The biblatex Package

Programmable Bibliographies and Citations

Philip Kime, Moritz Wemheuer,

Philipp Lehman

Contents

List of Tables

1

Introduction
1.1 About..........
1.2 License
1.3 Feedback
1.4 Acknowledgements . .
1.5 Prerequisites

Database Guide
2.1 Entry Types
2.2 Entry Fields
2.3 Usage Notes
2.4 Hints and Caveats . . .

User Guide

3.1 Package Options

3.2 Global Customization .

3.3 Standard Styles

3.4 Related Entries

3.5 Sorting Options

3.6 Data Annotations

3.7 Bibliography Commands
3.8 Citation Commands . .

3.9 Localization Commands
3.10 Entry Querying Com-

mands
Formatting Commands
Language notes

Usage Notes
Hints and Caveats . . .
Using the fallback
BibTeX backend

3.11
3.12
3.13
3.14
3.15

List of Tables

1

biber/biblatex compati-
bility matrix
Supported Languages

Date Specifications
ISO8601-2 4.3 Unspecified
Date Parsing
Enhanced Date Specifications

—

W NN NDDNDDN

8
8
15
33
42

46
46
73
74
79
81
82
87
106
117

119
119
134
136
147

153

29
39

40
41

Version 3.15a
August 23, 2020

4

Author Guide

4.1 Overview
4.2 Bibliography Styles
4.3 Citation Styles
4.4 Data Interface
4.5
4.6
4.7

Customization
Auxiliary Commands .
Punctuation
4.8 Localization Strings . .
4.9 Localization Modules .
4.10 Formatting Commands
4.11 Hints and Caveats . . .

Appendix

A

Default Source
Mappings

Al bibtex

Driver

Default Inheritance Setup

Default Sorting Templates
C.1 Alphabetic 1
C.2 Alphabetic 2
C.3 Chronological

biblatexml
D.1 Header
D.2 Body

Option Scope

Revision History

Work Uniqueness options . .
Disambiguation counters
mcite-like commands
mcite-like syntax
Date Interface

Valid transliteration pairs . .

\mkcomprange setup . . .

154
154
157
179
182
192
238
265
272
273
289
309

326

326
326

327

328
328
329
329

329
330
330

334

337

68

71
117
118
171
227
260

https://sourceforge.net/projects/biblatex/

1 Introduction

This document is a systematic reference manual for the biblatex package. Look
at the sample documents which come with biblatex to get a first impression.'
For a quick start guide, browse §§ 1.1, 2.1, 2.2, 2.3, 3.1, 3.3, 3.7, 3.8, 3.13.

1.1 Aboutbiblatex

This package provides advanced bibliographic facilities for use with LaTeX. The
package is a complete reimplementation of the bibliographic facilities provided by
LaTeX. The biblatex package works with the “backend” (program) biber, which
is used to process BibTeX format data files and them performs all sorting, label
generation (and a great deal more). Formatting of the bibliography is entirely con-
trolled by TeX macros. Good working knowledge in LaTeX should be sufficient to
design new bibliography and citation styles. This package also supports subdivided
bibliographies, multiple bibliographies within one document, and separate lists of
bibliographic information such as abbreviations of various fields. Bibliographies may
be subdivided into parts and/or segmented by topics. Just like the bibliography styles,
all citation commands may be freely defined. Features such as full Unicode support
for bibliography data, customisable sorting, multiple bibliographies with different
sorting, customisable labels and dynamic data modification are available. Please refer
to § 1.5.6 for information on biber/biblatex version compatibility. The pack-
age is completely localised and can interface with the babel and polyglossia
packages. Please refer to table 2 for a list of languages currently supported by this
package.

1.2 License

Copyright © 2006-2012 Philipp Lehman, 2012-2017 Philip Kime, Audrey Boruvka,
Joseph Wright, 2018— Philip Kime and Moritz Wemheuer. Permission is granted to
copy, distribute and/or modify this software under the terms of the LaTeX Project
Public License, version 1.3.2

1.3 Feedback

Please use the biblatex project page on GitHub to report bugs and submit feature
requests.” Before making a feature request, please ensure that you have thoroughly
studied this manual. If you do not want to report a bug or request a feature but are
simply in need of assistance, you might want to consider posting your question on
the comp . text . tex newsgroup or TeX-LaTeX Stack Exchange.*

1.4 Acknowledgements

The package was originally written by Philipp Lehman and much of his excellent
original code remains in the core. Philip Kime took over the package in 2012 with
Moritz Wemheuer making regular and valuable contributions from 2017. The main
authors would like to acknowledge the valuable help of Audrey Boruvka and Joseph
Wright who helped with the transition of ownership in 2012 and following years.

"Mttps://ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/
examples

https://www.latex-project.org/lppl.txt

*https://github.com/plk/biblatex

‘nttps://tex.stackexchange.com/questions/tagged/biblatex

https://ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/examples
https://ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/examples
https://www.latex-project.org/lppl.txt
https://github.com/plk/biblatex
https://tex.stackexchange.com/questions/tagged/biblatex

The language modules of this package are made possible thanks to the following
contributors:
Augusto Ritter Stoffel, Mateus Aratjo, Gustavo Barros (Brazilian); Kaloyan Ganev
(Bulgarian); Sebastia Vila-Marta (Catalan); Ivo Pletikosi¢ (Croatian); Michal Hoftich
(Czech); Christian Mondrup, Jonas Nyrup (Danish); Johannes Wilm (Danish/Norwegian);
Alexander van Loon, Pieter Belmans, Hendrik Maryns (Dutch); Kristian Kankainen,
Benson Muite (Estonian); Hannu Véisénen, Janne Kujanpaa (Finnish); Denis Bitouzé
(French); Apostolos Syropoulos, Prokopis (Greek); Marton Marczell, Bence Ferdi-
nandy (Hungarian); Baldur Kristinsson (Icelandic); Enrico Gregorio, Andrea Mar-
chitelli (Ttalian); Rihards Skuja (Latvian); Valdemaras Klumbys (Lithuanian); Hikon
Malmedal, Hans Fredrik Nordhaug (Norwegian); Anastasia Kandulina, Yuriy Chernyshov
(Polish); José Carlos Santos (Portuguese); Oleg Domanov (Russian); Andrej Radovi¢
(Serbian); Martin Vrabel, David Luptak (Slovak); Tea Tusar, Bogdan Filipi¢ (Slovene);
Ignacio Fernandez Galvan (Spanish); Per Starbéck, Carl-Gustav Werner, Filip Asblom
(Swedish); Abdulkerim Gok (Turkish); Sergiy M. Ponomarenko (Ukrainian).

1.5 Prerequisites

This section gives an overview of all resources required by this package and discusses
compatibility issues.

1.5.1 Requirements

The resources listed in this section are strictly required for biblatex to function.
The package will not work if they are not available.

e-TeX The biblatex package requires e-TeX. TeX distributions have been providing
e-TeX binaries for quite some time, the popular distributions use them by default
these days. The biblatex package checks if it is running under e-TeX. Simply
try compiling your documents as you usually do, the chances are that it just works.
If you get an error message, try compiling the document with elatex instead of
latex or pdfelatex instead of pdflatex, respectively.

biber Dbiber isthe backend of biblatex used to transfer data from source files to the
LaTeX code. biber comes with TeX Live and is also available from SourceForge.’.
biber uses the btparse C library for BibTeX format file parsing which aimed to
be compatible with BibTeX’s parsing rules but also aimed at correcting some of the
common problems. For details, see the manual page for the Perl Text: :BibTeX
module®.

etoolbox This LaTeX package, which is loaded automatically, provides generic programming
facilities required by biblatex. It is available from cTaN.’

kvoptions This LaTeX package, which is also loaded automatically, is used for internal option
handling. It is available from cTan.?

logreq This LaTeX package, which is also loaded automatically, provides a frontend for
writing machine-readable messages to an auxiliary log file. It is available from

9

CTAN.

*https://biblatex-biber.sourceforge.net/
Shttps://metacpan.org/release/Text-BibTeX
"https://ctan.org/pkg/etoolbox
*https://ctan.org/pkg/kvoptions
*https://ctan.org/pkg/logreq/

https://biblatex-biber.sourceforge.net/
https://metacpan.org/release/Text-BibTeX
https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/kvoptions
https://ctan.org/pkg/logreq/

pdftexcmds

babel/polyglossia

csquotes

xpatch

This LaTeX package, which is loaded automatically, implements pdfTeX primitives
for LuaTeX, it also offers a unified interface for these primitives across engines. It is
available from ctan.!”

biblatex uses pdftexcmds to access the MD5 hash primitives, so version 0.27
(2018/01/30) or above is strongly recommended.

Apart from the above resources, biblatex also requires the standard LaTeX
packages keyval and ifthen as well as the url package. These package are
included in all common TeX distributions and will be loaded automatically.

1.5.2 Recommended Packages

The packages listed in this section are not strictly required for biblatex to function,
but they provide recommended additional functions or enhance existing features.

The babel and polyglossia packages provides the core architecture for multi-
lingual typesetting. If you are writing in a language other than American English,
using one of these packages is strongly recommended. You should load babel
or polyglossia before biblatex and then biblatex will detect babel or
polyglossia automatically. (While babel may be loaded after biblatex if so
desired, polyglossia must always be loaded before biblatex.)

biblatex has only limited support for polyglossia versions prior to v1.45
(2019/10/27). Additional useful features for biblatex were added in version 1.49.
If polyglossia is used, it should be updated to version 1.49 (2020/04/08) or above.

The minimum supported babel version is v3.9r (2016/04/23).

If this package is available, biblatex will use its language sensitive quotation
facilities to enclose certain titles in quotation marks. If not, biblatex uses quotes
suitable for American English as a fallback. When writing in a language other than
American English, loading csquotes is strongly recommended.!!

1.5.3 Additional Useful Packages

The packages listed in this section are not required for biblatex to function, but
provide additional specialist functions or enhance existing features. These packages
generally only need to be loaded if their functionality is explicitly desired. The
package loading order usually does not matter.

The xpatch package extends the patching commands of etoolbox tobiblatex
bibliography macros, drivers and formatting directives.'? Its commands are useful
to apply surgical-precision changes to bibliography macros, drivers or formatting
directives without having to restate the whole definition to change it. Thebiblatex
core does not need or use these patching commands and styles that make use of
them should load the package themselves.

1.5.4 Compatible Classes and Packages

The biblatex package provides dedicated compatibility code for the classes and
packages listed in this section.

Yhttps://ctan.org/pkg/pdftexcmds/
"https://ctan.org/pkg/csquotes/
Phttps://ctan.org/pkg/xpatch/

https://ctan.org/pkg/pdftexcmds/
https://ctan.org/pkg/csquotes/
https://ctan.org/pkg/xpatch/

hyperref

showkeys

memoir

KOMA-Script

babelbib

backref

bibtopic

bibunits

chapterbib

cite

The hyperref package transforms citations into hyperlinks. See the hyperref
and backref package options in § 3.1.2.1 for further details. When using the
hyperref package, it is preferable to load it after biblatex.

The showkeys package prints the internal keys of, among other things, citations in
the text and items in the bibliography. The package loading order does not matter.

When using the memoir class, the default bibliography headings are adapted such
that they blend well with the default layout of this class. See § 3.14.2 for further
usage hints.

When using any of the scrartcl, scrbook, or scrreprt classes, the default
bibliography headings are adapted such that they blend with the default layout of
these classes. See § 3.14.1 for further usage hints.

If available biblatex makes use of some of the more recent of Koma-Script’s do-
hooks. The relevant hooks are present from version 3.27 (2019/10/12) onwards, which
is therefore the minimum version recommendation.

1.5.5 Incompatible Packages

The packages listed in this section are not compatible with biblatex. Since it
reimplements the bibliographic facilities of LaTeX from the ground up, biblatex
naturally conflicts with all packages modifying the same facilities. This is not specific
to biblatex. Some of the packages listed below are also incompatible with each
other for the same reason.

The babelbib package provides support for multilingual bibliographies. This is
a standard feature of biblatex. Use the langid field and the package option
autolang for similar functionality. Note that biblatex automatically adjusts to
the main document language if babel or polyglossia isloaded. You only need
the above mentioned features if you want to switch languages on a per-entry basis
within the bibliography. See §§ 2.2.3 and 3.1.2.1 for details. Also see § 3.9.

The backref package creates back references in the bibliography. See the package
options hyperref and backref in § 3.1.2.1 for comparable functionality.

The bibtopic package provides support for bibliographies subdivided by topic,
type, or other criteria. For bibliographies subdivided by topic, see the category
feature in § 3.7.6 and the corresponding filters in § 3.7.2. Alternatively, you may use
the keywords field in conjunction with the keyword and notkeyword filters
for comparable functionality, see §§ 2.2.3 and 3.7.2 for details. For bibliographies sub-
divided by type, use the t ype and nottype filters. Also see § 3.13.4 for examples.

The bibunits package provides support for multiple partial (e. g., per chapter)
bibliographies. See chapterbib.

The chapterbib package provides support for multiple partial bibliographies. Use
the refsection environment and the sect ion filter for comparable functionality.
Alternatively, you might also want to use the refsegment environment and the
segment filter. See §§ 3.7.4, 3.7.5, 3.7.2 for details. Also see § 3.13.3 for examples.

The cite package automatically sorts numeric citations and can compress a list
of consecutive numbers to a range. It also makes the punctuation used in citations
configurable. For sorted and compressed numeric citations, see the sortcites

citeref

inlinebib

jurabib

mcite

mciteplus

multibib

natbib

splitbib

titlesec

ucs

package option in § 3.1.2.1 and the numeric-comp citation style in § 3.3.1. For
configurable punctuation, see § 3.11.

Another package for creating back references in the bibliography. See backref.

The inlinebib package is designed for traditional citations given in footnotes.
For comparable functionality, see the verbose citation styles in § 3.3.1.

Originally designed for citations in law studies and (mostly German) judicial docu-
ments, the jurabib package also provides features aimed at users in the humanities.
In terms of the features provided, there are some similarities between jurabib and
biblatex but the approaches taken by both packages are quite different. Since
both jurabib and biblatex are full-featured packages, the list of similarities
and differences is too long to be discussed here.

The mc1ite package provides support for grouped citations, i. e., multiple items can
be cited as a single reference and listed as a single block in the bibliography. The
citation groups are defined as the items are cited. This only works with unsorted
bibliographies. The biblatex package also supports grouped citations, which are
called ‘entry sets’ or ‘reference sets’ in this manual. See §§ 3.13.5, 3.7.11, 3.8.10 for
details.

A significantly enhanced reimplementation of the mcite package which supports
grouping in sorted bibliographies. See mcite.

The multibib package provides support for bibliographies subdivided by topic or
other criteria. See bibtopic.

The natbib package supports numeric and author-year citation schemes, incorpo-
rating sorting and compression code found in the cite package. It also provides
additional citation commands and several configuration options. See the numeric
and author-year citation styles and their variants in § 3.3.1, the sortcites
package option in § 3.1.2.1, the citation commands in § 3.8, and the facilities discussed
in §§ 3.7.7, 3.7.8, 3.11 for comparable functionality. Also see § 3.8.9.

The splitbib package provides support for bibliographies subdivided by topic.
See bibtopic.

The titlesec package redefines user-level document division commands such as
\chapter or \section. This approach is not compatible with internal command
changes applied by thebiblatex refsection, refsegmentandcitereset
option settings described in § 3.1.2.1.

The ucs package provides support for UTF-8 encoded input, but it does so in a way
incompatible with biblatex.

If you get an error about ucs being loaded, but you don’t load it explic-
itly in your preamble, check that you don’t load inputenc’s utf£8x module:
\usepackage [utf8x] {inputenc} will also load ucs.

Instead of ucs/utf8x use a Unicode engine such as XeTeX or LuaTeX if you want
full Unicode support. If you use pdfTeX or TeX, the Unicode characters predefined
by the LaTeX format are usually enough for many use cases (this is true for LaTeX
from April 2018 or later, in older versions load inputenc with the ut £8 module)
and missing characters can be defined using \DeclareUnicodeCharacter or
newunicodechar’s \newunicodechar.

etextools

Table 1: biber/biblatex compatibility matrix

Biber version biblatex version

2.15 3.15
2.14 3.14
2.13 3.13
2.12 3.12
2.11 3.11
2.10 3.10
2.9 3.9
2.8 3.8
2.7 3.7
2.6 3.5,3.6
2.5 3.4
24 3.3
2.3 3.2
2.2 3.1
2.1 3.0
2.0 3.0
1.9 2.9
1.8 2.8
1.7 2.7
1.6 2.6
1.5 2.5
1.4 2.4
1.3 2.3
1.2 2.1,2.2
1.1 2.1
1.0 2.0
0.9.9 1.7x
0.9.8 1.7x
0.9.7 1.7x
0.9.6 1.7x
0.9.5 1.6x
0.9.4 1.5x
0.9.3 1.5x
0.9.2 1.4x
0.9.1 1.4x
0.9 1.4x

The etextools package provides enhancements to list macros defined by
etoolbox and a few other tools for command definitions. The package redefines
list handling macros in a way incompatible with biblatex.

If you must load the etextools package at all costs, define the con-
trol sequence \blx@noerroretextools before you load biblatex. If
\blx@noerroretextools is defined, no error will be issued if etextools is
loaded, the message is degraded to a warning instead. In that case you need to make
sure that all redefined macros used by biblatex (currently only \forlistloop)
have their original etoolbox definitions when biblatex is loaded.

1.5.6 Compatibility Matrix for biber

biber versions are closely coupled with biblatex versions. You need to have
the right combination of the two. biber will throw a fatal error during process-
ing if it encounters information which comes from a biblatex version which is
incompatible. Table 1 shows a compatibility matrix for the recent versions.

article

2 Database Guide

This section describes the default data model defined in the b1x—-dm. def file which
is part of biblatex. The data model is defined using the macros documented in
§ 4.5.4. Tt is possible to redefine the data model which both biblatex and biber
use so that datasources can contain new entrytypes and fields (which of course will
need style support). The data model specification also allows for constraints to be
defined so that data sources can be validated against the data model (using biber’s
--validate-datamodel option). Users who want to customise the data model
need to look at the blx—dm.def file and to read § 4.5.4.

All entry types and field names are given in all-lowercase form here. This is how
the entry types and field names are given in the data model. While the biber/BibTeX
input side is case insensitive, the LaTeX side is case sensitive and uses the exact
capitalisation from the data model. This means that the input in the bib file may
use any capitalisation of entry types and field names, but when the fields are used in
the LaTeX document—for example in \ citefield—the capitalisation must match
the captalisation in the data model, for standard types and fields that would be all
lowercase.

2.1 Entry Types

This section gives an overview of the entry types supported by the default biblatex
data model along with the fields supported by each type.

2.1.1 Regular Types

The lists below indicate the fields supported by each entry type. Note that the
mapping of fields to an entry type is ultimately at the discretion of the bibliography
style. The lists below therefore serve two purposes. They indicate the fields supported
by the standard styles which come with this package and they also serve as a model
for custom styles. Note that the ‘required’ fields are not strictly required in all cases,
see § 2.3.2 for details. The fields marked as ‘optional’ are optional in a technical
sense. Bibliographical formatting rules usually require more than just the ‘required’
fields. The default data model defined a few constraints for the format of date
fields, ISBNs and some special fields like gender but the constraints are only used if
validating against the data model withbiber’s --validate-datamodel option.
Generic fields like abstract and annotation or label and shorthand are
not included in the lists below because they are independent of the entry type. The
special fields discussed in § 2.2.3, which are also independent of the entry type, are
not included in the lists either. See the default data model specification in the file
blx-dm.def which comes with biblatex for a complete specification.

The ‘alias’ relation referred to in this subsection is the ‘soft alias’ defined with
\DeclareBibliographyAlias. That means that the alias will use the same
bibliography driver as the type it is aliased to, but that its type-specific formatting is
still handled independently of the aliased type.

An article in a journal, magazine, newspaper, or other periodical which forms a
self-contained unit with its own title. The title of the periodical is given in the
journaltitle field. If the issue has its own title in addition to the main title of
the periodical, it goes in the issuetitle field. Note that editor and related
fields refer to the journal while translator and related fields refer to the article.

Required fields: author, title, journaltitle, year/date

book

mvbook

inbook

bookinbook

suppbook

Optional fields: translator,annotator, commentator, subtitle,
titleaddon,editor,editora, editorb, editorc, journalsubtitle,
journaltitleaddon, issuetitle, issuesubtitle,
issuetitleaddon, language, origlanguage, series, volume,
number, eid, issue, month, pages, version, note, issn, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

A single-volume book with one or more authors where the authors share credit for
the work as a whole. This entry type also covers the function of the @inbook type
of traditional BibTeX, see § 2.3.1 for details.

Required fields: author, title, year/date

Optional fields: editor,editora,editorb,editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, maintitle, mainsubtitle, maintitleaddon,
language, origlanguage, volume, part, edition, volumes, series,
number, note, publisher, location, isbn, eid, chapter, pages,
pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype,url,urldate

A multi-volume @book. For backwards compatibility, multi-volume books are also
supported by the entry type @book. However, it is advisable to make use of the
dedicated entry type @mvbook.

Required fields: author, title, year/date

Optional fields: editor, editora, editorb, editorc, translator
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, language, origlanguage, edition, volumes,
series, number, note,publisher, location, isbn, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

A part of a book which forms a self-contained unit with its own title. Note that the
profile of this entry type is different from standard BibTeX, see § 2.3.1.

Required fields: author, title, booktitle, year/date

Optional fields: bookauthor, editor, editora, editorb, editorc,
translator, annotator, commentator, introduction, foreword,
afterword, subtitle, titleaddon, maintitle, mainsubtitle,
maintitleaddon, booksubtitle, booktitleaddon, language,
origlanguage, volume, part,edition, volumes, series, number,
note,publisher, location, isbn, eid, chapter, pages, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url,urldate

This type is similar to @inbook but intended for works originally published as a
stand-alone book. A typical example are books reprinted in the collected works of
an author.

Supplemental material in a @book. This type is closely related to the @inbook
entry type. While @ inbook is primarily intended for a part of a book with its own
title (e. g., a single essay in a collection of essays by the same author), this type is
provided for elements such as prefaces, introductions, forewords, afterwords, etc.
which often have a generic title only. Style guides may require such items to be

booklet

collection

mvcollection

incollection

suppcollection

dataset

formatted differently from other @inbook items. The standard styles will treat this
entry type as an alias for @inbook.

A book-like work without a formal publisher or sponsoring institution. Use the field
howpublished to supply publishing information in free format, if applicable. The
field type may be useful as well.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
type, note, location, eid, chapter, pages, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

A single-volume collection with multiple, self-contained contributions by distinct
authors which have their own title. The work as a whole has no overall author but it
will usually have an editor.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle,
titleaddon,maintitle, mainsubtitle, maintitleaddon, language,
origlanguage, volume, part,edition, volumes, series, number
note,publisher, location, isbn, eid, chapter, pages, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

A multi-volume @collection. For backwards compatibility, multi-volume collec-
tions are also supported by the entry type @collection. However, it is advisable
to make use of the dedicated entry type @mvcollection.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle,
titleaddon, language, origlanguage, edition, volumes, series,
number, note, publisher, location, isbn, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url,urldate

A contribution to a collection which forms a self-contained unit with a distinct author
and title. The author refers to the title, the editor to the booktitle,i.e.,
the title of the collection.

Required fields: author, title, booktitle, year/date

Optional fields: editor,editora,editorb,editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, maintitle, mainsubtitle, maintitleaddon,
booksubtitle, booktitleaddon, language, origlanguage, volume,
part,edition, volumes, series, number, note, publisher,
location, isbn, eid, chapter, pages, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url,urldate

Supplemental material in a @collection. This type is similar to @ suppbook but
related to the @collection entry type. The standard styles will treat this entry
type as an alias for @incollection.

A data set or a similar collection of (mostly) raw data.

10

manual

misc

online

patent

periodical

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, edition, type,
series, number, version, note, organization, publisher,
location, addendum, pubstate, doi, eprint, eprintclass,
eprinttype,url,urldate

Technical or other documentation, not necessarily in printed form. The author or
editor is omissible in terms of § 2.3.2.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, edition, type,
series, number, version, note, organization, publisher,
location, isbn, eid, chapter, pages, pagetotal, addendumn,
pubstate, doi, eprint, eprintclass, eprinttype, url,urldate

A fallback type for entries which do not fit into any other category. Use the field
howpublished to supply publishing information in free format, if applicable. The
field t ype may be useful as well. author, editor, and year are omissible in
terms of § 2.3.2.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
type, version, note, organization, location, month, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url,urldate

An online resource. author, editor, and year are omissible in terms of § 2.3.2.
This entry type is intended for sources such as web sites which are intrinsically
online resources. Note that all entry types support the ur1l field. For example, when
adding an article from an online journal, it may be preferable to use the Garticle
type and its url field.

Required fields: author/editor, title, year/date,doi/eprint/url

Optional fields: subtitle, titleaddon, language, version, note,
organization, month, addendum, pubstate, eprintclass,
eprinttype,urldate

A patent or patent request. The number or record token is given in the number
field. Use the type field to specify the type and the 1ocation field to indicate the
scope of the patent, if different from the scope implied by the type. Note that the
location field is treated as a key list with this entry type, see § 2.2.1 for details.

Required fields: author, title, number, year/date

Optional fields: holder, subtitle, titleaddon, type, version,
location, note, month, addendum, pubstate, doi, eprint,
eprintclass, eprinttype,url,urldate

An complete issue of a periodical, such as a special issue of a journal. The title of
the periodical is given in the t it 1le field. If the issue has its own title in addition to
the main title of the periodical, it goes in the issuetitle field. The editor is
omissible in terms of § 2.3.2.

Required fields: editor, title, year/date

11

Optional fields: editora,editorb, editorc, subtitle, titleaddon,
issuetitle, issuesubtitle, issuetitleaddon, language, series,
volume, number, issue, month, note, issn, addendum, pubstate, doi,
eprint,eprintclass, eprinttype, url,urldate

suppperiodical Supplemental material in a @periodical. This type is similar to @suppbook
but related to the @periodical entry type. The role of this entry type may be
more obvious if you bear in mind that the @article type could also be called
@inperiodical. This type may be useful when referring to items such as regular
columns, obituaries, letters to the editor, etc. which only have a generic title. Style
guides may require such items to be formatted differently from articles in the strict
sense of the word. The standard styles will treat this entry type as an alias for
Garticle.

proceedings A single-volume conference proceedings. This type is very similarto @collection.
It supports an optional organization field which holds the sponsoring institution.
The editor is omissible in terms of § 2.3.2.

Required fields: title, year/date

Optional fields: editor, subtitle, titleaddon,maintitle,
mainsubtitle, maintitleaddon, eventtitle, eventtitleaddon,
eventdate, venue, language, volume, part, volumes, series,
number, note, organization, publisher, location, month, isbn,
eid, chapter, pages, pagetotal, addendum, pubstate, doi, eprint,
eprintclass, eprinttype,url,urldate

mvproceedings A multi-volume @proceedings entry. For backwards compatibility, multi-volume
proceedings are also supported by the entry type @proceedings. However, it is
advisable to make use of the dedicated entry type @mvproceedings

Required fields: title, year/date

Optional fields: editor, subtitle, titleaddon, eventtitle,
eventtitleaddon, eventdate, venue, language, volumes, series,
number, note, organization, publisher, location, month, isbn,
pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype,url,urldate

inproceedings An article in a conference proceedings. This type is similar to @incollection. It
supports an optional organization field.

Required fields: author, title, booktitle, year/date

Optional fields: editor, subtitle, titleaddon,maintitle,
mainsubtitle, maintitleaddon, booksubtitle, booktitleaddon,
eventtitle, eventtitleaddon, eventdate, venue, language,
volume, part, volumes, series, number, note, organization,
publisher, location, month, isbn, eid, chapter, pages, addendumn,
pubstate, doi, eprint, eprintclass, eprinttype, url,urldate

reference A single-volume work of reference such as an encyclopedia or a dictionary. This is a
more specific variant of the generic @collection entry type. The standard styles
will treat this entry type as an alias for @collection.

12

mvreference

inreference

report

set

software

thesis

unpublished

xdata

custom[a—f]

A multi-volume @reference entry. The standard styles will treat this entry type
as an alias for @mvcollection. For backwards compatibility, multi-volume refer-
ences are also supported by the entry type @reference. However, it is advisable
to make use of the dedicated entry type @mvreference.

An article in a work of reference. This is a more specific variant of the generic
@incollection entry type. The standard styles will treat this entry type as an
alias for @incollection.

A technical report, research report, or white paper published by a university or some
other institution. Use the type field to specify the type of report. The sponsoring
institution goes in the institution field.

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, number, version,
note, location,month, isrn, eid, chapter, pages, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

An entry set. This entry type is special, see § 3.13.5 for details.

Computer software. The standard styles will treat this entry type as an alias for
@misc.

A thesis written for an educational institution to satisfy the requirements for a degree.
Use the type field to specify the type of thesis.

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, note, location,
month, isbn, eid, chapter, pages, pagetotal, addendum, pubstate,
doi,eprint,eprintclass,eprinttype, url, urldate

A work with an author and a title which has not been formally published, such as
a manuscript or the script of a talk. Use the fields howpublished and note to
supply additional information in free format, if applicable.

Required fields: author, title, year/date

Optional fields: subtitle, titleaddon, type, eventtitle,
eventtitleaddon, eventdate, venue, language, howpublished,
note, location, isbn, month, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

This entry type is special. @xdata entries hold data which may be inherited by other
entries using the xdata field. Entries of this type only serve as data containers;
they may not be cited or added to the bibliography. See § 3.13.6 for details.

Custom types for special bibliography styles. The standard styles defined no biblio-
graphy drivers for these types and will fall back to using the driver for @misc.

2.1.2 Type Aliases

The entry types listed in this section are provided for backwards compatibility with
traditional BibTeX styles. These aliases are resolved by the backend as the data is
processed. Bibliography styles will see the entry type the alias points to, not the alias
name. This ‘hard alias’ is unlike the ‘soft alias’ relation in the previous subsection.
The relevant mappings for the bibtex driver can be found in § A.1.

13

conference
electronic

mastersthesis

phdthesis

techreport

WwWWwW

artwork

audio

bibnote

commentary

image
jurisdiction
legislation
legal

letter

movie
music

performance

review

A legacy alias for @inproceedings.
An alias for @online.

Similar to @thesis except that the type field is optional and defaults to the
localised term ‘Master’s thesis’. You may still use the type field to override that.

Similar to @thesis except that the type field is optional and defaults to the
localised term ‘PhD thesis’. You may still use the type field to override that.

Similar to @report except that the type field is optional and defaults to the
localised term ‘technical report’. You may still use the type field to override that.

An alias for Qonline, provided for jurabib compatibility.

2.1.3 Non-standard Types

The types in this section are similar to the custom types @custom[a--£f], i.e., the
standard bibliography styles provide no bibliography drivers for these types. In the
standard styles they will use the bibliography driver for @misc entries—exceptions
to this rule are noted in the descriptions below. The types are known to the default
data model and will be happily accepted by biber.

Works of the visual arts such as paintings, sculpture, and installations.

Audio recordings, typically on audio cp, DVD, audio cassette, or similar media. See
also @music.

This special entry type is not meant to be used in the bib file like other types. It is
provided for third-party packages like notes2bib which merge notes into the bib-
liography. The notes should go into the note field. Be advised that the @bibnote
type is not related to the \defbibnote command in any way. \defbibnote
is for adding comments at the beginning or the end of the bibliography, whereas
the @bibnote type is meant for packages which render endnotes as bibliography
entries.

Commentaries which have a status different from regular books, such as legal com-
mentaries.

Images, pictures, photographs, and similar media.

Court decisions, court recordings, and similar things.

Laws, bills, legislative proposals, and similar things.

Legal documents such as treaties.

Personal correspondence such as letters, emails, memoranda, etc.
Motion pictures. See also @video.

Musical recordings. This is a more specific variant of @audio.

Musical and theatrical performances as well as other works of the performing arts.
This type refers to the event as opposed to a recording, a score, or a printed play.

Reviews of some other work. This is a more specific variant of the @article type.
The standard styles will treat this entry type as an alias for @article.

14

standard

video

National and international standards issued by a standards body such as the Interna-
tional Organization for Standardization.

Audiovisual recordings, typically on DVD, vHS cassette, or similar media. See also
@movie.

2.2 Entry Fields

This section gives an overview of the fields supported by the biblatex default
data model. See § 2.2.1 for an introduction to the data types used by the data model
specification and §§ 2.2.2 and 2.2.3 for the actual field listings.

2.2.1 Data Types

In datasources such as a bib file, all bibliographic data is specified in fields. Some of
those fields, for example author and editor, may contain a list of items. This list
structure is implemented by the BibTeX file format via the keyword ‘and’, which is
used to separate the individual items in the list. The biblatex package implements
three distinct data types to handle bibliographic data: name lists, literal lists, and
fields. There are also several list and field subtypes and a content type which can be
used to semantically distinguish fields which are otherwise not distinguishable on
the basis of only their datatype (see § 4.5.4). This section gives an overview of the
data types supported by this package. See §§ 2.2.2 and 2.2.3 for information about
the mapping of the BibTeX file format fields to biblatex’s data types.

Name lists are parsed and split up into the individual items at the and delimiter.
Each item in the list is then dissected into the name part components: by
default the given name, the name prefix (von, van, of, da, de, della, ...), the
family name, and the name suffix (junior, senior, ...). The valid name parts
can be customised by changing the datamodel definition described in § 4.2.3.
Name lists may be truncated in the bib file with the keyword ‘and others’.
Typical examples of name lists are author and editor.

Name list fields automatically have an \1ifuse* test created as per the name
lists in the default data model (see § 4.6.2). They are also automatically have a
ifuse* option created which controls labelling and sorting behaviour with
the name (see § 3.1.3.1). biber supports a customisable set of name parts but
currently this is defined to be the same set of parts as supported by traditional
BibTeX:

« Family name (also known as ‘last’ part)
« Given name (also known as ‘first’ part)
« Name prefix (also known as ‘von’ part)

« Name suffix (also known as ‘Jr’ part)

The supported list of name parts is defined as a constant list in the default data
model using the \DeclareDatamodelConstant command (see 4.5.4).
However, it is not enough to simply add to this list in order to add sup-
port for another name part as name parts typically have to be hard coded
into bibliography drivers and the backend processing. See the example file
93-nameparts. tex for details on how to define and use custom name parts.
Also see \DeclareUniquenameTemplate in § 4.11.4 for information on
how to customise name disambiguation using custom name parts.

15

Literal lists are parsed and split up into the individual items at the and delimiter
but not dissected further. Literal lists may be truncated in the bib file with
the keyword ‘and others’. There are two subtypes:

Literal lists in the strict sense are handled as described above. The individual
items are simply printed as is. Typical examples of such literal lists are
publisher and location.

Key lists are a variant of literal lists which may hold printable data or local-
isation keys. For each item in the list, styles should perform a test to
determine whether it is a known localisation key (the localisation keys
defined by default are listed in § 4.9.2). If so, the localised string should
be printed. If not, the item should be printed as is. The standard styles are
set up to exhibit this behaviour for all key lists listed below. New key lists
do not automatically perform this test, it has to be implemented explicitly
via the list format. A typical example of a key list is language.

Fields are usually printed as a whole. There are several subtypes:

Literal fields are printed as is. Typical examples of literal fields are title
and note.

Range fields consist of one or more ranges where all dashes are normalized
and replaced by the command \bibrangedash. A range is something
optionally followed by one or more dashes optionally followed by some
non-dash (e.g. 5--7). Any number of consecutive dashes will only yield
a single range dash. A typical example of a range field is the pages
field. See also the \bibrangessep command which can be used to
customise the separator between multiple ranges. Range fields will be
skipped and will generate a warning if they do not consist of one or more
ranges. You can normalise messy range fields before they are parsed
using \DeclareSourcemap (see § 4.5.3).

Integer fields hold integers which may be converted to ordinals or strings as
they are printed. A typical example is the extradate or volume field.
Such fields are sorted as integers. biber makes a (quite serious) effort to
map non-arabic representations (roman numerals for example) to integers
for sorting purposes. See the noroman option which can be used to
suppress roman numeral parsing. This can help in cases where there is
an ambiguity between parsing as roman numerals or alphanumeric (e.g.
‘C’), see § 3.1.2.3.

Datepart fields hold unformatted integers which may be converted
to ordinals or strings as they are printed. A typical example
is the month field. For every field of datatype date in the
datamodel, datepart fields are automatically created with the fol-
lowing names: <datetype>year, <datetype>endyear,

<datetype>month, <datetype>endmonth,
<datetype>day, <datetype>endday, <datetype>hour,
<datetype>endhour, <datetype>minute,
<datetype>endminute, <datetype>second,
<datetype>endsecond, <datetype>timezone,

<datetype>endtimezone. <datetype> is the string preced-
ing ‘date’ for any datamodel field of datatype=date. For example, in
the default datamodel, ‘event’, ‘orig’, ‘url’ and the empty string “ for the
date field date.

16

abstract

addendum

Date fields hold a date specification in yyyy-mm-ddThh:nn[+-
1 [hh[:nn]Z] format or a date range in yyyy-mm-ddThh:nn [+~
][hh[:nn]Z]/yyyy-mm-ddThh:nn[+-] [hh[:nn]Z] format
and other formats permitted by 1s08601-2 Clause 4, level 1, see § 2.3.8.
Date fields are special in that the date is parsed and split up into its
datepart type components. The datepart components (see above) are
automatically defined and recognised when a field of datatype date is
defined in the datamodel. A typical example is the date field.

Verbatim fields are processed in verbatim mode and may contain special
characters. Typical examples of verbatim fields are file and doi.

URI fields are processed in verbatim mode and may contain special charac-
ters. They are also URL-escaped if they don’t look like they already are.
The typical example of a uri field is url.

Separated value fields A separated list of literal values. Examples are the
keywords and options fields. The separator can be configured to be
any Perl regular expression via the xsvsep option which defaults to the
usual BibTeX comma surrounded by optional whitespace.

Pattern fields A literal field which must match a particular pattern. An
example is the gender field from § 2.2.3.

Key fields May hold printable data or localisation keys. Styles should perform
a test to determine whether the value of the field is a known localisation
key (the localisation keys defined by default are listed in § 4.9.2). If so,
the localised string should be printed. If not, the value should be printed
as is. The standard styles are set up to handle all key fields listed below in
that way. New key fields do not automatically perform the test, it has to
be enabled explicitly in the field format. A typical example is the type
field.

Code fields Holds TeX code.

2.2.2 Data Fields

The fields listed in this section are the regular ones holding printable data in the
default data model. The name on the left is the default data model name of the field
as used by biblatex and its backend. The biblatex data type is given to the
right of the name. See § 2.2.1 for explanation of the various data types.

Some fields are marked as ‘label’ fields which means that they are often used as
abbreviation labels when printing bibliography lists in the sense of section § 3.7.3.
biblatex automatically creates supporting macros for such fields. See § 3.7.3.

field (literal)

This field is intended for recording abstracts in a bib file, to be printed by a special
bibliography style. It is not used by all standard bibliography styles.

field (literal)

Miscellaneous bibliographic data to be printed at the end of the entry. This is similar
to the note field except that it is printed at the end of the bibliography entry.

17

afterword

annotation

annotator

author

authortype

bookauthor

bookpagination

booksubtitle

booktitle

booktitleaddon

chapter

list (name)

The author(s) of an afterword to the work. If the author of the afterword is identical
to the editor and/or translator, the standard styles will automatically con-
catenate these fields in the bibliography. See also introduction and foreword.

field (literal)

This field may be useful when implementing a style for annotated bibliographies.
It is not used by all standard bibliography styles. Note that this field is completely
unrelated to annotator. The annotator is the author of annotations which are
part of the work cited.

list (name)

The author(s) of annotations to the work. If the annotator is identical to the editor
and/or translator, the standard styles will automatically concatenate these fields
in the bibliography. See also commentator.

list (name)
The author(s) of the title.

field (key)

The type of author. This field will affect the string (if any) used to introduce the
author. Not used by the standard bibliography styles.

list (name)
The author(s) of the booktitle.

field (key)

If the work is published as part of another one, this is the pagination scheme of the en-
closing work, i.e., bookpagination relates to pagination like booktitle
to title. The value of this field will affect the formatting of the pages and
pagetotal fields. The key should be given in the singular form. Possible
keys are page, column, line, verse, section, and paragraph. See also
pagination as well as § 2.3.12.

field (literal)

The subtitle related to the booktitle. If the subtitle field refers to a work
which is part of a larger publication, a possible subtitle of the main work is given in
this field. See also subtitle.

field (literal)

If the title field indicates the title of a work which is part of a larger publication,
the title of the main work is given in this field. See also title.

field (literal)
An annex to the booktitle, to be printed in a different font.
field (literal)

A chapter or section or any other unit of a work.

18

commentator

date

doi

edition

editor

editora

editorb

editorc

editortype

editoratype

list (name)

The author(s) of a commentary to the work. Note that this field is intended for
commented editions which have a commentator in addition to the author. If the
work is a stand-alone commentary, the commentator should be given in the author
field. If the commentator is identical to the editor and/or translator, the
standard styles will automatically concatenate these fields in the bibliography. See
also annotator.

field (date)

The publication date. See also month and year as well as §§ 2.3.8 and 2.3.9.
field (verbatim)

The Digital Object Identifier of the work.

field (integer or literal)

The edition of a printed publication. This must be an integer, not an ordinal. Don’t say
edition={First}oredition={1st} butedition={1}. The bibliography
style converts this to a language dependent ordinal. It is also possible to give the
edition as a literal string, for example “Third, revised and expanded edition”.

list (name)

The editor(s) of the title, booktitle, ormaintitle, depending on the entry
type. Use the editortype field to specify the role if it is different from ‘editor’.
See § 2.3.6 for further hints.

list (name)

A secondary editor performing a different editorial role, such as compiling, redacting,
etc. Use the editoratype field to specify the role. See § 2.3.6 for further hints.

list (name)

Another secondary editor performing a different role. Use the editorbtype field
to specify the role. See § 2.3.6 for further hints.

list (name)

Another secondary editor performing a different role. Use the editorctype field
to specify the role. See § 2.3.6 for further hints.

field (key)

The type of editorial role performed by the editor. Roles supported by de-
faultare editor, compiler, founder, continuator, redactor, reviser,
collaborator, organizer. The role ‘editor’ is the default. In this case, the
field is omissible. See § 2.3.6 for further hints.

field (key)

Similar to editortype but referring to the editora field. See § 2.3.6 for further
hints.

