CRAN Package Check Results for Package partykit

Last updated on 2026-02-08 13:50:01 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.2-24 15.42 266.61 282.03 ERROR
r-devel-linux-x86_64-debian-gcc 1.2-25 10.90 205.75 216.65 OK
r-devel-linux-x86_64-fedora-clang 1.2-25 25.00 460.32 485.32 OK
r-devel-linux-x86_64-fedora-gcc 1.2-25 24.00 463.85 487.85 OK
r-devel-windows-x86_64 1.2-24 19.00 375.00 394.00 OK
r-patched-linux-x86_64 1.2-24 15.03 254.76 269.79 ERROR
r-release-linux-x86_64 1.2-24 12.42 252.56 264.98 ERROR
r-release-macos-arm64 1.2-25 4.00 76.00 80.00 OK
r-release-macos-x86_64 1.2-25 12.00 717.00 729.00 OK
r-release-windows-x86_64 1.2-24 18.00 362.00 380.00 OK
r-oldrel-macos-arm64 1.2-25 3.00 83.00 86.00 OK
r-oldrel-macos-x86_64 1.2-25 13.00 763.00 776.00 OK
r-oldrel-windows-x86_64 1.2-24 24.00 470.00 494.00 OK

Check Details

Version: 1.2-24
Check: tests
Result: ERROR Running ‘bugfixes.R’ [6s/7s] Comparing ‘bugfixes.Rout’ to ‘bugfixes.Rout.save’ ... OK Running ‘constparty.R’ [3s/4s] Running ‘regtest-MIA.R’ [2s/2s] Comparing ‘regtest-MIA.Rout’ to ‘regtest-MIA.Rout.save’ ... OK Running ‘regtest-cforest.R’ [12s/18s] Comparing ‘regtest-cforest.Rout’ to ‘regtest-cforest.Rout.save’ ... OK Running ‘regtest-ctree.R’ [2s/3s] Comparing ‘regtest-ctree.Rout’ to ‘regtest-ctree.Rout.save’ ... OK Running ‘regtest-glmtree.R’ [37s/44s] Comparing ‘regtest-glmtree.Rout’ to ‘regtest-glmtree.Rout.save’ ... OK Running ‘regtest-honesty.R’ [2s/3s] Running ‘regtest-lmtree.R’ [3s/4s] Running ‘regtest-nmax.R’ [2s/3s] Comparing ‘regtest-nmax.Rout’ to ‘regtest-nmax.Rout.save’ ... OK Running ‘regtest-node.R’ [2s/2s] Comparing ‘regtest-node.Rout’ to ‘regtest-node.Rout.save’ ... OK Running ‘regtest-party-random.R’ [3s/3s] Running ‘regtest-party.R’ [5s/4s] Comparing ‘regtest-party.Rout’ to ‘regtest-party.Rout.save’ ... OK Running ‘regtest-split.R’ [2s/2s] Comparing ‘regtest-split.Rout’ to ‘regtest-split.Rout.save’ ... OK Running ‘regtest-weights.R’ [2s/3s] Comparing ‘regtest-weights.Rout’ to ‘regtest-weights.Rout.save’ ... OK Running the tests in ‘tests/constparty.R’ failed. Complete output: > ### R code from vignette source 'constparty.Rnw' > > ### test here after removal of RWeka dependent code > > ################################################### > ### code chunk number 1: setup > ################################################### > options(width = 70) > library("partykit") Loading required package: grid Loading required package: libcoin Loading required package: mvtnorm > library("XML") ### for pmmlTreeModel > set.seed(290875) > > > ################################################### > ### code chunk number 2: Titanic > ################################################### > data("Titanic", package = "datasets") > ttnc <- as.data.frame(Titanic) > ttnc <- ttnc[rep(1:nrow(ttnc), ttnc$Freq), 1:4] > names(ttnc)[2] <- "Gender" > > > ################################################### > ### code chunk number 3: rpart > ################################################### > library("rpart") > (rp <- rpart(Survived ~ ., data = ttnc, model = TRUE)) n= 2201 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 2201 711 No (0.6769650 0.3230350) 2) Gender=Male 1731 367 No (0.7879838 0.2120162) 4) Age=Adult 1667 338 No (0.7972406 0.2027594) * 5) Age=Child 64 29 No (0.5468750 0.4531250) 10) Class=3rd 48 13 No (0.7291667 0.2708333) * 11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) * 3) Gender=Female 470 126 Yes (0.2680851 0.7319149) 6) Class=3rd 196 90 No (0.5408163 0.4591837) * 7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) * > > > ################################################### > ### code chunk number 4: rpart-party > ################################################### > (party_rp <- as.party(rp)) Model formula: Survived ~ Class + Gender + Age Fitted party: [1] root | [2] Gender in Male | | [3] Age in Adult: No (n = 1667, err = 20.3%) | | [4] Age in Child | | | [5] Class in 3rd: No (n = 48, err = 27.1%) | | | [6] Class in 1st, 2nd: Yes (n = 16, err = 0.0%) | [7] Gender in Female | | [8] Class in 3rd: No (n = 196, err = 45.9%) | | [9] Class in 1st, 2nd, Crew: Yes (n = 274, err = 