Last updated on 2025-11-20 01:48:34 CET.
| Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
|---|---|---|---|---|---|---|
| r-devel-linux-x86_64-debian-clang | 0.0.5 | 19.35 | 614.86 | 634.21 | ERROR | |
| r-devel-linux-x86_64-debian-gcc | 0.0.5 | 12.17 | 356.19 | 368.36 | ERROR | |
| r-devel-linux-x86_64-fedora-clang | 0.0.5 | 50.00 | 971.26 | 1021.26 | ERROR | |
| r-devel-linux-x86_64-fedora-gcc | 0.0.5 | 80.00 | 997.20 | 1077.20 | ERROR | |
| r-devel-windows-x86_64 | 0.0.5 | 25.00 | 562.00 | 587.00 | OK | |
| r-patched-linux-x86_64 | 0.0.5 | 18.41 | 592.48 | 610.89 | ERROR | |
| r-release-linux-x86_64 | 0.0.5 | 17.34 | 588.06 | 605.40 | ERROR | |
| r-release-macos-arm64 | 0.0.5 | OK | ||||
| r-release-macos-x86_64 | 0.0.5 | 15.00 | 342.00 | 357.00 | OK | |
| r-release-windows-x86_64 | 0.0.5 | 19.00 | 546.00 | 565.00 | OK | |
| r-oldrel-macos-arm64 | 0.0.5 | OK | ||||
| r-oldrel-macos-x86_64 | 0.0.5 | 14.00 | 371.00 | 385.00 | OK | |
| r-oldrel-windows-x86_64 | 0.0.5 | 27.00 | 758.00 | 785.00 | OK |
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [339s/418s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758893876
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924605
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454834
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.71552008323144
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032110145
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [185s/208s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758893876
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924605
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454834
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.71552008323144
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032113726
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [9m/16m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758916735
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924359
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454245
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.715520083276069
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.63533103210919
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [10m/27m]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758916735
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924359
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421420305
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.715520083276069
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053587649
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032165219
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658082704
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [329s/401s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758893876
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924605
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454834
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.71552008323144
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032110145
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-patched-linux-x86_64
Version: 0.0.5
Check: tests
Result: ERROR
Running ‘testthat.R’ [329s/422s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
>
> library(testthat)
> library(hdcuremodels)
>
> test_check("hdcuremodels")
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756012758893876
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 297
Maximum C-statistic: 0.770985658659945
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 434
Maximum C-statistic: 0.734125636924605
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.09
Selected lambda for latency: 0.09
Maximum C-statistic: 0.691812421454834
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.105
Selected lambda for latency: 0.105
Maximum C-statistic: 0.71552008323144
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 3
Maximum C-statistic: 0.697702519726813
Fitting a final model...
Family: Cox
Algorithm: EM
Family: Cox
Algorithm: EM
Saving _problems/test-formula-11.R
Saving _problems/test-logLik-11.R
Saving _problems/test-nobs-11.R
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected step: 27
Maximum C-statistic: 0.674984053600791
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.155
Selected lambda for latency: 0.155
Maximum C-statistic: 0.635331032110145
Fitting a final model...
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Weibull GMIFS algorithm
$b_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0
[2,] 0 0 0.02 0 0 0
[3,] 0 0 0.03 0 0 0
[4,] 0 0 0.04 0 0 0
[5,] 0 0 0.05 0 0 0
[6,] 0 0 0.06 0 0 0
1274 more rows
6 more columns
$beta_path
U1 U2 X1 X2 X3 X4
[1,] 0 0 0.01 0 0 0.00
[2,] 0 0 0.02 0 0 0.00
[3,] 0 0 0.03 0 0 0.00
[4,] 0 0 0.03 0 0 0.01
[5,] 0 0 0.03 0 0 0.02
[6,] 0 0 0.03 0 0 0.03
1274 more rows
6 more columns
$rate
1.74771 1.747557 1.745463 1.776432 1.806308 1.835547
1274 more elements
$alpha
0.5120896 0.5130922 0.5131297 0.5149383 0.5167088 0.51841
1274 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.083
Selected lambda for latency: 0.083
Maximum C-statistic: 0.724278947141186
Fitting a final model...
mixturecure object fit using Cox EM algorithm
$b
0 0 0 0 0 0
6 more elements
$beta
0 0 0.8829866 0 0.3677159 0
6 more elements
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.062
Selected lambda for latency: 0.062
Maximum C-statistic: 0.756490658089751
Fitting a final model...
mixturecure object fit using Weibull EM algorithm
$b
0 0 0.3534216 -0.1938579 0 -0.4778904
6 more elements
$beta
0 0 0 0 0 0
6 more elements
$rate
5.125488
$alpha
0.897226
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Mixture cure model fit using the EM algorithm
Number of non-zero incidence covariates at minimum AIC: 0
Number of non-zero latency covariates at minimum AIC: 17
Optimal step for selected information criterion: EM algorithm
at step = 51 logLik = -118.896956094066
at step = 51 AIC = 273.793912188132
at step = 51 mAIC = 490.199530466681
at step = 51 cAIC = 290.4768390174
at step = 51 BIC = 311.492114308129
at step = 51 mBIC = 453.037837086205
at step = 51 EBIC = 370.050413661889
Fold 1 out of 2 training...
Fold 2 out of 2 training...
Selected lambda for incidence: 0.054
Selected lambda for latency: 0.054
Maximum C-statistic: 0.703222725537594
Fitting a final model...
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
Mixture cure model fit using the EM algorithm
using cross-validation
Number of non-zero incidence covariates: 3
Number of non-zero latency covariates: 26
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-formula.R:11:3'): formula function works correctly ─────────────
Error in `expect(is.call(formula(fit)))`: `failure_message` must be a character vector, not absent.
Backtrace:
▆
1. └─testthat::expect(failure_message = <empty>) at test-formula.R:11:3
2. └─testthat:::check_character(failure_message)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-logLik.R:11:3'): logLik function works correctly ───────────────
Error in `expect(round(logLik(fit), 5), -9.22893)`: `ok` must be `TRUE` or `FALSE`, not a <logLik> object.
Backtrace:
▆
1. └─testthat::expect(ok = round(logLik(fit), 5)) at test-logLik.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
── Error ('test-nobs.R:11:3'): nobs function works correctly ───────────────────
Error in `expect(nobs(fit), 60)`: `ok` must be `TRUE` or `FALSE`, not the number 60.
Backtrace:
▆
1. └─testthat::expect(ok = nobs(fit)) at test-nobs.R:11:3
2. └─testthat:::check_bool(ok)
3. └─testthat:::stop_input_type(...)
4. └─rlang::abort(message, ..., call = call, arg = arg)
[ FAIL 3 | WARN 0 | SKIP 0 | PASS 552 ]
Error:
! Test failures.
Execution halted
Flavor: r-release-linux-x86_64
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.