19

editorbtype

editorctype

eid

entrysubtype

eprint

eprintclass

eprinttype

eventdate

eventtitle

eventtitleaddon

field (key)

Similar to editortype but referring to the editorb field. See § 2.3.6 for further
hints.

field (key)

Similar to editortype but referring to the editorc field. See § 2.3.6 for further
hints.

field (literal)

The electronic identifier of an @article or chapter-like section of a larger work.
This field may replace the pages field for journals deviating from the classic pagi-
nation scheme of printed journals by only enumerating articles or papers and not

pages.
field (literal)

This field, which is not used by the standard styles, may be used to specify a subtype
of an entry type. This may be useful for bibliography styles which support a finer-
grained set of entry types.

field (verbatim)

The electronic identifier of an online publication. This is roughly comparable to a
Dol but specific to a certain archive, repository, service, or system. See § 3.13.7 for
details. Also see eprinttype and eprintclass.

field (literal)

Additional information related to the resource indicated by the eprinttype field.
This could be a section of an archive, a path indicating a service, a classification of
some sort, etc. See § 3.13.7 for details. Also see eprint and eprinttype.

field (literal)

The type of eprint identifier, e. g., the name of the archive, repository, service, or
system the eprint field refers to. See § 3.13.7 for details. Also see eprint and
eprintclass.

field (date)

The date of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. See also eventtitle and venue as well as § 2.3.8.

field (literal)

The title of a conference, a symposium, or some other event in @proceedings and
@inproceedings entries. This field may also be useful for the custom types listed
in § 2.1.3. Note that this field holds the plain title of the event. Things like “Proceed-
ings of the Fifth XYZ Conference” go into the titleaddon orbooktitleaddon
field, respectively. See also eventdate and venue.

field (literal)

An annex to the eventtitle field. Can be used for known event acronyms, for
example.

20

file

foreword

holder

howpublished

indextitle

institution

introduction

isan

isbn

ismn

isrn

field (verbatim)

A local link to a PDF or other version of the work. Not used by the standard biblio-
graphy styles.

list (name)

The author(s) of a foreword to the work. If the author of the foreword is identical to the
editor and/or translator, the standard styles will automatically concatenate
these fields in the bibliography. See also introduction and afterword.

list (name)

The holder(s) of a @patent, if different from the author. Note that corporate
holders need to be wrapped in an additional set of braces, see § 2.3.3 for details. This
list may also be useful for the custom types listed in § 2.1.3.

field (literal)

A publication notice for unusual publications which do not fit into any of the common
categories.

field (literal)

A title to use for indexing instead of the regular tit1e field. This field may be useful

if you have an entry with a title like “An Introduction to ..” and want that indexed

as “Introduction to ..., An”. Style authors should note that biblatex automatically
copies the value of the title field to indextitle if the latter field is undefined.

list (literal)

The name of a university or some other institution, depending on the entry type.
Traditional BibTeX uses the field name school for theses, which is supported as an
alias. See also §§ 2.2.5 and 2.3.4.

list (name)

The author(s) of an introduction to the work. If the author of the introduction is
identical to the editor and/or translator, the standard styles will automatically
concatenate these fields in the bibliography. See also foreword and afterword.

field (literal)

The International Standard Audiovisual Number of an audiovisual work. Not used

by the standard bibliography styles.
field (literal)
The International Standard Book Number of a book.

field (literal)

The International Standard Music Number for printed music such as musical scores.
Not used by the standard bibliography styles.

field (literal)

The International Standard Technical Report Number of a technical report.

21

issn

issue

issuesubtitle

issuetitle

issuetitleaddon

iswc

journalsubtitle

journaltitle

journaltitleaddon

label

language

library

field (literal)
The International Standard Serial Number of a periodical.
field (literal)

The issue of a journal. This field is intended for journals whose individual issues
are identified by a designation such as ‘Spring’ or ‘Summer’ rather than the month
or a number. The placement of i ssue is similar to month and number. Integer
ranges and short designators are better written to the number field. See also month,
number and §§ 2.3.10 and 2.3.11.

field (literal)

The subtitle of a specific issue of a journal or other periodical.
field (literal)

The title of a specific issue of a journal or other periodical.

field (literal)

An annex to the issuetitle, to be printed in a different font.
field (literal)

The International Standard Work Code of a musical work. Not used by the standard
bibliography styles.

field (literal)

The subtitle of a journal, a newspaper, or some other periodical.
field (literal)

The name of a journal, a newspaper, or some other periodical.

field (literal)

An annex to the journaltitle, to be printed in a different font.
field (literal)

A designation to be used by the citation style as a substitute for the regular label if
any data required to generate the regular label is missing. For example, when an
author-year citation style is generating a citation for an entry which is missing the
author or the year, it may fall back to 1abel. See § 2.3.2 for details. Note that, in
contrast to shorthand, label is only used as a fallback. See also shorthand.

list (key)

The language(s) of the work. Languages may be specified literally or as localisa-
tion keys. If localisation keys are used, the prefix 1ang is omissible. See also
origlanguage and compare langidin § 2.2.3.

field (literal)

This field may be useful to record information such as a library name and a call
number. This may be printed by a special bibliography style if desired. Not used by
the standard bibliography styles.

22

location

mainsubtitle

maintitle

maintitleaddon

month

nameaddon

note

number

list (literal)

The place(s) of publication, i. e., the location of the publisher or institution,
depending on the entry type. Traditional BibTeX uses the field name address,
which is supported as an alias. See also §§ 2.2.5 and 2.3.4. With @patent entries,
this list indicates the scope of a patent. This list may also be useful for the custom
types listed in § 2.1.3.

field (literal)
The subtitle related to the maintitle. See also subtitle.
field (literal)

The main title of a multi-volume book, such as Collected Works. If the title or
booktitle field indicates the title of a single volume which is part of multi-volume
book, the title of the complete work is given in this field.

field (literal)
An annex to the maintitle, to be printed in a different font.

field (literal)

The publication month. This must be an integer, not an ordinal or a string. Don’t
say month={January} but month={1}. The bibliography style converts this to
a language dependent string or ordinal where required. This field is a literal field
only when given explicitly in the data (for plain BibTeX compatibility for example).
It is however better to use the date field as this supports many more features. See
§§ 2.3.8 and 2.3.9.

field (literal)

An addon to be printed immediately after the author name in the bibliography. Not
used by the standard bibliography styles. This field may be useful to add an alias or
pen name (or give the real name if the pseudonym is commonly used to refer to that
author).

field (literal)

Miscellaneous bibliographic data which does not fit into any other field. The note
field may be used to record bibliographic data in a free format. Publication facts such
as “Reprint of the edition London 1831” are typical candidates for the note field.
See also addendum.

field (literal)

The number of a journal or the volume/number of a book in a series. See also
issueaswellas§§2.3.7,2.3.10, 2.3.11. With @patent entries, this is the number or
record token of a patent or patent request. Normally this field will be an integer or an
integer range, but it may also be a short designator that is not entirely numeric such
as “S17, “Suppl. 2”, “3es”. In these cases the output should be scrutinised carefully.

Since number is—maybe counterintuitively given its name—a literal field, sorting
templates will not treat its contents as integers, but as literal strings, which means
that “11” may sort between “1” and “2”. If integer sorting is desired, the field can be
declared an integer field in a custom data model (see § 4.5.4). But then the sorting of
non-integer values is not well defined.

23

organization

origdate

origlanguage

origlocation

origpublisher

origtitle

pages

pagetotal

pagination

part

list (literal)

The organization(s) that published a @manual or an @online resource, or spon-
sored a conference. See also § 2.3.4.

field (date)

If the work is a translation, a reprint, or something similar, the publication date of
the original edition. Not used by the standard bibliography styles. See also date.

list (key)
If the work is a translation, the language(s) of the original work. See also 1anguage.
list (literal)

If the work is a translation, a reprint, or something similar, the location of the
original edition. Not used by the standard bibliography styles. See also 1ocation
and § 2.3.4.

list (literal)

If the work is a translation, a reprint, or something similar, the publisher of the
original edition. Not used by the standard bibliography styles. See also publisher
and § 2.3.4.

field (literal)

If the work is a translation, the t it 1e of the original work. Not used by the standard
bibliography styles. See also title.

field (range)

One or more page numbers or page ranges. If the work is published as part of another
one, such as an article in a journal or a collection, this field holds the relevant page
range in that other work. It may also be used to limit the reference to a specific part
of a work (a chapter in a book, for example). For papers in electronic journals with a
non-classical pagination setup the eid field may be more suitable.

field (literal)
The total number of pages of the work.

field (key)

The pagination of the work. The value of this field will affect the formatting
the (postnote) argument to a citation command. The key should be given in the
singular form. Possible keys are page, column, line, verse, section, and
paragraph. See also bookpagination as well as §§ 2.3.12 and 3.14.3.

field (literal)

The number of a partial volume. This field applies to books only, not to journals. It
may be used when a logical volume consists of two or more physical ones. In this
case the number of the logical volume goes in the volume field and the number of
the part of that volume in the part field. See also volume.

24

publisher

pubstate

reprinttitle

series

shortauthor

shorteditor

shorthand

shorthandintro

shortjournal

shortseries

shorttitle

list (literal)
The name(s) of the publisher(s). See also § 2.3.4.
field (key)

The publication state of the work, e. g., ‘in press’. See § 4.9.2.11 for known publication
states.

field (literal)
The title of a reprint of the work. Not used by the standard styles.

field (literal)

The name of a publication series, such as “Studies in ..”, or the number of a journal
series. Books in a publication series are usually numbered. The number or volume of
a book in a series is given in the number field. Note that the @article entry type
makes use of the series field as well, but handles it in a special way. See § 2.3.7
for details.

list (name)

The author(s) of the work, given in an abbreviated form. This field is mainly intended
for abbreviated forms of corporate authors, see § 2.3.3 for details.

list (name)

The editor(s) of the work, given in an abbreviated form. This field is mainly intended
for abbreviated forms of corporate editors, see § 2.3.3 for details.

field (literal)

A special designation to be used by the citation style instead of the usual label. If
defined, it overrides the default label. See also 1abel.

field (literal)

The verbose citation styles which comes with this package use a phrase like “hence-
forth cited as [shorthand]” to introduce shorthands on the first citation. If the
shorthandintro field is defined, it overrides the standard phrase. Note that the
alternative phrase must include the shorthand.

field (literal)

A short version or an acronym of the journaltitle. Not used by the standard
bibliography styles.

field (literal)

A short version or an acronym of the series field. Not used by the standard
bibliography styles.

field (literal)

The title in an abridged form. This field is usually not included in the bibliography.
It is intended for citations in author-title format. If present, the author-title citation
styles use this field instead of title.

25

Label field

Label field

Label field

Label field

Label field

Label field

subtitle

title

titleaddon

translator

type

url

urldate

venue

version

volume

volumes

field (literal)

The subtitle of the work.

field (literal)

The title of the work.

field (literal)

An annex to the title, to be printed in a different font.
list (name)

The translator(s) of the title or booktitle, depending on the entry type. If
the translator is identical to the editor, the standard styles will automatically
concatenate these fields in the bibliography.

field (key)

The type of amanual, patent, report, or thesis. This field may also be useful
for the custom types listed in § 2.1.3.

field (uri)

The URL of an online publication. If it is not URL-escaped (no ‘%’ chars) it will be
URI-escaped according to RFC 3987, that is, even Unicode chars will be correctly
escaped.

field (date)
The access date of the address specified in the url field. See also § 2.3.8.
field (literal)

The location of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. Note that the location list holds the place of publication. It
therefore corresponds to the publisher and institution lists. The location
of the event is given in the venue field. See also eventdate and eventtitle.

field (literal)
The revision number of a piece of software, a manual, etc.
field (integer)

The volume of a multi-volume book or a periodical. It is expected to be an integer,
not necessarily in arabic numerals since biber will automatically convert from
roman numerals or arabic letter to integers internally for sorting purposes. See also
part. See the noroman option which can be used to suppress roman numeral
parsing. This can help in cases where there is an ambiguity between parsing as
roman numerals or alphanumeric (e.g. ‘C’), see § 3.1.2.3.

field (integer)

The total number of volumes of a multi-volume work. Depending on the entry
type, this field refers to title or maintitle. It is expected to be an integer,
not necessarily in arabic numerals since biber will automatically convert from

26

year

crossref

entryset

execute

gender

roman numerals or arabic letter to integers internally for sorting purposes. See the
noroman option which can be used to suppress roman numeral parsing. This can
help in cases where there is an ambiguity between parsing as roman numerals or
alphanumeric (e.g. ‘C’), see § 3.1.2.3.

field (literal)

The year of publication. This field is a literal field only when given explicitly in
the data (for plain BibTeX compatibility for example). It is however better to use
the date field as this is compatible with plain years too and supports many more
features. See §§ 2.3.8 and 2.3.9.

2.2.3 Special Fields

The fields listed in this section do not hold printable data but serve a different purpose.
They apply to all entry types in the default data model.

field (entry key)

This field holds an entry key for the cross-referencing feature. Child entries with
a crossref field inherit data from the parent entry specified in the crossref
field. If the number of child entries referencing a specific parent entry hits a certain
threshold, the parent entry is automatically added to the bibliography even if it
has not been cited explicitly. The threshold is settable with the mincrossrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
crossref fields of the child entries are defined on the biblatex level depends
on the availability of the parent entry. If the parent entry is available, the crossref
fields of the child entries will be defined. If not, the child entries still inherit the
data from the parent entry but their crossref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold or
explicitly because it has been cited does not matter. See also the xref field in this
section as well as § 2.4.1.

field (separated values)

This field is specific to entry sets. See § 3.13.5 for details. This field is consumed by
the backend processing and does not appear in the .bb1.

field (code)

A special field which holds arbitrary TeX code to be executed whenever the data of the
respective entry is accessed. This may be useful to handle special cases. Conceptually,
this field is comparable to the hooks \AtEveryBibitem, \AtEveryLositem,
and \AtEveryCitekey from § 4.10.6, except that it is definable on a per-entry
basis in the bib file. Any code in this field is executed automatically immediately
after these hooks.

field (Pattern matching one of: sf, sm, sn, pf, pm, pn, pp)

The gender of the author or the gender of the editor, if there is no author. The
following identifiers are supported: sf (feminine singular, a single female name), sm
(masculine singular, a single male name), sn (neuter singular, a single neuter name),
pf (feminine plural, a list of female names), pm (masculine plural, a list of male
names), pn (neuter plural, a list of neuter names), pp (plural, a mixed gender list of
names). This information is only required by special bibliography and citation styles

27

langid

langidopts

ids

indexsorttitle

and only in certain languages. For example, a citation style may replace recurrent
author names with a term such as ‘idem’. If the Latin word is used, as is custom in
English and French, there is no need to specify the gender. In German publications,
however, such key terms are usually given in German and in this case they are
gender-sensitive.

field (identifier)

The language id of the bibliography entry. The alias hyphenation is provided
for backwards compatibility. The identifier must be a language name known to the
babel/polyglossia packages. This information may be used to switch hyphen-
ation patterns and localise strings in the bibliography. Note that the language names
are case sensitive. The languages currently supported by this package are given in
table 2. Note that babel treats the identifier english as an alias for british
or american, depending on the babel version. The biblatex package always
treats it as an alias for american. It is preferable to use the language identifiers
americanand british (babel) or a language specific option to specify a lan-
guage variant (polyglossia, using the langidopts field) to avoid any possible
confusion. Compare language in § 2.2.2.

field (literal)

For polyglossia users, allows per-entry language specific options. The literal
value of this field is passed to polyglossia’s language switching facility when
using the package option autolang=1langname. For example, the fields:

langid
langidopts

{english},
{variant=british},

would wrap the bibliography entry in:

\english[variant=british]

\endenglish

field (separated list of entrykeys)

Citation key aliases for the main citation key. An entry may be cited by any of its
aliases and biblatex will treat the citation as if it had used the primary citation
key. This is to aid users who change their citation keys but have legacy documents
which use older keys for the same entry. This field is consumed by the backend
processing and does not appear in the .bb1.

field (literal)

The title used when sorting the index. In contrast to indextitle, this field is used
for sorting only. The printed title in the index is the indextitle or the title
field. This field may be useful if the title contains special characters or commands
which interfere with the sorting of the index. Consider this example:

title = {The \LaTeX\ Companion},
indextitle = {\LaTeX\ Companion, The},
indexsorttitle = {LATEX Companion},

28

Table 2: Supported Languages

Language Region/Dialect Identifiers
Bulgarian Bulgaria bulgarian
Catalan Spain, France, Andorra, Italy catalan
Croatian Croatia, Bosnia and Herzegovina, Serbia croatian
Czech Czech Republic czech
Danish Denmark danish
Dutch Netherlands dutch
English USA american, USenglish,
english
United Kingdom british, UKenglish
Canada canadian
Australia australian
New Zealand newzealand
Estonian Estonia estonian
Finnish Finland finnish
French France, Canada french
German Germany german
Austria austrian
Switzerland swissgerman
German (new) Germany ngerman
Austria naustrian
Switzerland nswissgerman
Greek Greece greek
Hungarian Hungary magyar, hungarian
Icelandic Iceland icelandic
Italian Italy italian
Latvian Latvia latvian
Lithuanian Lithuania lithuanian
Norwegian (Bokmal) Norway norsk
Norwegian (Nynorsk) Norway nynorsk
Polish Poland polish
Portuguese Brazil brazil
Portugal portuguese, portuges
Russian Russia russian
Serbian (Latin) Serbia serbian
Serbian (Cyrillic) Serbia serbianc
Slovak Slovakia slovak
Slovene Slovenia slovene, slovenian
Spanish Spain spanish
Swedish Sweden swedish
Turkish Turkey turkish
Ukrainian Ukraine ukrainian

29

keywords

options

presort

related

relatedoptions

relatedtype

relatedstring

sortkey

Style authors should note that biblatex automatically copies the value of either
the indextitle or the title field to indexsorttitle if the latter field is
undefined.

field (separated values)

A separated list of keywords. These keywords are intended for the bibliography
filters (see §§ 3.7.2 and 3.13.4), they are usually not printed. Note that with the default
separator (comma), spaces around the separator are ignored.

field (separated (key)=(value) options)

A separated list of entry options in (key)=(value) notation. This field is used to
set options on a per-entry basis. See § 3.1.3 for details. Note that citation and
bibliography styles may define additional entry options.

field (string)

A special field used to modify the sorting order of the bibliography. This field is
the first item the sorting routine considers when sorting the bibliography, hence it
may be used to arrange the entries in groups. This may be useful when creating
subdivided bibliographies with the bibliography filters. Please refer to § 3.5 for
further details. Also see § 4.5.6. This field is consumed by the backend processing
and does not appear in the .bb1.

field (separated values)

Citation keys of other entries which have a relationship to this entry. The relationship
is specified by the relatedtype field. Please refer to § 3.4 for further details.

field (separated values)

Per-type options to set for a related entry. Note that this does not set the options on
the related entry itself, only the dataonly clone which is used as a datasource for
the parent entry.

field (identifier)

An identifier which specified the type of relationship for the keys listed in the
related field. The identifier is a localised bibliography string printed before the
data from the related entry list. It is also used to identify type-specific formatting
directives and bibliography macros for the related entries. Please refer to § 3.4 for
further details.

field (literal)

A field used to override the bibliography string specified by relatedtype. Please
refer to § 3.4 for further details.

field (literal)

A field used to modify the sorting order of the bibliography. Think of this field as
the master sort key. If present, biblatex uses this field during sorting and ignores
everything else, except for the presort field. Please refer to § 3.5 for further details.
This field is consumed by the backend processing and does not appear in the .bb1.

30

sortname

sortshorthand

sorttitle

sortyear

xdata

xref

list (name)

A name or a list of names used to modify the sorting order of the bibliography. If
present, this list is used instead of author or editor when sorting the bibliography.
Please refer to § 3.5 for further details. This field is consumed by the backend
processing and does not appear in the .bb1.

field (literal)

Similar to sortkey but used in the list of shorthands. If present, biblatex uses
this field instead of shorthand when sorting the list of shorthands. This is useful if
the shorthand field holds shorthands with formatting commands such as \emph
or \textbf. This field is consumed by the backend processing and does not appear
in the .bb1l.

field (literal)

A field used to modify the sorting order of the bibliography. If present, this field is
used instead of the title field when sorting the bibliography. The sorttitle
field may come in handy if you have an entry with a title like “An Introduction
to..” and want that alphabetized under ‘T rather than ‘A’. In this case, you could put
“Introduction to..” in the sorttitle field. Please refer to § 3.5 for further details.
This field is consumed by the backend processing and does not appear in the .bb1l.

field (integer)

A field used to modify the sorting order of the bibliography. In the default sorting
templates, if this field is present, it is used instead of the year field when sorting
the bibliography. Please refer to § 3.5 for further details. This field is consumed by
the backend processing and does not appear in the .bb1.

field (separated list of entrykeys)

This field inherits data from one or more @xdata entries. Conceptually, the xdata
field is related to crossref and xref: crossref establishes a logical paren-
t/child relation and inherits data; xref establishes as logical parent/child relation
without inheriting data; xdata inherits data without establishing a relation. The
value of the xdata may be a single entry key or a separated list of keys. See § 3.13.6
for further details. This field is consumed by the backend processing and does not
appear in the .bbl.

field (entry key)

This field is an alternative cross-referencing mechanism. It differs from crossref
in that the child entry will not inherit any data from the parent entry specified in
the xref field. If the number of child entries referencing a specific parent entry
hits a certain threshold, the parent entry is automatically added to the bibliography
even if it has not been cited explicitly. The threshold is settable with the minxrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
xref fields of the child entries are defined on the biblatex level depends on the
availability of the parent entry. If the parent entry is available, the xref fields of
the child entries will be defined. If not, their xref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold or
explicitly because it has been cited does not matter. See also the crossref field in
this section as well as § 2.4.1.

31

name[a—c]

name[a—c]type

list[a—f]

user[a—f]

verb[a—c]

address

annote

archiveprefix

journal

2.2.4 Custom Fields

The fields listed in this section are intended for special bibliography styles. They are
not used by the standard bibliography styles.

list (name)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

field (key)

Similar to authortype and editortype but referring to the fields
name [a—-c]. Not used by the standard bibliography styles.

list (literal)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

field (literal)

Custom fields for special bibliography styles. Not used by the standard bibliography
styles.

field (literal)

Similar to the custom fields above except that these are verbatim fields. Not used by
the standard bibliography styles.

2.2.5 Field Aliases

The aliases listed in this section are provided for backwards compatibility with tradi-
tional BibTeX and other applications based on traditional BibTeX styles. Note that
these aliases are immediately resolved as the bib file is processed. All bibliography
and citation styles must use the names of the fields they point to, not the alias. In
bib files, you may use either the alias or the field name but not both at the same
time.

list (literal)

An alias for 1ocation, provided for BibTeX compatibility. Traditional BibTeX uses
the slightly misleading field name address for the place of publication, i. e., the
location of the publisher, while biblatex uses the generic field name location.
See §§ 2.2.2 and 2.3.4.

field (literal)

An alias for annotation, provided for jurabib compatibility. See § 2.2.2.

field (literal)

An alias for eprinttype, provided for arXiv compatibility. See §§ 2.2.2 and 3.13.7.
field (literal)

An alias for journaltitle, provided for BibTeX compatibility. See § 2.2.2.

32

key

pdf

primaryclass

school

field (literal)

An alias for sortkey, provided for BibTeX compatibility. See § 2.2.3.
field (verbatim)

An alias for £ile, provided for JabRef compatibility. See § 2.2.2.

field (literal)

An alias for eprintclass, provided for arXiv compatibility. See §§ 2.2.2 and
3.13.7.

list (literal)

Analiasfor institution, provided for BibTeX compatibility. The institution
field is used by traditional BibTeX for technical reports whereas the school field
holds the institution associated with theses. The biblatex package employs the
generic field name institution in both cases. See §§ 2.2.2 and 2.3.4.

2.3 Usage Notes

The entry types and fields supported by this package should for the most part be
intuitive to use for anyone familiar with BibTeX. However, apart from the additional
types and fields provided by this package, some of the familiar ones are handled in
a way which is in need of explanation. This package includes some compatibility
code for bib files which were generated with a traditional BibTeX style in mind.
Unfortunately, it is not possible to handle all legacy files automatically because
biblatex’s data model is slightly different from traditional BibTeX. Therefore,
such bib files will most likely require editing in order to work properly with this
package. In sum, the following items are different from traditional BibTeX styles:

« The entry type @inbook. See §§ 2.1.1 and 2.3.1 for details.

o Thefields institution, organization, and publisher as well as the
aliases address and school. See §§ 2.2.2, 2.2.5, 2.3.4 for details.

+ The handling of certain types of titles. See § 2.3.5 for details.

« The field series. See §§ 2.2.2 and 2.3.7 for details.

« The fields year and month. See §§ 2.2.2, 2.3.8, 2.3.9, 2.3.10 for details.
« The field edition. See § 2.2.2 for details.

« The field key. See § 2.3.2 for details.

Users of the jurabib package should note that the shortauthor field is
treated as a name list by biblatex, see § 2.3.3 for details.

2.3.1 The Entry Type @inbook

Use the @inbook entry type for a self-contained part of a book with its own title
only. It relates to @book justlike @incollectionrelatesto @collection. See
§ 2.3.5 for examples. If you want to refer to a chapter or section of a book, simply use
the book type and add a chapter and/or pages field. Whether a bibliography
should at all include references to chapters or sections is controversial because a
chapter is not a bibliographic entity.

33

2.3.2 Missing and Omissible Data

The fields marked as ‘required’ in § 2.1.1 are not strictly required in all cases. The
bibliography styles which come with this package can get by with aslittleasatitle
field for most entry types. A book published anonymously, a periodical without
an explicit editor, or a software manual without an explicit author should pose no
problem as far as the bibliography is concerned. Citation styles, however, may
have different requirements. For example, an author-year citation scheme obviously
requires an author/editor and a year field.

You may generally use the 1abel field to provide a substitute for any missing data
required for citations. How the 1abel field is employed depends on the citation style.
The author-year citation styles which come with this package use the 1abel field as
a fallback if either the author/editor or the year is missing. The numeric styles,
on the other hand, do not use it at all since the numeric scheme is independent of
the available data. The author-title styles ignore it as well, because the bare title
is usually sufficient to form a unique citation and a title is expected to be available in
any case. The 1abel field may also be used to override the non-numeric portion of
the automatically generated 1abelalpha field used by alphabetic citation styles.
See § 4.2.4 for details.

Note that traditional BibTeX styles support a key field which is used for alpha-
betizing if both author and editor are missing. The biblatex package treats
key as an alias for sortkey. In addition to that, it offers very fine-grained sorting
controls, see §§ 2.2.3 and 3.5 for details. The natbib package employs the key field
as a fallback label for citations. Use the 1abel field instead.

2.3.3 Corporate Authors and Editors

Corporate authors and editors are given in the author or editor field, respectively.
Note that they must be wrapped in an extra pair of curly braces to prevent data
parsing from treating them as personal names which are to be dissected into their
components. Use the shortauthor field if you want to give an abbreviated form
of the name or an acronym for use in citations.

author = {{National Aeronautics and Space
— Administration}},
shortauthor = {NASA},

The default citation styles will use the short name in all citations while the full name
is printed in the bibliography. For corporate editors, use the corresponding fields
editor and shorteditor. Since all of these fields are treated as name lists, it is
possible to mix personal names and corporate names, provided that the names of all
corporations and institutions are wrapped in braces.

editor = {{National Aeronautics and Space
— Administration}
and Doe, John},
shorteditor = {NASA and Doe, John},

Users switching from the jurabib package to biblatex should note that the
shortauthor field is treated as a name list.

34

2.3.4 Literal Lists

The fields institution, organization, publisher, and location are lit-
eral lists in terms of § 2.2. This also applies to origlocation, origpublisher
and to the field aliases address and school. All of these fields may contain a list
of items separated by the keyword ‘and’. If they contain a literal ‘and’, it must be
wrapped in braces.

publisher = {William Reid {and} Company},
institution = {Office of Information Management {and}
— Communications},
organization = {American Society for Photogrammetry {and
— } Remote Sensing
and

American Congress on Surveying {and}
— Mapping},

Note the difference between a literal ‘{and}’ and the list separator ‘and’ in the
above examples. You may also wrap the entire name in braces:

{{william Reid and Company}},
{{Office of Information Management and

publisher
institution
— Communicationst}t},
organization = {{American Society for Photogrammetry and
— Remote Sensing}
and
{American Congress on Surveying and

— Mapping}},

Legacy files which have not been updated for use with biblatex will still work if
these fields do not contain a literal ‘and’. However, note that you will miss out on
the additional features of literal lists in this case, such as configurable formatting
and automatic truncation.

2.3.5 Titles

The following examples demonstrate how to handle different types of titles. Let’s
start with a five-volume work which is referred to as a whole:

@MvBook{works,
author = {Shakespeare, William},
title = {Collected Works},
volumes = {5},

The individual volumes of a multi-volume work usually have a title of their own.
Suppose the fourth volume of the Collected Works includes Shakespeare’s sonnets
and we are referring to this volume only:

@Book{works:4,
author = {Shakespeare, William},
{Collected Works},

maintitle

35

title {Sonnets},
volume = {4},

If the individual volumes do not have a title, we put the main title in the tit1le field
and include a volume number:

@Book{works:4,

author = {Shakespeare, William},
title = {Collected Works},
volume = {4},

In the next example, we are referring to a part of a volume, but this part is a self-
contained work with its own title. The respective volume also has a title and there is
still the main title of the entire edition:

@InBook{lear,
author = {Shakespeare, William},
bookauthor = {Shakespeare, William},
maintitle = {Collected Works},
booktitle = {Tragedies},
title = {King Lear},
volume = {1},
pages = {53-159},

Suppose the first volume of the Collected Works includes a reprinted essay by a well-
known scholar. This is not the usual introduction by the editor but a self-contained
work. The Collected Works also have a separate editor:

@InBook{stage,
author = {Expert, Edward},
title = {Shakespeare and the Elizabethan Stage},
bookauthor = {Shakespeare, William},
editor = {Bookmaker, Bernard},
maintitle = {Collected Works},
booktitle = {Tragedies},
volume = {1},
pages = {7-49},

See § 2.3.7 for further examples.

2.3.6 Editorial Roles

The type of editorial role performed by an editor in one of the editor fields (i.e.,
editor, editora, editorb, editorc) may be specified in the corresponding
editor...type field. The following roles are supported by default. The role
‘editor’ is the default. In this case, the editortype field is omissible.

editor The main editor. This is the most generic editorial role and the default value.

36

compiler

founder

continuator

redactor
reviser
collaborator

organizer

Similar to editor but used if the task of the editor is mainly compiling.

The founding editor of a periodical or a comprehensive publication project such as a
‘Collected Works’ edition or a long-running legal commentary.

An editor who continued the work of the founding editor (founder) but was
subsequently replaced by the current editor (editor).

A secondary editor whose task is redacting the work.
A secondary editor whose task is revising the work.
A secondary editor or a consultant to the editor.

Similar to editor but used if the task of the editor is mainly organizing.

For example, if the task of the editor is compiling, you may indicate that in the
corresponding editortype field:

@QCollection{...,
editor = {Editor, Edward},
editortype = {compiler},

There may also be secondary editors in addition to the main editor:

@Book{...,
author = {...},
editor = {Editor, Edward},
editora = {Redactor, Randolph},
editoratype = {redactor},
editorb = {Consultant, Conrad},
editorbtype = {collaborator},

Periodicals or long-running publication projects may see several generations of
editors. For example, there may be a founding editor in addition to the current
editor:

@Book{...,
author = {...},
editor = {Editor, Edward},
editora = {Founder, Frederic},
editoratype = {founder},

Note that only the editor is considered in citations and when sorting the biblio-
graphy. If an entry is typically cited by the founding editor (and sorted accordingly
in the bibliography), the founder goes into the editor field and the current editor
moves to one of the editor. .. fields:

@QCollection{...,

editor = {Founder, Frederic},
editortype = {founder},
editora = {Editor, Edward},

37

You may add more roles by initializing and defining a new localisation key whose
name corresponds to the identifier in the editor. . .type field. See §§ 3.9 and
4.9.1 for details.

2.3.7 Publication and Journal Series

The series field is used by traditional BibTeX styles both for the main title of
a multi-volume work and for a publication series, i. e., a loosely related sequence
of books by the same publisher which deal with the same general topic or belong
to the same field of research. This may be ambiguous. This package introduces a
maintitle field for multi-volume works and employs series for publication
series only. The volume or number of a book in the series goes in the number field
in this case:

@Book{...,
author = {Expert, Edward},
title = {Shakespeare and the Elizabethan Age},
series = {Studies in English Literature and
~— Drama}l,
number = {57},

The Qarticle entry type makes use of the series field as well, but handles it in
a special way. First, a test is performed to determine whether the value of the field is
an integer. If so, it will be printed as an ordinal. If not, another test is performed to
determine whether it is a localisation key. If so, the localised string is printed. If not,
the value is printed as is. Consider the following example of a journal published in
numbered series:

@QArticle{...,

journal = {Journal Name},
series = {3},

volume = {15},

number = {7},

year = {1995},

This entry will be printed as “Journal Name. 3rd ser. 15.7 (1995)”. Some journals
use designations such as “old series” and “new series” instead of a number. Such
designations may be given in the series field as well, either as a literal string
or as a localisation key. Consider the following example which makes use of the
localisation key newseries:

@Article{...,

journal = {Journal Name},
series = {newseries},
volume = {9},

year = {1998},

This entry will be printed as “Journal Name. New ser. 9 (1998)”. See § 4.9.2 for a list
of localisation keys defined by default.

38

Table 3: Date Specifications

Date Specification Formatted Date (Examples)

Short/12-hour Format Long/24-hour Format

1850 1850 1850

1997/ 1997- 1997~

/1997 -1997 -1997

1997/.. 1997- 1997-

../1997 -1997 -1997

1967-02 02/1967 February 1967
2009-01-31 31/01/2009 31st January 2009
1988/1992 1988-1992 1988-1992
2002-01/2002-02 01/2002-02/2002 January 2002-February 2002
1995-03-30/1995-04-05 30/03/1995-05/04/1995 30th March 1995-5th April 1995
2004-04-05T14:34:00 05/04/2004 2:34 PM 5th April 2004 14:34:00

2.3.8 Date and Time Specifications

Date fields such as the default data model dates date, origdate, eventdate,
and urldate adhere to 1508601-2 Extended Format specification level 1. In addition
to the 1508601-2 empty date range markers, you may also specify an open ended/start
date range by giving the range separator and omitting the end/start date (e. g., YYYY/,
/YYYY). See table 3 for some examples of valid date specifications and the formatted
dates automatically generated by biblatex. The formatted date is language specific
and will be adapted automatically. If there is no date field in an entry, biblatex
will also consider the fields year and month for backwards compatibility with
traditional BibTeX but this is not encouraged as explicit year and month are not
parsed for date meta-information markers or times and are used as-is. Style authors
should note that date fields like date or origdate are only available in the bib
file. All dates are parsed and dissected into their components as the bib file is
processed. The date and time components are made available to styles by way of
the special fields discussed in § 4.2.4.3. See this section and table 10 on page 171 for
further information.

1508601-2 Extended Format dates are astronomical dates in which year ‘0’ exists.
When outputting dates in BCE or BC era (see the dateera option below), note that
they will typically be one year earlier since BCE/BC era do not have a year 0 (year 0
is 1 BCE/BC). This conversion is automatic. See examples in table 5.

Date field names must end with the string ‘date’, as with the default date fields. Bear
this in mind when adding new date fields to the datamodel (see § 4.5.4). biblatex
will check all date fields after reading the date model and will exit with an error if it
finds a date field which does not adhere to this naming convention.

1508601-2 supports dates before common era (BCE/BC) by way of a negative date
format and supports ‘approximate’ (circa) and uncertain dates. Such date formats
set internal markers which can be tested for so that appropriate localised mark-
ers (such as circa or beforecommonera) can be inserted. Also supported are
‘unspecified’ dates (1508601-2 4.3) which are automatically expanded into appropri-
ate data ranges accompanied by a field <datetype>dateunspecified which
details the granularity of the unspecified data. Styles may use this information to
format such dates appropriately but the standard styles do not do this. See table 4 on
page 40 for the allowed 1508601-2 ‘unspecified’ formats, their range expansions and
<datetype>dateunspecified values (see § 4.2.4.1).

Table 5 shows formats which use appropriate tests and formatting. See the date
meta-information tests in § 4.6.2 and the localisation strings in § 4.9.2.21. See also the

39

Table 4: 1ISO8601-2 4.3 Unspecified Date Parsing

Date Specification Expanded Range Meta-information
199X 1990/1999 yearindecade

19XX 1900/1999 yearincentury
1999-XX 1999-01/1999-12 monthinyear
1999-01-XX 1999-01-01/1999-01-31 dayinmonth
1999-XX-XX 1999-01-01/1999-12-31 dayinyear

96-dates. tex example file for complete examples of the tests and localisation
strings use.

The output of ‘circa’, uncertainty and era information in standard styles (or custom
styles not customising the internal \mkdaterange* macros) is controlled by the
package options datecirca, dateuncertain, dateera and dateeraauto
(see § 3.1.2.1). See table 5 on page 41 for examples which assumes these options are
all used.

2.3.9 Year, Month and Date

The fields year and month are still supported by biblatex, but the full set of
date features (day and time precision, ranges, ...) can only be used with date. It is
therefore recommended to prefer date over year and month unless backwards
compatibility of the bib file with classical BibTeX is required.

2.3.10 Months and Journal Issues

The month field is an integer field. The bibliography style converts the month to
a language-dependent string as required. For backwards compatibility, you may
also use the following three-letter abbreviations in the month field: jan, feb, mar,
apr,may, jun, jul, aug, sep, oct, nov, dec. Note that these abbreviations are
BibTeX strings which must be given without any braces or quotes. When using them,
don’t say month={jan} or month="jan" but month=jan. It is not possible
to specify a month such as month={8/9}. Use the date field for date ranges
instead. Quarterly journals are typically identified by a designation such as ‘Spring’
or ‘Summer’ which should be given in the issue field. The placement of the issue
field in @article entries is similar to and overrides the month field.

2.3.11 Journal Numbers and Issues

The words ‘number’ and ‘issue’ are often used synonymously by journals to refer
to the subdvision of a volume. The fact that biblatex’s data model has fields
of both names can sometimes lead to confusion about which field should be used.
First and foremost the word that the journal uses for the subdivsion of a volume
should be of minor importance, what matters is the role in the data model. As a rule
of thumb number is the right field in most circumstances. In the standard styles
number modifies volume, whereas issue modifies the date (year) of the entry.
Numeric identifiers and short designators that are not necessarily (entirely) numeric
such as ‘A’, ‘S1’, ‘C2’, ‘Suppl. 3°, “4es’ would go into the number field, because
they usually modify the volume. The output of—especially longer—non-numeric
input for number should be checked since it could potentially look odd with some
styles. The field issue can be used for designations such as ‘Spring’, ‘Winter’ or
‘Michaelmas term’ if that is commonly used to refer to the journal.

40

Table 5: Enhanced Date Specifications

Date Specification Formatted Date (Examples)

Output Format Output Format Notes

0000 1BC dateera=christian prints beforechrist locali-
sation

-0876 877 BCE dateera=secular prints beforecommonera local-
isation string

-0877/-0866 878 BC-867 BC using \ifdateera test and beforechrist localisa-
tion string

0768 0768 CE using dateeraauto set to ‘1000’ and commonera lo-
calisation string

-0343-02 344-02 BCE

0343-02-03 343-02-03 CE with dateeraauto=400

0343-02-03 343-02-02 CE with dateeraauto=400 and julian

1723~ circa 1723 using \ifdatecirca test

17237 17237 using \ifdateuncertain test

1723% circa 17237 using \ifdateuncertainand \ifdatecirca tests

2004-22 2004 also, season is set to the localisation string ‘summer’

2004-24 2004 also, season is set to the localisation string ‘winter’

2.3.12 Pagination

When specifying a page or page range, either in the pages field of an entry or in the
(postnote) argument to a citation command, it is convenient to have biblatex add
prefixes like ‘p. or ‘pp.” automatically and this is indeed what this package does by
default. However, some works may use a different pagination scheme or may not be
cited by page but rather by verse or line number. This is when the pagination and
bookpagination fields come into play. As an example, consider the following
entry:

@InBook{key,

title = {...},
pagination = {verse},
booktitle = {...},
bookpagination = {page},
pages = {53--65},

The bookpagination field affects the formatting of the pages and pagetotal
fields in the list of references. Since page is the default, this field is omissible in
the above example. In this case, the page range will be formatted as ‘pp. 53-65.
Suppose that, when quoting from this work, it is customary to use verse numbers
rather than page numbers in citations. This is reflected by the pagination field,
which affects the formatting of the (postnote) argument to any citation command.
With a citation like \cite [17] {key}, the postnote will be formatted as ‘v. 17’.
Setting the pagination field to section would yield ‘§ 17°. See § 3.14.3 for
further usage instructions.