7.3%) Number of inner nodes: 4 Number of terminal nodes: 5 > > > ################################################### > ### code chunk number 5: rpart-plot-orig > ################################################### > plot(rp) > text(rp) > > > ################################################### > ### code chunk number 6: rpart-plot > ################################################### > plot(party_rp) > > > ################################################### > ### code chunk number 7: rpart-pred > ################################################### > all.equal(predict(rp), predict(party_rp, type = "prob"), + check.attributes = FALSE) [1] TRUE > > > ################################################### > ### code chunk number 8: rpart-fitted > ################################################### > str(fitted(party_rp)) 'data.frame': 2201 obs. of 2 variables: $ (fitted) : int 5 5 5 5 5 5 5 5 5 5 ... $ (response): Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... > > > ################################################### > ### code chunk number 9: rpart-prob > ################################################### > prop.table(do.call("table", fitted(party_rp)), 1) (response) (fitted) No Yes 3 0.7972406 0.2027594 5 0.7291667 0.2708333 6 0.0000000 1.0000000 8 0.5408163 0.4591837 9 0.0729927 0.9270073 > > > ################################################### > ### code chunk number 10: J48 > ################################################### > #if (require("RWeka")) { > # j48 <- J48(Survived ~ ., data = ttnc) > #} else { > # j48 <- rpart(Survived ~ ., data = ttnc) > #} > #print(j48) > # > # > #################################################### > #### code chunk number 11: J48-party > #################################################### > #(party_j48 <- as.party(j48)) > # > # > #################################################### > #### code chunk number 12: J48-plot > #################################################### > #plot(party_j48) > # > # > #################################################### > #### code chunk number 13: J48-pred > #################################################### > #all.equal(predict(j48, type = "prob"), predict(party_j48, type = "prob"), > # check.attributes = FALSE) > > > ################################################### > ### code chunk number 14: PMML-Titantic > ################################################### > ttnc_pmml <- file.path(system.file("pmml", package = "partykit"), + "ttnc.pmml") > (ttnc_quest <- pmmlTreeModel(ttnc_pmml)) Model formula: Survived ~ Gender + Class + Age Fitted party: [1] root | [2] Gender in Female | | [3] Class in 3rd, Crew: Yes (n = 219, err = 49.8%) | | [4] Class in 1st, 2nd | | | [5] Class in 2nd: Yes (n = 106, err = 12.3%) | | | [6] Class in 1st: Yes (n = 145, err = 2.8%) | [7] Gender in Male | | [8] Class in 3rd, 2nd, Crew | | | [9] Age in Child: No (n = 59, err = 40.7%) | | | [10] Age in Adult | | | | [11] Class in 3rd, Crew | | | | | [12] Class in Crew: No (n = 862, err = 22.3%) | | | | | [13] Class in 3rd: No (n = 462, err = 16.2%) | | | | [14] Class in 2nd: No (n = 168, err = 8.3%) | | [15] Class in 1st: No (n = 180, err = 34.4%) Number of inner nodes: 7 Number of terminal nodes: 8 > > > ################################################### > ### code chunk number 15: PMML-Titanic-plot1 > ################################################### > plot(ttnc_quest) > > > ################################################### > ### code chunk number 16: ttnc2-reorder > ################################################### > ttnc2 <- ttnc[, names(ttnc_quest$data)] > for(n in names(ttnc2)) { + if(is.factor(ttnc2[[n]])) ttnc2[[n]] <- factor( + ttnc2[[n]], levels = levels(ttnc_quest$data[[n]])) + } > > > ################################################### > ### code chunk number 17: PMML-Titanic-augmentation > ################################################### > ttnc_quest2 <- party(ttnc_quest$node, + data = ttnc2, + fitted = data.frame( + "(fitted)" = predict(ttnc_quest, ttnc2, type = "node"), + "(response)" = ttnc2$Survived, + check.names = FALSE), + terms = terms(Survived ~ ., data = ttnc2) + ) > ttnc_quest2 <- as.constparty(ttnc_quest2) > > > ################################################### > ### code chunk number 18: PMML-Titanic-plot2 > ################################################### > plot(ttnc_quest2) > > > ################################################### > ### code chunk number 19: PMML-write > ################################################### > library("pmml") Error in library("pmml") : there is no package called 'pmml' Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.2-24
