The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
f.criterion from
tpr.dag.cv, tpr.dag.holdout,
find.best.f and compute.fmax: type of
F-measure used to select the best F-measure is always the harmonic mean
between the average precision and recall (f.criterion="F")
and never the F-measure computed as average across examples
(f.criterion="avF");tpr.dag.holdout;tpr.dag.cv and
tpr.dag.holdout;build.scores.matrix.from.list;build.scores.matrix.from.tupla;Do.HTD –> htd.vanilla;Do.HTD.holdout –> htd.holdout;heuristic.max –> obozinski.max;heuristic.and –> obozinski.and;heuristic.or –> obozinski.or;Do.heuristic.methods –>
obozinski.methods;Do.heuristic.methods.holdout –>
obozinski.holdout;GPAV –> gpav;GPAV.over.examples –>
gpav.over.examples;GPAV.parallel –> gpav.parallel;Do.GPAV –> gpav.vanilla;Do.GPAV.holdout –> gpav.holdout;TPR.DAG –> tpr.dag;Do.TPR.DAG –> tpr.dag.cv;Do.TPR.DAG.holdout –>
tpr.dag.holdout;get.parents –> build.parents;get.parents.top.down –>
build.parents.top.down;get.parents.bottom.up –>
build.parents.bottom.up;get.parents.topological.sorting –>
build.parents.topological.sorting;get.children.top.down –>
build.children.top.down;get.children.bottom.up –>
build.children.bottom.up;check.DAG.integrity –>
check.dag.integrity;do.subgraph –> build.subgraph;do.submatrix –> build.submatrix;do.stratified.cv.data.single.class –>
stratified.cv.data.single.class;do.stratified.cv.data.over.classes –>
stratified.cv.data.over.classes;do.unstratified.cv.data –>
unstratified.cv.data;do.edges.from.HPO.obo –>
build.edges.from.hpo.obo;AUPRC.single.class –>
auprc.single.class;AUPRC.single.over.classes –>
auprc.single.over.classes;AUROC.single.class –>
auroc.single.class;AUROC.single.over.classes –>
auroc.single.over.classes;compute.Fmeasure.multilabel –>
compute.fmax;Do.flat.scores.normalization;Do.full.annotation.matrix;stringsAsFactors issue – link;obogaf::parser;build.consistent.graph;Do.GPAV.holdout;precision.at.all.recall.levels.single.class (labels are all
negatives/positives);precision.at.given.recall.levels.over.classes (labels in a
fold are all negatives/positives);do.stratified.cv.data.single.class (sampling of the labels
with just one positive/negative);compute.performance to the following
high level functions:
Do.TPR.DAG and Do.TPR.DAG.holdout;Do.HTD and Do.HTD.holdout;Do.GPAV and Do.GPAV.holdout;Do.heuristic.methods and
Do.heuristic.methods.holdout;lexicographical.topological.sort;precrec
package:
precision.at.all.recall.levels.single.class;PXR.at.multiple.recall.levels.over.classes –>
precision.at.given.recall.levels.over.classes;.txt) or compressed
(.gz);CRAN Package Check Results: remove unneeded header
and define from GPAV C++ source codeGPAV algorithm (Burdakov et al., Journal of
Computational Mathematics, 2006 – link);GPAV algorithm in the top-down step of the
functions TPR.DAG, Do.TPR.DAG and
Do.TPR.DAG.holdout;help("HEMDAG-defunct");C++ code of GPAV
algorithm;compute.Fmeasure.multilabel;PXR.at.multiple.recall.levels.over.classes;AUPRC, AUROC,
FMM, PXR) can be computed either
one-shot or averaged across
folds;metric: maximization by
FMAX or PRC (see manual for further
details);do.stratified.cv.data.single.class;add TPR-DAG: function gathering several hierarchical
ensemble variants;
add Do.TPR.DAG: high-level function to run
TPR-DAG cross-validated
experiments;
add Do.TPR.DAG.holdout: high-level functions to run
TPR-DAG holdout experiments;
The following TPR-DAG and DESCENS
high-level functions were remove:
Do.tpr.threshold.free;Do.tpr.threshold.cv;Do.tpr.weighted.threshold.free.cv;Do.tpr.weighted.threshold.cv;Do.descens.threshold.free;Do.descens.threshold.cv;Do.descens.weighted.threshold.free.cv;Do.descens.tau.cv;Do.descens.weighted.threshold.cv;Do.tpr.threshold.free.holdout;Do.tpr.threshold.holdout;Do.tpr.weighted.threshold.free.holdout;Do.tpr.weighted.threshold.holdout;Do.descens.threshold.free.holdout;Do.descens.threshold.holdout;Do.descens.weighted.threshold.free.holdout;Do.descens.tau.holdout;Do.descens.weighted.threshold.holdout;NOTE: all the removed functions can be run opportunely by setting the input parameters of the new high-level function
Do.TPR.DAG(for cross-validated experiments) andDo.TPR.DAG.holdout(for hold-out experiments);
DESCENS algorithm;Max, And,
Or (Obozinski et al., Genome Biology, 2008 – link);tupla.matrix function;HPOparser (note: from
version 2.6.0 HPOparser was changed in
obogaf::parser);CITATION file;These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.