Thepaginationandbookpagination fields are key fields. This package will
try to use their value as a localisation key, provided that the key is defined. Always use
the singular form of the key name in bib files, the plural is formed automatically. The
keys page, column, 1ine, verse, section, and paragraph are predefined,
with page being the default. The string ‘none’ has a special meaning when used
in a pagination or bookpagination field. It suppresses the prefix for the

41

respective entry. If there are no predefined localisation keys for the pagination
scheme required by a certain entry, you can simply add them. See the commands
\NewBibliographyStringand \DefineBibliographyStrings in §3.9.
You need to define two localisation strings for each additional pagination scheme: the
singular form (whose localisation key corresponds to the value of the pagination
field) and the plural form (whose localisation key must be the singular plus the letter
‘s’). See the predefined keys in § 4.9.2 for examples.

2.4 Hints and Caveats
This section provides some additional hints concerning the data interface of this
package. It also addresses some common problems.

2.4.1 Cross-referencing

biber features a highly customizable cross-referencing mechanism with flexible
data inheritance rules. Duplicating certain fields in the parent entry or adding empty
fields to the child entry is no longer required. Entries are specified in a natural way:

@Book{book,
author = {Author},
title = {Booktitle},
subtitle = {Booksubtitle},
publisher = {Publisher},
location = {Location},
date = {1995},

}
@InBook{inbook,

crossref = {book},
title = {Title},
pages = {5--25},

The title field of the parent will be copied to the booktitle field of the child,
the subtitle becomesthe booksubtitle. The author of the parent becomes
the bookauthor of the child and, since the child does not provide an author
field, it is also duplicated as the author of the child. After data inheritance, the
child entry is similar to this:

author = {Author},
bookauthor = {Author},

title = {Title},
booktitle = {Booktitle},
booksubtitle = {Booksubtitle},
publisher = {Publisher},
location = {Location},
date = {1995},

pages = {5--25},

See appendix B for a list of mapping rules set up by default. Note that all of this is cus-
tomizable. See § 4.5.11 on how to configure biber’s cross-referencing mechanism.
See also § 2.2.3.

42

2.4.1.1 The xref field

In addition to the crossref field, biblatex supports a simplified cross-refer-
encing mechanism based on the xref field. This is useful if you want to establish
a parent/child relation between two associated entries but prefer to keep them in-
dependent as far as the data is concerned. The xref field differs from crossref
in that the child entry will not inherit any data from the parent. If the parent is
referenced by a certain number of child entries, biblatex will automatically add
it to the bibliography. The threshold is controlled by the minxrefs package option
from § 3.1.2.1.u See also § 2.2.3.

2.4.2 Sorting and Encoding Issues

biber handles Ascii, 8-bit encodings such as Latin 1, and uTr-8. It features true
Unicode support and is capable of reencoding the bib data on the fly in a robust way.
For sorting, biber uses a Perl implementation of the Unicode Collation Algorithm
(uca), as outlined in Unicode Technical Standard #10.'* Collation tailoring based on
the Unicode Common Locale Data Repository (CLDR) is also supported.'*

Supporting Unicode implies much more than handling uTF-8 input. Unicode is
a complex standard covering more than its most well-known parts, the Unicode
character encoding and transport encodings such as uTr-8. It also standardizes
aspects such as string collation, which is required for language-sensitive sorting. For
example, by using the Unicode Collation Algorithm, biber can handle the character
‘8’ without any manual intervention. All you need to do to get localised sorting is
specify the locale:

\usepackage[sortlocale=de] {biblatex}

or if you are using German as the main document language via babel or
polyglossia:

\usepackage[sortlocale=auto] {biblatex}

This will make biblatex pass the babel/polyglossia main document lan-
guage as the locale which biber will map into a suitable default locale. biber
will not try to get locale information from its environment as this makes document
processing dependent on something not in the document which is against TeX’s
spirit of reproducibility. This also makes sense since babel/polyglossia arein
fact the relevant environment for a document. Note that this will also work with
8-bit encodings such as Latin 9, i. e., you can take advantage of Unicode-based sorting
even though you are not using UTF-8 input. See § 2.4.2.1 on how to specify input
and data encodings properly.

2.4.2.1 Specifying Encodings

When using a non-Ascii encoding in the bib file, it is important to understand what
biblatex can do for you and what may require manual intervention. The package
takes care of the LaTeX side, i. e., it ensures that the data imported from the bb1 file
is interpreted correctly, provided that the bibencoding package option (or the

Bhttps://unicode.org/reports/trl0/
“http://cldr.unicode.org/

43

https://unicode.org/reports/tr10/
http://cldr.unicode.org/

datasource specific override for this, see § 3.7.1) is set properly. All of this is handled
automatically and no further steps, apart from setting the bibencoding option in
certain cases, are required. Here are a few typical usage scenarios along with the
relevant lines from the document preamble:

« Ascii notation in both the tex and the bib file with pdfTeX or traditional
TeX:

\usepackage{biblatex}

« Latin 1 encoding (150-8859-1) in the tex file, Ascii notation in the bib file
with pdfTeX or traditional TeX:

\usepackage[latinl] {inputenc}
\usepackage [bibencoding=ascii] {biblatex}

« Latin 9 encoding (150-8859-15) in both the tex and the bib file with pdfTeX
or traditional:

\usepackage[latin9] {inputenc}
\usepackage [bibencoding=auto] {biblatex}

Since bibencoding=auto is the default setting, the option is omissible.
The following setup will have the same effect:

\usepackage[latin9] {inputenc}
\usepackage{biblatex}

+ UTF-8 encoding in the tex file, Latin 1 (150-8859-1) in the bib file with pdfTeX
or traditional TeX:

\usepackage[utf8] {inputenc}
\usepackage [bibencoding=latinl] {biblatex}

The same scenario with LaTeX release 2018-04-01 or above, XeTeX or LuaTeX
in native UTF-8 mode:

\usepackage [bibencoding=latinl] {biblatex}

biber can handle Ascii notation, 8-bit encodings such as Latin 1, and uTF-8. It
is also capable of reencoding the bib data on the fly (replacing the limited macro-
level reencoding feature of biblatex). This will happen automatically if required,
provided that you specify the encoding of the bib files properly. In addition to the
scenarios discussed above, biber can also handle the following cases:

« Transparent uTr-8 workflow, i. e., UTF-8 encoding in both the tex and the
bib file with pdfTeX or traditional TeX:

44

\usepackage [utf8] {inputenc}
\usepackage [bibencoding=auto] {biblatex}

Since bibencoding=auto is the default setting, the option is omissible:

\usepackage [utf8] {inputenc}
\usepackage{biblatex}

The same scenario with XeTeX or LuaTeX in native uTF-8 mode:

\usepackage{biblatex}

« It is even possible to combine an 8-bit encoded tex file with uTF-8 encoding
in the bib file, provided that all characters in the bib file are also covered by
the selected 8-bit encoding:

\usepackage[latinl] {inputenc}
\usepackage [bibencoding=utf8] {biblatex}

Some workarounds may be required when using traditional TeX or pdfTeX with
UTF-8 encoding because inputenc’s ut£8 module does not cover all of Unicode.
Roughly speaking, it only covers the Western European Unicode range. When loading
inputenc with the ut £8 option, biblatex will normally instruct biber to
reencode the bib data to uTF-8. This may lead to inputenc errors if some of
the characters in the bib file are outside the limited Unicode range supported by
inputenc.

« If you are affected by this problem, try setting the safeinputenc option:

\usepackage [utf8] {inputenc}
\usepackage[safeinputenc] {biblatex}

If this option is enabled, biblatex will ignore inputenc’s ut£8 option
and use Ascii. biber will then try to convert the bib data to Ascii notation.
For example, it will convert $ to \k{S}. This option is similar to setting
texencoding=ascii but will only take effect in this specific scenario
(inputenc/inputenx with utr-8). This workaround takes advantage of
the fact that both Unicode and the uTF-8 transport encoding are backwards
compatible with Ascii.

This solution may be acceptable as a workaround if the data in the bib file is
mostly Ascii anyway, with only a few strings, such as some authors’ names, causing
problems. However, keep in mind that it will not magically make traditional TeX or
pdfTeX support Unicode. It may help if the occasional odd character is not supported
by inputenc, but may still be processed by TeX when using an accent command
(e.g., \d{S} instead of S). If you need full Unicode support, however, switch to
XeTeX or LuaTeX.

Typical errors when inputenc cannot handle a certain UTF-8 character are:

45

! Package inputenc Error: Unicode char <char> (U+<codepoint>)
(inputenc) not set up for use with LaTeX.

but also less obvious things like:

! Argument of \UTFviii@three@octets has an extra }.

3 User Guide

This part of the manual documents the user interface of the biblatex package.
The user guide covers everything you need to know in order to use biblatex with
the default styles that come with this package. You should read the user guide first in
any case. If you want to write your own citation and/or bibliography styles, continue
with the author guide afterwards.

3.1 Package Options

All package options are given in (key)=(value) notation. The value t rue is omissible
with all boolean keys. For example, giving sortcites without a value is equivalent
to sortcites=true.

3.1.1 Load-time Options

The following options must be used as biblatex is loaded, i.e., in the optional
argument to \usepackage.

backend=bibtex,bibtex8, biber default: biber

Specifies the database backend. The following backends are supported:

biber biber, the default backend of biblatex, supports Ascii, 8-bit en-
codings, UTF-8, on-the-fly reencoding, locale-specific sorting, and
many other features. Locale-specific sorting, case-sensitive sort-
ing, and upper/lowercase precedence are controlled by the options
sortlocale, sortcase, and sortupper, respectively.

bibtex Legacy BibTeX. Traditional BibTeX supports Ascii encoding only. Sort-
ing is always case-insensitive.

bibtex8 bibtex8, the 8-bit implementation of BibTeX, supports Ascii and
8-bit encodings such as Latin 1.

See § 3.15 for details of using BibTeX as a backend.
style=(file) default: numeric

Loads the bibliography style (file) . bbx and the citation style (file) . cbx. See § 3.3
for an overview of the standard styles.

bibstyle=(file) default: numeric

Loads the bibliography style (file) . bbx. See § 3.3.2 for an overview of the standard
bibliography styles.

citestyle=(file) default: numeric

Loads the citation style (file) . cbx. See § 3.3.1 for an overview of the standard
citation styles.

46

natbib=true, false default: false

Loads compatibility module which provides aliases for the citation commands of the
natbib package. See § 3.8.9 for details.

mcite=true, false default: false

Loads a citation module which provides mcite/mciteplus-like citation com-
mands. See § 3.8.10 for details.

casechanger=auto, latex2e, expl3 default: auto

This option selects the implementation of biblatex’s case changing functions,
most prominently \MakeSentenceCase*. expl3 selects the new implementa-
tion based on the LaTeX 3 module 13text. latex2e selects the original imple-
mentation, which has tricky brace protection behaviour and some shortcomings
when dealing with non-ASCII characters. The default auto selects the case changing
code based on the available exp13 version (expl3 is selected if exp13 is at least
version 2020-04-06).

3.1.2 Preamble Options
3.1.2.1 General

The following options may be used in the optional argument to \usepackage as
well as in the configuration file and the document preamble. The default value listed
to the right is the package default. Note that bibliography and citation styles may
modify the default setting at load time, see § 3.3 for details.

sorting=nty, nyt, nyvt, anyt, anyvt, ynt, ydnt, none, debug, default: nty
(name)

The sorting order of the bibliography. Unless stated otherwise, the entries are sorted
in ascending order. The following choices are available by default:

nty Sort by name, title, year.

nyt Sort by name, year, title.

nyvt Sort by name, year, volume, title.

anyt Sort by alphabetic label, name, year, title.

anyvt Sort by alphabetic label, name, year, volume, title.

ynt Sort by year, name, title.

ydnt Sort by year (descending), name, title.

none Do not sort at all. All entries are processed in citation order.

debug Sort by entry key. This is intended for debugging only.

(name) Use (name), as defined with \DeclareSortingTemplate
(§ 4.5.6)

Using any of the ‘alphabetic’ sorting templates only makes sense in conjunction
with a bibliography style which prints the corresponding labels. Note that some
bibliography styles initialize this package option to a value different from the package
default (nty). See § 3.3.2 for details. Please refer to § 3.5 for an in-depth explanation
of the above sorting options as well as the fields considered in the sorting process.
See also § 4.5.6 on how to adapt the predefined templates or define new ones.

47

sortcase=true, false default: true
Whether or not to sort the bibliography and the list of shorthands case-sensitively.
sortupper=true, false default: true

This option corresponds to biber’s ~-sortupper command-line option. If en-
abled, the bibliography is sorted in ‘uppercase before lowercase’ order. Disabling
this option means ‘lowercase before uppercase’ order.

sortlocale=auto, (locale) default: auto

This option sets the global sorting locale. Every sorting template inherits this locale if
none is specified using the (locale) option to \printbibliography. Setting this
to auto requests that it be set to the babel/polyglossia main document lan-
guage identifier, if these packages are used and en US otherwise. biber will map
babel/polyglossia language identifiers into sensible locale identifiers (see the
biber documentation). You can therefore specify either a normal locale identifier
like de DE_phonebook, es ES or one of the supported babel/polyglossia
language identifiers if the mapping biber makes of this is fine for you.

sortcites=true, false default: false

Whether or not to sort citations if multiple entry keys are passed to a citation
command. If this option is enabled, citations are sorted according to the current
bibliography context sorting template (see § 3.7.10). This feature works with all
citation styles.

sortsets=true, false default: false

Whether or not to sort set members according to the active reference context sorting
scheme. By default this is false and set members appear in the order given in the
data source.

maxnames=(integer) default: 3

A threshold affecting all lists of names (author, editor, etc.). If a list exceeds this
threshold, i. e., if it holds more than (integer) names, it is automatically truncated
according to the setting of the minnames option. maxnames is the master option
which sets maxbibnames, maxcitenames and maxsortnames. Note that the
uniquelist feature can locally override maxnames, see the documentation of
the uniquelist optionin § 3.1.2.3 and § 4.11.4.

minnames=(integer) default: 1

A limit affecting all lists of names (author, editor, etc.). If a list holds more
than (maxnames) names, it is automatically truncated to (minnames) names. The
(minnames) value must be smaller than or equal to (maxnames). minnames is
the master option which sets both minbibnames and mincitenames. Like
maxnames the value of minnames can be overridden by uniquelist.

maxbibnames=(integer) default: (maxnames)
Similar to maxnames but affects only the bibliography.
minbibnames=(integer) default: (minnames)

Similar to minnames but affects only the bibliography.

48

maxcitenames=(integer) default: (maxnames)
Similar to maxnames but affects only the citations in the document body.

mincitenames=(integer) default: (minnames)
Similar to minnames but affects only the citations in the document body.

maxsortnames=(integer) default: (maxbibnames)

Similar to maxnames but affects only the names visible to sorting. Since this defaults
to (maxbibnames), you should set this after maxbibnames if maxbibnames is
explicitly set.

minsortnames=(integer) default: (minbibnames)

Similar to minnames but affects only the names visible to sorting. Since this defaults
to (minbibnames), you should set this after minbibnames if minbibnames is
explicitly set.

maxitems=(integer) default: 3
Similar to maxnames, but affecting all literal lists (publisher, location, etc.).
minitems=(integer) default: 1
Similar to minnames, but affecting all literal lists (publisher, location, etc.).
autocite=plain, inline, footnote, superscript, ...

This option controls the behavior of the \autocite command discussed in § 3.8.4.
The plain option makes \autocite behave like \cite, inline makes it
behave like \parencite, footnote makes it behave like \footcite, and
superscript makes it behave like \supercite. The options plain, inline,
and footnote are always available, the superscript option is only provided
by the numeric citation styles which come with this package. The citation style may
also define additional options. The default setting of this option depends on the
selected citation style, see § 3.3.1.

autopunct=true, false default: true

This option controls whether the citation commands scan ahead for punctuation
marks. See § 3.8 and \DeclareAutoPunctuation in § 4.7.5 for details.

language=autobib, autocite, auto, (language) default: autobib

This option controls multilingual support. By default biblatex automatically picks
up the active surrounding language from the babe1/polyglossia package!® (and
fall back to English if babel/polyglossia is not available). autobib switches
the language for each entry in the bibliography using the 1angid field and the
language environment specified by the autolang option. autocite switches the
language for each citation using the 1angid field and the language environment
specified by the autolang option. auto is a shorthand to set both autobib and
autocite. It is also possible to select the package language manually. In this case,
the language chosen will override the 1angid of entries and you should still choose

*Note that biblatex has only limited support for polyglossia versions prior to v1.45. If
polyglossia is used, it should be updated to version 1.45 (2019/10/27) or above.

49

a language switching environment with the autolang option to select how the
switch to the manually chosen language is handled. Please refer to table 2 for a list
of supported languages and the corresponding identifiers.

clearlang=true, false default: true

If this option is enabled, biblatex will automatically clear the 1anguage field
of all entries whose language matches the babel/polyglossia language of the
document (or the language specified explicitly with the 1anguage option) in order
to omit redundant language specifications. The language mappings required by this
feature are provided by the \DeclareRedundantLanguages command from
§ 4.9.1. This option is also settable on a per-type and per-entry basis.

autolang=none, hyphen, other, other*, langname default: none

This option controls which babel language environment'® is used if the
babel/polyglossia package is loaded and a bibliography entry includes a
langid field (see § 2.2.3). Note that regardless of the selected value biblatex
automatically adjusts to the main document language if babel/polyglossia
is loaded. In multilingual documents, it will also continually adjust to the current
language as far as citations and the default language of the bibliography is concerned.
The effect of additional language adjustment, which can negate the effect of picking
up the surrounding language, depends on the language environment selected by this
option. The possible choices are:

none Do not use any additional enclosing language environment at all. This
means that citations and the bibliography are set in the currently
active language—this need not be the main language.

hyphen Enclose the entry in a hyphenrules environment. This will load
hyphenation patterns for the language specified in the 1angid field
of the entry, if available. Localisation strings and extra language
definitions are not changed and taken from the surrounding language
environment.

other Enclose the entry in an otherlanguage environment. This will
load hyphenation patterns for the specified language, enable all extra
definitions which babel/polyglossia and biblatex provide
for the respective language, and translate key terms such as ‘editor’
and ‘volume’. The extra definitions include localisations of the date
format, of ordinals, and similar things.

other* Enclose the entry in an otherlanguage* environment.
Please note that biblatex treats otherlanguage* like
otherlanguage if langhook is set to extras.

langname polyglossia only. Enclose the entry in a <languagename>
environment. The benefit of this option value for polyglossia
users is that it takes note of the 1angidopts field so that you can add
per-language options to an entry (like selecting a language variant).
When using babel, this option does the same as the other option
value.

polyglossia understands the babel language environments too and so this option controls
both the babel and polyglossia language environments.

50

langhook=captions, extras default: captions

This option controls whether bibliography strings and extras are written to
\captions<language> or \extras<language>. The exact effect of this
option depend on the language package (babel/polyglossia). Broadly speak-
ing, the language switching environments provided by those packages (except
hyphenrules) either switch language captions and extras or only language extras.
Hence, if this option is set to extras, all language switches will affect biblatex,
whereas with captions only language switches that also switch other parts of the
document language affect biblatex.

block=none, space, par, nbpar, ragged default: none

This option controls the extra spacing between blocks, i. e., larger segments of a
bibliography entry. The possible choices are:

none Do not add anything at all.

space Insert additional horizontal space between blocks. This is similar to
the default behavior of the standard LaTeX document classes.

par Start a new paragraph for every block. This is similar to the openbib
option of the standard LaTeX document classes.

nbpar Similar to the par option, but disallows page breaks at block bound-
aries and within an entry.

ragged Inserts a small negative penalty to encourage line breaks at block
boundaries and sets the bibliography ragged right.

The \newblockpunct command may also be redefined directly to achieve different
results, see § 3.11.1. Also see § 4.7.1 for additional information.

locallabelwidth=true, false default: false

This option controls whether \printbibliography uses a locally calculated
value for \labelnumberwidth and \labelalphawidth or the global value
calculated from all entries. The local value is calculated separately for each biblio-
graphy and takes into account only the entries displayed in that bibliography. This
option is useful if there are several bibliographies with wildly varying label lengths
in the same document.

notetype=foot+end, footonly, endonly default: foot+end

This option controls the behavior of \mkbibfootnote, \mkbibendnote, and
similar wrappers from § 4.10.4. The possible choices are:

foot+end Support both footnotes and endnotes, i. e., \mkbibfootnote will
generate footnotes and \mkbibendnote will generate endnotes.

footonly Force footnotes, i. e., make \mkbibendnote generate footnotes.

endonly Force endnotes, i. e., make \mkbibfootnote generate endnotes.
hyperref=true, false, auto, manual default: auto

Whether or not to transform citations and back references into clickable hyper-
links. This feature requires the hyperref package. It also requires support by the
selected citation style. All standard styles which ship with this package support
hyperlinks. hyperref=auto automatically detects if the hyperref package

51

has been loaded. This is the default setting. hyperref=false explicitly dis-
ables links even if hyperref is loaded. hyperref=true enables links when
hyperref is loaded, it cannot explicitly enable links if hyperref is not loaded,
as such it works exactly like hyperref=auto except that it will issue a warning
if hyperref is not loaded. hyperref=manual gives full manual control over
hyperref interaction, it should only be needed by package authors in very special
circumstances. With the hyperref=manual setting you are responsible to enable
or disable hyperref support manually with \BiblatexManualHyperrefOn
or \BiblatexManualHyperrefOff yourself. One of the two commands must
be called exactly once; \BiblatexManualHyperrefOn can only be called after
hyperref is loaded.

backref=true, false default: false

Whether or not to print back references in the bibliography. The back references are
a list of page numbers indicating the pages on which the respective bibliography
entry is cited. If there are refsection environments in the document, the back
references are local to the reference sections. Strictly speaking, this option only
controls whether the biblatex package collects the data required to print such
references. This feature still has to be supported by the selected bibliography style.
All standard styles which come with this package do so.

backrefstyle=none, three, two, two+, three+,all+ default: three

This option controls how sequences of consecutive pages in the list of back references
are formatted. The following styles are available:

none Disable this feature, i. e., do not compress the page list.

three Compress any sequence of three or more consecutive pages to a range,
e. g, the list ‘1, 2, 11, 12, 13, 21, 22, 23, 24’ is compressed to ‘1, 2, 11-13,
21-24".

two Compress any sequence of two or more consecutive pages to a range,

e. g., the above list is compressed to ‘1-2, 11-13, 21-24".

two+ Similar in concept to two but a sequence of exactly two consecutive
pages is printed using the starting page and the localisation string
sequens, e. g., the above list is compressed to ‘1sq., 11-13, 21-24’.

three+ Similar in concept to two+ but a sequence of exactly three consec-
utive pages is printed using the starting page and the localisation
string sequentes, e. g., the above list is compressed to ‘1sq., 11sqq.,
21-24’,

all+ Similar in concept to three+ but any sequence of consecutive pages
is printed as an open-ended range, e. g., the above list is compressed
to ‘1sq., 11sqq., 21sqq..

All styles support both Arabic and Roman numerals. In order to avoid potentially
ambiguous lists, different sets of numerals will not be mixed when generating ranges,
e. g., the list ‘iii, iv, v, 6, 7, 8’ is compressed to ‘iii-v, 6-8’.

backrefsetstyle=setonly, memonly, setormem, setandmem, default: setonly
memandset, setplusmem

This option controls how back references to @set entries and their members are
handled. The following options are available:

52

setonly All back references are added to the @set entry. The pageref lists
of set members remain blank.

memonly References to set members are added to the respective member. Ref-
erences to the @set entry are added to all members. The pageref
list of the @set entry remains blank.

setormem Referencestothe @set entry are added to the @set entry. References
to set members are added to the respective member.

setandmem References to the @set entry are added to the @set entry. Refer-
ences to set members are added to the respective member and to the
@set entry.

memandset References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member.

setplusmem References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member and to the @set entry.

backreffloats=true, false default: true
Whether to enable back references to citations in floats.
indexing=true, false, cite, bib default: false

This option controls indexing in citations and in the bibliography. More precisely,
it affects the \ifciteindex and \ifbibindex commands from § 4.6.2. The
option is settable on a global, a per-type, or on a per-entry basis. The possible choices

are:
true Enable indexing globally.

false Disable indexing globally.

cite Enable indexing in citations only.

bib Enable indexing in the bibliography only.

This feature requires support by the selected citation style. All standard styles
which come with this package support indexing of both citations and entries in the
bibliography. Note that you still need to enable indexing globally with \makeindex
to get an index.

loadfiles=true, false default: false

This option controls whether external files requested by way of the \printfile
command are loaded. See also § 3.13.8 and \printfile in § 4.4.1. Note that this
feature is disabled by default for performance reasons.

refsection=none, part, chapter, chapter+, section, sectiont, default: none
subsection, subsection+

This option automatically starts a new reference section at a document division such
as a chapter or a section. This is equivalent to the \newrefsection command,
see § 3.7.4 for details. The following choice of document divisions is available:

none Disable this feature.

part Start a reference section at every \part command.

53

chapter Start a reference section at every \chapter command.

chapter+ Start a reference section at every \chapter and every higher level
of sectioning, i.e. \part.

section Start a reference section at every \ section command.

section+ Start areference section at every \section and every higher level
of sectioning, i.e. \part and \chapter (if available).

subsection Start a reference section at every \ subsection command.

subsection+ Start a reference section at every \subsection and every
higher level of sectioning, i.e. \part, \chapter (if available) and
\section.

The starred versions of these commands will not start a new reference section.
refsegment=none, part, chapter, chapter+, section, section+, default: none
subsection, subsection+

Similar to the refsection option but starts a new reference segment. This is
equivalent to the \newrefsegment command, see § 3.7.5 for details. When using
both options, note that you can only apply this option to a lower-level document
division than the one refsection is applied to and that nested reference segments
will be local to the enclosing reference section.

citereset=none, part, chapter, chapter+, section, section+, default: none
subsection, subsection+

This option automatically executes the \citereset command from § 3.8.8 at a
document division such as a chapter or a section. The following choice of document
divisions is available:

none Disable this feature.

part Perform a reset at every \part command.

chapter Perform a reset at every \chapter command.
chapter+ Perform a reset at every \chapter and \part command.
section Perform a reset at every \ section command.

section+ Perform a reset at every \section, (chapter) (if supported by the
class) and \part command.

subsection Perform areset at every \subsection command.

subsection+ Perform a reset at every \subsection, \section, (chapter)
(if supported by the class) and \part command.

abbreviate=true, false default: true

Whether or not to use long or abbreviated strings in citations and in the bibliography.
This option affects the localisation modules. If this option is enabled, key terms such
as ‘editor’ are abbreviated. If not, they are written out. This option is also settable on
a per-type or per-entry basis.

date=year, short, long, terse, comp, ymd, iso default: comp

This option controls the basic format of printed date specifications. The following
choices are available:

54

year Use only years, for example:
2010
2010-2012

short Use the short format with verbose ranges, for example:
01/01/2010
21/01/2010-30/01/2010
01/21/2010-01/30/2010

long Use the long format with verbose ranges, for example:
1st January 2010
21st January 2010-30th January 2010
January 21, 2010-January 30, 2010

terse Use the short format with compact ranges, for example:
21-30/01/2010
01/21-01/30/2010

comp Use the long format with compact ranges, for example:
21st-30th January 2010
January 21-30, 2010

iso Use 1SO8601 Extended Format (yyyy-mm-dd), for example:
2010-01-01
2010-01-21/2010-01-30

ymd A year-month-day format which can be modified by other options
unlike strict 1508601-2, for example:

2010-1-1
2010-1-21/2010-1-30

Note that iso format will enforce dateera=astronomical, datezeros=
true, timezeros=true, seconds=true, <datetype>time=24h and
julian=false. ymd is an EDTF-like format but which can change the various
options which the strict 1so option does not allow for.

As seen in the above examples, the actual date format is language specific. Note
that the month name in all long formats is responsive to the abbreviate pack-
age option. The leading zeros for months and days in all short formats may be
controlled separately with the datezeros package option. The leading zeros for
hours, minutes and seconds in all short formats may be controlled separately with
the timezeros package option. If outputting times, the printing of seconds and
timezones is controlled by the seconds and timezones options respectively.

The options julian and gregorianstart may be used to control when to
output Julian Calendar dates.

labeldate=year, short, long, terse, comp, ymd, iso default: year

Similar to the date option but controls the format of the date field selected with
\DeclareLabeldate.

55

<datetype>date=year, short, long, terse, comp, ymd, 1so default: comp

Similar to the date option but controls the format of the <datetype>date field
in the datamodel.

alldates=year, short, long, terse, comp, iso

Sets the option for all dates in the datamodel to the same value. The date fields in
the default data model are date, origdate, eventdate and urldate.

julian=true, false default: false

This option controls whether dates before the date specified in the
gregorianstart option will be converted automatically to the Julian
Calendar. Dates so changed will return ‘true’ for the \ifdatejulian and
\if<datetype>datejulian tests (see § 4.6.2). Please bear in mind that dates
consisting of just a year like ‘1565’ will never be converted to a Julian Calendar
date because a date without a month and day has an ambiguous Julian Calendar
representation'’. For example, in the case of ‘1565’, this is Julian year ‘1564’ until
after the Gregorian date ‘10th January 1565° when the Julian year becomes ‘1565’.

gregorianstart=(YYYY-MM-DD)

This option controls the date before which dates are converted to the Julian Calendar.
It is a strict format string, 4-digit year, 2-digit month and day, separated by a single
dash character (any valid Unicode character with the ‘Dash’ property). The default
is ’1582-10-15’, the date of the instigation of the standard Gregorian Calendar. This
option does not nothing unless julian is set to ‘true’.

datezeros=true, false default: true

This option controls whether short and terse date components are printed with
leading zeros unless overridden by specific formatting.

timezeros=true, false default: true

This option controls whether time components are printed with leading zeros unless
overridden by specific formatting.

timezones=true, false default: false
This option controls whether timezones are printed when printing times.
seconds=true, false default: false
This option controls whether seconds are printed when printing times.
dateabbrev=true, false default: true

This option controls whether 1ong and comp dates are printed with long or ab-
breviated month/season names. The option is similar to the generic abbreviate
option but specific to the date formatting. This option is also settable on a per-type
and per-entry basis.

"This is potentially true for dates missing times too but this is not relevant for bibliographic work.

56

datecirca=true, false default: false

This option controls whether to output ‘circa’ information about dates. If set to
true, dates will be preceded by the expansion of the \datecircaprint macro
(§3.11.1).

dateuncertain=true, false default: false

This option controls whether to output uncertainty information about dates. If set to
true, dates will be followed by the expansion of the \dateuncertainprint
macro and end dates will be followed by the \enddateuncertainprint macro
(§3.11.1).

dateera=astronomical, secular, christian default: astronomical

This option controls how date era information is printed. ‘astronomical’ uses
\dateeraprintpre to print era information before start/end dates. ‘secular’
and ‘christian’ uses \dateeraprint to print era information after the start/end/-
dates. By default ‘astronomical’ results in a minus sign before BCE/BC dates and
‘secular’/‘christian’ results in the relevant localisation strings like ‘BCE’ or ‘BC’ after
BCE/BC dates. See the relevant comments in § 3.11.1 and the localisation strings in
§ 4.9.2.21.

dateeraauto=(integer) default: 0

This option sets the astronomical year, below which era localisation strings are
automatically added. This option does nothing without dateera being set to
‘secular’ or ‘christian’.

time=12h, 24h, 24hcomp default: 24h

This option controls the basic format of printed time specifications. The following
choices are available:

24h 24-hour format, for example:
14:03:23
14:3:23
14:03:23+05:00
14:03:23Z
14:21:23-14:23:45
14:23:23-14:23:45
24hcomp 24-hour format with compressed ranges, for example:
14:21-23 (hours are the same)
14:23:23-45 (hour and minute are the same)
12h 12-hour format with (localised) AM/PM markers, for example:
2:34 PM
2:34 PM-3:50 PM
As seen in the above examples, the actual time format is language specific. Note that
the AM/PM string is responsive to the abbreviate package option, if this makes

a difference in the specific locale. The leading zeros in the 24-hour formats may be
controlled separately with the t imezeros package option. The separator between

57

time components (\bibtimesep and \bibtzminsep) and between the time and
any timezone (\bibtimezonesep) are also language specific and customisable,
see § 3.11.3. There are global package options which determine whether seconds
and timezones are printed (seconds and timezones, respectively, see § 3.1.2.1).
Timezones, if present, are either “Z’ or a numeric positive or negative offset. No
default styles print time information. Custom styles may print times by using the
\print<datetype>time commands, see § 4.4.1.

labeltime=12h, 24h, 24hcomp default: 24h

Similar to the t ime option but controls the format of the time part fields obtained
from the field selected with \DeclareLabeldate.

<datetype>time=12h, 24h, 24hcomp default: 24h

Similar to the t ime option but controls the format of the time part fields obtained
from the <datetype>date field in the datamodel.

alltimes=12h, 24h, 24hcomp

Sets 1abeltime and the <datetype>time option for all times in the datamodel
to the same value. The date fields supporting time parts in the default data model
are date, origdate, eventdate and urldate.

dateusetime=true, false default: false

Specifies whether to print any time component of a date field after the date component.
The separator between the date and time components is \bibdatetimesep from
§3.11.3.

labeldateusetime=true, false default: false

Similar to the dateusetime option but controls the whether to print time compo-
nents for the field selected with \DeclarelLabeldate.

<datetype>dateusetime=true, false
default: false

Similar to the dateusetime option but controls the whether to print time compo-
nents for the <datetype>date field in the datamodel.

alldatesusetime=true, false default: false

Sets labeldateusetime and the <datetype>dateusetime option for all
<datetype>date fields in the datamoel.

defernumbers=true, false default: false

In contrast to standard LaTeX, the numeric labels generated by this package are
normally assigned to the full list of references at the beginning of the document body.
If this option is enabled, numeric labels (i. e., the 1abelnumber field discussed
in § 4.2.4) are assigned the first time an entry is printed in any bibliography. See
§ 3.14.5 for further explanation. This option requires two LaTeX runs after the data
has been exported to the bb1 file by the backend (in addition to any other runs
required by page breaks changing etc.). An important thing to note is that if you are
using this option, then changes to options, the bib file or certain commands like
\printbibliography will usually require that you delete your current aux file
and re-run LaTeX to obtain the correct numbering. See § 4.1.

58

punctfont=true, false default: false

This option enables an alternative mechanism for dealing with unit punctuation
after a field printed in a different font (for example, a title printed in italics). See
\setpunctfont in § 4.7.1 for details.

arxiv=abs, ps, pdf, format default: abs

Path selector for arXiv links. If hyperlink support is enabled, this option controls
which version of the document the arXiv eprint links will point to. The following
choices are available:

abs Link to the abstract page.

ps Link to the PostScript version.
pdf Link to the PDF version.
format Link to the format selector page.

See § 3.13.7 for details on support for arXiv and electronic publishing information.
texencoding=auto, (encoding) default: auto

Specifies the encoding of the tex file. This option affects the data transferred from
the backend to biblatex. This corresponds to biber’s ——output-encoding
option. The following choices are available:

auto Try to auto-detect the input encoding. If the inputenc/inputenx/
luainputenc package is available, biblatex will get the main
encoding from that package. If not, it assumes UTF-8 encoding if
a LaTeX format using at least the April 2018 version of the kernel,
XeTeX or LuaTeX has been detected, and Ascii otherwise.

(encoding) Specifies the (encoding) explicitly. This is for odd cases in which
auto-detection fails or you want to force a certain encoding for some
reason.

Note that setting texencoding=(encoding) will also affect the bibencoding
option if bibencoding=auto.

bibencoding=auto, (encoding) default: auto

Specifies the default encoding of the bib files. This can be overridden on a per-
datasource basis using the bibencoding option to \addbibresource, see
§ 3.7.1. This option corresponds to biber’s ——input-encoding option. The
following choices are available:

auto Use this option if the workflow is transparent, i. e., if the encoding of
the bib file is identical to the encoding of the tex file.

(encoding) If the encoding of the bib file is different from the one of the tex
file, you need to specify it explicitly.

By default, biblatex assumes that the tex file and the bib file use the same
encoding (bibencoding=auto).

safeinputenc=true, false default: false

If this option is enabled, biblatex will automatically force texencoding=
ascii if the inputenc/inputenx package has been loaded and the input en-
coding is UTF-8, i.e., it will ignore any macro-based UTF-8 support and use Ascii

59

only. biber will then try to convert any non-Ascii data in the bib file to Ascii. For
example, it will convert S to \d{S}. See § 2.4.2.1 for an explanation of why you
may want to enable this option.

bibwarn=true, false default: true

By default, biblatex will report warnings issued by the backend concerning the
data in the bib file as LaTeX warnings. Use this option to suppress such warnings.

mincrossrefs=(integer) default: 2

Sets the minimum number of cross references to (integer) when requesting a backend
run.'® This option also affects the handling of the xre f field. See the field description
in § 2.2.3 as well as § 2.4.1 for details.

minxrefs=(integer) default: 2
Asmincrossrefs but for xref fields.

bibtexcaseprotection=true, false
default: true

This option only has an effect when the exp1 3 implementation of the case changing
functionsis selected. If the optionis setto true, \MakeSentenceCase* supports
brace protection of words from case change as in classical BibTeX. If the option is
set to false, pairs of braces no longer imply case protection, which can now be
enforced by wrapping the relevant word in \NoCaseChange—this makes for a less
confusing, if more verbose, markup of case protection.

3.1.2.2 Style-specific

The following options are provided by all standard bibliography styles (as opposed
to the core package). The options are available as preamble options like those in
§ 3.1.2.1 and at a per-type and per-entry scope.

isbn=true, false default: true
This option controls whether the fields isbn/issn/isrn are printed.
url=true, false default: true

This option controls whether the url field and the access date is printed. The
option only affects entry types whose url information is optional. The ur1 field of
@online entries is always printed.

doi=true, false default: true
This option controls whether the field do1i is printed.
eprint=true, false default: true
This option controls whether eprint information is printed.
related=true, false default: true

Whether to use information from related entries or not. See § 3.4.

'81f an entry which is cross-referenced by other entries in the bib file hits this threshold, it is included
in the bibliography even if it has not been cited explicitly. This is a standard feature of the BibTeX
format and not specific to biblatex. See the description of the crossref field in § 2.2.3 for
further information.

60

alphabetic/numeric Additionally, styles of the alphabeticand numeric
family support the subentry option in global, per-type and per-entry scope.

subentry=true, false default: false

This option affects the handling of citations to set members and the display of sets
in the bibliography. If the option is enabled, citations to individual set members
feature an additional letter that identifies the member, that letter is also printed in
the bibliography. If the option is disabled, a citation to the member of a set will
display just as a citation to the entire set and there will be no additional letters in
the bibliography entries enumerating the members.

Suppose keyl and key2 are members of the set set1l. With subentry set to
true in a numeric style a citation to key1l will show as ‘[1a]’ and a citation to
key?2 as ‘[1b]’, while the entire set set1 will be cited as ‘[1]”. Furthermore ‘(a)’ and
‘(b)’ will be added in front of the entry data for the set members in the bibliography
entry for the set. With subentry setto false citations to all three keys will show
as ‘[1]’, no additional letter will be printed in the bibliography.

numeric-comp The citation style numeric-comp supports the
subentrycomp option in global, per-type and per-entry scope.

subentrycomp=true, false default: true

This option determines whether or not citations to set members are compressed
similar to non-set citations. The option only has an effect if subentry is set to
true.

Suppose keyl, key2 and key3 are members of the set setl. With
subentrycomp set to true the three entries will be compressed to ‘[1a—c]’ in
citations. With subentry set to false the citation will show in the more verbose
form ‘[1a, 1b, 1c]’.

The option is intended mainly for backwards compatibility, because earlier versions
of biblatex did not compress set member citations.

authortitle/authoryear All bibliography styles of the authoryear and
authortitle family as well as all bibliography styles of the verbose family—
whose bibliography styles are based on authortitle—support the option
dashed in global scope.

dashed=true, false default: true

This option controls whether recurrent the same author/editor list in the bibliography
are replaced by a dash (\bibnamdeash, see § 3.11.1). If the option is enabled,
subsequent mentions of the same name list at the beginning of an entry are replaced
by a dash provided the entry is not the first on the current page. If the option is
disabled, name lists are never replaced by a dash.

authoryear Bibliography styles of the authoryear family provide the option
mergedate in global, per-type and per-entry scope.

mergedate=false, minimum, basic, compact, maximum, true default: true

This option controls whether and how the date specification in the entry is merged
with the date label shown directly after the author/editor list.

61

false Strictly separate the date specification shown in the entry (styled with
date) from the date label (styled with 1abeldate). The date will
always be shown twice.

minimum Omit the date specification whenever it coincides exactly—including
extradate information—with the output of the date label.

basic Similar to minimum, but the date specification will also be omitted if
it differs from the date label only by the absence of the extradate
letter.

compact Merges all date specifications with the date label. The date format of
that merged date label is controlled by date, not 1abeldate, even
if it is printed in the position of the date label. The issue field is not
merged.

maximum Like compact, but if present the issue field will also be moved
into the date label at the beginning of the entry.

true An alias for compact.

More in-depth examples of this option can be found in the style examples.

‘ibid’ styles Citation styles with ‘ibid. function, namely authortitle-
ibid, authortitle-icomp, authoryear-ibid, authoryear-icomp,
verbose-ibid, verbose-inote, verbose-tradl, verbose-trad?2 and
verbose-trad3 provide the global ibidpage option.

ibidpage=true, false default: false

Whether ibidem without page reference means ‘same work’ or ‘same work + same
page’. If set to t rue a page range postnote will be suppressed in an ibidem citation if
the last citation was to the same page range. With ibidpage=false the postnote
is not omitted. Citations to different page ranges than the previous always produce
the page ranges with either setting.

verbose All citation styles of the verbose family provide the global option
citepages.

citepages=permit, suppress,omit, separate default: permit

This option controls the output of the page/pagetotal field in the full citation
in combination with a postnote containing a page range. The option can be used to
suppress references to two page ranges in full citations like the following

Author. “Title” In: Book, pp. 100-150, p. 125.