Check: re-building of vignette outputs
Result: NOTE Note: skipping ‘constparty.Rnw’ due to unavailable dependencies: 'pmml' Flavors: r-devel-linux-x86_64-debian-clang, r-patched-linux-x86_64, r-release-linux-x86_64

Version: 1.2-24
Check: tests
Result: ERROR Running ‘bugfixes.R’ [6s/7s] Comparing ‘bugfixes.Rout’ to ‘bugfixes.Rout.save’ ... OK Running ‘constparty.R’ [3s/4s] Running ‘regtest-MIA.R’ [2s/3s] Comparing ‘regtest-MIA.Rout’ to ‘regtest-MIA.Rout.save’ ... OK Running ‘regtest-cforest.R’ [12s/16s] Comparing ‘regtest-cforest.Rout’ to ‘regtest-cforest.Rout.save’ ... OK Running ‘regtest-ctree.R’ [2s/3s] Comparing ‘regtest-ctree.Rout’ to ‘regtest-ctree.Rout.save’ ... OK Running ‘regtest-glmtree.R’ [35s/51s] Comparing ‘regtest-glmtree.Rout’ to ‘regtest-glmtree.Rout.save’ ... OK Running ‘regtest-honesty.R’ [2s/2s] Running ‘regtest-lmtree.R’ [3s/4s] Running ‘regtest-nmax.R’ [2s/3s] Comparing ‘regtest-nmax.Rout’ to ‘regtest-nmax.Rout.save’ ... OK Running ‘regtest-node.R’ [2s/2s] Comparing ‘regtest-node.Rout’ to ‘regtest-node.Rout.save’ ... OK Running ‘regtest-party-random.R’ [2s/3s] Running ‘regtest-party.R’ [5s/5s] Comparing ‘regtest-party.Rout’ to ‘regtest-party.Rout.save’ ... OK Running ‘regtest-split.R’ [2s/3s] Comparing ‘regtest-split.Rout’ to ‘regtest-split.Rout.save’ ... OK Running ‘regtest-weights.R’ [2s/2s] Comparing ‘regtest-weights.Rout’ to ‘regtest-weights.Rout.save’ ... OK Running the tests in ‘tests/constparty.R’ failed. Complete output: > ### R code from vignette source 'constparty.Rnw' > > ### test here after removal of RWeka dependent code > > ################################################### > ### code chunk number 1: setup > ################################################### > options(width = 70) > library("partykit") Loading required package: grid Loading required package: libcoin Loading required package: mvtnorm > library("XML") ### for pmmlTreeModel > set.seed(290875) > > > ################################################### > ### code chunk number 2: Titanic > ################################################### > data("Titanic", package = "datasets") > ttnc <- as.data.frame(Titanic) > ttnc <- ttnc[rep(1:nrow(ttnc), ttnc$Freq), 1:4] > names(ttnc)[2] <- "Gender" > > > ################################################### > ### code chunk number 3: rpart > ################################################### > library("rpart") > (rp <- rpart(Survived ~ ., data = ttnc, model = TRUE)) n= 2201 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 2201 711 No (0.6769650 0.3230350) 2) Gender=Male 1731 367 No (0.7879838 0.2120162) 4) Age=Adult 1667 338 No (0.7972406 0.2027594) * 5) Age=Child 64 29 No (0.5468750 0.4531250) 10) Class=3rd 48 13 No (0.7291667 0.2708333) * 11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) * 3) Gender=Female 470 126 Yes (0.2680851 0.7319149) 6) Class=3rd 196 90 No (0.5408163 0.4591837) * 7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) * > > > ################################################### > ### code chunk number 4: rpart-party > ################################################### > (party_rp <- as.party(rp)) Model formula: Survived ~ Class + Gender + Age Fitted party: [1] root | [2] Gender in Male | | [3] Age in Adult: No (n = 1667, err = 20.3%) | | [4] Age in Child | | | [5] Class in 3rd: No (n = 48, err = 27.1%) | | | [6] Class in 1st, 2nd: Yes (n = 16, err = 0.0%) | [7] Gender in Female | | [8] Class in 3rd: No (n = 196, err = 45.9%) | | [9] Class in 1st, 2nd, Crew: Yes (n = 274, err = 7.3%) Number of inner nodes: 4 Number of terminal nodes: 5 > > > ################################################### > ### code chunk number 5: