chol is a lower triangular matrix

cov.tile_chol <- chol(cov.tile, overwrite = F, num_threads = 4)

d <- log(cov.tile_chol$Diag())

log.det.cov <- 2*d$Sum()

z.tile <- new(MPCRTile, nr, 1, tc, 1, z.R, prec.z)
6

MPCRTile.trsm(a=cov.tile_chol, b=z.tile, side='L',

upper_triangle=F, transpose=F, alpha=1)

inner.prod <- z.tile$SquareSum()

}else if(type == 'ADAPTIVE'){

cov.tile <- new(MPCRTile, nr, nc, tr, tc, V, prec.cov)

V_norm <- sqrt(sum(V^2))

upper_bound <- u_high * V_norm / (nt * u_low)

for(ii in 1:tr_total){

for(jj in 1:tc_total){

test <- MPCRTile.GetTile(cov.tile, ii, jj)

tile_norm <- sqrt(test$SquareSum())

if(tile_norm < upper_bound){

cov.tile$ChangeTilePrecision(ii, jj, "single")

}

}

}

NOTE: the result of chol is a lower triangular matrix

cov.tile_chol <- chol(cov.tile, overwrite = F, num_threads = 4)

d <- log(cov.tile_chol$Diag())

log.det.cov <- 2*d$Sum()

z.tile <- new(MPCRTile, nr, 1, tc, 1, z.R, prec.z)

MPCRTile.trsm(a=cov.tile_chol, b=z.tile, side='L',

upper_triangle=F, transpose=F, alpha=1)

inner.prod <- z.tile$SquareSum()

}

Computing the negative Gaussian log-likelihood

nll <- 0.5*inner.prod + 0.5*log.det.cov + 0.5*n.loc*log(2*pi)

return(nll)

}

(c) Perform non-linear optimization. In this example, we use the nloptr
function with the BOBYQA subroutine to minimize the log-likelihood
function.

library(nloptr)

opts <- list("algorithm" = "NLOPT_LN_BOBYQA", "xtol_rel" = 1e-8,

"maxeval" = 1000)

init <- c(-0.3, -1.5, -0.3)

fit_R <- nloptr(x0 = init, eval_f = log.likel, type = 'FULL',

precision = 'R-Double', opts = opts)

fit_mpcr_double <- nloptr(x0 = init, eval_f = log.likel,

type = 'FULL', precision = 'MPCR-Double', opts = opts)

(2) Mixed-Precision
(a) Define the tile sizes and the low and high precisions involved in the

mixed-precision MLE.

u_low = 2^(-24)
7

u_high = 1e-8

nr <- nc <- n.loc

tr <- 2400

tc <- 2400

tr_total <- n.loc / tr

tc_total <- n.loc / tc

nt <- tr_total * tc_total

Precisions for z

prec.z <- matrix(rep("single", tr_total), tr_total, 1)

Precisions for cov

create_prec_banded_mat <- function (prec_matrix, bandwidth) {

d <- dim(prec_matrix)

outside_band <- .row(d) - n >= .col(d) | .col(d) - n >= .row(d)

prec_matrix[outside_band] <- 'single'

return(prec_matrix)

}

prec.cov <- matrix(rep("double", nt), n.loc/tr, n.loc/tc)

prec.cov.banded <- create_prec_banded_mat(prec.cov)

(b) Perform non-linear optimization.

fit_tile_adaptive <- nloptr(x0 = init, eval_f = log.likel,

type = 'ADAPTIVE', precision = NULL, opts = opts)

fit_tile_banded <- nloptr(x0 = init, eval_f = log.likel,

type = 'BANDED', precision = NULL, opts = opts)

Table 1. Summary of MLE results under different types of preci-
sion for n = 14,400.

Precision nll Parameter Estimates Execution Time

R-Double −7, 077 θ̂ = (0.9862619, 0.0513225, 0.9893821)⊤ 48.96 hours

MPCR-Double −7, 077 θ̂ = (0.9862613, 0.05132348, 0.9894147)⊤ 3.62 hours

MPCR-Mixed (adaptive) −7, 077 θ̂ = (0.9862476, 0.05126803, 0.9873119)⊤ 3.44 hours

MPCR-Mixed (banded) −7, 073 θ̂ = (1.054851, 0.04492239, 0.9298075)⊤ 1.97 hours

8

6. Benchmarks

This graph represents the speedup of MPCR single precision object to R double
object in three major linear algebra functions.

This graph represents the speedup of MPCR double precision object to R
double object in three major linear algebra functions.

References

1. Zvonimir Bujanović, Daniel Kressner, and Christian Schröder, Iterative refine-
ment of schur decompositions, Numerical Algorithms 92 (2023), no. 1, 247–267.

2. Qinglei Cao, Sameh Abdulah, Rabab Alomairy, Yu Pei, Pratik Nag, George
Bosilca, Jack Dongarra, Marc G Genton, David E Keyes, Hatem Ltaief, et al.,

9

Reshaping geostatistical modeling and prediction for extreme-scale environmen-
tal applications, SC22: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, IEEE, 2022, pp. 1–12.

3. Wolfgang Hackbusch et al., Hierarchical matrices: algorithms and analysis,
vol. 49, Springer, 2015.

4. Simon TK Lang, Andrew Dawson, Michail Diamantakis, Peter Dueben,
Samuel Hatfield, Martin Leutbecher, Tim Palmer, Fernando Prates, Christo-
pher D Roberts, Irina Sandu, et al., More accuracy with less precision, Quar-
terly Journal of the Royal Meteorological Society 147 (2021), no. 741, 4358–
4370.

5. Ryan Pederson, John Kozlowski, Ruyi Song, Jackson Beall, Martin Ganahl,
Markus Hauru, Adam GM Lewis, Yi Yao, Shrestha Basu Mallick, Volker Blum,
et al., Large scale quantum chemistry with tensor processing units, Journal of
Chemical Theory and Computation 19 (2022), no. 1, 25–32.

10