Here ‘p. 125’ is the postnote argument and ‘pp. 100-150’ is the value of the pages
field.

permit Allow duplication of page specifications, i.e. print both page/
pagetotal and postnote.

suppress Unconditionally suppress the pages/pagetotal fields in citations,
regardless of the postnote.

omit Suppress the pages/pagetotal if the postnote contains a page
range. They are still printed if there is no postnote or if the
postnote is not a number or range.

62

separate Separate the pages/pagetotal from the postnote if the latter
contains a page range. The string thiscite is added to separate
the two page ranges.

verbose-trad The citation styles of the verbose-trad family support the
global option strict.

strict=true, false default: false

This option allows to restrict the use of the scholarly abbreviations ‘ibid. and ‘op. cit.
to avoid ambiguities. If the option is set to true these terms will only be used if the
relevant work was cited in the same or previous footnote.

reading The reading style supports a number of additional options, but these
are not of general interest and can be found in the style example.

3.1.2.3 Internal

The default settings of the following preamble options are controlled by bibliography
and citation styles. Apart from the pagetracker and <name>inits options,
which you may want to adapt, there is normally no need to set them explicitly.

pagetracker=true, false, page, spread default: false

This option controls the page tracker which is required by the \ i fsamepage and
\iffirstonpage tests from § 4.6.2. The possible choices are:

true Enable the tracker in automatic mode. This is like spread if LaTeX
is in twoside mode, and like page otherwise.

false Disable the tracker.

page Enable the tracker in page mode. In this mode, tracking works on a
per-page basis.

spread Enable the tracker in spread mode. In this mode, tracking works on a
per-spread (double page) basis.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5.

citecounter=true, false, context default: false

This option controls the citation counter which is required by citecounter from
§ 4.6.2. The possible choices are:

true Enable the citation counter in global mode.
false Disable the citation counter.

context Enable the citation counter in context-sensitive mode. In this mode,
citations in footnotes and in the body text are counted independently.

citetracker=true, false, context, strict, constrict default: false

This option controls the citation tracker which is required by the \ifciteseen
and \ifentryseen tests from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.

63

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked independently.

strict Enable the tracker in strict mode. In this mode, an item is only con-
sidered by the tracker if it appeared in a stand-alone citation, i.e., if a
single entry key was passed to the citation command.

constrict This mode combines the features of context and strict.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

ibidtracker=true, false, context, strict, constrict default: false

This option controls the ‘ibidem’ tracker which is required by the \ifciteibid
test from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.
context Enable the tracker in context-sensitive mode. In this mode, citations

in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. A reference is considered ambiguous if
either the current citation (the one including the ‘ibidem’) or the
previous citation (the one the ‘ibidem’ refers to) consists of a list of
references.’

constrict This mode combines the features of context and strict. It also
keeps track of footnote numbers and detects potentially ambiguous
references in footnotes in a stricter way than the strict option. In
addition to the conditions imposed by the st rict option, a reference
in a footnote will only be considered as unambiguous if the current
citation and the previous citation are given in the same footnote or in
immediately consecutive footnotes.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

opcittracker=true, false, context, strict, constrict default: false

This option controls the ‘opcit’ tracker which is required by the \ifopcit test from
§ 4.6.2. This feature is similar to the ‘ibidem’ tracker, except that it tracks citations
on a per-author/editor basis, i.e., \1fopcit will yield true if the cited item is the
same as the last one by this author/editor. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

For example, suppose the initial citation is “Jones, Title; Williams, Title” and the following one
“ibidem”. From a technical point of view, it is fairly clear that the ‘ibidem’ refers to “Williams’
because this is the last reference processed by the previous citation command. To a human reader,
however, this may not be obvious because the ‘ibidem’ may also refer to both titles. The strict mode
avoids such ambiguous references.

64

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. See ibidtracker=strict for details.

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

loccittracker=true, false, context, strict, constrict default: false

This option controls the ‘loccit’ tracker which is required by the \ifloccit test
from § 4.6.2. This feature is similar to the ‘opcit’ tracker except that it also checks
whether the (postnote) arguments match, i.e., \ifloccit will yield true if the
citation refers to the same page cited before. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. See ibidtracker=strict for details.
In addition to that, this mode also checks if the (postnote) argument
is numerical (based on \ifnumerals from § 4.6.2).

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details. In addition
to that, this mode also checks if the (postnote) argument is numerical
(based on \ifnumerals from § 4.6.2).

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

idemtracker=true, false, context, strict, constrict default: false

This option controls the ‘idem’ tracker which is required by the \ifciteidem test
from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.
false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict This is an alias for t rue, provided only for consistency with the other
trackers. Since ‘idem’ replacements do not get ambiguous in the same
way as ‘ibidem’ or ‘op. cit), the st rict tracking mode does not apply
to them.

constrict This mode is similar to context with one additional condition: a
reference in a footnote will only be considered as unambiguous if
the current citation and the previous citation are given in the same
footnote or in immediately consecutive footnotes.

65

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

trackfloats=true, false default: false

Whether to enable citation tracking in floats. Citation tracking in floats can be tricky,
so this option should only be enabled if absolutely necessary and the output should
be scrutinised carefully, see also § 4.11.5.

parentracker=true, false default: true

This option controls the parenthesis tracker which keeps track of nested
parentheses and brackets. This information is used by \parentext and
\brackettext from § 3.8.5, \mkbibparens and \mkbibbrackets from
§ 4.104 and \bibopenparen, \bibcloseparen, \bibopenbracket,
\bibclosebracket (also § 4.10.4).

maxparens=(integer) default: 3

The maximum permitted nesting level of parentheses and brackets. If parentheses
and brackets are nested deeper than this value, biblatex will issue errors.

<namepart>inits=true, false default: false

The option sets the \if<namepart>inits test from § 4.6.2.
<namepart> is any valid name part as defined in the data model by the
\DeclareDatamodelConstant command (§ 4.2.3). For the given name, for
example, the option becomes giveninits. This option is also settable on a
per-type, per-entry, per-namelist and per-name basis.

If giveninits is set to true, the default name formats will only render the given
name initials and not the full given name. The standard styles only use the test
\ifgiveninits and hence only respond to the option giveninits. Setting
the option for a name part different from given has no effect on the default name
formats.

Note that sorting and name uniqueness are not automatically affected by this option,
that have to be requested explicitly via \DeclareSortingNamekeyTemplate
and the uniquename option (or \DeclareUniquenameTemplate), respec-
tively. A warning will be issued if giveninits is used together with
uniguename set to one of the full values and unigquename is automatically set
to the corresponding init value.

terseinits=true, false default: false

This option controls the format of all initials generated by biblatex. If enabled,
initials are rendered using a terse format without dots and spaces. For example, the
initials of Donald Ervin Knuth would be rendered as ‘D. E. by default, and as ‘DE’ if
this option is enabled. The option will affect the \ifterseinits test from § 4.6.2.
The option works by redefining some macros which control the format of initials.
See § 3.14.4 for details. This option is also settable on a per-type, per-entry, per-name
and per-namelist basis.

labelalpha=true, false default: false

Whether or not to provide the special fields 1abelalpha and extraalpha, see
§ 4.2.4 for details. This option is also settable on a per-type and per-entry basis. See

66

also maxalphanames and minalphanames. Table 7 summarises the various
extra* disambiguation counters and what they track.

maxalphanames=(integer) default: 3

Similar to the maxnames option but customizes the format of the labelalpha
field.

minalphanames=(integer) default: 1

Similar to the minnames option but customizes the format of the labelalpha

field.
labelnumber=true, false default: false

Whether or not to provide the special field 1abelnumber, see § 4.2.4 for details.
This option is also settable on a per-type and per-entry basis.

noroman=true, false default: false

Whether or not to try to parse roman numerals encountered in integer fields for
sorting purposes. Since biber also tries to parse alphanumeric values when sorting
integer fields, this roman numeral parsing can be a problem when, for example, ‘C’
is encountered as this could be a roman numeral or a simple alphanumeric string
which would have a different integer value depending on how it was parsed. It is
likely that this is most useful on a per-entry basis for entries that have, for example,
a volume field with values such as ‘A’, ‘B’, ‘C’, ‘D’ which should not be parsed as
roman numerals since this would give incorrect integer values for ‘C’ and ‘D’.

This option is also settable on a per-type and per-entry basis.
labeltitle=true, false default: false

Whether or not to provide the special field extratitle, see § 4.2.4 for details.
Note that the special field Labeltitle is always provided and this option controls
rather whether 1abeltitle is used to generate extratitle information. This
option is also settable on a per-type and per-entry basis. Table 7 summarises the
various extra* disambiguation counters and what they track.

labeltitleyear=true, false default: false

Whether or not to provide the special field extratitleyear, see § 4.2.4 for details.
Note that the special field 1abeltitle is always provided and this option controls
rather whether 1abeltitle is used to generate extratitleyear information.
This option is also settable on a per-type and per-entry basis. Table 7 summarises
the various extra* disambiguation counters and what they track.

labeldateparts=true, false default: false

Whether or not to provide the special fields labelyear, labelmonth,
labelday, labelendyear, labelendmonth, labelendday, labelhour,
labelendhour, labelminute, labelendminute, labelsecond,
labelendsecond, labelseason, labelendseason, labeltimezone,
labelendtimeone and extradate, see § 4.2.4 for details. This option is also
settable on a per-type and per-entry basis. Table 7 summarises the various extra*
disambiguation counters and what they track.

67

Table 6: Work Uniqueness options

Option Test Tracks
singletitle \ifsingletitle labelname
uniquetitle \ifuniquetitle labeltitle
uniquebaretitle \ifuniquebaretitle labeltitle when
labelname isnull
uniquework \ifuniquework labelname+labeltitle
singletitle=true, false default: false

Whether or not to provide the data required by the \ifsingletitle test, see
§ 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

uniquetitle=true, false default: false

Whether or not to provide the data required by the \ifuniquetitle test, see
§ 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

uniquebaretitle=true, false default: false

Whether or not to provide the data required by the \ifuniquebaretitle test,
see § 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

uniquework=true, false default: false

Whether or not to provide the data required by the \ifuniquework test, see
§ 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

unigqueprimaryauthor=true, false
default: false

Whether or not to provide the data required by the \ifuniqueprimaryauthor
test, see § 4.6.2 for details. This option is also settable on a per-type and per-entry
basis.

uniquename=true, false, init, full,allinit,allfull, default: false
mininit, minfull

Whether or not to update the uniquename counter, see § 4.6.2 for details. This
feature will disambiguate individual names in the 1abelname list. This option is
also settable on a per-type, per-entry, per-namelist and per-name basis. The possible
choices are:

true An alias for full.

false Disable this feature.

init Disambiguate using initials only.

full Disambiguate using initials or full names, as required.

allinit Similar to init but disambiguates all names in the 1abelname list,
beyond maxnames/minnames/uniquelist.

68

allfull Similar to full but disambiguates all names in the 1abelname list,
beyond maxnames/minnames/uniquelist.

mininit A variant of init which only disambiguates names in identical lists
of base nameparts (by default, lists of family names).

minfull A variant of full which only disambiguates names in identical lists
of base nameparts (by default, lists of family names).

Note that the uniquename option will also affect uniquelist, the
\ifsingletitle test,and the extradate and extraname fields. See § 4.11.4
for further details and practical examples.

uniquelist=true, false,minyear default: false

Whether or not to update the uniquelist counter, see § 4.6.2 for details.
This feature will disambiguate the 1abelname list if it has become ambiguous
after maxnames/minnames truncation. Essentially, it overrides maxnames/
minnames on a per-field basis. This option is also settable on a per-type, per-entry
and per-namelist basis. The possible choices are:

true Disambiguate the 1abelname list.
false Disable this feature.
minyear Disambiguate the 1abelname list only if the truncated list is identi-

cal to another one with the same 1abelyear. This mode of operation
is useful for author-year styles and requires labeldateparts=
true.

Note that the uniquelist option will also affect the \ifsingletitle test
and the extradate and extraname fields. See § 4.11.4 for further details and
practical examples.

nohashothers=true, false default: false

By default, name lists which are truncated with ‘et al’-either explicitly by ‘and
others’ in the data source or the uniquelist and min/maxnames options—result
in different name list hashes (and therefore different extraname and extradate
values) and different sorting. This option allows this behaviour to be tuned. When
set to (true), biber ignores ‘et al’ truncations for the purposes of generating name
list hashes. Consider:

Jones 1972

Jones/and others 1972

Smith 2000
Smith/Vogel/Beast/Tremble 2000

With maxnames=3, minnames=1, nohashothers=false, the result would

be:
Jones 1972
Jones et al. 1972
Smith 2000
Smith et al. 2000

69

Whereas with maxnames=3, minnames=1, nohashothers=true, the result
would be:

Jones 1972a
Jones et al. 1972b
Smith 2000a
Smith et al. 2000b

If desired, this could be further simplified by removing the ‘et al.” to obtain:

Jones 1972a
Jones 1972b
Smith 2000a
Smith 2000b

Note that the nohashothers option will affect the ext radate and ext raname

fields.

This option is also settable on a per-type, per-entry and per-namelist basis.
nosortothers=true, false default: false

The option has a related to effect to nohashothers but applies to sorting—the
visible list of names (which is the minsortnames value) used to determine sorting
will ignore any truncation. This means that with nosortothers=true, the name
lists:

Jones, Smith
Jones, Smith et al

will sort exactly the same. The default setting of nosortothers always sorts in
the order shown in the example, that is, by default, truncated names lists always sort
after any name lists identical to the point of truncation.

This option is also settable on a per-type, per-entry and per-namelist basis.

3.1.3 Entry Options

Entry options are package options which determine how bibliography data entries
are handled. They may be set at various scopes defined below.

3.1.3.1 Preamble/Type/Entry Options

The following options are settable on a per-type basis or on a per-entry in the
options field. In addition to that, they may also be used in the optional argument
to \usepackage as well as in the configuration file and the document preamble.
This is useful if you want to change the default behaviour globally.

useauthor=true, false default: true

Whether the author is used in labels and considered during sorting. This may
be useful if an entry includes an author field but is usually not cited by author
for some reason. Setting useauthor=false does not mean that the author is

70

Table 7: Disambiguation counters

Option Enabled field(s) Enabled counter Counter tracks

labelalpha labelalpha extraalpha label
labeldateparts labelyear extradate labelname+

labelmonth labelyear

labelday

labelendyear

labelendmonth

labelendday

labelhour

labelminute

labelsecond

labelendhour

labelendminute

labelendsecond

labelseason

labelendseason

labeltimezone

labelendtimezone
labeltitle — extratitle labelname+labeltitle
labeltitleyear - extratitleyear labeltitle+labelyear
— — extraname labelname

ignored completely. It means that the author is not used in labels and ignored
during sorting. The entry will then be alphabetized by editor or title. With
the standard styles, the author is printed after the title in this case. See also § 3.5.
This option is also settable on a per-type and per-entry basis.

useeditor=true, false default: true

Whether the editor replaces a missing author in labels and during sorting. This
may be useful if an entry includes an editor field but is usually not cited by editor.
Setting useeditor=false does not mean that the editor is ignored completely.
It means that the editor does not replace a missing author in labels and during
sorting. The entry will then be alphabetized by title. With the standard styles,
the editor is printed after the title in this case. See also § 3.5. This option is also
settable on a per-type and per-entry basis.

usetranslator=true, false default: false

Whether the translator replaces a missing author/editor in labels and dur-
ing sorting. Setting usetranslator=true doesnot meanthatthe translator
overrides the author/editor. It means that the translator is considered as
a fallback if the author/editor is missing or if useauthor and useeditor
are set to false. In other words, in order to cite a book by translator rather than
by author, you need to set the following options: This option is also settable on a
per-type and per-entry basis.

@Book{...,
options = {useauthor=false,usetranslator=true},
author = {...},
translator = {...},

71

With the standard styles, the translator is printed after the title by default. See
also § 3.5.

use<name>=true, false default: true

As per useauthor, useeditor and usetranslator, all name lists defined in
the data model have an option controlling their behaviour in sorting and labelling au-
tomatically defined. Global, per-type and per-entry options called ‘use<name>>’are
automatically created.

useprefix=true, false default: false

Whether the default data model name part ‘prefix’ (von, van, of, da, de, della, etc.) is
considered when:

«Printing the family name in citations
«Sorting

«Generation of certain types of labels
«Generating name uniqueness information

«Formatting aspects of the bibliography

For example, if this option is enabled, biblatex precedes the family name with the
prefix—Ludwig van Beethoven would be cited as “van Beethoven” and alphabetized
as “Van Beethoven, Ludwig”. If this option is disabled (the default), he is cited as
“Beethoven” and alphabetized as “Beethoven, Ludwig van” instead. This option is
also settable on a per-type scope. With biblatexml datasources and the BibTeX
extended name format supported by biber, this is also settable on per-namelist and
per-name scopes.

indexing=true, false,cite,bib

The indexing option is also settable per-type or per-entry basis. See § 3.1.2.1 for
details.

skipbib=true, false default: false

If this option is enabled, the entry is excluded from the bibliography but it may still
be cited. This option is also settable on a per-type basis.

skipbiblist=true, false default: false

If this option is enabled, the entry is excluded from bibliography lists. It is still
included in the bibliography and it may also be cited by shorthand etc. This option
is also settable on a per-type basis.

skiplab=true, false default: false

If this option is enabled, biblatex will not assign any labels to the entry. It is
not required for normal operation. Use it with care. If enabled, biblatex can not
guarantee unique citations for the respective entry and citations styles which require
labels may fail to create valid citations for the entry. This option is also settable on a
per-type basis.

dataonly=true, false default: false

Setting this option is equivalent to uniquename=false,uniquelist=false,
skipbib, skipbiblist, and skiplab. It is not required for normal operation.
Use it with care. This option is also settable on a per-type basis.

72

3.1.3.2 Entry Only Options

The following options are settable only on a per-entry in the options field. They
are not available globally or per-type.

labelnamefield=(fieldname)

Specifies the field to consider first when looking for a 1abelname candidate. It is
essentially prepended to the search list created by \DeclareLabelname for just
this entry.

labeltitlefield

openbib

=(fieldname)

Specifies the field to consider first when looking for a 1abeltitle candidate. It
is essentially prepended to the search list created by \DeclarelLabeltitle for
just this entry.

3.1.4 Legacy Options

The following legacy option may be used globally in the optional argument to
\documentclass or locally in the optional argument to \usepackage:

This option is provided for backwards compatibility with the standard LaTeX docu-
ment classes. openbib is similar to block=par.

3.2 Global Customization

Apart from writing new citation and bibliography styles, there are numerous ways to
customize the styles which come with this package. Customization will usually take
place in the preamble, but there is also a configuration file for permanent adaptions.
The configuration file may also be used to initialize the package options to a value
different from the package default.

3.2.1 Configuration File

If available, this package will load the configuration file biblatex.cfg. This file
is read at the end of the package, immediately after the citation and bibliography
styles have been loaded.

3.2.2 Setting Package Options

The load-time package options in § 3.1.1 must be given in the optional argument to
\usepackage. The package options in § 3.1.2 may also be given in the preamble.
The options are executed with the following command:

\ExecuteBibliographyOptions [(entrytype, ...)] { (key=value, ...)}

This command may also be used in the configuration file to modify the default setting
of a package option. Certain options are also settable on a per-type basis. In this
case, the optional (entrytype) argument specifies the entry type. The (entrytype)
argument may be a comma-separated list of values.

73

Deprecated

numeric

numeric-comp

numeric-verb

alphabetic

alphabetic-verb

3.3 Standard Styles

This section provides a short description of all bibliography and citation styles
which come with the biblatex package. Each style is further illustrated in a style
example which is linked in the right margin. The local link may not be available if
this document does not reside in the expected folder structure. If you want to write
your own styles, see § 4.

3.3.1 Citation Styles

The citation styles which come with this package implement several common citation
schemes. All standard styles cater for the shorthand field and support hyperlinks
as well as indexing.

This style implements a numeric citation scheme similar to the standard biblio-
graphic facilities of LaTeX. It should be employed in conjunction with a numeric
bibliography style which prints the corresponding labels in the bibliography. It is
intended for in-text citations. The style will set the following package options at
load time: autocite=inline, labelnumber=true. This style also provides
an additional preamble option called subentry which affects the handling of entry
sets. If this option is disabled, citations referring to a member of a set will point to
the entire set. If it is enabled, the style supports citations like “[5¢]” which point to a
subentry in a set (the third one in this example). See the style example for details.

A compact variant of the numeric style which prints a list of more than two con-
secutive numbers as a range. This style is similar to the cite package and the
sorté&compress option of the natbib package in numerical mode. For exam-
ple, instead of “[8, 3, 1, 7, 2]” this style would print “[1-3, 7, 8]”. It is intended
for in-text citations. The style will set the following package options at load time:
autocite=inline, sortcites=true, labelnumber=true. It also pro-
vides the subentry and subentrycomp options.

A verbose variant of the numeric style. The difference affects the handling of
a list of citations and is only apparent when multiple entry keys are passed to a
single citation command. For example, instead of “[2, 5, 6]” this style would print
“[2]; [5]; [6]”- It is intended for in-text citations. The style will set the following
package options at load time: autocite=inline, labelnumber=true. Italso
provides the subentry option.

This style implements an alphabetic citation scheme similar to the alpha.bst style
of traditional BibTeX. The alphabetic labels resemble a compact author-year style to
some extent, but the way they are employed is similar to a numeric citation scheme.
For example, instead of “Jones 1995” this style would use the label “[Jon95]”. “Jones
and Williams 1986” would be rendered as “[JW86]”. This style should be employed
in conjunction with an alphabetic bibliography style which prints the corresponding
labels in the bibliography. It is intended for in-text citations. The style will set
the following package options at load time: autocite=inline, labelalpha=
true. This style also provides an additional preamble option called subentry
which affects the handling of entry sets. If this option is disabled, citations referring
to a member of a set will point to the entire set. If it is enabled, the style supports
citations like “[SGW(c)]” which point to a subentry in a set (the third one in this
example). See the style example for details.

A verbose variant of the alphabetic style. The difference affects the handling

74

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/30-style-numeric-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/31-style-numeric-comp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/32-style-numeric-verb-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/40-style-alphabetic-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/41-style-alphabetic-verb-biber.pdf

authoryear

authoryear-comp

authoryear-ibid

authoryear-icomp

authortitle

authortitle-comp

authortitle-ibid

of a list of citations and is only apparent when multiple entry keys are passed to
a single citation command. For example, instead of “[Doe92; Doe95; Jon98]” this
style would print “[Doe92]; [Doe95]; [Jon98]”. It is intended for in-text citations.
The style will set the following package options at load time: autocite=inline,
labelalpha=true. It also provides the subentry option.

This style implements an author-year citation scheme. If the bibliography contains
two or more works by the same author which were all published in the same year, a
letter is appended to the year. For example, this style would print citations such as
“Doe 1995a; Doe 1995b; Jones 1998”. This style should be employed in conjunction
with an author-year bibliography style which prints the corresponding labels in the
bibliography. It is primarily intended for in-text citations, but it could also be used
with citations given in footnotes. The style will set the following package options
at load time: autocite=inline, labeldateparts=true, uniquename=
full,uniquelist=true.

A compact variant of the authoryear style which prints the author only once
if subsequent references passed to a single citation command share the same au-
thor. If they share the same year as well, the year is also printed only once. For
example, instead of “Doe 1995b; Doe 1992; Jones 1998; Doe 1995a” this style would
print “Doe 1992, 1995a,b; Jones 1998”. It is primarily intended for in-text citations,
but it could also be used with citations given in footnotes. The style will set the
following package options at load time: autocite=inline, sortcites=true,
labeldateparts=true, uniquename=full, uniquelist=true.

A variant of the authoryear style which replaces repeated citations by the ab-
breviation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of the package option
ibidtracker=constrict. The style will set the following package options
at load time: autocite=inline, labeldateparts=true, uniquename=
full, uniquelist=true, ibidtracker=constrict, pagetracker=
true. This style also provides an additional preamble option called ibidpage. See
the style example for details.

A style combining authoryear-comp and authoryear-ibid. The style
will set the following package options at load time: autocite = inline,
labeldateparts = true, uniquename = full, uniquelist = true,
ibidtracker=constrict, pagetracker=true, sortcites=true. This
style also provides an additional preamble option called ibidpage. See the style
example for details.

This style implements a simple author-title citation scheme. It will make use of the
shorttitle field, if available. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
unigquename=full, uniquelist=true.

A compact variant of the authortitle style which prints the author only once if
subsequent references passed to a single citation command share the same author.
For example, instead of “Doe, First title; Doe, Second title” this style would print
“Doe, First title, Second title”. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
sortcites=true,uniquename=full, uniquelist=true.

A variant of the authortitle style which replaces repeated citations by the

75

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/50-style-authoryear-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/52-style-authoryear-comp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/51-style-authoryear-ibid-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/53-style-authoryear-icomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/60-style-authortitle-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/62-style-authortitle-comp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/61-style-authortitle-ibid-biber.pdf

authortitle-icomp

authortitle-terse

authortitle-tcomp

authortitle-ticomp

verbose

verbose-ibid

abbreviation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of the package option
ibidtracker=constrict. Itis intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
unigquename = full, uniquelist = true, ibidtracker = constrict,
pagetracker=true. This style also provides an additional preamble option
called ibidpage. See the style example for details.

A style combining the features of authortitle-comp and authortitle-
ibid. The style will set the following package options at load time: autocite=
footnote, uniquename = full, uniquelist = true, ibidtracker =
constrict, pagetracker=true, sortcites=true. This style also pro-
vides an additional preamble option called ibidpage. See the style example for
details.

A terse variant of the authortitle style which only prints the title if the biblio-
graphy contains more than one work by the respective author/editor. This style will
make use of the shorttitle field, if available. It is suitable for in-text citations as
well as citations given in footnotes. The style will set the following package options
atload time: autocite=inline, singletitle=true,uniquename=full,
uniquelist=true.

A style combining the features of authortitle-comp and authortitle-
terse. This style will make use of the shorttitle field, if available. It is suitable
for in-text citations as well as citations given in footnotes. The style will set the
following package options at load time: autocite=inline, sortcites=true,
singletitle=true,uniquename=full,uniquelist=true.

A style combining the features of authortitle-icomp and authortitle-
terse. In other words: a variant of the authortitle-tcomp style with an
ibidem feature. This style is suitable for in-text citations as well as citations given
in footnotes. It will set the following package options at load time: autocite=
inline, ibidtracker=constrict, pagetracker=true, sortcites=
true, singletitle=true, uniquename=full, uniquelist=true. This
style also provides an additional preamble option called ibidpage. See the style
example for details.

A verbose citation style which prints a full citation similar to a bibliography entry
when an entry is cited for the first time, and a short citation afterwards. If available,
the shorttitle field is used in all short citations. If the shorthand field is
defined, the shorthand is introduced on the first citation and used as the short
citation thereafter. This style may be used without a list of references and shorthands
since all bibliographic data is provided on the first citation. It is intended for citations
given in footnotes. The style will set the following package options at load time:
autocite=footnote, citetracker=context. This style also provides an
additional preamble option called citepages. See the style example for details.

A variant of the verbose style which replaces repeated citations by the abbreviation
ibidem unless the citation is the first one on the current page or double-page spread,
or the ibidem would be ambiguous in the sense of ibidtracker=strict. This
style is intended for citations given in footnotes. The style will set the following
package options atload time: autocite=footnote,citetracker=context,
ibidtracker=constrict, pagetracker=true. This style also provides

76

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/63-style-authortitle-icomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/64-style-authortitle-terse-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/65-style-authortitle-tcomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/66-style-authortitle-ticomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/70-style-verbose-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/71-style-verbose-ibid-biber.pdf

verbose-note

verbose-inote

verbose-trad1

verbose-trad?2

verbose-trad3

additional preamble options called ibidpage and citepages. See the style
example for details.

This style is similar to the verbose style in that it prints a full citation similar to
a bibliography entry when an entry is cited for the first time, and a short citation
afterwards. In contrast to the verbose style, the short citation is a pointer to the
footnote with the full citation. If the bibliography contains more than one work
by the respective author/editor, the pointer also includes the title. If available, the
shorttitle field is used in all short citations. If the shorthand field is defined,
it is handled as with the verbose style. This style may be used without a list of
references and shorthands since all bibliographic data is provided on the first citation.
It is exclusively intended for citations given in footnotes. The style will set the
following package options at load time: autocite=footnote, citetracker=
context, singletitle=true. This style also provides additional preamble
options called pageref and citepages. See the style example for details.

A variant of the verbose-note style which replaces repeated citations by the
abbreviation ibidem unless the citation is the first one on the current page or double-
page spread, or the ibidem would be ambiguous in the sense of ibidtracker=
strict. This style is exclusively intended for citations given in footnotes. It
will set the following package options at load time: autocite = footnote,
citetracker =context, ibidtracker =constrict, singletitle=
true, pagetracker=true. This style also provides additional preamble op-
tions called ibidpage, pageref, and citepages. See the style example for
details.

This style implements a traditional citation scheme. It is similar to the verbose
style in that it prints a full citation similar to a bibliography entry when an item
is cited for the first time, and a short citation afterwards. Apart from that, it
uses the scholarly abbreviations ibidem, idem, op. cit., and loc. cit. to replace re-
current authors, titles, and page numbers in repeated citations in a special way:.
If the shorthand field is defined, the shorthand is introduced on the first ci-
tation and used as the short citation thereafter. This style may be used with-
out a list of references and shorthands since all bibliographic data is provided
on the first citation. It is intended for citations given in footnotes. The style
will set the following package options at load time: autocite = footnote,
citetracker =context, ibidtracker =constrict, idemtracker =
constrict, opcittracker=context, loccittracker=context. This
style also provides additional preamble options called ibidpage, strict, and
citepages. See the style example for details.

Another traditional citation scheme. It is also similar to the verbose style but
uses scholarly abbreviations like ibidem and idem in repeated citations. In contrast
to the verbose-tradl style, the logic of the op. cit. abbreviations is different
in this style and loc. cit. is not used at all. It is in fact more similar to verbose-
ibid and verbose-inote than to verbose-tradl. The style will set the
following package options at load time: autocite=footnote, citetracker=
context, ibidtracker=constrict, idemtracker=constrict. This
style also provides additional preamble options called ibidpage, strict, and
citepages. See the style example for details.

Yet another traditional citation scheme. It is similar to the verbose-trad? style
but uses the scholarly abbreviations ibidem and op. cit. in a slightly different way. The

77

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/72-style-verbose-note-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/73-style-verbose-inote-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/74-style-verbose-trad1-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/75-style-verbose-trad2-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/76-style-verbose-trad3-biber.pdf

reading

draft

debug

numeric

alphabetic

authoryear

authortitle

style will set the following package options at load time: autocite=footnote,
citetracker=context, ibidtracker=constrict, loccittracker=
constrict. This style also provides additional preamble options called strict
and citepages. See the style example for details.

A citation style which goes with the bibliography style by the same name. It simply
loads the authortitle style.

The following citation styles are special purpose styles. They are not intended for
the final version of a document:

A draft style which uses the entry keys in citations. The style will set the following
package options at load time: autocite=plain.

This style prints the entry key rather than some kind of label. It is intended for
debugging only and will set the following package options at load time: autocite=
plain.

3.3.2 Bibliography Styles

All bibliography styles which come with this package use the same basic format for
the individual bibliography entries. They only differ in the kind of label printed in the
bibliography and the overall formatting of the list of references. There is a matching
bibliography style for every citation style. Note that some bibliography styles are
not mentioned below because they simply load a more generic style. For example,
the bibliography style authortitle-comp will load the authortitle style.

This style prints a numeric label similar to the standard bibliographic facilities of
LaTeX. It is intended for use in conjunction with a numeric citation style. Note that
the shorthand field overrides the default label. The style will set the following
package options at load time: labelnumber=true. This style also provides an
additional preamble option called subentry which affects the formatting of entry
sets. If this option is enabled, all members of a set are marked with a letter which
may be used in citations referring to a set member rather than the entire set. See the
style example for details.

This style prints an alphabetic label similar to the alpha.bst style of traditional
BibTeX. It is intended for use in conjunction with an alphabetic citation style. Note
that the shorthand field overrides the default label. The style will set the following
package options at load time: 1abelalpha=true, sorting=anyt.

This style differs from the other styles in that the publication date is not printed
towards the end of the entry but rather after the author/editor. It is intended for use
in conjunction with an author-year citation style. Recurring author and editor names
are replaced by a dash unless the entry is the first one on the current page or double-
page spread. This style provides an additional preamble option called dashed which
controls this feature. It also provided a preamble option called mergedate. See
the style example for details. The style will set the following package options at
load time: labeldateparts=true, sorting=nyt, pagetracker=true,
mergedate=true.

This style does not print any label at all. It is intended for use in conjunction with
an author-title citation style. Recurring author and editor names are replaced by a
dash unless the entry is the first one on the current page or double-page spread. This

78

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/80-style-reading-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/81-style-draft-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/82-style-debug-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/30-style-numeric-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/40-style-alphabetic-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/50-style-authoryear-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/60-style-authortitle-biber.pdf

verbose

reading

draft

debug

style also provides an additional preamble option called dashed which controls this
feature. See the style example for details. The style will set the following package
options at load time: pagetracker=true.

This style is similar to the authortitle style. It also provides an additional
preamble option called dashed. See the style example for details. The style will set
the following package options at load time: pagetracker=true.

This special bibliography style is designed for personal reading lists, annotated bibli-
ographies, and similar applications. It optionally includes the fields annotation,
abstract, library, and £ile in the bibliography. If desired, it also adds var-
ious kinds of short headers to the bibliography. This style also provides the ad-
ditional preamble options entryhead, entrykey, annotation, abstract,
library, and £ile which control whether or not the corresponding items are
printed in the bibliography. See the style example for details. See also § 3.13.8. The
style will set the following package options at load time: loadfiles=true,
entryhead=true, entrykey=true, annotation=true, abstract=
true, library=true, file=true.

The following bibliography styles are special purpose styles. They are not intended
for the final version of a document:

This draft style includes the entry keys in the bibliography. The bibliography will be
sorted by entry key. The style will set the following package options at load time:
sorting=debug.

This style prints all bibliographic data in tabular format. It is intended for debugging
only and will set the following package options at load time: sorting=debug.

3.4 Related Entries

Almost all bibliography styles require authors to specify certain types of relation-
ship between entries such as “Reprint of”, “Reprinted in” etc. It is impossible to
provide data fields to cover all of these relationships and so biblatex provides a
general mechanism for this using the entry fields related, relatedtype and
relatedstring. A related entry does not need to be cited and does not appear in
the bibliography itself (unless of course it is also cited itself independently) as a clone
is taken of the related entry to be used as a data source. The relatedtype field
should specify a localisation string which will be printed before the information from
the related entries is printed, for example “Orig. Pub. as”. The relatedstring
field can be used to override the string determined via relatedtype. Some exam-
ples:

@Book{keyl,
Léiated = {key2},
relatedtype = {reprintof},
}
@Book{key2,
}

79

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

Style example:
local, online.

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/70-style-verbose-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/80-style-reading-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/81-style-draft-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/82-style-debug-biber.pdf

Here we specify that entry key1 is a reprint of entry key2. In the bibliography
driver for Book entries, when \usebibmacro{related} is called for entry
keyl:

« If the localisation string “reprintof” is defined, it is printed in the
relatedstring:reprintof format. If this formatting directive is unde-
fined, the string is printed in the relatedstring:default format.

o Ifthe related: reprintof macro is defined, it is used to format the infor-
mation contained in entry key?2, otherwise the related:default macro
is used

o Ifthe related:reprintof format is defined, it is used to format both the
localisation string and data. If this format is not defined, then the related
format is used instead.

It is also supported to have cascading and/or circular relations:

@Book{keyl,
Léiated = {key2},
relatedtype = {reprintof},
}
@Book{key2,
ééiated = {key3},
relatedtype = {translationof},
}
@Book{key3,
ééiated = {key2},

relatedtype = {translatedas},

Multiple relations to the same entry are also possible:

@MVBook{keyl,

related = {key2,key3},
relatedtype {multivolume},

@Book{key2,

@Book{key3,

80

Note the order of the keys in lists of multiple related entries is important. The data
from multiple related entries is printed in the order of the keys listed in this field.
See § 4.5.1 for a more details on the mechanisms behind this feature. You can turn
this feature off using the package option related from § 3.1.2.1.

You can use the relatedoptions to set options on the related entry data clone.
This is useful if you need to override the dataonly option which is set by default
on all related entry clones. For example, if you will expose some of the names in
the related clone in your document, you may want to have them disambiguated
from names in other entries but normally this won’t happen as related clones have
the per-entry dataonly option set and this in turn sets uniquename=false
and uniquelist=false. In such a case, you can set relatedoptions to just
skiplab, skipbib, skipbiblist.

3.5 Sorting Options

This package supports fully customisable sorting templates for the bibliography. The
default global sorting template is selected with the sorting package option from
§ 3.1.2.1. Apart from the regular data fields there are also some special fields which
may be used to optimize the sorting of the bibliography. Appendices C.1 and C.2
give an outline of the default alphabetic sorting templates supported by biblatex.
Chronological sorting templates are listed in appendix C.3. A few explanations
concerning the default templates are in order.

The first item considered in the sorting process is always the presort field of
the entry. If this field is undefined, biblatex will use the default value ‘mm’ as
a presort string. The next item considered is the sortkey field. If this field is
defined, it serves as the master sort key. Apart from the presort field, no further
data is considered in this case. If the sortkey field is undefined, sorting continues
with the name. The package will try using the sortname, author, editor, and
translator fields, in this order. Which fields are considered also depends on the
setting of the use<name> options. If all such options are disabled, the sortname
field is ignored as well. Note that all name fields are responsive to maxnames and
minnames. If no name field is available, either because all of them are undefined
or because all use<name> options are disabled, biblatex will fall back to the
sorttitle and title fields as a last resort. The remaining items are, in various
order: the sortyear field, if defined, or the first four digits of the year field
otherwise; the sorttitle field, if defined, or the title field otherwise; the
volume field. Note that the sorting templates shown in appendix C.2 include an
additional item: 1abelalpha is the label used by ‘alphabetic’ bibliography styles.
Strictly speaking, the string used for sorting is labelalpha + extraalpha.
The sorting templates in appendix C.2 are intended to be used in conjunction with
alphabetic styles only.

The chronological sorting templates presented in appendix C.3 also make use
of the presort and sortkey fields, if defined. The next item considered is the
sortyear or the year field, depending on availability. The ynt template extracts
the first four Arabic figures from the field. If both fields are undefined, the string
9999 is used as a fallback value. This means that all entries without a year will be
moved to the end of the list. The ydnt template is similar in concept but sorts the
year in descending order. As with the ynt template, the string 9999 is used as a
fallback value. The remaining items are similar to the alphabetic sorting templates

81

discussed above. Note that the ydnt sorting template will only sort the date in
descending order. All other items are sorted in ascending order as usual.

Using special fields such as sortkey, sortname, or sorttitle is usually
not required. The biblatex package is quite capable of working out the desired
sorting order by using the data found in the regular fields of an entry. You will only
need them if you want to manually modify the sorting order of the bibliography or
if any data required for sorting is missing. Please refer to the field descriptions in
§ 2.2.3 for details on possible uses of the special fields.

3.6 Data Annotations

Ideally, there should be no formatting information in a bibliography data file, how-
ever, sometimes such questionable practice seems to the only way in which the
desired results can be achieved. Data annotations are a way of addressing this by
allowing users to attach semantic information (rather than typographical markup)
to information in a bibliography data source so that the information can be used at
markup time by a style. For example, if you wanted to highlight certain names in a
work depending on whether they were a student author (indicated by a superscript
asterisk in the references) or a corresponding author (indicated by bold face), then
you might be tempted to try:

@MISC{Articlel,
AUTHOR = {Lastl*, Firstl and \textbf
— {Last2}, \textbf{First2} and Last3, First3}

There are several problems with this. Firstly, it will break BibTeX’s fragile name
parsing routines and probably won’t compile at all. Secondly, it is not only mixing
up data with markup, it does so in a hard-coded way: this data can’t easily be shared
and used with other styles. While it is possible to achieve this formatting using
biblatex internals in a style or document, this is a complex and unreliable method
which many users will not wish to use.

In order to address these issues, biblatex has a general data annotation facility
which allows you to attach any number of a comma-separated list of annotations to
data fields, items within data field lists (like names) and even parts of specific items
such as parts of names (given name, family name etc.). There are macros provided to
check for annotations which can be used in formatting directives.

There are three “scopes” for data annotations, in order of increasing specificity:

+ field—applied to top-level fields in a data source entry
« item—applied to items within a list field in a data source entry

« part—applied to parts within items within a list field in a data source entry

Data annotations are supported for BibTeX and biblatexml data sources.

@MISC{annl,
AUTHOR = {Lastl, Firstl and Last2, First2
— and Last3, First3},
AUTHOR+an = {l:family=student;2=corresponding},
TITLE = {The Title},

TITLE+an:default = {=titleannotation},

82

TITLE+an:french = {="Le titre"},
TITLE+an:german = {="Der Titel"},

Here the field name suffix +an is a user-definable?® suffix which marks a data field
as an annotation of the unsuffixed field. Multiple annotations can be provided for
the same field since all annotations are named. After the annotation marker is
the optional named annotation marker ?! and an optional annotation name. The
annotation name is ‘default’ if not specified and so in the above example the following
two are equivalent:

TITLE+an
TITLE+an:default

{=titleannotation},
{=titleannotation},

The format of annotation fields in BibTeX data sources is is as follows:

<annotationspecs> ::= <annotationspec> [";" <
— annotationspec>]
<annotationspec> ::= [<itemcount> [":" <part>]] "="
— <annotations>
<annotations> ::= <annotation> ["," <annotation>]
<annotation> ::= ["] (string) ["]

That is, one or more specifications separated by semi-colons. Each specification is an
equals sign followed by a comma-separated list of annotation keywords or a string
enclosed in double-quotes (a ‘literal’ annotation, see below). To annotate a specific
item in a list, put the number of the list item before the equals sign (lists start at 1). If
you need to annotate a specific part of the list item, give its name after the list item
number, preceded by a colon. Name part names are defined in the data model, see
§ 4.2.3. Some further examples:

AUTHOR = {Lastl, Firstl and Last2, First2 and Last3
— , First3},

AUTHOR+an = {3:given=annotationl, annotation2?},

TITLE = {A title},

TITLE+an = {=a title annotation, another title
— annotation},

LANGUAGE = {english and french},

LANGUAGE+an = {l=annotation3; 2=annotationd}
}

Attaching annotations to data is similar in biblatexml data sources. Using the
example above, we would have:

<bltx:entries xmlns:bltx="http://biblatex-biber.
— sourceforge.net/biblatexml">
<pbltx:entry id="test" entrytype="misc">
<bltx:names type="author">
<bltx:name>

%See biber’s ——annotation-marker option.
s1See biber’s ——named-annotation-marker option.