rpart-plot-orig > ################################################### > plot(rp) > text(rp) > > > ################################################### > ### code chunk number 6: rpart-plot > ################################################### > plot(party_rp) > > > ################################################### > ### code chunk number 7: rpart-pred > ################################################### > all.equal(predict(rp), predict(party_rp, type = "prob"), + check.attributes = FALSE) [1] TRUE > > > ################################################### > ### code chunk number 8: rpart-fitted > ################################################### > str(fitted(party_rp)) 'data.frame': 2201 obs. of 2 variables: $ (fitted) : int 5 5 5 5 5 5 5 5 5 5 ... $ (response): Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... > > > ################################################### > ### code chunk number 9: rpart-prob > ################################################### > prop.table(do.call("table", fitted(party_rp)), 1) (response) (fitted) No Yes 3 0.7972406 0.2027594 5 0.7291667 0.2708333 6 0.0000000 1.0000000 8 0.5408163 0.4591837 9 0.0729927 0.9270073 > > > ################################################### > ### code chunk number 10: J48 > ################################################### > #if (require("RWeka")) { > # j48 <- J48(Survived ~ ., data = ttnc) > #} else { > # j48 <- rpart(Survived ~ ., data = ttnc) > #} > #print(j48) > # > # > #################################################### > #### code chunk number 11: J48-party > #################################################### > #(party_j48 <- as.party(j48)) > # > # > #################################################### > #### code chunk number 12: J48-plot > #################################################### > #plot(party_j48) > # > # > #################################################### > #### code chunk number 13: J48-pred > #################################################### > #all.equal(predict(j48, type = "prob"), predict(party_j48, type = "prob"), > # check.attributes = FALSE) > > > ################################################### > ### code chunk number 14: PMML-Titantic > ################################################### > ttnc_pmml <- file.path(system.file("pmml", package = "partykit"), + "ttnc.pmml") > (ttnc_quest <- pmmlTreeModel(ttnc_pmml)) Model formula: Survived ~ Gender + Class + Age Fitted party: [1] root | [2] Gender in Female | | [3] Class in 3rd, Crew: Yes (n = 219, err = 49.8%) | | [4] Class in 1st, 2nd | | | [5] Class in 2nd: Yes (n = 106, err = 12.3%) | | | [6] Class in 1st: Yes (n = 145, err = 2.8%) | [7] Gender in Male | | [8] Class in 3rd, 2nd, Crew | | | [9] Age in Child: No (n = 59, err = 40.7%) | | | [10] Age in Adult | | | | [11] Class in 3rd, Crew | | | | | [12] Class in Crew: No (n = 862, err = 22.3%) | | | | | [13] Class in 3rd: No (n = 462, err = 16.2%) | | | | [14] Class in 2nd: No (n = 168, err = 8.3%) | | [15] Class in 1st: No (n = 180, err = 34.4%) Number of inner nodes: 7 Number of terminal nodes: 8 > > > ################################################### > ### code chunk number 15: PMML-Titanic-plot1 > ################################################### > plot(ttnc_quest) > > > ################################################### > ### code chunk number 16: ttnc2-reorder > ################################################### > ttnc2 <- ttnc[, names(ttnc_quest$data)] > for(n in names(ttnc2)) { + if(is.factor(ttnc2[[n]])) ttnc2[[n]] <- factor( + ttnc2[[n]], levels = levels(ttnc_quest$data[[n]])) + } > > > ################################################### > ### code chunk number 17: PMML-Titanic-augmentation > ################################################### > ttnc_quest2 <- party(ttnc_quest$node, + data = ttnc2, + fitted = data.frame( + "(fitted)" = predict(ttnc_quest, ttnc2, type = "node"), + "(response)" = ttnc2$Survived, + check.names = FALSE), + terms = terms(Survived ~ ., data = ttnc2) + ) > ttnc_quest2 <- as.constparty(ttnc_quest2) > > > ################################################### > ### code chunk number 18: PMML-Titanic-plot2 > ################################################### > plot(ttnc_quest2) > > > ################################################### > ### code chunk number 19: PMML-write > ################################################### > library("pmml") Error in library("pmml") : there is no package called 'pmml' Execution halted Flavor: r-patched-linux-x86_64

