The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
max_rules hyper parameters for max rules
filtering.B hyper-parameter,subsample hyper-parameter.rules(implicit form) in cre() function return.stability_selection binary -> string
(‘no’,‘vanilla’,‘error_control’).ntrees_gbm hyper-parameter and
ntrees_gbm hyper-parameter in ntrees
hyper-parameter.ite_method_dis, ite_method_inf
method-parameter -> ite_method.ps_method_dis, ps_method_inf
method-parameter -> learner_ps.oreg_method_dis, oreg_method_inf
method-parameter -> learner_y.max_nodes hyper-parameter.replace hyper-parameter.penalty_rl hyper-parameter.t_pvalue hyper-parameter.ite_pred from cre() function return.intervention_vars.bcf) ITE estimator is not
supported.plot() function (remove ATE, old BATE, and
explicit AATEs).offset method-parameter -> hyper-parameterestimate_ite_poisson function ->
estimate_ite_tpoissonmax_dacay hyper-parameter ->
t_decay.interpret_select_rules function ->
interpret_rules.generate_causal_rules function ->
discover_rules.discover_causal_rules function
->select_rules.offset_name method parameter ->
offset.cre.cre object: added parameters and ite estimation.generate_cre_dataset).slearner) method for ITE estimation.tlearner) method for ITE estimation.xlearner) method for ITE estimation.summary.cre.verbose parameter in summary.cre.ite, additional cre input parameter to use
personalized ite estimations.estimation.R).discovery.R).extract_effect_modifiers function (utility for
performance evaluation).evaluate function for discovery evaluation.confounding parameter in
generate_cre_dataset to set confounding type.ite_pred and model in CRE results.binary_covariates parameter in
generate_cre_dataset to set covariates domain.include_ps_inf method-parameter.include_ps_dis method-parameter.oreg method for ITE estimation.ipw method for ITE estimation.sipw method for ITE estimation.type_decay hyper-parameter.linreg for CATE estimation (remove
cate_method and cate_SL_library
parameters).method_params and hyper_params additional
parameters in summary.cre.random_state parameter.include_offset method parameter.binary parameter in generate_cre_dataset
-> binary_outcome .filter_cate hyper-parameter ->
t_pvalue.t_anom hyper-parameter -> t_ext.effect_modifier hyper-parameter ->
intervention_vars.lasso_rules_filter function ->
discover_causal_rules.split_data function ->
honest_splitting.prune_rules function ->
`filter_irrelevant_rules.discard_correlated_rules function ->
filter_correlated_rules.discard_anomalous_rules function ->
filter_extreme_rules.penalty_rl hyper-parameter).q hyper-parameter -> cutoff.pfer_val hyper-parameter -> pfer.select_causal_rules function ->
lasso_rules_filter.t hyper-parameter -> t_anom.generate_rules_matrix function.summary.cre function to describe results.min_nodes hyper-parameter -> node_size
(randomForest convention).cre returns an S3 object.prune_rules function to discard un-predictive
rules.discard_anomalous_rules function to discard anomalous
rules (see t_corr hyper-parameter.).discard_correlated_rules function to discard correlated
rules (see t_anom hyper-parameter).effect_modifiers parameter in
generate_rules function for covariates filtering.generate_causal_rules function.SuperLearner package for
propensity score estimation in estimate_ite_xyz.poisson,
DRLearner, bart-baggr, cf-means,
linreg) in estimate_cate function.ps_method_dis, ps_method_inf,
or_method_dis, or_method_inf,
cate_SL_library) method-parameters to complement
SuperLearner package.cate_method method-parameter to select CATE estimation
method.filter_cate method-parameter for estimation
filtering.p parameter (in generate_cre_dataset
function) to set the number of covariates.replace parameter (in generate_rules
function) to allow bootstrapping.cre.print generic function to print cre S3
object results.cre.summary generic functions to summarize
cre S3 object Results.check_input function to isolate input checks.estimate_ite_aipw function for augmented inverse
propensity weighting.plot.cre generic function to plot cre S3
object results.test-cre_functional.R to test the functionality of the
package.stability_selection function for causal rules
selection.estimate_ite_blp function.take1() function.estimate_cate include two methods for estimating the
CATE values.cre added initial checks for binary outcome and whether
to include the propensity score in the ITE estimation.estimate_ite_xyz conduct propensity score estimation
using helper function.generate_cre_dataset.set_logger and get_logger.check_input_data function.generate_cre_dataset function to generate synthetic
data for testing the package.test-generate_cre_dataset function test.estimate_ps function to estimate the propensity
score.estimate_ite_xbart function to generate ITE estimates
using accelerated BART.estimate_ite_xbcf function to generate ITE estimates
using accelerated BCF.analyze_sensitivity function to conduct sensitivity
analysis for unmeasured confounding.cre function to perform the entire Causal Rule Ensemble
method.estimate_cate function to generate CATE estimates from
the ITE estimates and select rules.estimate_ite function to generate ITE estimates using
the user-specified method (calls the other estimate_ite_xyz
functions).estimate_ite_bart function to generate ITE estimates
using BART.estimate_ite_bcf function to generate ITE estimates
using Bayesian Causal Forests.estimate_ite_cf function to generate ITE estimates
using Causal Forests.estimate_ite_ipw function to generate ITE estimates
using IPW.estimate_ite_or function to generate ITE estimates
using Outcome Regression.estimate_ite_sipw function to generate ITE estimates
using SIPW.extract_rules function to extract a list of causal
rules from randomForest and GBM models.generate_rules function to generate causal rule models
using randomForest and GBM methods.generate_rules_matrix function to convert a list of
causal rules into a matrix.select_causal_rules function to apply penalized
regression to causal rules. to select only the most important ones.split_data function to split input data into discovery
and inference subsamples.take1 function to create a subsample of indices.seed argument in generate_cre_datase
function.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.