83

<bltx:namepart type="given" initial="F">Firstl</
— bltx:namepart>
<bltx:namepart type="family" initial="L">Lastl</
— bltx:namepart>
</bltx:name>
<bltx:name>
<bltx:namepart type="given" initial="F">First2</
— bltx:namepart>
<bltx:namepart type="family" initial="L">Last2</
— bltx:namepart>
</bltx:name>
<bltx:name>
<bltx:namepart type="given" initial="F">First3</
— bltx:namepart>
<bltx:namepart type="family" initial="L">Last3</
— bltx:namepart>
</bltx:name>
</bltx:names>
</bltx:annotation field="author" item="1" part="
— family">student</bltx:annotation>
</bltx:annotation field="author" item="2">
— corresponding</bltx:annotation>
</bltx:entry>
</bltx:entries>

To access the annotation information when formatting bibliography data, macros
are provided, corresponding to the three annotation scopes:

\iffieldannotation[(field)] [(annotationname)] { (annotation)} { (true)} { (false)}

Executes (true) if the data field (field) has an annotation (annotation) for the an-
notation called (annotationname) and false otherwise. If (annotationname) is not
given, then the annotation named ‘default’ is assumed (this is the name given to
annotations defined without an explicit name). If (field) is not given, the current data
field as indicated by \currentfield, \currentlist or \currentname (see
§ 4.4.2) is assumed. Of course, this is only possible if these commands are defined,
that is, inside formatting directives.

\ifitemannotation[(field)] [({annotationname)] [(item)] { (annotation)} { (true)} { (false)}

Executes (true) if the item (item) in the data field (field) has an annotation
(annotation) and false otherwise. If (annotationname) is not given, then the an-
notation named ‘default’ is assumed (this is the name given to annotations defined
without an explicit name). The optional argument (field) can be inferred if not
provided as with \iffieldannotation. If (item) is not given, the number of
the item currently being processed as given by 1istcount is used.

\ifpartannotation[(field)] [(annotationname)] [(item)] { (part)} { (annotation)} { (true)} { (false)}

Executes (true) if the part named (part) in item (item) in the data field (field) has an
annotation (annotation) and false otherwise. If (annotationname) is not given, then
the annotation named ‘default’ is assumed (this is the name given to annotations
defined without an explicit name). The two optional arguments (field) and (item)

84

can be inferred as in \1fitemannotation. The parameter (part) can never be
inferred and is therefore a mandatory argument.

Date fields are special and handled in a context where \currentfield is not
accessible. Thus there is a fourth command to test annotations for dates.

\ifdateannotation [(annotationname)] { (datetype)} { (annotation)} {(true)} { (false)}

Executes (true) if the date field (datetype) has an annotation (annotation) and false
otherwise. If (annotationname) is not given, then the annotation named ‘default’ is
assumed (this is the name given to annotations defined without an explicit name).
The (datetype) argument is mandatory, because it cannot be inferred in most contexts
where \ifdateannotation will be used.

\hasfieldannotation [(field)] [(annotationname)] { (true)} { (false) }

Executes (true) if the data field (field) has a literal annotation (annotationname)
defined and false otherwise. If (annotationname) is not given, then the annotation
named ‘default’ is assumed (this is the name given to annotations defined with-
out an explicit name). If (field) is not given, the current data field as indicated by
\currentfield, \currentlist or \currentname (see § 4.4.2) is assumed.
Of course, this is only possible if these commands are defined, that is, inside format-
ting directives.

\hasitemannotation[(field)] [(annotationname)] [(item)] { (true)} { (false)}

Executes (true) if the item (item) in the data field (field) has a literal annotation
(annotationname) defined and false otherwise. If (annotationname) is not given, then
the annotation named ‘default’ is assumed (this is the name given to annotations
defined without an explicit name). The optional argument (field) can be inferred if
not provided as with \iffieldannotation. If (item) is not given, the number
of the item currently being processed as given by 1istcount is used.

\haspartannotation[(field)] [(annotationname)] [(item)] { (part)} {(true)} { (false)}

Executes (true) if the part named (part) in the item (item) in the data field
(field) has a literal annotation (annotationname) defined and false otherwise. If
(annotationname) is not given, then the annotation named ‘default’ is assumed (this
is the name given to annotations defined without an explicit name). The two optional
arguments (field) and (item) can be inferred as in \ifitemannotation. The
parameter (part) can never be inferred and is therefore a mandatory argument.

Date fields are special and handled in a context where \currentfield is not
accessible. Thus there is a fourth command to test the existence of annotations for
dates.

\hasdateannotation [(annotationname)] { (datetype)} { (true)} { (false)}

Executes (true) if the date field (datetype) has any annotation (annotationname)
defined and false otherwise. If (annotationname) is not given, then the annotation
named ‘default’ is assumed (this is the name given to annotations defined without an
explicit name). The (datetype) argument is mandatory, because it cannot be inferred
in most contexts where \ifdateannotation will be used.

As an example of how to use the annotation information to solve the problem
originally presented in this section, this could be used in the name formatting
directives to put an asterisk after all family names annotated as “student”:

85

\ifpartannotation{family} {student}
{*}
{13

To put the given and family names of name list items annotated as “corresponding”
in boldface:

\renewcommand* { \mkbibnamegiven} [1]{%
\ifitemannotation{corresponding}
{\textbf{#1}}
{#1}}

\renewcommand* { \mkbibnamefamily} [1]{%
\ifitemannotation{corresponding}
{\textbf{#1}}
{#11}}

3.6.1 Literal Annotations

If the annotation is a string enclosed in double-quotes, the annotation is a ‘literal’
annotation. In this case the annotation can be retrieved and used as a string rather
than as meta-information used to determine formatting. This is useful in order to
be able to attached specific annotations to data which are to be printed as-is. For
example:

AUTHOR = {{American Educational Research Association}
— and {American Psychological Association}
and {National Council on Measurement in
— Education}},
AUTHOR+an = {l:family="AERA"; 2:family="APA"; 3:family="
— NCME"}

Such annotations are not keys whose presence can be tested for but are rather literal
information attached to the data. The values are retrieved by the following macros

\getfieldannotation[(field)] [(annotationname)]

Retrieves any literal annotation for the field (field). If (annotationname) is not given,
then the annotation named ‘default’ is assumed (this is the name given to annotations
defined without an explicit name). If (field) is not given, the current data field as
indicated by \currentfield, \currentlist or \currentname (see § 4.4.2)
is assumed. Of course, this is only possible if these commands are defined, that is,
inside formatting directives.

\getitemannotation[(field)] [(annotationname)] [(item)]

Retrieves any literal annotation for the item (item) in the field (field). If
(annotationname) is not given, then the annotation named ‘default’ is assumed (this
is the name given to annotations defined without an explicit name). The optional
argument (field) can be inferred if not provided as with \getfieldannotation.
If (item) is not given, the number of the item currently being processed as given by
listcount is used.

86

\getpartannotation[(field)] [(annotationname)] [(item)] { (part)}

Retrieves any literal annotation for the part (part). If (annotationname) is not given,
then the annotation named ‘default’ is assumed (this is the name given to annotations
defined without an explicit name). The two optional arguments (field) and (item)
can be inferred as in \getitemannotation. The parameter (part) can never be
inferred and is therefore a mandatory argument.

Date fields are special and handled in a context where \currentfield is not
accessible. Thus there is a fourth command to access literal annotations for dates.

\getdateannotation [(annotationname)] { (datetype) }

Retrieve a literal annotation for the datefield (datetype). If (annotationname) is not
given, then the annotation named ‘default’ is assumed (this is the name given to an-
notations defined without an explicit name). The (datetype) argument is mandatory,
because it cannot be inferred in most contexts where \getdateannotation will
be used.

So, for example, given the bibliography entry above, we could put the following in
the preamble:

\renewcommand* { \mkbibnamefamily} [1]{%
#1\space\mkbibparens{\getpartannotation{family}}}

In order to get something like this in the bibliography when formatting names:

American Educational Research Association (AERA) and
American Psychological Association (APA), and
National Council on Measurement in Education (NCME)

Naturally there are semantically more elegant ways of dealing with corporate authors
without using the ‘family’ namepart (see § 4.2.3) but this example demonstrates clearly
a use for literal annotations.

3.7 Bibliography Commands
3.7.1 Resources
\addbibresource [(options)] { (resource) }

Adds a (resource), such as a .bib file, to the default resource list. This command is
only available in the preamble. It replaces the \bibliography legacy command.
Note that files must be specified with their full name, including the extension. With
biber, the resource name can be a BSD-style glob pattern. This only makes sense
when resources refer to files with an absolute or relative path and does not work when
looking for data resources in biber s input/output directories or with resources
located by (kpsewhich) etc. When running on Windows, biber will switch to a
Windows compatible globbing mode where backslashes are also useable as path
separators and case does not matter. If the resources contain duplicate entries
(that is, duplicate entrykeys), it is backend dependent what then happens. For
example, by default biber will ignore further occurrence of ent rykeys unless its
--noskipduplicates options is used. Invoke \addbibresource multiple
times to add more resources, for example:

87

\addbibresource{bibfilel.bib}
\addbibresource{bibfile2.bib}
\addbibresource[glob] {bibfiles/bibfile*.bib}
\addbibresource[glob] {bibfile-num?.bib}
\addbibresource[glob] {bibfile{l,2,3}.bib}
\addbibresource[location=remote] {http://www.citeulike.
— org/bibtex/group/9517}
\addbibresource[location=remote, label=1lan] {ftp
— ://192.168.1.57/~user/file.bib}

Since the (resource) string is read in a verbatim-like mode, it may contain arbitrary
characters. The only restriction is that any curly braces must be balanced. The
following (options) are available:

bibencoding=(bibencoding)

This option can be used to override the global bibencoding option for a particular
(resource).

label=(identifier)

Assigns a label to a resource. The (identifier) may be used in place of the full resource
name in the optional argument of refsection (see § 3.7.4). The label is a unique
identifier for the (resource), so each label should only be used once.

location=(location) default: 1ocal

The location of the resource. The (location) may be either 1ocal for local resources
or remote for URLs. Remote resources require biber. The protocols HTTP/HTTPS
and FTP are supported. The remote URL must be a fully qualified path to a bib file
or a URL which returns a bib file.

type=(type) default: file
The type of resource. Currently, the only supported type is file.
datatype=(datatype) default: bibtex
The data type (format) of the resource. The following formats are currently supported:
bibtex BibTeX format.

biblatexml Experimental XML format for biblatex. See § D.

glob=true, false

Whether biber should glob (expand according to pattern) the datasource name.
There is a global setting for this in biber (false by default and settable to true using
the --glob-datasources option). This option allows overriding the biber
default on a per-resource basis.

\addglobalbib [(options)] { (resource)}

This command differs from \addbibresource in that the (resource) is added to
the global resource list. The difference between default resources and global resources
is only relevant if there are reference sections in the document and the optional
argument of refsection (§ 3.7.4) is used to specify alternative resources which
replace the default resource list. Any global resources are added to all reference
sections.

88

\addsectionbib [(options)] { (resource)}

This command differs from \addbibresource in that the resource (options) are
registered but the (resource) not added to any resource list. This is only required for
resources which 1) are given exclusively in the optional argument of refsection
(§ 3.7.4) and 2) require options different from the default settings. In this case,
\addsectionbib is employed to qualify the (resource) prior to using it by setting
the appropriate (options) in the preamble. The 1abel option may be useful to assign
a short name to the resource.

\bibliography {(bibfile, ...)} Deprecated

The legacy command for adding bibliographic resources, supported for backwards

compatibility. Like \addbibresource, this command is only available in the

preamble and adds resources to the default resource list. Its argument is a comma-

separated list of bib files. The .bib extension may be omitted from the filename.

Invoking this command multiple times to add more files is permissible. This command

is deprecated. Please consider using \addbibresource instead.

3.7.2 The Bibliography

\printbibliography [(key=value,...)]

This command prints the bibliography. It takes one optional argument, which is a
list of options given in (key)=(value) notation. The following options are available:

env=(_name) default: bibliography/shorthands

The ‘high-level’ layout of the bibliography and the list of shorthands is con-
trolled by environments defined with \defbibenvironment. This op-
tion selects an environment. The (name) corresponds to the identifier used
when defining the environment with \defbibenvironment. By default,
the \printbibliography command uses the identifier bibliography;
\printbiblist uses shorthands. See also §§ 3.7.3 and 3.7.7.

heading=(name) default: bibliography/shorthands

The bibliography and the list of shorthands typically have a chapter or section heading.
This option selects the heading (name), as defined with \defbibheading. By
default, the \printbibliography command uses the headingbibliography;
\printbiblist uses shorthands. See also §§ 3.7.3 and 3.7.7.

title=(text)

This option overrides the default title provided by the heading selected with the
heading option, if supported by the heading definition. See § 3.7.7 for details.

block=none, space, par, nbpar, ragged default: global setting (none)

This option overrides the global block option (see § 3.1.2.1, the meaning of the
settings is explained there as well).

prenote=(name)

The prenote is an arbitrary piece of text to be printed after the heading but be-
fore the list of references. This option selects the prenote (name), as defined with

89

\defbibnote. By default, no prenote is printed. The note is printed in the standard
text font. It is not affected by \bibsetup and \bibfont but it may contain its
own font declarations. See § 3.7.8 for details.

postnote=(name)

The postnote is an arbitrary piece of text to be printed after the list of references.
This option selects the postnote (name), as defined with \defbibnote. By default,
no postnote is printed. The note is printed in the standard text font. It is not affected
by \bibsetup and \bibfont but it may contain its own font declarations. See
§ 3.7.8 for details.

section=(integer) default: current section

Print only entries cited in reference section (integer). The reference sections are
numbered starting at 1. All citations given outside a refsection environment are
assigned to section 0. See § 3.7.4 for details and § 3.13.3 for usage examples.

segment=(integer)

Print only entries cited in reference segment (integer). The reference segments are
numbered starting at 1. All citations given outside a refsegment environment
are assigned to segment 0. See § 3.7.5 for details and § 3.13.3 for usage examples.
Remember that segments within a section are numbered local to the section so the
segment you request will be the nth segment in the requested (or currently active
enclosing) section.

type=(entrytype)
Print only entries whose entry type is (entrytype).
nottype=(entrytype)

Print only entries whose entry type is not (entrytype). This option may be used
multiple times.

subtype=(subtype)
Print only entries whose entrysubtype is defined and (subtype).
notsubtype=(subtype)

Print only entries whose entrysubtype is undefined or not (subtype). This option
may be used multiple times.

keyword=(keyword)

Print only entries whose keywords field includes (keyword). This option may be
used multiple times.

notkeyword=(keyword)

Print only entries whose keywords field does not include (keyword). This option
may be used multiple times.

category={category)

Print only entries assigned to category (category). This option may be used multiple
times.

90

notcategory=(category)

Print only entries not assigned to category (category). This option may be used
multiple times.

filter=(name)

Filter the entries with filter (name), as defined with \defbibfilter. See § 3.7.9
for details.

check=(name)

Filter the entries with check (name), as defined with \defbibcheck. See § 3.7.9
for details.

resetnumbers=(truefalse,number)

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. If enabled, it will
reset the numerical labels assigned to the entries in the respective bibliography,
i. e, the numbering will restart at 1. You can also pass a number to this option, for
example: resetnumbers=10 to reset numbering to the specified number to aid
numbering continuity across documents. Use this option with care as biblatex
can not guarantee unique labels globally if they are reset manually.

omitnumbers=true, false

This option applies to numerical citation/bibliography styles only and requires
that the defernumbers option from § 3.1.2.1 be enabled globally. If enabled,
biblatex will not assign a numerical label to the entries in the respective biblio-
graphy. This is useful when mixing a numerical subbibliography with one or more
subbibliographies using a different scheme (e. g., author-title or author-year).

locallabelwidth=true, false default: false

Calculate \labelnumberwidth, \labelalphawidth and similar lengths
locally for the present bibliography and not globally for all entries. See also
labelnumberwidthin § 3.1.2.1.

\bibbysection [(key=value, ...)]

This command automatically loops over all reference sections. This is equivalent
to giving one \printbibliography command for every section but has the
additional benefit of automatically skipping sections without references. Note that
\bibbysection starts looking for references in section 1. It will ignore ref-
erences given outside of refsection environments since they are assigned to
section 0. See § 3.13.3 for usage examples. The options are a subset of those sup-
ported by \printbibliography. Valid options are env, heading, prenote,
postnote. The current bibliography context sorting template is used for all sections
(see § 3.7.10).

91

\bibbysegment [(key=value, ...)]

This command automatically loops over all reference segments. This is equivalent
to giving one \printbibliography command for every segment in the current
refsection but has the additional benefit of automatically skipping segments
without references. Note that \bibbysegment starts looking for references in
segment 1. It will ignore references given outside of refsegment environments
since they are assigned to segment 0. See § 3.13.3 for usage examples. The options
are a subset of those supported by \printbibliography. Valid options are
env, heading, prenote, postnote. The current bibliography context sorting
template is used for all segments (see § 3.7.10).

\bibbycategory [(key=value, ...)]

This command loops over all bibliography categories. This is equivalent to giving one
\printbibliography command for every category but has the additional benefit
of automatically skipping empty categories. The categories are processed in the order
in which they were declared. See § 3.13.3 for usage examples. The options are a subset
of those supported by \printbibliography. Valid options are env, prenote,
postnote, section. Note that heading is not available with this command.
The name of the current category is automatically used as the heading name. This
is equivalent to passing heading=(category) to \printbibliography and
implies that there must be a matching heading definition for every category. The
current bibliography context sorting template is used for all categories (see § 3.7.10).

\printbibheading[(key=value,...)]

This command prints a bibliography heading defined with \defbibheading. It
takes one optional argument, which is a list of options given in (key)=(value) nota-
tion. The options are a small subset of those supported by \printbibliography.
Valid options are heading and title. By default, this command uses the heading
bibliography. See § 3.7.7 for details. Also see §§ 3.13.3 and 3.13.4 for usage
examples.

\DeclarePrintbibliographyDefaults{(key=value,...)}

This command can be used to globally set defaults for some options
to \printbibliography, the \bibby... bibliography commands and
\printbibheading. The supported keys are

eenv
sheading
title
eprenote
epOstnote

«filter

To print a bibliography with a different sorting template than the global sorting
template, use the bibliography context switching commands from § 3.7.10.

92

3.7.3 Bibliography Lists

biblatex can, in addition to printing normal bibliographies, also print arbitrary
lists of information derived from the bibliography data such as a list of shorthand
abbreviations for particular entries or a list of abbreviations of journal titles.

A bibliography list differs from a normal bibliography in that the same bibliography
driver is used to print all entries rather than a specific driver being used for each
entry depending on the entry type.

\printbiblist [(key=value, ...)] { {biblistname)}

This command prints a bibliography list. It takes an optional argument, which is a list
of options given in (key)=(value) notation. Valid options are all options supported
by \printbibliography (§3.7.2) except resetnumbers and omitnumbers.
Additionaly, the two options driver and biblistfilter are available. If there
are any refsection environments in the document, the bibliography list will be
local to these environments; see § 3.7.4 for details. By default, this command uses
the heading biblist. See § 3.7.7 for details.

The (biblistname) is a mandatory argument which names the bibliography list. This
name is used to identify:

«The default bibliography driver used to print the list entries

+A default bibliography list filter declared with \DeclareBiblistFilter
(see § 4.5.7) used to filter the entries returned from biber

A default check declared with \defbibcheck (see § 3.7.9) used to post-
process the list entries

«The default bib environment to use
+The default sorting template to use

The two additional options can be used to change some of the defaults set by the
mandatory argument.

driver=(driver) default: (biblistname)
Change the bibliography driver used to print the list entries.
biblistfilter=(biblistfilter) default: (biblistname)

Change the bibliography list filter used to filter the entries. (biblistfilter) must be a
valid bibliography list filter defined with \DeclareBiblistFilter (see § 4.5.7).

In terms of sorting the list, the default is to sort using the sorting template named
after the bibliography list (if it exists) and only then to fall back to the current context
sorting template if this is not defined (see § 3.7.10).

The most common bibliography list is a list of shorthand abbreviations for certain
entries and so this has a convenience alias \printshorthands [...] for backwards
compatibility which is defined as:

\printbiblist[...] {shorthand}

biblatex provides automatic support for data source fields in the default data
model marked as ‘Label fields’ (See § 2.2.2). Such fields automatically have defined
for them:

«A default bib environment (See § 3.7.7)

93

«A bibliography list filter (See § 4.5.7)
«Some supporting formats and lengths (See § 4.10.5 and § 4.10.4)

Therefore only a minimal setup is required to print bibliography lists with such fields.
For example, to print a list of journal title abbreviations, you can minimally put this
in your preamble:

\DeclareBibliographyDriver{shortjournal}{%
\printfield{journaltitle}}

Then you can put this in your document where you want to print the list:

\printbiblist[title={Journal Shorthands}]{shortjournal}

Since shortjournal is defined in the default data model as a ‘Label field’, this
example:

+Uses the automatically created ‘shortjournal’ bib environment

+Uses the automatically created ‘shortjournal’ bibliography list filter to return
only entries with a shortjournal field in the .bbl

«Uses the defined ‘shortjournal’ bibliography driver to print the entries

«Uses the default ‘biblist’ heading but overrides the title with ‘Journal Short-
hands’

+Uses the current bibliography context sorting template if no template exists
with the name shortjournal

Often, you will want to sort on the label field of the list and since a sorting template
is automatically picked up if it is named after the list, in this case you could simply

do:

\DeclareSortingTemplate{shortjournal} {
\sort{
\field{shortjournal}

Naturally all defaults can be overridden by options to \printbiblist and defini-
tions of the environments, filters etc. and in this way arbitrary types of bibliography
lists can be printed containing a variety of information from the bibliography data.

Bibliography lists are often used to print lists of various kinds of shorthands and
this can result in duplicate entries if more than one bibliography entry has the same
shorthand. For example, several journal articles in the same journal would result
in duplicate entries in a list of journal shorthands. You can use the fact that such
lists automatically pick up a \bibcheck with the same name as the list to define
a check to remove duplicates. If you are defining a list to print all of the journal
shorthands using the shortjournal field, you could define a \bibcheck like
this:

94

\defbibcheck{shortjournal} {%
\iffieldundef{shortjournal}
{\skipentry}
{\iffieldundef{journaltitle}
{\skipentry}
{\ifcsdef{sjcheck@\therefsection
-\strfield{shortjournal}=\strfield{journaltitle}}
{\skipentry}
{\savefieldcs{journaltitle} {sjcheck@\therefsection
-\strfield{shortjournal}=\strfield{journaltitle}}}}}}

3.7.4 Bibliography Sections

The refsection environment is used in the document body to mark a reference
section. This environment is useful if you want separate, independent bibliographies
and bibliography lists in each chapter, section, or any other part of a document.
Within a reference section, all cited works are assigned labels which are local to
the environment. Technically, reference sections are completely independent from
document divisions such as \chapter and \ section even though they will most
likely be used per chapter or section. See the refsection package option in
§ 3.1.2.1 for a way to automate this. Also see § 3.13.3 for usage examples.

\begin{refsection}[(resource, ...)]

\end{refsection}

The optional argument is a comma-separated list of resources specific to the reference
section. If the argument is omitted, the reference section will use the default re-
source list, as specified with \addbibresource in the preamble. If the argument
is provided, it replaces the default resource list. Global resources specified with
\addglobalbib are always considered. refsection environments may not
be nested, but you may use refsegment environments within a refsection to
subdivide it into segments. Use the section option of \printbibliography
to select a section when printing the bibliography, and the corresponding option
of \printbiblist when printing bibliography lists. Bibliography sections are
numbered starting at 1. The number of the current section is also written to the
transcript file. All citations given outside a refsection environment are assigned
to section 0. If \printbibliography is used within a refsection, it will
automatically select the current section. The section option is not required in
this case. This also applies to \printbiblist. Beginning a new reference section
automatically ends the active reference context (see § 3.7.10).

\newrefsection [(resource, ...)]

This command is similar to the refsection environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference section (if any) and immediately starts a new one. Note that the reference
section started by the last \newrefsection command in the document will extend
to the very end of the document. Use \endrefsection if you want to terminate
it earlier.

3.7.5 Bibliography Segments

The refsegment environment is used in the document body to mark a reference
segment. This environment is useful if you want one global bibliography which

95

is subdivided by chapter, section, or any other part of the document. Technically,
reference segments are completely independent from document divisions such as
\chapter and \section even though they will typically be used per chapter or
section. See the refsegment package option in § 3.1.2.1 for a way to automate
this. Also see § 3.13.3 for usage examples.

\begin{refsegment}

\end{refsegment}

\newrefsegment

The difference between a refsection and a refsegment environment is that
the former creates labels which are local to the environment whereas the latter
provides a target for the segment filter of \printbibliography without af-
fecting the labels. They will be unique across the entire document. refsegment
environments may not be nested, but you may use them in conjunction with
refsection to subdivide a reference section into segments. In this case, the
segments are local to the enclosing refsection environment. Use the segment
option of \printbibliography to select a segment when printing the biblio-
graphy. Within a section, the reference segments are numbered starting at 1 and
the number of the current segment will be written to the transcript file. All citations
given outside a refsegment environment are assigned to segment 0. In contrast to
the refsection environment, the current segment is not selected automatically
if \printbibliography is used within a ref segment environment.

This command is similar to the refsegment environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference segment (if any) and immediately starts a new one. Note that the reference
segment started by the last \newrefsegment command will extend to the end of
the document. Use \endrefsegment if you want to terminate it earlier.

3.7.6 Bibliography Categories

Bibliography categories allow you to split the bibliography into multiple parts dedi-
cated to different topics or different types of references, for example primary and
secondary sources. See § 3.13.4 for usage examples.

\DeclareBibliographyCategory {{category)}

Declares a new (category), to be used in conjunction with \addtocategory
and the category and notcategory filters of \printbibliography. This
command is used in the document preamble.

\addtocategory{(category)} { (key)}

Assigns a (key) to a (category), to be used in conjunction with the category and
notcategory filters of \printbibliography. This command may be used in
the preamble and in the document body. The (key) may be a single entry key or a
comma-separated list of keys. The assignment is global.

3.7.7 Bibliography Headings and Environments

\defbibenvironment {(name)} { (begin code)} { (end code) } { (item code) }

This command defines bibliography environments. The (name) is an identifier passed
to the env option of \printbibliographyand \printbiblist when select-
ing the environment. The (begin code) is LaTeX code to be executed at the beginning

96

of the environment; the (end code) is executed at the end of the environment; the
(item code) is code to be executed at the beginning of each entry in the bibliography
or a bibliography list. Here is an example of a definition based on the standard LaTeX
1list environment:

\defbibenvironment {bibliography}
{\list{}

{\setlength{\leftmargin} {\bibhang}%
\setlength{\itemindent}{-\leftmargin}$%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep} {\bibparsep}}}

{\endlist}
{\item}

As seen in the above example, usage of \defbibenvironment is roughly similar
to \newenvironment except that there is an additional mandatory argument for
the (item code).

\defbibheading{(name)} [(title)] {{code)}

This command defines bibliography headings. The (name) is an identifier to be passed
tothe headingoptionof \printbibliographyor \printbibheadingand
\printbiblist when selecting the heading. The (code) should be LaTeX code
generating a fully-fledged heading, including page headers and an entry in the table of
contents, if desired. If \printbibliography or \printbiblist are invoked
with a title option, the title will be passed to the heading definition as #1. If not,
the default title specified by the optional (title) argument is passed as #1 instead.
The (title) argument will typically be \bibname, \refname, or \biblistname
(see § 4.9.2.1). This command is often needed after changes to document headers in
the preamble. Here is an example of a simple heading definition:

\defbibheading{bibliography} [\bibname] {%
\chapter*{#1}%
\markboth{#1} {#1}}

The following headings, which are intended for use with
\printbibliography and \printbibheading, are predefined:

bibliography

This is the default heading used by \printbibliography if the heading op-
tion is not given. Its default definition depends on the document class. If the class
provides a \chapter command, the heading is similar to the bibliography heading
of the standard LaTeX book class, i.e., it uses \chapter* to create an unnum-
bered chapter heading which is not included in the table of contents. If there is
no \chapter command, it is similar to the bibliography heading of the standard
LaTeX article class, i. e, it uses \section* to create an unnumbered section
heading which is not included in the table of contents. The string used in the heading
also depends on the document class. With book-like classes the localisation string
bibliography is used, with other classes it is references (see § 4.9.2). See
also §§ 3.14.1 and 3.14.2 for class-specific hints.

97

subbibliography

Similar to bibliography but one sectioning level lower. This heading def-
inition uses \section* instead of \chapter* with a book-like class and
\subsection* instead of \section* otherwise.

bibintoc

Similar to bibliography above but adds an entry to the table of contents.
subbibintoc

Similar to subbibliography above but adds an entry to the table of contents.
bibnumbered

Similar to bibliography above but uses \chapter or \section to create a
numbered heading which is also added to the table of contents.

subbibnumbered

Similar to subbibliography above but uses \section or \subsection to
create a numbered heading which is also added to the table of contents.

none

A blank heading definition. Use this to suppress the heading.
The following headings intended for use with \printbiblist are predefined:
biblist

This is the default heading used by \printbiblist if the heading option is
not given. It is similar to bibliography above except that it uses the localisation
string shorthands instead of bibliographyor references (see § 4.9.2). See
also §§ 3.14.1 and 3.14.2 for class-specific hints.

biblistintoc

Similar to biblist above but adds an entry to the table of contents.
biblistnumbered

Similar to biblist above but uses \chapter or \section to create a numbered
heading which is also added to the table of contents.

3.7.8 Bibliography Notes

\defbibnote{(name)} { (text)}

Defines the bibliography note (name), to be used via the prenote and postnote
options of \printbibliography and \printbiblist. The (text) may be
any arbitrary piece of text, possibly spanning several paragraphs and containing font
declarations. Also see § 3.14.6.

98

3.7.9 Bibliography Filters and Checks
\defbibfilter{(name)} {{expression)}

Defines the custom bibliography filter (name), to be used via the £ilter option of
\printbibliography. The (expression) is a complex test based on the logical
operators and, or, not, the group separator (. . .), and the following atomic tests:

segment=(integer)

Matches all entries cited in reference segment (integer).
type=(entrytype)

Matches all entries whose entry type is (entrytype).
subtype=(subtype)

Matches all entries whose entrysubtype is (subtype).
keyword=(keyword)

Matches all entries whose keywords field includes (keyword). If the (keyword)
contains spaces, it needs to be wrapped in braces.

category={category)
Matches all entries assigned to (category) with \addtocategory.

Here is an example of a filter expression:

\defbibfilter{example}{%
(type=book or type=inbook)
and keyword=abc
and not keyword={x y z}

This filter will match all entries whose entry type is either @book or @inbook
and whose keywords field includes the keyword ‘abc’ but not ‘x y z’. As seen
in the above example, all elements are separated by whitespace (spaces, tabs, or
line endings). There is no spacing around the equal sign. The logical operators are
evaluated with the \ 1 fboolexpr command from the etoolbox package. See the
etoolbox manual for details about the syntax. The syntax of the \1fthenelse
command from the ifthen package, which has been employed in older versions of
biblatex, is still supported. This is the same test using i f then-like syntax:

\defbibfilter{example} {%
\ (\type{book} \or \type{inbook} \)
\and \keyword{abc}
\and \not \keyword{x y z}

Note that custom filters are local to the reference section in which they are used. Use
the section filter of \printbibliography to select a different section. This
is not possible from within a custom filter.

99

\defbibcheck{(name)} {(code)}

Defines the custom bibliography filter (name), to be used via the check op-
tion of \printbibliography. \defbibcheck is similar in concept to
\defbibfilter but much more low-level. Rather than a high-level expression,
the (code) is LaTeX code, much like the code used in driver definitions, which may
perform arbitrary tests to decide whether or not a given entry is to be printed. The
bibliographic data of the respective entry is available when the (code) is executed.
Issuing the command \skipentry in the (code) will cause the current entry to be
skipped. For example, the following filter will only output entries withan abstract
field:

\defbibcheck{abstract}{%
\iffieldundef{abstract}{\skipentry}{}}

\printbibliography[check=abstract]
The following check will exclude all entries published before the year 2000:

\defbibcheck{recent}{%
\iffieldint{year}
{\ifnumless{\thefield{year}} {2000}
{\skipentry}

{1}
{\skipentry}}

See the author guide, in particular §§ 4.6.2 and 4.6.3, for further details.

3.7.10 Reference Contexts

References in a bibliography are cited and printed in a ‘context’. The context deter-
mines the data which is actually used to cite or provide bibliographic data for an
entry. A context consists of the following information:

« A sorting template

« A template for constructing the sorting keys for names

« A string prefix for citation schemes which use alphabetic or numeric labels
+ A template for calculating name uniqueness information

« A template for constructing alphabetic labels for names

The purpose of bibliography contexts is twofold. Firstly, they are used to set options
which influence a printed bibliography and secondly to influence the data printed by
citation commands. The former use is the most common when one needs to print
more than one bibliography list with different, for example, sorting.

\usepackage [sorting=nyt] {biblatex}
\begin{document }
\cite{one}

100

\cite{two}
\printbibliography
\newrefcontext [sorting=ydnt]
\printbibliography

Here we print two bibliographies, one with the default ‘nyt’ sorting template and
one with the ‘ydnt’ sorting template.

To demonstrate the second type of use of bibliography contexts, we have to
understand that the actual data for an entry can vary depending on the context.
This is most obvious in the case of the extra* fields like ext radate which are
generated by the backend according to the order of entries after sorting so that they
come out in the expected ‘a, b, ¢’ order. This clearly shows that the data in an entry
can be different between sorting templates. If a document contains more than one
bibliography list with different sorting templates, it can happen then that the .bb1
contains sorting lists with the same entry but containing different data (a different
value for extradate, for example). The purpose of bibliography contexts is to
encapsulate things inside a context so that biblatex can use the correct entry
data. An example is printing a bibliography list with a different sorting order to
the global sorting order where the extra* fields are different for the same entry
between sorting lists:

\usepackage [sorting=nyt, style=authoryear] {biblatex}
\DeclareSortingTemplate{yntd}{

\sort{
\field[strside=left,strwidth=4] {sortyear}
\field[strside=left, strwidth=4] {year}
\literal{9999}

}

\sort{

\field{sortname}
\field{author}
\field{editor}

}

\sort [direction=descending] {
\field{sorttitle}

\field{title}

}

\begin{document}

\cite{one}

\cite{two}
\printbibliography
\newrefcontext [sorting=yntd]
\cite{one}

\cite{two}
\printbibliography

Here, the second use of the citations, along with the \printbibliography
command will use data from the context of the custom ‘yntd’ sorting template which
may well be different from the data associated with the default ‘nyt’ template. That is,
the citation labels (in an authoryear style which uses extradate) may be different

101

for the exact same entries between different bibliography contexts and so the citations
themselves may look different.

Reference contexts can be declared with \DeclareRefcontext and referred
to by name, see below.

By default, data for a citation is drawn from the reference context of the last
bibliography in which it was printed. For example:

\DeclareRefcontext{ap}{labelprefix=A}
\begin{document}

\cite{book, article, misc}
\printbibliography[type=book]

\newrefcontext{ap}
\printbibliography[type=article]

\newrefcontext [sorting=ydnt]
\printbibliography[type=misc]

\end{document}

This example also shows the declaration and use of a named reference context.
Assuming the entrykeys are indicative of their entrytypes, this is the default situation
for the citations which corresponds to what users normally expect:

« The citation of entry book would draw its data from the global reference
context, because the last bibliography in which it was printed was the one in
the global reference context.

+ The citation of entry article would draw its data from reference context
with labelprefix=A and would therefore have a ‘A’ prefix when cited.

« The citation of entry misc would draw its data from the reference context
with sorting=ydnt

In cases where the user has entries which occur in multiple bibliographies in differ-
ent forms or with potentially different labels (in a numeric scheme with different
labelprefix values for example), it may be necessary to tell biblatex from
which reference context you wish to draw the citation information. As shown above
this can be done by explicitly putting citations inside reference contexts. This can
be onerous in a large document and so there is specific functionality for assigning
citations to reference contexts programatically, see the \assignrefcontext*
macros below.

\DeclareRefcontext{(name)} { (key=value, ...)}

Declares a named reference context with name (name). The (key=value) options
define the context attributes. All context attributes are optional and default to the
global settings if absent. The valid options are:

sorting=(name)

Specify a sorting template defined previously with \DeclareSortingTemplate.
This template is used to determine which data to retrieve and/or print for an entry
in the commands inside the context.

102

sortingnamekeytemplatename=(name)

Specify a sorting name key template defined previously with
\DeclareSortingNamekeyTemplate. This template is used to con-
struct sorting keys for names inside the context. The template name can also be
specified (in increasing order of preference) per-entry, per-name list and per-name.
See § E for information on setting per-option, per-namelist and per-name options.

uniquenametemplatename=(name)

Specify a uniquename template defined previously with
\DeclareUniquenameTemplate (see § 4.11.4). This template is used to
calculate uniqueness information for names inside the context. The template name
can also be specified (in increasing order of preference) per-entry, per-name list and
per-name. See § E for information on setting per-option, per-namelist and per-name
options.

labelalphanametemplatename=(name)

Specify a template defined previously with \DeclarelLabelalphaNameTemplate
(see § 4.5.5). This template is used to construct name parts of alphabetic labels for
names inside the context. The template name can also be specified (in increasing
order of preference) per-entry, per-name list and per-name. See § E for information
on setting per-option, per-namelist and per-name options.

nametemplates=(name)

A convenience meta-option which sets sortingnamekeytemplate,
uniquenametemplate and labelalphanametemplate to the same
template name. This option can also be specified (in increasing order of preference)
per-entry, per-name list and per-name. See § E for information on setting per-option,
per-namelist and per-name options.

labelprefix=(string)

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. Setting this op-
tion will implicitly enable resetnumbers for the any \printbibliography
in the scope of the context (unless overridden by a user-specified value for
resetnumbers). The option assigns the (string) as a prefix to all entries in the
reference context. For example, if the (string) is A, the numerical labels printed
will be [A1], [A2], [A3], etc. This is useful for subdivided numerical bibliogra-
phies where each subbibliography uses a different prefix. The (string) is available
to styles in the 1abelprefix field of all affected entries. Note that the (string)
is fully expanded, which means that you can use context-dependent macros like
\thechapter, but not unexpandable commands such as \dag. If you need to
pass unexpandable code to (string), protect it from expansion with \detokenize.
See § 4.2.4.2 for details.

\begin{refcontext}[(key=value, ...)] { (name)}

\end{refcontext}

Wraps a reference context environment. The possible (key=value) optional argu-
ments are as for \DeclareRefcontext and override options given for the named
reference context (name). (name) can also be omitted as { } or by omitting even the
empty braces®?.

This slightly odd syntax possibility is a result of backwards compatibility with biblatex <3.5

103

The refcontext environment cannot be nested and biblatex will generate an
error if you try to do so.

\newrefcontext [(key=value, ...)] { (name) }

This command is similar to the refcontext environment except that it is a stand-
alone command rather than an environment. It automatically ends any previous refer-
ence context section begun with \newrefcontext (if any) and immediately starts
a new one. Note that the context section started by the last \newrefcontext
command in the document will extend to the very end of the document. Use
\endrefcontext if you want to terminate it earlier.

At the beginning of the document, there is always a global context containing global
settings for each of the reference context options. Here is an example summarising
the reference contexts with various settings:

\usepackage [sorting=nty] {biblatex}
\DeclareRefcontext{testrc}{sorting=nyt}

Global reference context:
sorting=nty
sortingnamekeytemplate=global
labelprefix=

o® o° o©° oP

\begin{document}

\begin{refcontext} {testrc}
reference context:
sorting=nyt
sortingnamekeytemplate=global
labelprefix=
end{refcontext}

~ o o° o° oo

\begin{refcontext} [labelprefix=A] {testrc}
reference context:
sorting=nyt
sortingnamekeytemplate=global
labelprefix=A
end{refcontext}

~ o° o° o° oo

\begin{refcontext} [sorting=ydnt, labelprefix=A]
reference context:
sorting=ydnt
sortingnamekeytemplate=global
labelprefix=A
end{refcontext}

~ o° o° oP° oP

\newrefcontext} [labelprefix=B]
reference context:
sorting=nty
sortingnamekeytemplate=global

o® oo o°

104

\assignrefcontextkeyws [(key=value, ...)]
\assignrefcontextkeyws* [(key=value, ...)
\assignrefcontextcats [(key=value, ...)] {
\assignrefcontextcats* [(key=value, ...)]
\assignrefcontextentries [(key=value, ..