Version: 1.2-24
Check: tests
Result: ERROR Running ‘bugfixes.R’ [5s/7s] Comparing ‘bugfixes.Rout’ to ‘bugfixes.Rout.save’ ... OK Running ‘constparty.R’ [3s/4s] Running ‘regtest-MIA.R’ [2s/3s] Comparing ‘regtest-MIA.Rout’ to ‘regtest-MIA.Rout.save’ ... OK Running ‘regtest-cforest.R’ [12s/13s] Comparing ‘regtest-cforest.Rout’ to ‘regtest-cforest.Rout.save’ ... OK Running ‘regtest-ctree.R’ [2s/3s] Comparing ‘regtest-ctree.Rout’ to ‘regtest-ctree.Rout.save’ ... OK Running ‘regtest-glmtree.R’ [35s/41s] Comparing ‘regtest-glmtree.Rout’ to ‘regtest-glmtree.Rout.save’ ... OK Running ‘regtest-honesty.R’ [2s/4s] Running ‘regtest-lmtree.R’ [3s/4s] Running ‘regtest-nmax.R’ [2s/3s] Comparing ‘regtest-nmax.Rout’ to ‘regtest-nmax.Rout.save’ ... OK Running ‘regtest-node.R’ [2s/3s] Comparing ‘regtest-node.Rout’ to ‘regtest-node.Rout.save’ ... OK Running ‘regtest-party-random.R’ [2s/3s] Running ‘regtest-party.R’ [5s/5s] Comparing ‘regtest-party.Rout’ to ‘regtest-party.Rout.save’ ... OK Running ‘regtest-split.R’ [2s/2s] Comparing ‘regtest-split.Rout’ to ‘regtest-split.Rout.save’ ... OK Running ‘regtest-weights.R’ [2s/3s] Comparing ‘regtest-weights.Rout’ to ‘regtest-weights.Rout.save’ ... OK Running the tests in ‘tests/constparty.R’ failed. Complete output: > ### R code from vignette source 'constparty.Rnw' > > ### test here after removal of RWeka dependent code > > ################################################### > ### code chunk number 1: setup > ################################################### > options(width = 70) > library("partykit") Loading required package: grid Loading required package: libcoin Loading required package: mvtnorm > library("XML") ### for pmmlTreeModel > set.seed(290875) > > > ################################################### > ### code chunk number 2: Titanic > ################################################### > data("Titanic", package = "datasets") > ttnc <- as.data.frame(Titanic) > ttnc <- ttnc[rep(1:nrow(ttnc), ttnc$Freq), 1:4] > names(ttnc)[2] <- "Gender" > > > ################################################### > ### code chunk number 3: rpart > ################################################### > library("rpart") > (rp <- rpart(Survived ~ ., data = ttnc, model = TRUE)) n= 2201 node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 2201 711 No (0.6769650 0.3230350) 2) Gender=Male 1731 367 No (0.7879838 0.2120162) 4) Age=Adult 1667 338 No (0.7972406 0.2027594) * 5) Age=Child 64 29 No (0.5468750 0.4531250) 10) Class=3rd 48 13 No (0.7291667 0.2708333) * 11) Class=1st,2nd 16 0 Yes (0.0000000 1.0000000) * 3) Gender=Female 470 126 Yes (0.2680851 0.7319149) 6) Class=3rd 196 90 No (0.5408163 0.4591837) * 7) Class=1st,2nd,Crew 274 20 Yes (0.0729927 0.9270073) * > > > ################################################### > ### code chunk number 4: rpart-party > ################################################### > (party_rp <- as.party(rp)) Model formula: Survived ~ Class + Gender + Age Fitted party: [1] root | [2] Gender in Male | | [3] Age in Adult: No (n = 1667, err = 20.3%) | | [4] Age in Child | | | [5] Class in 3rd: No (n = 48, err = 27.1%) | | | [6] Class in 1st, 2nd: Yes (n = 16, err = 0.0%) | [7] Gender in Female | | [8] Class in 3rd: No (n = 196, err = 45.9%) | | [9] Class in 1st, 2nd, Crew: Yes (n = 274, err = 7.3%) Number of inner nodes: 4 Number of terminal nodes: 5 > > > ################################################### > ### code chunk number 5: rpart-plot-orig > ################################################### > plot(rp) > text(rp) > > > ################################################### > ### code chunk number 6: rpart-plot > ################################################### > plot(party_rp) > > > ################################################### > ### code chunk number 7: rpart-pred > ################################################### > all.equal(predict(rp), predict(party_rp, type = "prob"), + check.attributes = FALSE) [1] TRUE > > > ################################################### > ### code chunk number 8: rpart-fitted > ################################################### > str(fitted(party_rp)) 'data.frame': 2201 obs. of 2 variables: $ (fitted) : int 5 5 5 5 5 5 5 5 5 5 ... $ (response): Factor w/ 2 levels "No","Yes": 1 1 1 1 1 1 1 1 1 1 ... > > > ################################################### > ### code chunk number 9: rpart-prob > ################################################### > prop.table(do.call("table", fitted(party_rp)), 1) (response) (fitted) No Yes 3 0.7972406 0.2027594 5 0.7291667 0.2708333 6 0.0000000 1.0000000 8 0.5408163 0.4591837 9 0.0729927 0.9270073 > > > ################################################### > ### code chunk number 10: J48 > ################################################### > #if (require("RWeka")) { > # j48 <- J48(Survived ~ ., data = ttnc) > #} else { > # j48 <- rpart(Survived ~ ., data = ttnc) > #} > #print(j48) > # > # > #################################################### > #### code chunk number 11: J48-party > #################################################### > #(party_j48 <- as.party(j48)) > # > # > #################################################### > #### code chunk number 12: J48-plot > #################################################### > #plot(party_j48) > # > # > #################################################### > #### code chunk number 13: J48-pred > #################################################### > #all.equal(predict(j48, type = "prob"), predict(party_j48, type = "prob"), > # check.attributes = FALSE) > > > ################################################### > ### code chunk number 14: PMML-Titantic > ################################################### > ttnc_pmml <- file.path(system.file("pmml", package = "partykit"), + "ttnc.pmml") > (ttnc_quest <- pmmlTreeModel(ttnc_pmml)) Model formula: Survived ~ Gender + Class + Age Fitted party: [1] root | [2] Gender in Female | | [3] Class in 3rd, Crew: Yes (n = 219, err = 49.8%) | | [4] Class in 1st, 2nd | | | [5] Class in 2nd: Yes (n = 106, err = 12.3%) | | | [6] Class in 1st: Yes (n = 145, err = 2.8%) | [7] Gender in Male | | [8] Class in 3rd, 2nd, Crew | | | [9] Age in Child: No (n = 59, err = 40.7%) | | | [10] Age in Adult | | | | [11] Class in 3rd, Crew | | | | | [12] Class in Crew: No (n = 862, err = 22.3%) | | | | | [13] Class in 3rd: No (n = 462, err = 16.2%) | | | | [14] Class in 2nd: No (n = 168, err = 8.3%) | | [15] Class in 1st: No (n = 180, err = 34.4%) Number of inner nodes: 7 Number of terminal nodes: 8 > > > ################################################### > ### code chunk number 15: PMML-Titanic-plot1 > ################################################### > plot(ttnc_quest) > > > ################################################### > ### code chunk number 16: ttnc2-reorder > ################################################### > ttnc2 <- ttnc[, names(ttnc_quest$data)] > for(n in names(ttnc2)) { + if(is.factor(ttnc2[[n]])) ttnc2[[n]] <- factor( + ttnc2[[n]], levels = levels(ttnc_quest$data[[n]])) + } > > > ################################################### > ### code chunk number 17: PMML-Titanic-augmentation > ################################################### > ttnc_quest2 <- party(ttnc_quest$node, + data = ttnc2, + fitted = data.frame( + "(fitted)" = predict(ttnc_quest, ttnc2, type = "node"), + "(response)" = ttnc2$Survived, + check.names = FALSE), + terms = terms(Survived ~ ., data = ttnc2) + ) > ttnc_quest2 <- as.constparty(ttnc_quest2) > > > ################################################### > ### code chunk number 18: PMML-Titanic-plot2 > ################################################### > plot(ttnc_quest2) > > > ################################################### > ### code chunk number 19: PMML-write > ################################################### > library("pmml") Error in library("pmml") : there is no package called 'pmml' Execution halted Flavor: r-release-linux-x86_64

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.