\assignrefcontextentries*

% labelprefix=B
\endrefcontext

\newrefcontext} [sorting=ynt, labelprefix=C] {testrc}
reference context:
sorting=ynt
sortingnamekeytemplate=global
labelprefix=C
endrefcontext

~ o o° o° oo

{ (keyword1,keyword2, ...) }

1 { (keyword1,keyword2, ... }
(categoryl, category2, ...) }

{ (categoryl, category?, ...) }

21 {(entrykeyl, entrykey2, ...) }
(key=value, ...)] { (entrykeyl, entrykey?2, ...) }

(
\assignrefcontextentries [(key=value,...)] {{*)}
(

\assignrefcontextentries*

(key=value, ...)]1 { (")}

These commands automate putting citations into refcontexts when the de-
fault behaviour is not sufficient. The (key=value) options are as for
\DeclareRefcontext. The default behaviour is that the data for a citation
is drawn from the refcontext of the most recently processed bibliography in which it
was printed?’. For citations that are used in some way but not printed in a bibliogra-
phy or bibliography list, they default to drawing their data from the global refcontext
established at the beginning of the document. To override this behaviour, instead of
manually wrapping citation commands in refcontext environments, which might
be error-prone and tedious, you can register a comma-separated list of (keywords),
(categories) or (entrykeys) which, respectively, make the entries with any of the
specified keywords, entries in any of the specified categories (see § 3.13.4) or entries
with any of the specified citation keys draw their data from a particular refcontext
specified by the (refcontext key/values) which are parsed as the per the corresponding
refcontext options. Such refcontext auto-assignments are specific to the current
refsection. You may specify the same citation key in any of these commands but be
aware that assignment is done in the order (keywords), (categories), (entrykeys) with
the later specifications overriding the earlier. \assignrefcontextentries
accepts a single asterisk instead of a list of entrykeys which allows the assignment
of all keys in a refsection to a refcontext with having to explicitly list them. An
example:

\assignrefcontextentries|[labelprefix=A] {key2}
\cite{keyl}

\begin{refcontext} [labelprefix=B]

\cite{key2}

\end{refcontext}

BThis does not always mean what one might think. In a document containing multiple bibliographies,
the last bibliography will be the context for any citations before the first bibliography because all
bibliographies are processed when the .bb1 is read.

105

Here, the data for the citation of key2 will be drawn from refcontext
labelprefix=A and not labelprefix=B (resulting in a label with prefix ‘A’
and not ‘B’). The starred versions do not override a local refcontext and so with:

\assignrefcontextentries* [labelprefix=A]{key2}
\cite{keyl}

\begin{refcontext} [labelprefix=B]

\cite{key2}

\end{refcontext}

the data for the citation of key2 will be drawn from refcontext 1abelprefix=B.
Note that these commands are rarely necessary unless you have multiple bib-
liographies in which the same citations occur and biblatex cannot by de-
fault tell which bibliography list a citation should refer to. See the example file
94-labelprefix.tex for more details.

3.7.11 Dynamic Entry Sets

In addition to the @set entry type, biblatex also supports dynamic entry sets
defined on a per-document/per-refsection basis. The following command, which
may be used in the document preamble or the document body, defines the set (key):

\defbibentryset {(key)} {(keylkey2key3, ...)}

The (key) is the entry key of the set, which is used like any other entry key when refer-
ring to the set. The (key) must be unique and it must not conflict with any other entry
key. The second argument is a comma-separated list of the entry keys which make
up the set. \defbibentryset implies the equivalent of a \nocite command,
i.e., all sets which are declared are also added to the bibliography. When declaring
the same set more than once, only the first invocation of \defbibentryset will
define the set. Subsequent definitions of the same (key) are ignored and work like
\nocite(key). Dynamic entry sets defined in the document body are local to the
enclosing refsection environment, if any. Otherwise, they are assigned to refer-
ence section 0. Those defined in the preamble are assigned to reference section 0.
See § 3.13.5 for further details.

3.8 Citation Commands

All citation commands generally take one mandatory and two optional arguments.
The (prenote) is text to be printed at the beginning of the citation. This is usually
a notice such as ‘see’ or ‘compare’. The (postnote) is text to be printed at the very
end of the citation. This is usually a page number. If only one of these arguments is
given, it is taken as a postnote. If you want to specify a prenote but no postnote, you
need to leave the second optional argument empty, as in \cite[see] [] {key}.
The (key) argument to all citation commands is mandatory. This is the entry key or
a comma-separated list of keys corresponding to the entry keys in the bib file. In
sum, all basic citations commands listed further down have the following syntax:

\ command [(prenote)] [(postnote)] { (keys) } (punctuation)

If the autopunct package option from § 3.1.2.1 is enabled, they will scan ahead
for any (punctuation) immediately following their last argument. This is useful to
avoid spurious punctuation marks after citations. This feature is configured with
\DeclareAutoPunctuation, see § 4.7.5 for details.

106

3.8.1 Standard Commands

The following commands are defined by the citation style. Citation styles may
provide any arbitrary number of specialized commands, but these are the standard
commands typically provided by general-purpose styles.

\cite [(prenote)] [(postnote)] { (key)}
\Cite [(prenote)] [(postnote)] { (key)}

These are the bare citation commands. They print the citation without any addi-
tions such as parentheses. The numeric and alphabetic styles still wrap the label in
square brackets since the reference may be ambiguous otherwise. \Cite is similar
to \cite but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

\parencite [(prenote)] [(postnote)] { (key)}
\Parencite [(prenote)] [(postnote)] { (key)}

These commands use a format similar to \cite but enclose the entire citation
in parentheses. The numeric and alphabetic styles use square brackets instead.
\Parencite is similar to \parencite but capitalizes the name prefix of the first
name in the citation if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all.

\footcite [(prenote)] [(postnote)] { (key)}
\footcitetext [(prenote)] [(postnote)] { (key)}

These command use a format similar to \ cite but put the entire citation in a footnote
and add a period at the end. In the footnote, they automatically capitalize the name
prefix of the first name if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all. \footcitetext differs
from \footcite in that it uses \footnotetext instead of \footnote.

3.8.2 Style-specific Commands

The following additional citation commands are only provided by some of the citation
styles which come with this package.

\textcite [(prenote)] [(postnote)] { (key)}
\Textcite [(prenote)] [(postnote)] { (key)}

These citation commands are provided by all styles that come with this package.
They are intended for use in the flow of text, replacing the subject of a sentence.
They print the authors or editors followed by a citation label which is enclosed in
parentheses. Depending on the citation style, the label may be a number, the year
of publication, an abridged version of the title, or something else. The numeric and
alphabetic styles use square brackets instead of parentheses. In the verbose styles,
the label is provided in a footnote. Trailing punctuation is moved between the author
or editor names and the footnote mark. \Textcite is similar to \textcite but
capitalizes the name prefix of the first name in the citation if the useprefix option
is enabled, provided that there is a name prefix.

107

\smartcite [(prenote)] [(postnote)] { (key)}
\Smartcite [(prenote)] [(postnote)] { (key)}

Like \parencite in a footnote and like \ footcite in the body.
\citex* [(prenote)] [(postnote)] { (key)}

This command is provided by all author-year and author-title styles. It is similar to
the regular \ cite command but merely prints the year or the title, respectively.

\parencite* [(prenote)] [(postnote)] { (key)}

This command is provided by all author-year and author-title styles. It is similar to the
regular \parencite command but merely prints the year or the title, respectively.

\supercite{(key)}

This command, which is only provided by the numeric styles, prints numeric ci-
tations as superscripts without brackets. It uses \supercitedelim instead of
\multicitedelim as citation delimiter. Note that any (prenote) and (postnote)
arguments are ignored. If they are given, \ supercite will discard them and issue
a warning message.

3.8.3 Qualified Citation Lists

This package supports a class of special citation commands called ‘multicite’ com-
mands. The point of these commands is that their argument is a list of citations where
each item forms a fully qualified citation with a pre- and/or postnote. This is particu-
larly useful with parenthetical citations and citations given in footnotes. It is also
possible to assign a pre- and/or postnote to the entire list. The multicite commands
are built on top of backend commands like \parencite and \footcite. The ci-
tation style provides a multicite definition with \DeclareMultiCiteCommand
(see § 4.3.1). The following example illustrates the syntax of multicite commands:

\parencites[35]{keyl}[88--120] {key2}[23] {key3}

The format of the arguments is similar to that of the regular citation commands,
except that only one citation command is given. If only one optional argument is
given for an item in the list, it is taken as a postnote. If you want to specify a prenote
but no postnote, you need to leave the second optional argument of the respective
item empty:

\parencites[35] {keyl} [chapter 2 in] []{key2}[23]{key3}

In addition to that, the entire citation list may also have a pre- and/or postnote. The
syntax of these global notes differs from other optional arguments in that they are
given in parentheses rather than the usual brackets:

\parencites (and chapter 3) [35]{keyl}[78] {key2}[23]{key3
=]

\parencites (Compare) () [35] {keyl} [78] {key2}[23] {key3}

\parencites (See) (and the introduction) [35] {keyl} [78] {
— key2}[23] {key3}

108

Note that the multicite commands keep on scanning for arguments until they en-
counter a token that is not the start of an optional or mandatory argument. If a
left brace or bracket follows a multicite command, you need to mask it by adding
\relax or a control space (a backslash followed by a space) after the last valid
argument. This will cause the scanner to stop.

\parencites[35] {keyl} [78] {key2}\relax[...]
\parencites[35] {keyl}[78] {key2}\ {...}

By default, this package provides the following multicite commands which corre-
spond to regular commands from §§ 3.8.1 and 3.8.2:

\cites ((multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} ... [(prenote)] [(postnote)] { (key)}
\Cites ((multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} ... [(prenote)] [(postnote)] { (key)}

The multicite version of \cite and \Cite, respectively.

\parencites ({multiprenote)) ((multipostnote)) [(prenote)] [(postnote)] {(key)} . .. [{prenote)] [{postnote)] { (key)}
\Parencites ({multiprenote)) ((multipostnote)) [(prenote)] [(postnote)] { (key)} . .. [{prenote)] [{postnote)] { (key)}

The multicite version of \parencite and \Parencite, respectively.

\footcites ({multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} ... [{(prenote)] [(postnote)] { (key)}
\footcitetexts ({multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} ... [{(prenote)] [(postnote)] { (key)}

The multicite version of \footcite and \footcitetext, respectively.

\smartcites ((multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} ... [(prenote)] [(postnote)] { (key)}
\Smartcites ({multiprenote)) ({multipostnote)) [(prenote)] [{postnote)] {{key)} ... [{prenote)] [(postnote)] { (key)}

The multicite version of \smartcite and \Smartcite, respectively.

)}

\textcites ({multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {{key)} . .. [{prenote)] [{postnote)] { (key
key) }

{
\Textcites ((multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} . .. [{(prenote)] [(postnote)] {{
The multicite version of \textcite and \Textcite, respectively.
\supercites ({multiprenote)) ((multipostnote)) [(prenote)] [(postnote)] {(key)} . .. [{prenote)] [{postnote)] { (key)}

The multicite version of \supercite. This command is only provided by the
numeric styles.

3.8.4 Style-independent Commands

Sometimes it is desirable to give the citations in the source file in a format that is
not tied to a specific citation style and can be modified globally in the preamble.
The format of the citations is easily changed by loading a different citation style.
However, when using commands such as \parencite or \footcite, the way
the citations are integrated with the text is still effectively hard-coded. The idea
behind the \autocite command is to provide higher-level citation markup which
makes global switching from inline citations to citations given in footnotes (or
as superscripts) possible. The \autocite command is built on top of backend
commands like \parencite and \footcite. The citation style provides an
\autocite definition with \DeclareAutoCiteCommand (see § 4.3.1). This
definition may be activated with the autocite package option from § 3.1.2.1. The

109

citation style will usually initialize this package option to a value which is suitable
for the style, see § 3.3.1 for details. Note that there are certain limits to high-level
citation markup. For example, inline author-year citation schemes often integrate
citations so tightly with the text that it is virtually impossible to automatically convert
them to footnotes. The \autocite command is only applicable in cases in which
you would normally use \parencite or \footcite (or \supercite, witha
numeric style). The citations should be given at the end of a sentence or a partial
sentence, immediately preceding the terminal punctuation mark, and they should
not be a part of the sentence in a grammatical sense (like \textcite, for example).

\autocite [(prenote)] [(postnote)] { (key) }
\Autocite [(prenote)] [(postnote)] { (key)}

In contrast to other citation commands, the \autocite command does not only
scan ahead for punctuation marks following its last argument to avoid double
punctuation marks, it actually moves them around if required. For example, with
autocite=footnote, a trailing punctuation mark will be moved such that
the footnote mark is printed after the punctuation. \Autocite is similar to
\autocite but capitalizes the name prefix of the first name in the citation if
the useprefix option is enabled, provided that there is a name prefix and the
citation style prints any name at all.

\autocite* [(prenote)] [(postnote)] { (key)}
\Autocite* [(prenote)] [(postnote)] { (key)}

The starred variants of \autocite do not behave differently from the regular
ones. The asterisk is simply passed on to the backend command. For example, if
\autocite is configured to use \parencite, then \autocite* will execute
\parencite*.

\autocites ((multiprenote)) ((multipostnote)) [(prenote)] [(postnote)] {(key)} . .. [{prenote)] [(postnote)] { (key)}
\Autocites ((multiprenote)) ({multipostnote)) [(prenote)] [(postnote)] {(key)} . .. [{prenote)] [{postnote)] { (key)}

This is the multicite version of \autocite. It also detects and moves punctua-
tion if required. Note that there is no starred variant. \Autocites is similar to
\autocites but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

3.8.5 Text Commands

The following commands are provided by the core of biblatex. They are intended
for use in the flow of text. Note that all text commands are excluded from citation

tracking.
\citeauthor [(prenote)] [(postnote)] { (key)}
\citeauthor* [(prenote)] [(postnote)] { (key)}
\Citeauthor [(prenote)] [(postnote)] { (key)}
\Citeauthor* [(prenote)] [(postnote)] { (key)}

These commands print the authors. Strictly speaking, it prints the 1abelname list,
which may be the author, the editor, or the translator. \Citeauthoris
similar to \citeauthor but capitalizes the name prefix of the first name in the
citation if the useprefix option is enabled, provided that there is a name prefix.

110

The starred variants effectively force maxcitenames to 1 for just this command on
so only print the first name in the labelname list (potentially followed by the “et
al” string if there are more names). This allows more natural textual flow when
refering to a paper in the singular when otherwise \citeauthor would generate
a (naturally plural) list of names.

\citetitle [(prenote)] [(postnote)] { (key)}
\citetitle* [(prenote)] [{postnote)] { (key)}

This command prints the title. It will use the abridged title in the shorttitle
field, if available. Otherwise it falls back to the full title found in the tit1le field.
The starred variant always prints the full title.

\citeyear [(prenote)] [(postnote)] { (key)}
\citeyear* [(prenote)] [(postnote)] { (key)}

This command prints the year (year field or year component of date). The starred
variant includes the ext radate information, if any.

\citedate [(prenote)] [(postnote)] { (key)}
\citedate* [(prenote)] [(postnote)] { (key)}

This command prints the full date (date or year). The starred variant includes the
extradate information, if any.

\citeurl [(prenote)] [(postnote)] { (key)}
This command prints the url field.
\parentext {(text)}
This command wraps the (text) in context sensitive parentheses.
\brackettext {(text)}

This command wraps the (text) in context sensitive brackets.

3.8.6 Special Commands

The following special commands are also provided by the core of biblatex.

\nocite{(key)}
\nocite{*}

This command is similar to the standard LaTeX \nocite command. It adds the (key)
to the bibliography without printing a citation. If the (key) is an asterisk, all entries
available in the in-scope bibliography datasource(s) are added to the bibliography.
Like all other citation commands, \nocite commands in the document body are
local to the enclosing refsection environment, if any. In contrast to standard
LaTeX, \nocite may also be used in the document preamble. In this case, the
references are assigned to reference section 0. For the purposes of ordering citations
by appearance \nocite will behave like all other cite commands, with the added
rule that a \nocite issued in the preamble is treated as coming before all explicit
citations in reference section 0 from the document body.

111

\fullcite [(prenote)] [(postnote)] { (key)}

This command uses the bibliography driver for the respective entry type to create a
full citation similar to the bibliography entry. It is thus related to the bibliography
style rather than the citation style.

\footfullcite [(prenote)] [{postnote)] { (key)}

Similar to \fullcite but puts the entire citation in a footnote and adds a period
at the end.

\volcite [(prenote)] { (volume)} [(pages)] {{key)}
\Volcite [(prenote)] { (volume)} [(pages)] {{key)}

These commands are similar to \cite and \Cite but intended for references to
multi-volume works which are cited by volume and page number. Instead of the
(postnote), they take a mandatory (volume) and an optional (pages) argument. Since
they merely compose the postnote and pass it to the \ cite command provided by the
citation style as a (postnote) argument, these commands are style independent. The
volume and pages/text portion are formatted with the macro \mkvolcitenote
when they are passed on to the citation command. Additionally they are made
available in the special fields volcitevolume and volcitevolume (§ 4.3.2)
The format of the volume portion is controlled by the field formatting directive
volcitevolume, the format of the pages/text portion is controlled by the field
formatting directive volcitepages (§ 4.10.4). The delimiter printed between the
volume portion and the pages/text portion may be modified by redefining the macro
\volcitedelim (§4.10.1).

\volcites ((multiprenote)) ({multipostnote)) [(prenote)] { (volume)} [(pages)] {{key)}
[(prenote)] { (volume) } [{pages)] { (key)}

\Volcites ((multzprenote>) ((multipostnote)) [(prenote)] { (volume)} [(pages)] { (key)}
. [{prenote)] { (volume) } [(pages)] {{key)}

The multicite version of \volcite and \Volcite, respectively.

\pvolcite [(prenote)] { (volume)} [(pages)] {(key)}
\Pvolcite [(prenote)] { (volume)} [(pages)] {{key)}

Similar to \volcite but based on \parencite.

\pvolcites ({multiprenote)) ({(multipostnote)) [(prenote)] { (volume)} [(pages)] { (key)}
. [{prenote)] { (volume)} [(pages)] {(key)}

\Pvolcites ((multiprenote)) ({multipostnote)) [(prenote)] { (volume)} [(pages)] {(key)}
. [(prenote)] { (volume) } [(pages)] { (key)}

The multicite version of \pvolcite and \Pvolcite, respectively.

\fvolcite [(prenote)] { (volume)} [(pages)] { (key)}
\ftvolcite [(prenote)] { (volume)} [(pages)] { (key)}

Similar to \volcite but based on \footcite and \footcitetext, respec-
tively.

112

—

(prenote)] { (volume) } [(pages)] { (key)}
1 {{key)}
(prenote)] { (volume) } [(pages)] { (key)}
1 {{key)}

({multipostnote))
(volume)} [(pages
({multipostnote))

{ (volume) } [(pages

\fvolcites ({(multiprenot
. . [{prenote

\Fvolcites ({(multiprenot
. [(prenote

{

—

)
]
)
]

~_~ 0~ 0
~

The multicite version of \fvolcite and \Fvolcite, respectively.

\svolcite [(prenote)] { (volume)} [{pages)] {(key)}
\Svolcite [(prenote)] { (volume)} [(pages)] {{key)}

Similar to \volcite but based on \smartcite.

({multipostnote)) [(prenote)] { (volume)} [(pages)] {{key)}
{(volume) } [{(pages)] {(key)}
((multipostnote)) [(prenote)] { (volume)} [(pages)] {(key)}
(volume)} [(pages)] {(key)}

\svolcites ((multiprenote))
. [(prenote
\Svolcites ((multiprenote))
. [(prenote

~ 0 — 0
|_,\/‘_,\/

{

The multicite version of \svolcite and \Svolcite, respectively.

\tvolcite [(prenote)] { (volume)} [{pages)] {(key)}
\Tvolcite [(prenote)] { (volume)} [(pages)] {{key)}

Similar to \volcite but based on \textcite.

\tvolcites ((multiprenote)) ({multipostnote)) [(prenote)] { (volume)} [(pages)] {(key)}
[(prenote)] { (volume) } [{pages)] { (key)}

\Tvolcites ((multzprenote> ((multipostnote)) [(prenote)] { (volume)} [(pages)] { (key)}
. [(prenote)] { (volume)} [(pages)] {{key)}

The multicite version of \tvolcite and \Tvolcite, respectively.

\avolcite [(prenote)] { (volume)} [(pages)] {{key)}
\Avolcite [(prenote)] { (volume)} [(pages)] {{key)}

Similar to \volcite but based on \autocite.

\avolcites ({multiprenote)) ({(multipostnote)) [(prenote)] { (volume)} [(pages)] { (key)}
. [{prenote)] { (volume)} [(pages)] {{key)}

\Avolcites ((multiprenote)) ({multipostnote)) [(prenote)] { (volume)} [(pages)] {(key)}
. [(prenote)] { (volume) } [(pages)] { (key)}

The multicite version of \avolcite and \Avolcite, respectively.

\notecite [(prenote)] [(postnote)] { (key)}
\Notecite [(prenote)] [(postnote)] { (key)}

These commands print the (prenote) and (postnote) arguments but no citation. In-
stead, a \nocite command is issued for every (key). This may be useful for
authors who incorporate implicit citations in their writing, only giving information
not mentioned before in the running text, but who still want to take advantage of
the automatic (postnote) formatting and the implicit \nocite function. This is a
generic, style-independent citation command. Special citation styles may provide
smarter facilities for the same purpose. The capitalized version forces capitalization
(note that this is only applicable if the note starts with a command which is sensitive

to biblatex’s punctuation tracker).

113

\pnotecite [(prenote)] [(postnote)] { (key)}
\Pnotecite [(prenote)] [(postnote)] { (key)}

Similar to \notecite but the notes are printed in parentheses.
\fnotecite [(prenote)] [(postnote)] { (key)}

Similar to \notecite but the notes are printed in a footnote.

3.8.7 Low-level Commands

The following commands are also provided by the core of biblatex. They grant
access to all lists and fields at a lower level.

\citename [(prenote)] [(postnote)] { (key)} [(format)] { (name list) }

The (format) is a formatting directive defined with \DeclareNameFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citename. The last argument is the name of a
(name list), in the sense explained in § 2.2.

\citelist [(prenote)] [(postnote)] {(key)} [(format)] {(literal list)}

The (format) is a formatting directive defined with \DeclareListFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citelist. The last argument is the name of a
(literal list), in the sense explained in § 2.2.

\citefield[(prenote)] [(postnote)] {(key)} [(format)] {(field)}

The (format) is a formatting directive defined with \DeclareFieldFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citefield. The last argument is the name of a
(field), in the sense explained in § 2.2.

3.8.8 Miscellaneous Commands

The commands in this section are little helpers related to citations.

\citereset This command resets the citation style. This may be useful if the style replaces
repeated citations with abbreviations like ibidem, idem, op. cit., etc. and you want
to force a full citation at the beginning of a new chapter, section, or some other
location. The command executes a style specific initialization hook defined with
the \InitializeCitationStyle command from § 4.3.1. It also resets the
internal citation trackers of this package. The reset will affect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2.
When used inside a refsection environment, the reset of the citation tracker is
local to the current refsection environment. Also see the citereset package
option in § 3.1.2.1.

\citereset* Similarto \citereset but only executes the style’s initialization hook, without
resetting the internal citation trackers.

114

\mancite

\pno

\ppno

\nopp

\psq

\psaq

Use this command to mark manually inserted citations if you mix automatically
generated and manual citations. This is particularly useful if the citation style
replaces repeated citations by an abbreviation like ibidem which may get ambiguous
or misleading otherwise. Always use \mancite in the same context as the manual
citation, e. g., if the citation is given in a footnote, include \mancite in the footnote.
The \mancite command executes a style specific reset hook defined with the
\OnManualCitation command from § 4.3.1. It also resets the internal ‘ibidem’
and ‘idem’ trackers of this package. The reset will affect the \ifciteibid and
\ifciteidem tests discussed in § 4.6.2.

This command forces a single page prefix in the (postnote) argument to a citation
command. See § 3.14.3 for further details and usage instructions. Note that this
command is only available locally in citations and the bibliography.

Similar to \pno but forces a range prefix. See § 3.14.3 for further details and usage
instructions. Note that this command is only available locally in citations and the

bibliography.

Similar to \pno but suppresses all prefixes. See § 3.14.3 for further details and usage
instructions. Note that this command is only available locally in citations and the

bibliography.

In the (postnote) argument to a citation command, this command indicates a range of
two pages where only the starting page is given. See § 3.14.3 for further details and
usage instructions. The suffix printed is the localisation string sequens, see § 4.9.2.
The spacing inserted between the suffix and the page number may be modified by
redefining the macro \ sgspace. The default is an unbreakable interword space.
Note that this command is only available locally in citations and the bibliography.

Similar to \psq but indicates an open-ended page range. See § 3.14.3 for further de-
tails and usage instructions. The suffix printed is the localisation string sequentes,
see § 4.9.2. This command is only available locally in citations and the bibliography.

\pnfmt { (text)}

This command formats is argument (text) in the same format as postnote. The
command can be used to format a page range while adding additional text in the
postnote argument of a cite command.

\autocite[\pnfmt{378-381, 383} and more] {sigfridsson}

\RN { (integer) }

This command prints an integer as an uppercase Roman numeral. The formatting
applied to the numeral may be modified by redefining the macro \RNfont.

\Rn { (integer) }

Similar to \RN but prints a lowercase Roman numeral. The formatting applied to
the numeral may be modified by redefining the macro \Rnfont.

115

3.8.9 natbib Compatibility Commands

The natbib package option loads a natbib compatibility module. The module
defines aliases for the citation commands provided by the natbib package. This
includes aliases for the core citation commands \citet and \citep as well as the
variants \citealt and \citealp. The starred variants of these commands, which
print the full author list, are also supported. The \cite command, which is handled
in a particular way by natbilb, is not treated in a special way. The text commands
(\citeauthor, \citeyear, etc.) are also supported, as are all commands which
capitalize the name prefix (\Citet, \Citep, \Citeauthor, etc.). Aliasing with
\defcitealias, \citetalias,and \citepalias is possible as well. Note
that the compatibility commands will not emulate the citation format of the natbib
package. They merely alias natbib’s commands to functionally equivalent facilities
of the biblatex package. The citation format depends on the main citation style.
However, the compatibility style will adapt \nameyeardelim to match the default
style of the natbib package.

3.8.10 mcite-like Citation Commands

The mcite package option loads a special citation module which provides mcite/
mciteplus-like citation commands. Strictly speaking, what the module provides
are wrappers for the commands of the main citation style. For example, the following
command:

\mcite{keyl, setA, *keyAl, *keyA2, *keyA3, key2, setB, *keyB1
— ,*keyB2, *keyB3}

is essentially equivalent to this:

\defbibentryset{setA} {keyAl, keyA2, keyA3}%
\defbibentryset{setB}{keyBl, keyB2, keyB3}%
\cite{keyl, setA, key2, setB}

The \mcite command will work with any style since the \ cite backend command
is controlled by the main citation style as usual. The mcite module provides
wrappers for the standard commands in §§ 3.8.1 and 3.8.2. See table 9 for an overview.
Pre and postnotes as well as starred variants of all commands are also supported.
The parameters will be passed to the backend command. For example:

\mcite* [pre] [post] {seth, *keyAl, *keyA2, *keyA3}

will execute:

\defbibentryset{setA} {keyAl, keyA2, keyA3}%
\cite* [pre] [post] {setA}

Note that the mcite module is not a compatibility module. It provides commands
which are very similar but not identical in syntax and function tomcite’s commands.
When migrating from mcite/mciteplus to biblatex, legacy files must be
updated. With mcite, the first member of the citation group is also the identifier of
the group as a whole. Borrowing an example from the mcite manual, this group:

116

Table 8: mcite-like commands

Standard Command mcite-like Command
\cite \mcite

\Cite \Mcite
\parencite \mparencite
\Parencite \Mparencite
\footcite \mfootcite
\footcitetext \mfootcitetext
\textcite \mtextcite
\Textcite \Mtextcite
\supercite \msupercite
\autocite \mautocite
\Autocite \Mautocite

\cite{glashow, *salam, *weinberg}

consists of three entries and the entry key of the first one also serves as identifier of
the entire group. In contrast to that, a biblatex entry set is an entity in its own
right. Therefore, it requires a unique entry key which is assigned to the set as it is
defined:

\mcite{setl, *glashow, *salam, *weinberg}

Once defined, an entry set is handled like any regular entry in a bib file. When
using one of the numeric styles which come with biblatex and activating its
subentry option, it is even possible to refer to set members. See table 9 for some
examples. Restating the original definition of the set is redundant, but permissible.
In contrast to mciteplus, however, restating a part of the original definition is
invalid. Use the entry key of the set instead.

3.9 Localization Commands

The biblatex package provides translations for key terms such as ‘edition’ or
‘volume’ as well as definitions for language specific features such as the date format
and ordinals. These definitions, which are loaded automatically, may be modified or
extended in the document preamble or the configuration file with the commands
introduced in this section.

\DefineBibliographyStrings {(language)} { (definitions)}

This command is used to define localisation strings. The (language) must be a
language name known to the babel/polyglossia packages, i.e., one of the
identifiers listed in table 2 on page 29. The (definitions) are (key)=(value) pairs
which assign an expression to an identifier:

\DefineBibliographyStrings{american}{%

bibliography = {Bibliography},
shorthands = {Abbreviations},
editor = {editor},
editors = {editors},

117

Table 9: mcite-like syntax (sample output with style = numeric and
subentry option)

Input Output Comment

\mcite{setl, *glashow, *salam, *weinberg} [1] Defining and citing the set
\mcite{setl} [1] Subsequent citation of the set
\cite{setl} (11 Regular \ cite works as usual
\mcite{setl, *glashow, *salam, *weinberg} [1] Redundant, but permissible
\mcite{glashow} [1la] Citing a set member

[1c

\cite{weinberg} 1 Regular \cite works as well

A complete list of all keys supported by default is given is § 4.9.2. Note that all
expressions should be capitalized as they usually are when used in the middle of
a sentence. The biblatex package will automatically capitalize the first word
when required at the beginning of a sentence. Expressions intended for use in
headings should be capitalized in a way that is suitable for titling. In contrast
to \DeclareBibliographyStrings, \DefineBibliographyStrings
overrides both the full and the abbreviated version of the string. See § 4.9.1 for
further details.

\DefineBibliographyExtras {(language)} {(code)}

This command is used to adapt language specific features such as the date for-
mat and ordinals. The (language) must be a language name known to the
babel/polyglossia packages. The (code), which may be arbitrary LaTeX code,
will usually consist of redefinitions of the formatting commands from § 3.11.3.

\UndefineBibliographyExtras{(language)} { (code)}

This command is used to restore the original definition of any commands modified
with \DefineBibliographyExtras. If a redefined command is included in
§ 3.11.3, there is no need to restore its previous definition since these commands are
adapted by all language modules anyway.

\DefineHyphenationExceptions{(language)} { (text)}

This is a LaTeX frontend to TeX’s \hyphenation command which defines hy-
phenation exceptions. The (language) must be a language name known to the
babel/polyglossia packages. The (text) is a whitespace-separated list of words.
Hyphenation points are marked with a dash:

\DefineHyphenationExceptions{american}{%
hy-phen-ation ex-cep-tion

\NewBibliographyString{(key)}

This command declares new localisation strings, i. e., it initializes a new (key) to be
used in the (definitions) of \DefineBibliographyStrings. The (key) argu-
ment may also be a comma-separated list of key names. The keys listed in § 4.9.2 are
defined by default.

118

3.10 Entry Querying Commands

The commands in this section are user-facing equivalents of the identically-named
commands in section § 4.6.2. They can be used to test for the presence and attributes
of specific bibliography entries. See section § 4.6.2 for usage.

\ifentryseen/{(entrykey)} { (true)} { (false)}
\ifentryinbib{(entrykey)} { (true)} { (false)}
\ifentrycategory{(entrykey)} {(category)} {(true)} { (false)}
\ifentrykeyword{(entrykey)} { (keyword)} { (true)} { (false)}

\bibsetup

\bibfont

\citesetup

\newblockpunct

\newunitpunct

\finentrypunct

\entrysetpunct

\bibnamedelima

3.11 Formatting Commands

The commands and facilities presented in this section may be used to adapt the
format of citations and the bibliography.

3.11.1 Generic Commands and Hooks

The commands in this section may be redefined with \renewcommand in the
document preamble. Those marked as ‘Context Sensitive’ in the margin can also be
customised with \DeclareDelimFormat and are printed with \printdelim
(§ 3.11.2). Note that all commands starting with \mk... take one argument. All of
these commands are defined in biblatex.def.

Arbitrary code to be executed at the beginning of the bibliography, intended for
commands which affect the layout of the bibliography.

Arbitrary code setting the font used in the bibliography. This is very similar to
\bibsetup but intended for switching fonts.

Arbitrary code to be executed at the beginning of each citation command.

The separator inserted between ‘blocks’ in the sense explained in § 4.7.1. The default
definition is controlled by the package option block (see § 3.1.2.1).

The separator inserted between ‘units’ in the sense explained in § 4.7.1. This will
usually be a period or a comma plus an interword space. The default definition is a
period and a space.

The punctuation printed at the very end of every bibliography entry, usually a
period. The default definition is a period.

The punctuation printed between bibliography subentries of an entry set. The
default definition is a semicolon and a space.

This delimiter controls the spacing between the elements which make up a name
part. It is inserted automatically by the backend after the first name element if
the element is less than three characters long and before the last element. The
default definition is \addhighpenspace, i.e., a space penalized by the value
of the highnamepenalty counter (§ 3.11.4). Please refer to § 3.14.4 for further
details.

119

\bibnamedelimb

\bibnamedelimc

\bibnamedelimd

\bibnamedelimi

\bibinitperiod

\bibinitdelim

This delimiter controls the spacing between the elements which make up a name
part. It is inserted automatically by the backend between all name elements where
\bibnamedelima does not apply. The default definition is \addlowpenspace,
i.e., a space penalized by the value of the 1lownamepenalty counter (§ 3.11.4).
Please refer to § 3.14.4 for further details.

This delimiter controls the spacing between name parts. The default name formats
use it between the name prefix and the family name if useprefix=true. The
default definition is \addhighpenspace, i.e., a space penalized by the value
of the highnamepenalty counter (§ 3.11.4). Please refer to § 3.14.4 for further
details.

This delimiter controls the spacing between name parts. The default name formats
use it between all name parts where \bibnamedelimc does not apply. The de-
fault definition is \addlowpenspace, i.e., a space penalized by the value of the
lownamepenalty counter (§ 3.11.4). Please refer to § 3.14.4 for further details.

This delimiter replaces \bibnamedelima/b after initials. Note that this only
applies to initials given as such in the bib file, not to the initials automatically
generated by biblatex which use their own set of delimiters.

The punctuation inserted automatically by the backend after all initials unless
\bibinithyphendelim applies. The default definition is a period (\adddot).
Please refer to § 3.14.4 for further details.

The spacing inserted automatically by the backend between multiple initials un-
less \bibinithyphendelim applies. The default definition is an unbreakable
interword space. Please refer to § 3.14.4 for further details.

\bibinithyphendelim The punctuation inserted automatically by the backend between the initials

of hyphenated name parts, replacing \bibinitperiod and \bibinitdelim.
The default definition is a period followed by an unbreakable hyphen. Please refer to
§ 3.14.4 for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\revsdnamepunct The punctuation to be printed between the given and family name parts when a

name is reversed. The default is a comma. Here is an example showing a name with
the default comma as \revsdnamedelim:

Jones, Edward

120

\bibnamedash

This command should be used with \bibnamedelimd as a reversed-name sep-
arator in formatting directives for name lists. Please refer to § 3.14.4 for further
details.

The dash to be used as a replacement for recurrent authors or editors in the biblio-
graphy. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of the
list of references.

\labelnamepunct A separator to be printed after the name used for alphabetizing in the bib-

\subtitlepunct

\intitlepunct

\bibpagespunct

liography (author or editor, if the author field is undefined) instead of
\newunitpunct. The default is \newunitpunct, i.e., it is not handled dif-
ferently from regular unit punctuation but permits convenient reconfiguration.
This punctuation command is deprecated and has been superseded by the context-
sensitive \nametitledelim (see § 3.11.2). For backwards compatibility rea-
sons, however, \nametitledelim still defaults to \1labelnamepunct in the
bib and biblist contexts. Style authors may want to consider replacing
\labelnampunct with \printdelim{nametitledelim} and users may
want to prefer modifying the context-sensitive nametitledelim in the bib con-
text with \DeclareDelimFormat over redefining \ labelnamepunct, e.g.

\DeclareDelimFormat [bib] {nametitledelim} {%
\addcolon\space}

The separator printed between the fields title and subtitle, booktitle
and booksubtitle, as well as maintitle and mainsubtitle. With the
default styles, this separator replaces \newunitpunct at this location. The default
definition is \newunitpunct, i.e, it is not handled differently from regular unit
punctuation.

The separator between the word “in” and the following title in entry types such as
@article, Rinbook, @incollection, etc. The default definition is a colon
plus an interword space (e. g., “Article, in: Journal” or “Title, in: Book”). Note that
this is the separator string, not only the punctuation mark. If you don’t want a colon
after “in”, \intitlepunct should still insert a space.

The separator printed before the pages field. The default is a comma plus an
interword space.

\bibpagerefpunct The separator printed before the pageref field. The default is an interword

\bibeidpunct

space.

The separator printed before the eid field (similar to \bibpagespunct). The
default is a comma plus an interword space.

\multinamedelim The delimiter printed between multiple items in a name list like author or

editor if there are more than two names in the list. The default is a comma plus
an interword space. See \finalnamedelim for an example.**

\finalnamedelim The delimiter printed instead of \multinamedelim before the final name in

a name list. The default is the localised term ‘and’, separated by interword spaces.

Here is an example:

*Note that \multinamedelim is not used at all if there are only two names in the list. In this case,
the default styles use the \finalnamedelim.

121

Deprecated

Context Sensitive

Context Sensitive

Michel Goossens, Frank Mittelbach and Alexander Samarin
Edward Jones and Joe Williams

The comma in the first example is the \multinamedelim whereas the string
‘and’ in both examples is the \finalnamedelim. See also \finalandcomma
in § 3.11.3.

\revsdnamedelim An extra delimiter printed after the first name in a name list if the first name is
reversed (only in lists with two names). The default is an empty string, i. e., no extra
delimiter will be printed. Here is an example showing a name list with a comma as
\revsdnamedelim:

Jones, Edward, and Joe Williams

In this example, the comma after ‘Edward’ is the \revsdnamedelim whereas the
string ‘and’ is the \finalnamedelim, printed in addition to the former.

\andothersdelim The delimiter printed before the localisation string ‘andothers’ if a name list
like author or editor is truncated. The default is an interword space.

\multilistdelim The delimiter printed between multiple items in a literal list like publisher or
location if there are more than two items in the list. The default is a comma plus
an interword space. See \multinamedelim for further explanation.

\finallistdelim The delimiter printed instead of \multilistdelim before the final item in a
literal list. The default is the localised term ‘and’, separated by interword spaces. See
\finalnamedelim for further explanation.

\andmoredelim The delimiter printed before the localisation string ‘andmore’ if a literal list like
publisher or location is truncated. The default is an interword space.

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to a
single citation command. The default is a semicolon plus an interword space.

\multiciterangedelim The delimiter printed between two citations if they are compressed to a
range. The default is \bibrangedash.

\multicitesubentrydelim The delimiter printed between subentry citations of the same set. This
delimiter is only used in citation styles that reduce citations of the same set to a more
compact form (subentry of numeric-comp). The default is a comma.

\multicitesubentryrangedelim The delimiter printed between two citations of the same set if
they are compressed to a range. The default is \multiciterangedelim.

\supercitedelim Similar to \multicitedelim, but used by the \supercite command only.
The default is a comma.

\superciterangedelim Analogue of \multiciterangedelimfor \supercite. The default
is \bibrangedash.

\supercitesubentrydelim Analogue of \multicitesubentrydelim for \supercite.
The default is \supercitedelim.

\supercitesubentryrangedelim Analogue of \multicitesubentryrangedelim for
\supercite. The default is \superciterangedelim.

122

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

\compcitedelim Similar to \multicitedelim, but used by certain citation styles when ‘com-
pressing’ multiple citations. The default definition is a comma plus an interword
space.

\textcitedelim Similarto \multicitedelim, butused by \textcite and related commands
(§ 3.8.2). The default is a comma plus an interword space. The standard styles modify
this provisional definition to ensure that the delimiter before the final citation is the
localised term ‘and’, separated by interword spaces. See also \ finalandcomma
and \finalandsemicolonin § 3.11.3.

\nametitledelim The delimiter printed between the author/editor and the title by author-title and
some verbose citation styles and in the bibliography. In author-year bibliography
styles this delimiter is placed after the author/editor and year and before the title. The
default definition inside bibliographies is the now deprecated \ 1abelnamepunct
and is a comma plus an interword space otherwise.

\nameyeardelim The delimiter printed between the author/editor and the year by author-year citation
and bibliography styles. The default definition is an interword space.

\namelabeldelim The delimiter printed between the name/title and the label by alphabetic and
numeric citation styles. The default definition is an interword space.

\nonameyeardelim The delimiter printed between the substitute for the labelname when it does
not exist (usually the label or title in standard styles) and the year in author-year
citation and bibliography styles. This is only used when there is no labelname since
when the labelname exists, \nameyeardelim is used. The default definition is an
interword space.

\authortypedelim The delimiter printed between the author and the authortype. The default is
a comma followed by a space.

\editortypedelim The delimiter printed between the editor and the editor or editortype
string. The default is a comma followed by a space.

\translatortypedelim The delimiter printed between the translator and the translator string.
The default is a comma followed by a space.

\labelalphaothers A string to be appended to the non-numeric portion of the labelalpha
field (i. e., the field holding the citation label used by alphabetic citation styles) if the
number of authors/editors exceeds the maxalphanames threshold or the author/
editor list was truncated in the bib file with the keyword ‘and others’. This
will typically be a single character such as a plus sign or an asterisk. The default is a
plus sign. This command may also be redefined to an empty string to disable this
feature. In any case, it must be redefined in the preamble.

\sortalphaothers Similarto \labelalphaothers but used in the sorting process. Setting it to

a different value is advisable if the latter contains formatting commands, for example:

\renewcommand* {\labelalphaothers} {\textbf{+}}
\renewcommand* {\sortalphaothers} {+}

If \sortalphaothers is not redefined, it defaults to \1abelalphaothers.

\volcitedelim The delimiter printed between the volume portion and the page/text portion of
\volcite and related commands (§ 3.8.6).

123

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

\mkvolcitenote{(volume)} { (pages)}

This macro formats the (volume) and (pages) arguments of \volcite and related
commands (§ 3.8.6) when they are passed on to the underlying citation command.

\prenotedelim The delimiter printed after the (prenote) argument of a citation command. See § 3.8
for details. The default is an interword space.

\postnotedelim The delimiter printed before the (postnote) argument of a citation command. See
§ 3.8 for details. The default is a comma plus an interword space.

\extpostnotedelim The delimiter printed between the citation and the parenthetical (postnote)
argument of a citation command when the postnote occurs outside of the citation
parentheses. In the standard styles, this occurs when the citation uses the shorthand
field of the entry. See § 3.8 for details. The default is an interword space.

\multiprenotedelim The delimiter printed after the (multiprenote) argument of a citation command.

See § 3.8 for details. The default is \prenotedelim.

\multipostnotedelim The delimiter printed before the (multipostnote) argument of a citation
command. See § 3.8 for details. The default is \postnotedelim.
\mkbibname ‘namepart’ {(text)}This command, which takes one argument, is used to format the

name part ‘namepart’ of name list fields. The default datamodel defines the name
parts ‘family’, ‘given’, ‘prefix’ and ‘suffix’ and therefore the following macros are
automatically defined:

\mkbibnamefamily
\mkbibnamegiven

\mkbibnameprefix
\mkbibnamesuffix

For backwards compatibility with the legacy BibTeX name parts, the following are
also defined, will generate warnings and will set the correct macro:

\mkbibnamelast
\mkbibnamefirst
\mkbibnameaffix

\mkbibcompletenamefamily {(text)}This command, which takes one argument, is used to format

the complete name in family format order.

\mkbibcompletenamefamilygiven {(text)}This command, which takes one argument, is used to

format the complete name in family-given format order.

\mkbibcompletenamegivenfamily {(text)}This command, which takes one argument, is used to

format the complete name in given-family format order.

\mkbibcompletename{(text)}The initial value of all default formatting hooks

\mkbibcompletename ‘formatorder’.

124

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

Context Sensitive

\datecircadelim When formatting dates with the global option datecirca enabled, the delimiter
printed after any localised ‘circa’ term. Defaults to interword space.

\dateeradelim When formatting dates with the global option dateera set, the delimiter printed
before the localisation era term. Defaults to interword space.

\dateuncertainprint Prints date uncertainty information when the global option
dateuncertain is enabled and the \ifdateuncertain test is true.
By default, prints the language specific \bibdateuncertain string (§ 3.11.3).

\enddateuncertainprint Prints date uncertainty information when the global option
dateuncertain is enabled and the \ifenddateuncertain test is true. By
default, prints the language specific \bibdateuncertain string (§ 3.11.3).

\datecircaprint Prints date circa information when the global option datecirca is enabled
and the \ifdatecirca test is true. By default, prints the ‘circa’ localised term
(§ 4.9.2.21) and the datecircadel im delimiter.

\enddatecircaprint Prints date circa information when the global option datecirca is enabled
and the \ifenddatecirca testis true. By default, prints the ‘circa’ localised term
(§ 4.9.2.21) and the datecircadelim delimiter.

\datecircaprintiso Prints 1508601-2 format date circa information when the global op-
tion datecirca is enabled and the \ifdatecirca test is true. Prints
\textasciitilde.

\enddatecircaprintiso Prints 1s08601-2 format date circa information when the global op-
tion datecirca is enabled and the \ifenddatecirca test is true. Prints
\textasciitilde.

\dateeraprint {(yearfield) } Prints date era information when the global option dateera is set

to ‘secular’ or ‘christian’. By default, prints the dateeradelim delimiter and the
appropriate localised era term (§ 4.9.2.21). If the dateeraauto option is set, then
the passed (yearfield) (which is the name of a year field such as ‘year’, ‘origyear’,
‘endeventyear’ etc.) is tested to see if its value is earlier than the dateeraauto
threshold and if so, then the BCE/CE localisation will be output too. The default
setting for dateeraautois 0 and so only BCE/BC localisation strings are candidates
for output. Detects whether the start or end year era information is to be printed by
looking at the (yearfield) name passed to it.

\dateeraprintpre Prints date era information when the global option dateera is set to ‘astro-
nomical’. By default, prints bibdataeraprefix. Detects whether the start or
end year era information is to be printed by looking at the (yearfield) name passed
to it.

\relatedpunct The separator between the relatedtype bibliography localisation string and the
data from the first related entry. Here is an example with \relatedpunct set to
a dash:

A. Smith. Title. 2000, (Orig. pub. as-Origtitle)

125

Context Sensitive

Context Sensitive

\relateddelim The generic separator between the data of multiple related entries. The default
definition is an optional dot plus linebreak. Here is an example where volumes A-E
are related entries of the 5 volume main work:

Donald E. Knuth. Computers & Typesetting. 5 vols.
— Reading, Mass.: Addison-Wesley, 1984-1986.

Vol. A: The TEXbook. 1984.

Vol. B: TEX: The Program. 1986.

Vol. C: The METAFONTbook. By. 1986.

Vol. D: METAFONT: The Program. 1986.
Vol. E: Computer Modern Typefaces. 1986.

\relateddelim<relatedtype> The separator between the data of multiple related entries inside
related entries of type ‘relatedtype’. There is no default, if such a type-specific
delimiter does not exist, \relateddelim is used.

\begrelateddelim The generic separator before the block of related entries. The default definition
is \newunitpunct.

\begrelateddelim<relatedtype> The separator between the block of related entries of type
‘relatedtype’. There is no default, if such a type-specific delimiter does not exist,
\relateddelimis used.

3.11.2 Context-sensitive Delimiters

The delimiters described in § 3.11.1 are globally defined. That is, no matter where you
use them, they print the same thing. This is not necessarily desirable for delimiters
which you might want to print different things in different contexts. Here ‘context’
means things like ‘inside a text citation’ or ‘inside a bibliography item’. For this reason,
biblatex provides a more sophisticated delimiter specification and user interface
alongside the standard one based on normal macros defined with \newcommand.

\DeclareDelimFormat [(context,...)] { (name, ...) } {(code) }
\DeclareDelimFormat* [(context,...)] { (name, ...)} { (code) }

Declares the delimiter macros in the comma-separated list (names) with the re-
placement text (code). If the optional comma-separated list of (contexts) is given,
declare the (names) only for those contexts. (names) defined without any (contexts)
behave just like the global delimiter definitions which \newcommand gives—just a
plain macro with a replacement which can be used as \name. However, you can
also call delimiter macros defined in this way by using \printdelim, which is
context-aware. The starred version clears all (context) specific declarations for all
(names) first.

\DeclareDelimAlias [(alias context,...)] {(alias)} [(delim context)] { (delim)}

Declares (alias) to be an alias for the delimiter (delim). If the optional
(alias context, ...) nor (delim context) are given, the assigment is performed for all
existing contexts of the target (delim) separately, so that (alias) becomes an exact
copy of (delim) in all contexts. If only the second optional argument (delim context)
is given, all existing contexts of (alias) will be cleared and the global/empty context
becomes an alias of (delim) in the context (delim context). The first optional argu-
ment (alias context, ...) may hold a list of contexts for which the alias is assigned. In

126

that case the second optional argument (delim context) specifies the context of the
target delimiter. This argument may not be a list, it can only hold one context. If it is
missing, the (alias context) is assumed (if (alias context) is a list, the assignment is
performed separately for each list item), if it is empty the global context is used.

\DeclareDelimAlias [bib,biblist] {finalnamedelim} [] {
— multinamedelim}

Defines the bib and biblist contexts of \finalnamedelim as aliases of
\multinamedelim in global context. On the other hand

\DeclareDelimAlias [bib,biblist] {finalnamedelim} {
— multinamedelim}

defines \finalnamedelim in the context bib to be an alias of
\multinamedelim in the bib context and defines \finalnamedelim
inbiblist context to be an alias of \multinamedelimin biblist.

\DeclareDelimAlias* [(alias context, ...)] {(alias)} [(delim context)] { (delim)}
Deprecated

The starred version of \DeclareDelimAlias is deprecated in favour of using
unstarred \DeclareDelimAlias with optional arguments.

It assigns the delimiter alias for specific contexts only. The first optional argu-
ment (alias context) holds a list of contexts for which the assignment is going to
be performed. If it is empty or missing the global/empty context is assumed. The
second optional argument (delim context) specifies the context of the target delimiter.
This argument may not be a list, it can only hold one context. If it is missing the
(alias context) is assumed (if (alias context) is a list, the assignment is performed
separately for each list item), if it is empty the global context is used.

\printdelim[(context)] { (name)}

Prints a delimiter with name (name), locally establishing a optional (context) first.
Without the optional (context), \printdelim uses the currently active delimiter
context.

Delimiter contexts are simply a string, the value of the internal macro
\blx@delimcontext which can be set manually by the command
\delimcontext

\delimcontext {(context)}

Set the delimiter context to (context). This setting is not global so that delimiter
contexts can be nested using the usual LaTeX group method.

\DeclareDelimcontextAlias{(alias)} {(name)}

The context-sensitive delimiter system creates delimiter contexts based on
the name of citation commands (‘parencite’, ‘textcite’ etc.) passed to
\DeclareCiteCommand. In certain cases where there are nested definitions
of citation commands where \DeclareCiteCommand calls itself (see the defini-
tion of \textcite in authoryear-icomp for example). The delimiter context

127

is then usually incorrect and the delimiter specifications do not work. For exam-
ple, the definition of \textcite in fact defines and uses \cbx@textcite and
so the context is automatically set to cbx@textcite when printing the citation.
Delimiter definitions expecting to see the context textcite therefore do not work.
Therefore this command is provided for style authors which aliases the context
(alias) to the context (name). For example:

\DeclareDelimcontextAlias{cbx@textcite} {textcite}

This (which is a default setting), makes sure that when inside the \cbx@textcite
citation command, the context is in fact textcite as expected.

biblatex has several default contexts which are established automatically in
various places:

none At begin document

bib Inside a bibliography begun with \printbibliography or inside a
\usedriver

biblist Inside a bibliography list begun with \printbiblist

‘citecommand’ Inside a citation command \citecommand defined with
\DeclareCiteCommand

For example, the defaults for \nametitledelim are:

\DeclareDelimFormat{nametitledelim}{\addcomma\space}
\DeclareDelimFormat [bib,biblist] {nametitledelim} {
— \labelnamepunct}
\DeclareDelimFormat [textcite] {nametitledelim} {\addspace
— }

This means that \nametitledelimis defined globally as ‘\addcomma\space’
as per the standard delimiter interface. However, in addition, the delimiter can be
printed using \printdelim which would print the same as \nametitledelim
apart from inside a \textcite, in which it would print \addspace which is
more suitable for running text, and in a bibliography (list) in which it takes the
value of \ labelnamepunct for compatibility reasons. If desired, a context can be
forced with the optional argument to \printdelim, so

\printdelim[textcite] {nametitledelim}

Would print \addspace regardless of the surrounding context of the
\printdelim. Contexts are just arbitrary strings and so you can establish them
at any time, using \delimcontext. If \printdelim finds no special value for
the delimiter (name) in the current context, it simply prints \name. This means
that style authors can use \printdelim and users expecting to be able to use
\renewcommand to redefine delimiters can do so with one caveat—such a definition
won’t change any context-specific delimiters which are defined:

128

\DeclareDelimFormat{delima} {X}
\DeclareDelimFormat [textcite] {delima} {Y}
\renewcommand* {\delima} {Z}

Here, \delima always prints ‘Z’. \printdelim{delima} in any context other
than ‘textcite’ also prints \delima and hence ‘Z’ but in a ‘textcite’ context prints
‘Y. See the 04-delimiters. tex example file that comes with biblatex for
more information.

3.11.3 Language-specific Commands

The commands in this section are language specific. When redefining them, you need
to wrap the new definition in a \DeclareBibliographyExtras command (in
an . 1bx file) ora \DefineBibliographyExtras command (user documents),
see § 3.9 for details. Note that all commands starting with \mk... take one or more
arguments.

\bibrangedash The language specific dash to be used for ranges of numbers. Defaults to
\textendash.

\bibrangessep The language specific separator to be used between multiple ranges. Defaults to a
comma followed by a space.

\bibdatesep The language specific separator used between date components in terse date formats.
Defaults to \hyphen.

\bibdaterangesep The language specific separator to be used for date ranges. Defaults to
\textendash for all date formats apart from ymd which defaults to a \slash.
The date format option iso is hard-coded to \slash since this is a standards
compliant format.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in the
language specific long date format.

\mkbibdateshort Similarto \mkbibdatelong but using the language specific short date format.

\mkbibtimezone Modifies a timezone string passed in as the only argument. By default this changes
‘Z’ to the value of \bibtimezone.

\bibdateuncertain The language specific marker to be used after uncertain dates when the global
option dateuncertain is enabled. Defaults to a space followed by a question
mark.

\bibdateeraprefix The language specific marker which is printed as a prefix to beginning BCE/BC
dates in a date range when the option dateera is set to ‘astronomical’. Defaults to
\textminus, if defined and \textendash otherwise.

\bibdateeraendprefix The language specific marker which is printed as a prefix to end BCE/BC
dates in a date range when the option dateera is set to ‘astronomical’. Defaults
to a thin space followed by \bibdateeraprefix when \bibdaterangesep
is set to a dash and to \bibdateeraprefix otherwise. This is a separate macro
so that you may add extra space before a negative date marker which, for example
follows a dash date range marker as this can look a little odd.

129

\bibtimesep The language specific marker which separates time components. Defaults to a colon.
\bibutctimezone The language specific string printed for the UTC timezone. Defaults to ‘Z’.

\bibtimezonesep The language specific marker which separates an optional time zone component
from a time. Empty by default.

\bibtzminsep The language specific marker which separates hour and minute component of offset
timezones. Defaults to a \bibtimesep.

\bibdatetimesep The language specific separator printed between date and time compo-
nents when printing time components along with date components (see the
<datetype>dateusetime option in § 3.1.2.1). Defaults to a space for
non-1s08601-2 output formats, and "T” for 1508601-2 output format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in a list, if applicable in the

respective language. Here is an example:

Michel Goossens, Frank Mittelbach, and Alexander
< Samarin

\finalandcomma is the comma before the word ‘and’. See also
\multinamedelim, \finalnamedelim, \textcitedelim, and
\revsdnamedelimin § 3.11.1.

\finalandsemicolon Prints the semicolon to be inserted before the final ‘and’ in a list of lists, if

applicable in the respective language. Here is an example:

Goossens, Mittelbach, and Samarin; Bertram and Wenworth
<~ ; and Knuth

\finalandsemicolon is the semicolon before the word ‘and’. See also
\textcitedelimin § 3.11.1.

\mkbibordinal {(integer)}
This command, which takes an integer as its argument, prints an ordinal number.
\mkbibmascord/{(integer)}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the
respective language.

\mkbibfemord{ (integer)}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the
respective language.

\mkbibneutord/{(integer)}

Similar to \mkbibordinal, but prints a neuter ordinal, if applicable in the respec-
tive language.

\mkbibordedition{ (integer)}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

130

\mkbibordseries{ (integer)}

\bibhang

\biblabelsep

\bibitemsep

\bibnamesep

\bibinitsep

\bibparsep

abbrvpenalty

Similar to \mkbibordinal, but intended for use with the term ‘series’.

3.11.4 Lengths and Counters

The length registers and counters in this section may be changed in the document
preamble with \setlength and \setcounter, respectively.

The hanging indentation of the bibliography, if applicable. This length is initialized
to \parindent at load-time. If \parindent is zero length for some reason,
\bibhang will default to 1em.

The horizontal space between entries and their corresponding labels in the biblio-
graphy. This only applies to bibliography styles which print labels, such as the
numeric and alphabetic styles. This length is initialized to twice the value of
\labelsep at load-time.

The vertical space between the individual entries in the bibliography. This length is
initialized to \ itemsep at load-time. Note that \bibitemsep, \bibnamesep,
and \bibinitsep obey the rules for \addvspace, that is, when vertical space
introduced by any of these commands immediately follows on from space introduced
by another of them, the resulting total space is equal to the largest of them.

Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a name which is different from the initial name of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography by author/editor name.
Note that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a letter which is different from the initial letter of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography alphabetically. Note
that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

The vertical space between paragraphs within an entry in the bibliography. The
default value is zero.

This counter, which is used by the localisation modules, holds the penalty used in
short or abbreviated localisation strings. For example, a linebreak in expressions
such as “et al” or “ed. by” is unfortunate, but should still be possible to prevent
overfull boxes. This counter is initialized to \hyphenpenalty at load-time. The
idea is making TeX treat the whole expression as if it were a single, hyphenatable
word as far as line-breaking is concerned. If you dislike such linebreaks, use a higher

131

value. If you do not mind them at all, set this counter to zero. If you want to suppress
them unconditionally, set it to ‘infinite’ (10 000 or higher).?®

highnamepenalty This counter holds a penalty affecting line-breaking in names. Please refer to

§§ 3.14.4 and 3.11.1 for explanation. The counter is initialized to \hyphenpenalty
at load-time. Use a higher value if you dislike the respective linebreaks. If you do not
mind them at all, set this counter to zero. If you prefer the traditional BibTeX behavior
(no linebreaks at highnamepenalty breakpoints), set it to ‘infinite’ (10 000 or
higher).

lownamepenalty Similartohighnamepenalty. Please refer to §§ 3.14.4 and 3.11.1 for explanation.

The counter is initialized to half the \hyphenpenalty at load-time. Use a higher
value if you dislike the respective linebreaks. If you do not mind them at all, set this
counter to zero.

biburlnumpenalty If this counter is set to a value greater than zero, biblatex will permit line-

breaks after numbers in all strings formatted with the \url command from the url
package. This will affect urRLs and Dpois in the bibliography. The breakpoints will be
penalized by the value of this counter. If URLs and/or DoIs in the bibliography run
into the margin, try setting this counter to a value greater than zero but less than
10000 (you normally want to use a high value like 9000). Setting the counter to zero
disables this feature. This is the default setting.

biburlucpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all

uppercase letters.

biburllcpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all

lowercase letters.

biburlbigbreakpenalty The biblatex version of url’s \UrlBigBreakPenalty. The de-

fault value is 100.

biburlbreakpenalty Thebiblatex version of url’s \UrlBreakPenalty. The default value

\biburlbigskip

\biburlnumskip

\biburlucskip

is 200.

The biblatex version of \Ur1lmuskip. This length holds the additional (stretch-
able) space inserted around breakable characters in the \url command from the
url package. The default value is Omu plus 3mu.

The additional space inserted after numbers in strings formatted with the \url
command from the url package. This will affect urLs and pois in the bibliography.
If urLs and/or Dois in the bibliography run into the margin, it may help to set this
length to add some small stretchable space, for example Omu plus 1mu. The
default setting is Omu. This value is only used if biburlnumpenalty is set to a
value different from zero.

Similar to biburlnumskip, except that it will add space after all uppercase letters.

®The default values assigned to abbrvpenalty, lownamepenalty, and highnamepenalty
are deliberately very low to prevent overfull boxes. This implies that you will hardly notice any
effect on line-breaking if the text is set justified. If you set these counters to 10 000 to suppress the
respective breakpoints, you will notice their effect but you may also be confronted with overfull
boxes. Keep in mind that line-breaking in the bibliography is often more difficult than in the body
text and that you can not resort to rephrasing a sentence. In some cases it may be preferable to set
the entire bibliography \raggedright to prevent suboptimal linebreaks. In this case, even the
fairly low default penalties will make a visible difference.

132

\biburllcskip

\bibellipsis

\noligature

\hyphenate

\hyphen

\nbhyphen

\nohyphenation

Similar to biburlnumskip, except that it will add space after all uppercase letters.

3.11.5 All-purpose Commands

The commands in this section are all-purpose text commands which are generally
available, not only in citations and the bibliography.

An ellipsis symbol with brackets: [...]".

Disables ligatures at this position and adds some space. Use this command to break
up standard ligatures like ‘fi’ and ‘fI’. It is similar to the " | shorthand provided by
some language modules of the babel/polyglossia packages.

A conditional hyphen. In contrast to the standard \ - command, this one allows
hyphenation in the rest of the word. It is similar to the " - shorthand provided by
some language modules of the babel/polyglossia packages.

An explicit, breakable hyphen intended for compound words. In contrast to a literal
‘~’, this command allows hyphenation in the rest of the word. It is similar to the
"= shorthand provided by some language modules of the babel/polyglossia
packages.

An explicit, non-breakable hyphen intended for compound words. In contrast to a
literal ‘-’, this command does not permit line breaks at the hyphen but still allows
hyphenation in the rest of the word. It is similar to the "~ shorthand provided by
some language modules of the babel/polyglossia packages.

A generic switch which suppresses hyphenation locally. Its scope should normally
be confined to a group. The command uses a language without hyphenation patterns
to suppress hyphenation. The idea was taken from Peter Wilson’s hyphenat
package. Note that this command should only be used for small portions of text and
that its effects are negated if babel/polyglossia is used to switch the language
while it is active.

\textnohyphenation{(text)}

Similar to \nohyphenation but restricted to the (text) argument.

\mknumalph { (integer) }

Takes an integer in the range 1-702 as its argument and converts it to a string as
follows: 1=a, ..., 26=z, 27=aa, ..., 702=zz. This is intended for use in formatting
directives for the extradate, extraname and extraalpha fields.

\mkbibacro {(text)}

Generic command which typesets an acronym using the small caps variant of the
current font, if available, and as-is otherwise. The acronym should be given in
uppercase letters.

133

\autocap {(character) }

Automatically converts the (character) to its uppercase form if biblatex’s punc-
tuation tracker would capitalize a localisation string at the current location. This
command is robust. It is useful for conditional capitalization of certain strings in an
entry. Note that the (character) argument is a single character given in lowercase.
For example:

\autocap{s}pecial issue

will yield ‘Special issue’ or ‘special issue’, as appropriate. If the string to be capitalized
starts with an inflected character given in Ascii notation, include the accent command
in the (character) argument as follows:

\autocap{\'e}dition sp\'eciale

This will yield ‘Edition spéciale’ or ‘édition spéciale’. If the string to be capitalized
starts with a command which prints a character, such as \ae or \oe, simply put
the command in the (character) argument:

\autocap{\oe}uvres

This will yield ‘Euvres’ or ‘ceuvres’.

3.12 Language-specific Notes

The facilities discussed in this section are specific to certain localisation modules.

3.12.1 American

The American localisation module uses \uspunctuation from § 4.7.5 to enable
‘American-style’ punctuation. If this feature is enabled, all trailing commas and
periods after \mkbibquote will be moved inside the quotes. If you want to disable
this feature, use \ stdpunctuation as follows:

\DefineBibliographyExtras{american}{$%
\stdpunctuation

By default, the ‘American punctuation’ feature is enabled by the american localisa-
tion module only. The above code is only required if you want American localisation
without American punctuation. Since standard punctuation is the package default, it
would be redundant with any other language.

It is highly advisable to always specify american,british, australian, etc.
rather than english when loading the babel/polyglossia packages to avoid
any possible confusion. Older versions of the babe1 package used to treat english
as an alias for british; more recent ones treat it as an alias for american. The
biblatex package essentially treats english as an alias for american, except
for the above feature which is only enabled if american is requested explicitly.

134

3.12.2 Bulgarian

Like the Greek localisation module, the Bulgarian module also requires UTF-8 support.
It will not work with any other encoding.

3.12.3 Greek

The Greek localisation module requires UTF-8 support. It will not work with any
other encoding. Generally speaking, the biblatex package is compatible with the
inputenc package and with the Unicode engines LuaLaTeX and XeLaTeX. The ucs
package will not work. Note that you may need to load additional packages which set
up Greek fonts. As a rule of thumb, a setup which works for regular Greek documents
should also work with biblatex. However, there is one fundamental limitation.
As of this writing, biblatex has no support for switching scripts. Greek titles in
the bibliography should work fine, but English and other titles in the bibliography
may be rendered in Greek letters. If you need multi-script bibliographies, using a
Unicode engine is the only sensible choice.

3.12.4 Hungarian

The Hungarian localisation module needs to redefine certain field formats to obtain
the grammatically correct word order. This means that these field formats are
overwritten whenever the Hungarian localisation is active, no matter whether they
were defined in the preamble or by a custom style. So please be aware that using
the Hungarian localisation module may cause the bibliography output to deviate
from the format dictated by the loaded style and preamble definitions. Changes
to this behaviour need to be made using \DefineBibliographyExtras. In
particular \mkpageprefix is redefined to output the ‘page’ or ‘pages’ string as
a suffix after the page number following Hungarian conventions, and all formats
of fields involving pages, chapters and volumes were modified so that numbers
are printed as ordinals. The Hungarian localisation module will print a warning to
remind you of these changes whenever it is loaded in a document. The warning tells
you how to silence it.

3.12.5 Latvian

The Latvian localisation module, like the Hungarian language module, needs to
redefine certain field formats to obtain the grammatically correct word order. This
means that these field formats are overwritten whenever the Latvian localisation
is active, no matter whether they were defined in the preamble or by a custom
style. So please be aware that using the Latvian localisation module may cause
the bibliography output to deviate from the format dictated by the loaded style
and preamble definitions. Changes to this behaviour need to be made using
\DefineBibliographyExtras. In particular \mkpageprefix is redefined
to output the ‘page’ or ‘pages’ string as a suffix after the page number following
Latvian conventions, and all formats of fields involving pages, chapters and volumes
were modified so that numbers are printed as ordinals. The Latvian localisation
module will print a warning to remind you of these changes whenever it is loaded in
a document. The warning tells you how to silence it.

135

smartand

\forceE

\forceY

3.12.6 Lithuanian

The Lithuanian localisation module needs UTF-8 support and will only work with
this encoding.

3.12.7 Russian

Like the Greek and Lithuanian localisation module, the Russian module also requires
UTF-8 support. It will not work with any other encoding.

3.12.8 Spanish

Handling the word ‘and’ is more difficult in Spanish than in the other languages
supported by this package because it may be ‘y’ or ‘e’, depending on the initial sound
of the following word. Therefore, the Spanish localisation module does not use the
localisation string ‘and’ but a special internal ‘smart and’ command. The behavior
of this command is controlled by the smartand counter.

This counter controls the behavior of the internal ‘smart and’ command. When set
to 1, it prints ‘y’ or ‘e’, depending on the context. When set to 2, it always prints ‘y’.
When set to 3, it always prints ‘e’. When set to 0, the ‘smart and’ feature is disabled.
This counter is initialized to 1 at load-time and may be changed in the preamble.
Note that setting this counter to a positive value implies that the Spanish localisation
module ignores \finalnamedelimand \finallistdelim.

Use this command in bib files if biblatex gets the ‘and’ before a certain name
wrong. As its name suggests, it will enforce ‘e’. This command must be used in a
special way to be correct BibTeX datafile format. Here is an example:

author = {Edward Jones and Eoin Maguire},
author = {Edward Jones and {\forceE{E}}oin Maguire},

Note that the initial letter of the respective name component is given as an argument
to \forceE and that the entire construct is wrapped in an additional pair of curly
braces.

Similar to \ forceE but enforces ‘y’.

3.12.9 Turkish

By default babel’s Turkish localisation module makes ‘=" a ‘shorthand’, which
breaks the (key)=(value) parser uses by biblatex. This problem can be resolved
by telling babel not to make ‘=" a shorthand (for example by loading babel with
the option shorthands=:!) or by loading a (key)=(value) package that can deal
with active characters (kvsetkeys and xkeyval)®.

3.13 Usage Notes

The following sections give a basic overview of the biblatex package and discuss
some typical usage scenarios.

®https://tex.stackexchange.com/a/160428/35864

136

https://tex.stackexchange.com/a/160428/35864

3.13.1 Overview

Using the biblatex package is slightly different from using traditional BibTeX
styles and related packages. Before we get to specific usage scenarios, we will
therefore have a look at the structure of a typical document first:

\documentclass{...}
\usepackage[...] {biblatex}
\addbibresource{bibfile.bib}
\begin{document }

\cite{...}
\printbibliography
\end{document}

With traditional BibTeX, the \bibliography command serves two purposes. It
marks the location of the bibliography and it also specifies the bib file(s). The file
extension is omitted. With biblatex, resources are specified in the preamble with
\addbibresource using the full name with .bib suffix. The bibliography is
printed using the \printbibliography command which may be used multiple
times (see § 3.7 for details). The document body may contain any number of citation
commands (§ 3.8). Processing this example file requires that a certain procedure be
followed. Suppose our example file is called example . tex and our bibliographic
dataisin bibfile.bib. The procedure, then, is as follows:

1. Run latex on example. tex. If the file contains any citations, biblatex
will request the respective data from biber by writing commands to the
auxiliary file example.bcft.

2. Runbiber onexample.bcf. biber will retrieve the data frombibfile.
bib and write it to the auxiliary file example .bbl in a format which can
be processed by biblatex.

3. Run latex on example.tex. biblatex will read the data from
example.bbl and print all citations as well as the bibliography.

3.13.2 Auxiliary Files

The biblatex package uses one auxiliary bcf file only. Even if there are citation
commands in a file included via \include, you only need to run biber on the
main bcf file. All information biber needs is in the bcf file, including information
about all refsections if using multiple refsection environments (see § 3.13.3).

3.13.3 Multiple Bibliographies

In a collection of articles by different authors, such as a conference proceedings
volume for example, it is very common to have one bibliography for each article
rather than a global one for the entire book. In the example below, each article would
be presented as a separate \chapter with its own bibliography.

\documentclass{...}
\usepackage{biblatex}
\addbibresource{...}

137

\begin{document}
\chapter{...}
\begin{refsection}

\printbibliography[heading=subbibliography]
\end{refsection}

\chapter{...}

\begin{refsection}

\printbibliography[heading=subbibliography]
\end{refsection}
\end{document}

If \printbibliography is used inside a refsection environment, it auto-
matically restricts the scope of the list of references to the enclosing refsection
environment. For a cumulative bibliography which is subdivided by chapter but
printed at the end of the book, use the section optionof \printbibliography
to select a reference section, as shown in the next example.

\documentclass{...}

\usepackage{biblatex}

\defbibheading{subbibliography} {%
\section*{References for Chapter \ref{refsection:
<~ \therefsection}}}

\addbibresource{...}

\begin{document}

\chapter{...}

\begin{refsection}

\end{refsection}
\chapter{...}
\begin{refsection}

\end{refsection}

\printbibheading

\printbibliography[section=1, heading=subbibliography]
\printbibliography[section=2, heading=subbibliography]
\end{document}

Note the definition of the bibliography heading in the above example. This is the
definition taking care of the subheadings in the bibliography. The main heading is
generated with a plain \chapter command in this case. The biblatex package
automatically sets a label at the beginning of every refsection environment, us-
ing the standard \ 1abel command. The identifier used is the string refsection:
followed by the number of the respective refsection environment. The number
of the current section is accessible via the refsection counter. When using the
section option of \printbibliography, this counter is also set locally. This
means that you may use the counter in heading definitions to print subheadings
like “References for Chapter 3”, as shown above. You could also use the title of the
respective chapter as a subheading by loading the nameref package and using
\nameref instead of \ref:

138

\usepackage{nameref }
\defbibheading{subbibliography}{%
\section*{\nameref{refsection:\therefsection}}}

Since giving one \printbibliography command for each part of a subdivided
bibliography is tedious, biblatex provides a shorthand. The \bibbysection
command automatically loops over all reference sections. This is equivalent to giving
one \printbibliography command for every section but has the additional
benefit of automatically skipping sections without references. In the example above,
the bibliography would then be generated as follows:

\printbibheading
\bibbysection[heading=subbibliography]

When using a format with one cumulative bibliography subdivided by chapter (or
any other document division) it may be more appropriate to use refsegment
rather than refsection environments. The difference is that the refsection
environment generates labels local to the environment while re f segment does not
affect the generation of labels, hence they will be unique across the entire document.
The next example could also be given in § 3.13.4 because, visually, it creates one
global bibliography subdivided into multiple segments.

\documentclass{...}
\usepackage{biblatex}
\defbibheading{subbibliography}{%
\section* {References for Chapter \ref{refsegment:
— \therefsection\therefsegment}}}
\addbibresource{...}
\begin{document }
\chapter{...}
\begin{refsegment}

\end{refsegment}
\chapter{...}
\begin{refsegment}

\end{refsegment}

\printbibheading

\printbibliography[segment=1, heading=subbibliography]
\printbibliography[segment=2, heading=subbibliography]
\end{document}

The use of refsegment is similar to refsection and there is also a correspond-
ing segment option for \printbibliography. The biblatex package auto-
matically sets a label at the beginning of every refsegment environment using
the string refsegment : followed by the number of the respective refsegment
environment as an identifier. There is a matching refsegment counter which may
be used in heading definitions, as shown above. As with reference sections, there is
also a shorthand command which automatically loops over all reference segments:

139

\printbibheading
\bibbysegment [heading=subbibliography]

This is equivalent to giving one \printbibliography command for every seg-
ment in the current refsection

3.13.4 Subdivided Bibliographies

It is very common to subdivide a bibliography by certain criteria. For example, you
may want to list printed and online resources separately or divide a bibliography
into primary and secondary sources. The former case is straightforward because
you can use the entry type as a criterion for the type and nottype filters of
\printbibliography. The next example also demonstrates how to generate
matching subheadings for the two parts of the bibliography.

\documentclass{...}
\usepackage{biblatex}
\addbibresource{...}

\begin{document }

\printbibheading
\printbibliography[nottype=online, heading=
— subbibliography,
title={Printed Sources}]
\printbibliography[type=online, heading=subbibliography,
title={Online Sources}]

\end{document}

You may also use more than two subdivisions:

\printbibliography[type=article, ...]
\printbibliography[type=book, .. .]
\printbibliography[nottype=article, nottype=book, ...]

It is even possible to give a chain of different types of filters:

\printbibliography[section=2, type=book, keyword=abc,
— notkeyword=xyz]

This would print all works cited in reference section 2 whose entry type is @book
and whose keywords field includes the keyword ‘abc’ but not ‘xyz’. When using
bibliography filters in conjunction with a numeric style, see § 3.14.5. If you need
complex filters with conditional expressions, use the £i1ter option in conjunction
with a custom filter defined with \defbibfilter. See § 3.7.9 for details on custom
filters.

\documentclass{...}
\usepackage{biblatex}

140

\addbibresource{...}
\begin{document}

\printbibheading
\printbibliography|[keyword=primary, heading=
— subbibliography, %
title={Primary Sources}]
\printbibliography[keyword=secondary, heading=
— subbibliography, %
title={Secondary Sources}]
\end{document}

Dividing a bibliography into primary and secondary sources is possible with a
keyword filter, as shown in the above example. In this case, with only two subdivi-
sions, it would be sufficient to use one keyword as filter criterion:

\printbibliography[keyword=primary, .. .]
\printbibliography[notkeyword=primary, ...]

Since biblatex has no way of knowing if an item in the bibliography is considered
to be primary or secondary literature, we need to supply the bibliography filter with
the required data by adding a keywords field to each entry in the bib file. These
keywords may then be used as targets for the keyword and notkeyword filters,
as shown above. It may be a good idea to add such keywords right away while
building a bib file.

@Book{key,
keywords = {primary, some,other, keywords},

An alternative way of subdividing the list of references are bibliography categories.
They differ from the keywords-based approach shown in the example above in that
they work on the document level and do not require any changes to the bib file.

\documentclass{...}

\usepackage{biblatex}
\DeclareBibliographyCategory{primary}
\DeclareBibliographyCategory{secondary}
\addtocategory{primary}{keyl, key3, key6}
\addtocategory{secondary} {key2, key4, key5}
\addbibresource{...}

\begin{document}

\printbibheading
\printbibliography[category=primary,heading=
— subbibliography, %
title={Primary Sources}]
\printbibliography[category=secondary, heading=
— subbibliography, %
title={Secondary Sources}]
\end{document}

141

In this case it would also be sufficient to use one category only:

\printbibliography|[category=primary, ...]
\printbibliography[notcategory=primary, .. .]

It is still a good idea to declare all categories used in the bibliography explicitly
because there is a \bibbycategory command which automatically loops over
all categories. This is equivalent to giving one \printbibliography command
for every category, in the order in which they were declared.

\documentclass{...}

\usepackage{biblatex}
\DeclareBibliographyCategory{primary}
\DeclareBibliographyCategory{secondary}
\addtocategory{primary} {keyl, key3, key6}
\addtocategory{secondary} {key2, key4, key5}
\defbibheading{primary} {\section*{Primary Sources}}
\defbibheading{secondary}{\section*{Secondary Sources}}
\addbibresource{...}

\begin{document }

\printbibheading
\bibbycategory
\end{document}

The handling of the headings is different from \bibbysection and
\bibbysegment in this case. \bibbycategory uses the name of the current
category as a heading name. This is equivalent to passing heading=(category) to
\printbibliography and implies that you need to provide a matching heading
for every category.

3.13.5 Entry Sets

An entry set is a group of entries which are cited as a single reference and listed
as a single item in the bibliography. The individual entries in the set are separated
by \entrysetpunct (§ 4.10.1). The biblatex package supports two types of
entry sets. Static entry sets are defined in the bib file like any other entry. Dynamic
entry sets are defined with \defbibentryset (§ 3.7.11) on a per-document/per-
refsection basis in the document preamble or the document body. This section
deals with the definition of entry sets; style authors should also see § 4.11.1 for
further information. Please note that entry sets only make sense for styles which
refer to entries by labels such as the provided numeric and alphabetic styles.
Styles which refer to entries via names, titles etc. (authoryear, authortitle,
verbose etc.) rarely employ sets and do not support them by default when they
are cited directly. Custom styles may of course choose to implement some manner
of set citation support in any manner they choose.

3.13.5.1 Static entry sets

Static entry sets are defined in the bib file like any other entry. Defining an entry
set is as simple as adding an entry of type @set. The entry has an entryset field
defining the members of the set as a separated list of entry keys:

142

@Set{setl,
entryset = {keyl, key2, key3},

Entries may be part of a set in one document/refsection and stand-alone references in
another one, depending on the presence of the @set entry. If the @set entry is cited,
the set members are grouped automatically. If not, they will work like any regular
entry. Note that with BibTeX as the backend, there must also be an entryset field
in the set members which point to the set parent. With biber, this is not necessary.

3.13.5.2 Dynamic entry sets

Dynamic entry sets are set up and work much like static ones. The main difference is
that they are defined in the document preamble or on the fly in the document body
using the \defbibentryset command from § 3.7.11:

\defbibentryset{setl}{keyl, key2, key3}

Dynamic entry sets in the document body are local to the enclosing refsection
environment, if any. Otherwise, they are assigned to reference section 0. Those
defined in the preamble are assigned to reference section 0.

3.13.6 Data Containers

The @xdata entry type serves as a data container holding one or more fields. Data
in @xdata entries may be referenced and used by other entries. @xdata entries
may not be cited or added to the bibliography, they only serve as a data source for
other entries (including other @xdata entries). This data inheritance mechanism is
useful for fixed field combinations such as publisher/location and for other
frequently used data:

@XData{hup,
publisher
location

{Harvard University Press},
{Cambridge, Mass.},

}

@Book{...,
author =
title
date =
xdata

Using a separated list of keys in its xdata field, an entry may inherit data from
several @xdata entries. Cascading @xdata entries are supported as well, i. e., an
@xdata entry may reference one or more other @xdata entries:

@XData{macmillan:name,
publisher = {Macmillan},
}
@XData{macmillan:place,
location = {New York and London},

143

}
@XData{macmillan,
xdata = {macmillan:name,macmillan:place},
}
@Book{...,
author =
title =
date =
xdata =

.y

macmillan},

{
{
{
{

More granular @xdata entry data may be referenced. It is not necessary to reference
only entire fields. For example:

@XData{someauthors,

author = {John Smith and Brian Brown}
}
@XData{somelocations,

location = {Locationl and Location2}

}

@XData{somenotes,

note = {A note}
}
@Book{...,
author = {Alan Drudge and xdata=someauthors-author
— =21},
editor = {xdata=someauthors-author},
location = {xdata=somelocations-location-1 and
— Location3},
note = {xdata=somenotes-note}

The format of granular @xdata references are as follows:
Edatﬂj§k6y>h§field>tﬁindex>
1. The value of the biber option -—xdatamarker (by default 'xdata’)
2. The value of the biber option —-xnamesep (by default ’=")
3. A valid entry key of an @xdata entry
4. The value of the biber option --xdatasep (by default ’-’
5. A valid entry field in the source @xdata entry
6. (Optional) The value of the biber option --xdatasep (by default ’-’)

7. (Optional) A valid 1-based index into a list/name field in the source @xdata
entry

There are ——output-* variants of the above options for biber tool mode output
so that these separators and markers can be programatically changed. Taking the
example above, this @book would resolve to:

144

@Book{...,

author = {Alan Drudge and Brian Brown},
editor = {John Smith},

location = {Locationl and Location3},
note = {A note}

Things to note with granular @xdata references:

+ References must be made only to @xdata fields. An warning will be generated
otherwise and the reference will not be resolved

+ References must be made only to @xdata fields of the same type (list/name
and datatype) as the referencing field. An warning will be generated otherwise
and the reference will not be resolved

« References to fields of datatype ’date’ are not possible. References to legacy
year and month fields are possible

« References to missing entries, fields or list/name indices will generate a warn-
ing and the reference will not be resolved

« If an index is missing for a reference to a list/name field, 1 is assumed

See also §§ 2.1.1 and 2.2.3.

3.13.7 Electronic Publishing Information

The biblatex package provides three fields for electronic publishing information:
eprint,eprinttype,and eprintclass. The eprint field is a verbatim field
similar to doi which holds the identifier of the item. The eprinttype field holds
the resource name, i.e., the name of the site or electronic archive. The optional
eprintclass field is intended for additional information specific to the resource
indicated by the eprinttype field. This could be a section, a path, classification
information, etc. If the eprinttype field is available, the standard styles will use
it as a literal label. In the following example, they would print “Resource: identifier”
rather than the generic “eprint: identifier”:

eprint = {identifier},
eprinttype {Resource},

The standard styles feature dedicated support for a few online archives. For arXiv
references, put the identifier in the eprint field and the string arxiv in the
eprinttype field:

{math/0307200v3},
{arxiv},

eprint
eprinttype

For papers which use the new identifier scheme (April 2007 and later) add the primary
classification in the eprintclass field:

eprint = {1008.2849v1},
eprinttype = {arxiv},
eprintclass = {cs.DS},

145

There are two aliases which ease the integration of arXiv entries. archiveprefix
is treated as an alias for eprinttype; primaryclass is an alias for
eprintclass. If hyperlinks are enabled, the eprint identifier will be transformed
into a link to arxiv.org. See the package option arxiv in § 3.1.2.1 for further
details.

For jsToR references, put the stable jsTOR number in the eprint field and the
string jstor in the eprinttype field:

eprint = {number},
eprinttype {jstor},

When using JsTOR’s export feature to export citations in BibTeX format, JSTOR uses
the url field by default (where the (number) is a unique and stable identifier):

url = {http://www.]jstor.org/stable/number},

While this will work as expected, full UrLs tend to clutter the bibliography. With
the eprint fields, the standard styles will use the more readable “ysTor: (number)”
format which also supports hyperlinks. The (number) becomes a clickable link if
hyperref support is enabled.

For PubMed references, put the stable PubMed identifier in the eprint field and
the string pubmed in the eprinttype field. This means that:

url = {http://www.ncbi.nlm.nih.gov/pubmed/pmid},

becomes:

eprint = {pmid},
eprinttype = {pubmed},

and the standard styles will print “pmID: (pmid)” instead of the lengthy UrL. If
hyperref support is enabled, the (pmid) will be a clickable link to PubMed.

For handles (aDLs), put the handle in the eprint field and the string hd1 in the
eprinttype field:

eprint
eprinttype

{handle},
{hdl},

For Google Books references, put Google’s identifier in the eprint field and the
string googlebooks in the eprinttype field. This means that, for example:

url = {http://books.google.com/books?id=XXud4AkRVBBoC},

would become:

eprint = {XXu4AkRVBBoC},
eprinttype = {googlebooks},

and the standard styles would print “Google Books: XXu4AkRVBBoC” instead of
the full urt. If hyperref support is enabled, the identifier will be a clickable link to
Google Books.?’

Note that eprint is a verbatim field. Always give the identifier in its unmodified
form. For example, there is no need to replace _ with \ . Also see § 4.11.2 on how
to add dedicated support for other eprint resources.

#’Note that the Google Books ID seems to be a bit of an ‘internal’ value. As of this writing, there does
not seem to be any way to search for an 1b on Google Books. You may prefer to use the url in
this case.

146

3.13.8 External Abstracts and Annotations

Styles which print the fields abstract and/or annotation may support an
alternative way of adding abstracts or annotations to the bibliography. Instead of
including the text in the bib file, it may also be stored in an external LaTeX file. For
example, instead of saying

@Article{keyl,

abstract = {This is an abstract of entry “keyl'.}

in the bib file, you may create a file named bibabstract-keyl.tex and put
the abstract in this file:

This is an abstract of entry " keyl'.
\endinput

The name of the external file must be the entry key prefixed with bibabstract-
or bibannotation-, respectively. You can change these prefixes by redefining
\bibabstractprefixand \bibannotationprefix. Note that this feature
needs to be enabled explicitly by setting the package option loadfiles from
§ 3.1.2.1. The option is disabled by default for performance reasons. Also note that
any abstract and annotation fields in the bib file take precedence over the
external files. Using external files is strongly recommended if you have long abstracts
or a lot of annotations since this may increase memory requirements significantly.
It is also more convenient to edit the text in a dedicated LaTeX file. Style authors
should see § 4.11.3 for further information.

3.14 Hints and Caveats

This section provides additional usage hints and addresses some common problems
and potential misconceptions.

3.14.1 Usage with KOMA-Script Classes

When used in conjunction with a recent version?® one of the scrbook, scrreprt,

or scrartcl classes, biblatex passes control over the (default) headings
bibliography and biblist from § 3.7.7 to the class. Hence, bibliography-
heading-related class options can be used as usual. You can override the
default headings by using the heading option of \printbibliography,
\printbibheading and \printbiblist. See §§ 3.7.2, 3.7.3, 3.7.7 for details.

biblatex also tries to detect bibliography-related class options and settings
itself.?” This was required to be able to adapt the bibliography headings to the class
settings in older versions of koMa-Script. If one of the above classes is detected,

28 At least koMa-Script 3.25 (2018/03/30).

®This applies to the traditional syntax of these options (bibtotoc and bibtotocnumbered)
as well as to the (key)=(value) syntax introduced in KoMA-Script 3.x,i.e., to bibliography=
nottotoc, bibliography=totoc, and bibliography=totocnumbered. The global
toc=bibliography and toc=bibliographynumbered options as well as their aliases
are detected as well. In any case, the options must be set globally in the optional argument to
\documentclass.

147

biblatex will provide the following additional tests which may be useful in custom
heading definitions. Since these tests rely on the error-prone external detection of
KoMA-Script settings and are no longer used with newer komA-Script versions, these
tests are deprecated and should no longer be used.

\ifkomabibtotoc{(true)} { (false)}

Deprecated
Expands to (true) if the class would add the bibliography to the table of contents,
and to (false) otherwise. This test is deprecated.
1fk bibtot b d{(t l
\ifkomabibtotocnumbered{(true)} { (false)} Deprecated

Expands to (true) if the class would add the bibliography to the table of con-
tents as a numbered section, and to (false) otherwise. If this test yields (true),
\ifkomabibtotoc will always yield (true) as well, but not vice versa. This test
is deprecated.

3.14.2 Usage with the Memoir Class

When using biblatex with the memoir class, most class facilities for adapting
the bibliography have no effect. Use the corresponding facilities of this package in-
stead (§§ 3.7.2, 3.7.7, 3.7.8). Instead of redefining memoir’s \bibsection, use the
heading option of \printbibliography and \defbibheading (§§ 3.7.2
and 3.7.7). Instead of \prebibhook and \postbibhook, use the prenote and
postnote options of \printbibliography and \defbibnote (§§ 3.7.2 and
3.7.8). All default headings are adapted at load-time such that they blend well with the
default layout of this class. The default headings bibliography and biblist
(§3.7.7) are also responsive tomemoir’s \bibintoc and \nobibintoc switches.
The length register \bibitemsep is used by biblatex in a way similar to
memoir (§ 3.11.4). This section also introduces some additional length registers
which correspond to memoir’s \biblistextra. Lastly, \setbiblabel does
not map to a single facility of the biblatex package since the style of all labels
in the bibliography is controlled by the bibliography style. See § 4.2.2 in the author
section of this manual for details. If the memoir class is detected, biblatex will
also provide the following additional test which may be useful in custom heading
definitions:

\ifmemoirbibintoc{(true)} {(false)}

Expands to (true) or (false), depending on memoir’s \bibintoc and
\nobibintoc switches. This is a LaTeX frontend to memoir’s \ifnobibintoc
test. Note that the logic of the test is reversed.

3.14.3 Page Numbers in Citations

If the (postnote) argument to a citation command is a page number or page range,
biblatex will automatically prefix it with ‘p. or ‘pp. by default. This works
reliably in typical cases, but sometimes manual intervention may be required. In
this case, it is important to understand how this argument is handled in detail. First,
biblatex checks if the postnote is an Arabic or Roman numeral (case insensitive).
If this test succeeds, the postnote is considered as a single page or other number which
will be prefixed with ‘p. or some other string which depends on the pagination
field (see § 2.3.12). If it fails, a second test is performed to find out if the postnote is a
range or a list of Arabic or Roman numerals. If this test succeeds, the postnote will

148

be prefixed with ‘pp.” or some other string in the plural form. If it fails as well, the
postnote is printed as is. Note that both tests expand the (postnote). All commands
used in this argument must therefore be robust or prefixed with \protect. Here
are a few examples of (postnote) arguments which will be correctly recognized as a
single number, a range of numbers, or a list of numbers, respectively:

\cite 5]{key}
\cite il {key}
\cite XIV]{key}
\cite[34--38] {key}

[2

[v

[

[3
\cite[iv--x] {key}
\cite[185/86] {key}

\cite[XI \& XV]{key}

\cite[3, 5, 7]{key}

\Cite[Vll——X, 5, 71{key}

In some other cases, however, the tests may get it wrong and you need to resort to the
auxiliary commands \pnfmt, \pno, \ppno, and \nopp from § 3.8.8. For example,
suppose a work is cited by a special pagination scheme consisting of numbers and
letters. In this scheme, the string ‘27a’ would mean ‘page 27, part a’. Since this
string does not look like a number or a range to biblatex, you need to force the
prefix for a single number manually:

\cite[\pno~27a] {key}

There is also a \ppno command which forces a range prefix as well as a \nopp
command which suppresses all prefixes:

\cite[\ppno~27a--28c] {key}
\cite[\nopp 25] {key}

These commands may be used anywhere in the (postnote) argument. They may also
be used multiple times. For example, when citing by volume and page number, you
may want to suppress the prefix at the beginning of the postnote and add it in the
middle of the string:

\cite[VII, \pno~5]{key}
\cite[VII, \pno~3, \ppno~40--45]{key}
\cite[see] [\ppno~37--46, in particular \pno~40] {key}

The command \pnfmt can be used for (postnote)s consisting of a page range and
some additional text. \pnfmt prints its argument in the format specified for the
postnote and can be used to format the page range automatically without the need
for \pno and \ppno.

\cite[\pnfmt{37-46}, in particular \pnfmt{40}]{key}
There are also two auxiliary command for suffixes like ‘the following page(s)’. Instead

of inserting such suffixes literally (which would require \ppno to force a prefix):

149

\cite[\ppno~27~sqg.] {key}
\cite[\ppno~55~sqq.] {key}

use the auxiliary commands \psq and \psqq. Note that there is no space between
the number and the command. This space will be inserted automatically and may be
modified by redefining the macro \ sgspace.

\cite[27\psqgl {key}
\cite[55\psqq] {key}

Since the postnote is printed without any prefix if it includes any character which is
not an Arabic or Roman numeral, you may also type the prefix manually—though
this is discouraged:

\cite[p.~5] {key}

It is possible to suppress the prefix on a per-entry basis by setting the pagination
field of an entry to ‘none’, see § 2.3.12 for details. If you do not want any prefixes at
all or prefer to type them manually, you can also disable the entire mechanism in
the document preamble or the configuration file as follows:

\DeclareFieldFormat{postnote} {#1}

The (postnote) argument is handled as a field and the formatting of this field is
controlled by a field formatting directive which may be freely redefined. The above
definition will simply print the postnote as is. See §§ 4.3.2 and 4.4.2 in the author
guide for further details.

3.14.4 Name Parts and Name Spacing

The biblatex package gives users and style authors very fine-grained control of
name spacing and the line-breaking behavior of names. The commands discussed in
the following are documented in §§ 3.11.1 and 4.10.1. This section is meant to give
an overview of how they are put together. A note on terminology: a name part is
a basic part of the name, for example the given or the family name. Each part of a
name may be a single name or it may be composed of multiple names. For example,
the name part ‘given name’ may be composed of a given and a middle name. The
latter are referred to as name elements in this section. Let’s consider a simple name
first: “John Edward Doe”. This name is composed of the following parts:

Given John Edward
Prefix —

Family Doe

Suffix —

The spacing, punctuation and line-breaking behavior of names is controlled by six
macros:

150

a=\bibnamedelima Inserted by the backend after the first element of every
name part if that element is less than three characters
long and before the last element of every name part.

b=\bibnamedelimb Inserted by the backend between all elements of a name
part where \bibnamedelima does not apply.

c=\bibnamedelimc Inserted by a formatting directive between the name
prefix and the family name if useprefix=true. If
useprefix=false, \bibnamedelimd is used
instead.

d=\bibnamedelimd Inserted by a formatting directive between name parts
where \bibnamedelimc does not apply.

i=\bibnamedelimi Replaces \bibnamedelima/b after initials

p=\revsdnamepunct Inserted by a formatting directive after the family name
when the name parts are reversed.

This is how the delimiters are employed:

John|

Edwarthoe

Doe

r

John
pld

Edward

Initials in the bib file get a special delimiter:

J.

_Edward‘dDoe

Let’s consider a more complex name: “Charles-Jean Etienne Gustave Nicolas de La
Vallée Poussin”. This name is composed of the following parts:

Given Charles-Jean Etienne Gustave Nicolas

Prefix de
Family La Vallée Poussin
Suffix —

The delimiters:

Vallée| Poussin

a a

Charles—Jean‘bEtienne‘bGustave

Nicola#dde

La

a

Note that \bibnamedelima/b/1i are inserted by the backend. The backend
processes the name parts and takes care of the delimiters between the elements
that make up a name part, processing each part individually. In contrast to that,
the delimiters between the parts of the complete name (\bibnamedelimc/d)
are added by name formatting directives at a later point in the processing chain.
The spacing and punctuation of initials is also handled by the backend and may be
customized by redefining the following three macros:

a=\bibinitperiod Inserted by the backend after initials.

b=\bibinitdelim Inserted by the backend between multiple initials.

c=\bibinithyphendelim Inserted by the backend between the initials of
hyphenated name parts, replacing
\bibinitperiodand \bibinitdelim.

This is how they are employed:
thEk Doe

K|. -H|.

c a

Mustermann

151

3.14.5 Split Bibliographies and Citation Labels

The citation labels generated by this package are assigned to the full list of references
before it is split up by any bibliography filters. They are guaranteed to be unique
across the entire document (or a refsection environment), no matter how many
bibliography filters you are using. When using a numeric citation scheme, however,
this will most likely lead to discontinuous numbering in split bibliographies. Use
the defernumbers package option to avoid this problem. If this option is enabled,
numeric labels are assigned the first time an entry is printed in any bibliography.

Compare the output of the following example with defernumbers=true and
defernumbers=false.

\documentclass{article}
\usepackage [defernumbers=true] {biblatex}

\addbibresource{biblatex-examples.bib}

\begin{document}
Lorem \autocite{worman} ipsum \autocite{sigfridsson}
dolor \autocite{nussbaum} sit \autocite{aksin}

\printbibheading[title={Bibliography}]
\printbibliography[heading=subbibliography,
type=book, title={Books}]
\printbibliography[heading=subbibliography,
type=article, title={Articles}]
\end{document}

There are pathological cases where neither defernumbers=true nor
defernumbers=false produce fully desirable output. This may be the case when
entries can end up in several of the split bibliographies—or if there is an additional
global bibliography. But in most cases with non-overlapping split bibliographies
defernumbers=true produces better results. biblatex will therefore suggest
setting defernumbers to true in a warning when a split bibliography setup is
detected. That warning can be suppressed in case setting defernumbers to true
is not desirable.

3.14.6 Active Characters in Bibliography Headings

Packages using active characters, such as babel, polyglossia, csquotes, or
underscore, usually do not make them active until the beginning of the docu-
ment body to avoid interference with other packages. A typical example of such
an active character is the Ascii quote ", which is used by various language mod-
ules of the babel/polyglossia packages. If shorthands such as "< and "a are
used in the argument to \defbibheading and the headings are defined in the
document preamble, the non-active form of the characters is saved in the heading
definition. When the heading is typeset, they do not function as a command but
are simply printed literally. The most straightforward solution consists in mov-
ing \defbibheading after \begin{document}. Alternatively, you may use
babel’s \shorthandon and \shorthandoff commands to temporarily make
the shorthands active in the preamble. The above also applies to bibliography notes
and the \defbibnote command.

152

3.14.7 Grouping in Reference Sections and Segments

All LaTeX environments enclosed in \begin and \ end form a group. This may have
undesirable side effects if the environment contains anything that does not expect to
be used within a group. This issue is not specificto refsectionand refsegment
environments, but it obviously applies to them as well. Since these environments
will usually enclose much larger portions of the document than a typical itemize
or similar environment, they are simply more likely to trigger problems related to
grouping. If you observe any malfunctions after adding re f section environments
to a document (for example, if anything seems to be ‘trapped’ inside the environment),
try the following syntax instead:

\chapter{...}
\refsection

\endrefsection

This will not from a group, but otherwise works as usual. As far as biblatex
is concerned, it does not matter which syntax you use. The alternative syntax
is also supported by the refsegment environment. Note that the commands
\newrefsection and \newrefsegment do not form a group. See §§ 3.7.4 and
3.7.5 for details.

3.15 Using the fallback BibTeX backend

To utilise all of the features described here, biblatex must be used with the biber
program as a backend. Indeed, the documentation in general assumes this. However,
for a limited subset of use cases it is possible to use the long-established BibTeX
program (either the 7-bit bibtex or 8-bit bibtex8) as the supporting backend.
This works in much the same way as for biber with the only proviso being that
BibTeX is much more limited as a backend.

Using BibTeX as the backend requires that the option backend=bibtex or
backend=bibtex8 is given at load time. The biblatex package will then write
appropriate data for use by BibTeX into the auxiliary file(s) and a special data file
(automatically included in those to be read by BibTeX). The BibTeX (8) program
should then be run on each auxiliary file: biblatex will list all of the required
files in the log.

Key limitations of the BibTeX backend are:

« Sorting is global and is limited to Ascii ordering

« No re-encoding is possible and thus database entries must be in LICR form to
work reliably

« The data model is fixed

+ Cross-referencing is more limited and entry sets must be written into the .bib
file

« Fixed memory capacity (using the --wolfgang option with bibtex8 is
strongly recommended to minimize the likelihood of an issue here)

153

4 Author Guide

This part of the manual documents the author interface of the biblatex package.
The author guide covers everything you need to know in order to write new citation
and bibliography styles or localisation modules. You should read the user guide first
before continuing with this part of the manual.

4.1 Overview

Before we get to the commands and facilities provided by biblatex, we will have
a look at some of its fundamental concepts. The biblatex package uses auxiliary
files in a special way. Most notably, the bb1 file is used differently and there is no
concept of a style-dependent bst file. With LaTeX’s standard bibliographic facilities,
a document includes any number of citation commands in the document body plus
\bibliographystyle and \bibliography, usually towards the end of the
document. The location of the former is arbitrary, the latter marks the spot where
the list of references is to be printed:

\documentclass{...}
\begin{document}
\cite{...}

\bibliographystyle{...}
\bibliography{...}
\end{document}

Processing this files requires that a certain procedure be followed. This procedure is
as follows:

1. Run latex: On the first run, \bibstyle and \bibdata commands are
written to the aux file, along with \citation commands for all citations.
At this point, the references are undefined because LaTeX is waiting for BibTeX
to supply the required data. There is also no bibliography yet.

2. Runbibtex: BibTeX writes a thebibliography environment to the bbl
file, supplying all entries from the bib file which were requested by the
\citation commands in the aux file.

3. Run latex: Starting with the second run, the \bibitem commands in the
thebibliography environment write one \bibcite command for each
bibliography entry to the aux file. These \bibcite commands define the
citation labels used by \cite. However, the references are still undefined
because the labels are not available until the end of this run.

4. Run latex: Starting with the third run, the citation labels are defined as the
aux file is read in at the end of the preamble. All citations can now be printed.

Note that all bibliographic data is written to the bb1 file in the final format. The
bbl file is read in and processed like any printable section of the document. For
example, consider the following entry in a bib file:

@Book{companion,

154

author = {Michel Goossens and Frank Mittelbach and
— Alexander Samarin},

title {The LaTeX Companion},

publisher = {Addison-Wesley},

address {Reading, Mass.},

year = {1994},

With the plain.bst style, BibTeX exports this entry to the bb1 file as follows:

\bibitem{companion}

Michel Goossens, Frank Mittelbach, and Alexander
— Samarin.

\newblock {\em The LaTeX Companion}.

\newblock Addison-Wesley, Reading, Mass., 1994.

By default, LaTeX generates numeric citation labels, hence \bibitem writes lines
such as the following to the aux file:

\bibcite{companion} {1}

Implementing a different citation style implies that more data has to be transferred
via the aux file. With the natbib package, for example, the aux file contains lines
like this one:

\bibcite{companion}{{1}{1994}{{Goossens et~al.}}{{
— Goossens, Mittelbach,
and Samarin}}}

The biblatex package supports citations in any arbitrary format, hence citation
commands need access to all bibliographic data. What this would mean within
the scope of the procedure outlined above becomes obvious when looking at the
output of the jurabib package which also makes all bibliographic data available
in citations:

\bibcite{companion} {{Goossens\jbbfsasep

— Mittelbach\jbbstasep Samarin}$%
{1{{0}{}{book} {1994} {}{}{}{}{Reading, Mass.\bpubaddr
— {}Addison-Wesley$%

\bibbdsep{} 1994}}{{The LaTeX Companion

= M2 {3 {{{(}} {\bibnf

{Goossens} {Michel}{M.}{}{}\Bibbfsasep\bibnf {

— Mittelbach} {Frank}{F.}5%
{}{}\Bibbstasep\bibnf{Samarin} {Alexander} {A.}{}{}}{
— \bibtfont{The

LaTeX Companion}.\ \apyformat{Reading, Mass.\bpubaddr
— {}

Addison-Wesley\bibbdsep{} 1994}}}

155

In this case, the contents of the entire thebibliography environment are effec-
tively transferred via the aux file. The data is read from the bb1 file, written to the
aux file, read back from the aux file and then kept in memory. The bibliography
itself is still generated as the bb1 file is read in. The biblatex package would also
be forced to cycle all data through the aux file. This implies processing overhead
and is also redundant because the data has to be kept in memory anyway.

The traditional procedure is based on the assumption that the full bibliographic
data of an entry is only required in the bibliography and that all citations use short
labels. This makes it very effective in terms of memory requirements, but it also
implies that it does not scale well. That is why biblatex takes a different ap-
proach. First of all, the document structure is slightly different. Instead of using
\bibliography in the document body, database files are specified in the pream-
ble with \addbibresource, \bibliographystyle is omitted entirely (all
features are controlled by package options), and the bibliography is printed using
\printbibliography:

\documentclass{...}
\usepackage[...] {biblatex}
\addbibresource{...}
\begin{document }
\cite{...}

\printbibliography
\end{document}

In order to streamline the whole procedure, biblatex essentially employs the
bb1 file like an aux file, rendering \bibcite obsolete. We then get the following
procedure:

1. Run latex: The first step is similar to the traditional procedure described
above: \bibstyle and \bibdata commands are written to th bef file,
along with \citation commands for all citations. We then wait for the
backend to supply the required data.

2. Run biber: The backend supplies those entries from the bib file which were
requested by the \citation commands in the auxiliary file. However, it
does not write a printable bibliography to the bb1 file, but rather a structured
representation of the bibliographic data. Just like an aux file, this bb1 file
does not print anything when read in. It merely puts data in memory.

3. Run latex: Starting with the second run, the bb1 file is processed right at
the beginning of the document body, just like an aux file. From this point on,
all bibliographic data is available in memory so that all citations can be printed
right away.>* The citation commands have access to the complete bibliographic
data, not only to a predefined label. The bibliography is generated from memory
using the same data and may be filtered or split as required.

Let’s consider the sample entry given above once more:

*If the defernumbers package option is enabled biblatex uses an algorithm similar to the
traditional procedure to generate numeric labels. In this case, the numbers are assigned as the
bibliography is printed and then cycled through the backend auxiliary file. It will take an additional
LaTeX run for them to be picked up in citations.

156

@Book{companion,

author = {Michel Goossens and Frank Mittelbach and
— Alexander Samarin},
title = {The LaTeX Companion},

publisher = {Addison-Wesley},
address {Reading, Mass.},
year {1994},

This entry is essentially exported in the following format:

\entry{companion} {book}{}
\labelname{author} {3} {}{%

{ {uniquename=0, hash=...}{Goossens} {G.}{Michel}{M
— H{H{H{H{}1%

{{uniquename=0,hash=...}{Mittelbach} {M.}{Frank} {F
= H{H{H{H{}1%

{{uniquename=0, hash=...}{Samarin} {S.} {Alexander} {A

— JH{H{MH {115
}
\name{author} {3} {}{%

{ {uniquename=0, hash=...}{Goossens} {G.} {Michel} {M
— {115

{ {uniquename=0, hash=...}{Mittelbach} {M.} {Frank}{F
— {15

{{uniquename=0, hash=...}{Samarin} {S.} {Alexander} {A

— JH{H{H {11

}

\list{publisher}{1}{%
{Addison-Wesley}$%

}
\list{location}{1}{%
{Reading, Mass.}%

}
\field{title}{The LaTeX Companion}
\field{year} {1994}

\endentry

As seen in this example, the data is presented in a structured format that resembles
the structure of a bib file to some extent. At this point, no decision concerning
the final format of the bibliography entry has been made. The formatting of the
bibliography and all citations is controlled by LaTeX macros, which are defined in
bibliography and citation style files.

4.2 Bibliography Styles

A bibliography style is a set of macros which print the entries in the bibliography:.
Such styles are defined in files with the suffix bbx. The biblatex package loads
the selected bibliography style file at the end of the package. Note that a small
repertory of frequently used macros shared by several of the standard bibliography

157

styles is included in biblatex.def. This file is loaded at the end of the package
as well, prior to the selected bibliography style.

4.2.1 Bibliography Style Files

Before we go over the individual components of a bibliography style, consider this
example of the overall structure of a typical bbx file:

\ProvidesFile{example.bbx}[2006/03/15 v1.0 biblatex
— bibliography style]

\defbibenvironment{bibliography}

{...}
{...}
{...}
\defbibenvironment {shorthand}
{...}
{...}
{...}

\InitializeBibliographyStyle{...}
\DeclareBibliographyDriver{article}{...}
\DeclareBibliographyDriver{book}{...}
\DeclareBibliographyDriver{inbook}{...}

\DeclareBibliographyDriver{shorthand}{...}
\endinput

The main structure of a bibliography style file consists of the following commands:

\RequireBibliographyStyle{(style)}

This command is optional and intended for specialized bibliography styles built on
top of a more generic style. It loads the bibliography style style.bbx.

\InitializeBibliographyStyle{{code)}

Specifies arbitrary (code) to be inserted at the beginning of the bibliography, but
inside the group formed by the bibliography. This command is optional. It may be
useful for definitions which are shared by several bibliography drivers but not used
outside the bibliography. Keep in mind that there may be several bibliographies in a
document. If the bibliography drivers make any global assignments, they should be
reset at the beginning of the next bibliography.

\DeclareBibliographyDriver {(entrytype)} { (code)}

Defines a bibliography driver. A ‘driver’ is a macro which handles a specific entry
type (when printing bibliography lists) or a specific named bibliography list (when
printing bibliography lists). The (entrytype) corresponds to the entry type used in
bib files, specified in lowercase letters (see § 2.1). The (entrytype) argument may
also be an asterisk. In this case, the driver serves as a fallback which is used if no
specific driver for the entry type has been defined. The (code) is arbitrary code
which typesets all bibliography entries of the respective (entrytype). This command
is mandatory. Every bibliography style should provide a driver for each entry type.

158

\DeclareBibliographyAlias{(alias)} { (entrytype)}

If a bibliography driver covers more than one entry type, this command may be used
to define an alias where (entrytype) is the name of a defined driver. This command is
optional. The (alias) argument may also be an asterisk. In this case, the (entrytype)
driver serves as a fallback which is used if no specific driver for an entry has been

defined.

Note that an alias declared with \DeclareBibliographyAlias only ‘reroutes’
the bibliography driver from (alias) to (entrytype). Type-specific formatting direc-
tives still operate with the old (alias) name. \DeclareBibliographyAlias
thus provides only a ‘soft’ alias. If a complete alias is desired so that (alias) and
(entrytype) are completely indistinguishable and use the same type-specific format-
ting, an approach with source mapping would be more appropriate (cf. the mappings
for § 2.1.2 in § A.1, this would give a ‘hard’ alias).

\DeclareBibliographyOption [(datatype)] { (key)} [{value)] { (code)}

This command defines additional preamble options in (key)=(value) format. The
(key) is the option key. The (code) is arbitrary TeX code to be executed whenever
the option is used. The value passed to the option is passed on to the (code) as #1.
The optional (value) is a default value to be used if the bare key is given without any
value. This is useful for boolean switches. The (datatype) is a the datatype for the
option. If omitted, it defaults to ‘boolean’. For example, with a definition like the
following:

\DeclareBibliographyOption[boolean] {somekey} [true] {...}

giving ‘somekey’ without a value is equivalent to ‘somekey = true’. Valid
(datatype) values are defined in the default biber Datamodel as:

\DeclareDatamodelConstant [type=1list] {optiondatatypes} {
— boolean, integer,string, xml}

\DeclareTypeOption [(datatype)] {(key)} [(value)] {(code)}

Similar to \DeclareBibliographyOption but defines options
which are settable on a per-type basis using the optional argument of
\ExecuteBibliographyOptions (see § 3.2.2). The (code) is executed
whenever biblatex prepares the data of an entry of the type for which the option
has been set for use by a citation command or a bibliography driver.

\DeclareEntryOption [(datatype)] {(key)} [(value)] { (code)}

Similar to \DeclareBibliographyOption but defines options which are set-
table on a per-entry basis in the options field from § 2.2.3. The (code) is executed
whenever biblatex prepares the data of the entry for use by a citation command
or a bibliography driver.

159

\DeclareBiblatexOption{(scope,...)} [(datatype)] {(key)} [(value)] {{code) }

This command is a convenient interface to declare an option for several scopes at
once. The (scope) argument may be a comma-separated list of scopes for which the
option will be declared. Currently the scopes global, type, entry, namelist
and name are supported, the first three of which are equivalent to defining the
option with \DeclareBibliographyOption, \DeclareTypeOption and
\DeclareEntryOption, respectively.

4.2.2 Bibliography Environments

Apart from defining bibliography drivers, the bibliography style is also responsible
for the environments which control the layout of the bibliography and bibliography
lists. These environments are defined with \defbibenvironment. By default,
\printbibliography uses the environment bibliography. Here is a def-
inition suitable for a bibliography style which does not print any labels in the
bibliography:

\defbibenvironment{bibliography}

{\1list
{}
{\setlength{\leftmargin} {\bibhang}%
\setlength{\itemindent}{-\leftmargin}$%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep}{\bibparsep}}}

{\endlist}

{\item}

This definition employs a 11ist environment with hanging indentation, using the
\bibhang length register provided by biblatex. It allows for a certain degree of
configurability by using \bibitemsep and \bibparsep, two length registers
provided by biblatex for this very purpose (see § 4.10.3). The authoryear and
authortitle bibliography styles use a definition similar to this example.

\defbibenvironment {bibliography}

{\1list
{\printfield[labelnumberwidth] {labelnumber} }
{\setlength{\labelwidth}{\labelnumberwidth}%
\setlength{\leftmargin}{\labelwidth}$%
\setlength{\labelsep}{\biblabelsep}%
\addtolength{\leftmargin} {\labelsep}%
\setlength{\itemsep}{\bibitemsep}%
\setlength{\parsep}{\bibparsep}}%
\renewcommand* { \makelabel} [1]{\hss##1}}

{\endlist}

{\item}

Some bibliography styles print labels in the bibliography. For example, a bibliography
style designed for a numeric citation scheme will print the number of every entry
such that the bibliography looks like a numbered list. In the first example, the first
argument to \1ist was empty. In this example, we need it to insert the number,

160

which is provided by biblatex in the labelnumber field. We also employ
several length registers and other facilities provided by biblatex, see §§ 4.10.4
and 4.10.5 for details. The numeric bibliography style uses the definition given
above. The alphabetic style is similar, except that 1abelnumber is replaced
by labelalpha and labelnumberwidth by labelalphawidth.

Bibliography lists are handled in a similar way. \printbiblist uses the en-
vironment named after the bibliography list by default. A typical example is given
below. See §§ 4.10.4 and 4.10.5 for details on the length registers and facilities used
in this example.

\defbibenvironment {shorthand}

{\list
{\printfield[shorthandwidth] {shorthand}}
{\setlength{\labelwidth} {\shorthandwidth}$%
\setlength{\leftmargin} {\labelwidth}%
\setlength{\labelsep}{\biblabelsep}%
\addtolength{\leftmargin} {\labelsep}%
\setlength{\itemsep}{\bibitemsep}$%
\setlength{\parsep}{\bibparsep}$%
\renewcommand* { \makelabel} [1] {##1\hss}}}

{\endlist}

{\item}

4.2.3 Bibliography Drivers

Before we go over the commands which form the data interface of the biblatex
package, it may be instructive to have a look at the structure of a bibliography driver.
Note that the example given below is greatly simplified, but still functional. For the
sake of readability, we omit several fields which may be part of a @book entry and
also simplify the handling of those which are considered. The main point is to give
you an idea of how a driver is structured. For information about the mapping of the
BibTeX file format fields to biblatex’s data types, see § 2.2.

\DeclareBibliographyDriver {book} {%
\printnames{author}%
\newunit\newblock
\printfield{title}%
\newunit\newblock
\printlist{publisher}%

\newunit
\printlist{location}$%
\newunit
\printfield{year}%
\finentry}

The standard bibliography styles employ two bibliography macros begentry and
finentry:

\DeclareBibliographyDriver{entrytype}{%
\usebibmacro{begentry}

161

\usebibmacro{finentry}}

with the default definitions

\newbibmacro* {begentry} {}
\newbibmacro*{finentry}{\finentry}

Use of these macros is recommended for easy hooks into the beginning and end of
the driver.

Returning to the driver for the book entrytype above, there is still one piece
missing: the formatting directives used by \printnames, \printlist, and
\printfield. To give you an idea of what a formatting directive looks like, here
are some fictional ones used by our sample driver. Field formats are straightforward,
the value of the field is passed to the formatting directive as an argument which may
be formatted as desired. The following directive will simply wrap its argument in an
\emph command:

\DeclareFieldFormat{title}{\emph{#1}}

List formats are slightly more complex. After splitting up the list into individual
items, biblatex will execute the formatting directive once for every item in the
list. The item is passed to the directive as an argument. The separator to be inserted
between the individual items in the list is also handled by the corresponding directive,
hence we have to check whether we are in the middle of the list or at the end when
inserting it.

\DeclarelListFormat{location}{%
#1%
\ifthenelse{\value{listcount}<\value{liststop}}
{\addcomma\space}

{1}

Formatting directives for names are similar to those for literal lists.
Names depend on the datamodel constant ‘nameparts’ which has the default
definition:

\DeclareDatamodelConstant [type=1ist] {nameparts}
{prefix, family,
— suffix,given}

This can be customised to add more name parts to deal with things like patronymics
(see the example file 93-nameparts. tex). This needs an extended name for-
mat for data sources since the standard BibTeX name format is very limited.
biblatexml (§ D) handles this natively and there is an extended name format
which can handle custom nameparts when using biber (see biber documenta-
tion).

Inside name formats, the ‘nameparts’ constant declaration makes available two or
three macros for each name part defined in the datamodel:

162

\namepart<namepart> \% The full <namepart>
\namepart<namepart>i \% The initials of the <namepart>
\namepart<namepart>un \% Numeric value indicating

— uniqueness level for <namepart>

\namepart ‘namepart’ un only exists if the package option uniguename is
not set to ‘false’ and can take the following values.

0 ‘namepart’ was not used in disambiguating the name (because
disambiguation=none was setin \DeclareUniquenameTemplate,
see § 4.11.4). In this case the style should decide what to print for this
‘namepart’

1 Initials only should be printed for ‘namepart’ to ensure uniqueness according
to the uniquename package option setting

2 The full ‘namepart’ should be printed to ensure uniqueness according to the
uniquename package option setting

Note these per-namepart uniqueness macros are essentially an override of the
uniquename value (see § 4.6.2) for the name as a whole. Styles can choose to use
either the less granular uniquename value or the more detailed per-namepart val-
ues. Usually the general uniquename value is enough for ordinary Western names
but the more granular information per-namepart is provided to allow sophisticated
name uniqueness processing for more complex name schemata.

The name formatting directive is executed once for each name in the name list.
Here is a simplified example—the standard name formats are more intricate:

\DeclareNameFormat{author} {%
\ifthenelse{\value{listcount}=1}
{\namepartfamily%
\ifdefvoid{\namepartgiven} {}{
— \addcomma\space\namepartgiven}}
{\ifdefvoid{\namepartgiven}{}{\namepartgiven\space
— 1%
\namepartfamily}$%
\ifthenelse{\value{listcount}<\value{liststop}}
{\addcomma\space}

{1}

The above directive reverses the name of the first author (“Family, Given”) and prints
the remaining names in their regular sequence (“Given Family”). Note that the only
component which is guaranteed to be available is the family name, hence we have
to check which parts of the name are actually present. If a certain name part is
not available, the corresponding macro will be empty. As with directives for literal
lists, the separator to be inserted between the individual items in the name list is
also handled by the formatting directive, hence we have to check whether we are
in the middle of the list or at the end when inserting it. This is what the second
\ifthenelse test does. See also § 4.4.2.

A similar output that also respects the \multinamedelim and
\finalnamedelim commands as well as the ‘prefix’ and ‘suffix’ name
parts can be achieved with

163

\DeclareNameAlias{author}{family-given/given-family}

4.2.4 Special Fields

The following lists and fields are used by biblatex to pass data to bibliography
drivers and citation commands. They are not used in bib files but defined automati-
cally by the package. From the perspective of a bibliography or citation style, they
are not different from the fields in a bib file.

4.2.4.1 Generic Fields

<datetype>dateunspecified field (string)

entrykey

If <datetype>date held an 1508601-2 4.3 ‘unspecified’, this field will be set to
one of yearindecade, yearincentury, monthinyear, dayinmonth or
dayinyear which specifies the granularity of the unspecified information. These
strings can be tested for and along with the date ranges which are automatically
created for such ‘unspecified’ dates, a style may choose to format the date in a special
way. See § 2.3.8. For example, an entry with dates such as:

@book{key,
date = {19%uu},
origdate = {199%u}

would result in the same information in the .bb1l as:

@book{key,
date = {1900/1999},
origdate = {1990/1999}
}

but would additionally have the field dateunspecified set to ‘yearincentury’
and origdateunspecified set to ‘yearindecade’. This information could be
used to render the date as perhaps ‘20th century’ and origdate as “The 1990s’,
information which cannot be derived from the date ranges alone. Since such auto-
generated ranges have known values, given the ‘unspecified’ meta-information, it is
relatively easy to use the range values to format special cases. While the standard
styles do not do this, examples are given in the file 96-dates. tex.

field (string)

The entry key of an item in the bib file. This is the string used by biblatex and
the backend to identify an entry in the bib file.

Note that the set of characters allowed and usable in the string for entrykey de-
pends on the backend (biber, BibTeX) as well as the LaTeX engine (pdfLaTeX, Lua-
LaTeX, XeLaTeX). Generally, ASCII-letters (a-z, A-Z) and numbers (0-9) are safe,
so are the punctuation characters full stop (.) and solidus (/). The punctuation char-
acters — :; ! ? are also safe even if they are made active by babel/polyglossia.
If a Unicode engine is used, non-ASCII characters are also acceptable. Curly braces

164

childentrykey

labelnamesource

labeltitlesource

labeldatesource

({ }), commas, spaces, backslashes (\), hashes (¥), percent characters (%) and tildes
(~) are always forbidden. biber additionally forbids round brackets (()), quotation
marks (", '), and the equals sign (=). The entrykey is case sensitive, but it is not
recommended to exploit that fact too much by introducing two different entries
whose key differs only in capitalisation (e.g., sigfridsson and Sigfridsson).
For full portability it is advisable to stick to a scheme of lowercase (and if so de-
sired uppercase) ASCII-letters, numbers and a small set of acceptable punctuation
characters, say . : -.

field (string)

This field is no longer necessary or recommended.For backwards compatibility, it is
merely a copy of the entrykey field in any set children.

field (literal)

Holds the name of the field used to populate labelname, determined by
\DeclareLabelname.

field (literal)

Holds the name of the field used to populate labeltitle, determined by
\DeclareLabeltitle.

field (literal)
Holds one of:

« The prefix coming before ‘date’ of the date field name chosen by
\DeclareLabeldate

« The name of a field

+ A literal or localisation string

Normally holds the prefix coming before ‘date’ of the date field name chosen by
\DeclareLabeldate. For example, if the labeldate field is eventdate, then
labeldatesource will be ‘event’. In case \DeclareLabeldate selects the
date field, then 1abeldatesource will be defined but will be an empty string
as the prefix coming before ‘date’ in the date label name is empty. This is so that
the contents of labeldatesource can be used in constructing references to the
field which \DeclareLabeldate chooses. Since \DeclareLabeldate can
also select literal strings for fallbacks, 1abeldatesource may not refer to a field
or may be undefined. Bear in mind that \DeclareLabeldate can also be used
to select non-date fields as a fallback and so 1abeldatesource might contain a
field name. So, in summary, the rules are

\iffieldundef{labeldatesource}
{}% labeldate package option is not set
{\iffieldundef{\thefield{labeldatesource}year}
\DeclareLabeldate resolved to either a literal/
localisation

\E o

% string or a non-date field since

% if a date is defined by a date field, there is
% at least a year
{\iffieldundef{\thefield{labeldatesource}}

165

Deprecated

{}% \DeclarelLabeldate resolved to a literal/
— localisation string
{}% \DeclarelLabeldate resolved to a non-date
— field
}

{} % \Declarelabeldate resolved a date field name
— prefix like "" or "orig"

}

entrytype field (string)
The entry type (@book, @inbook, etc.), given in lowercase letters.
childentrytype field (string)

This field is no longer necessary or recommended.For backwards compatibility, it is Deprecated
merely a copy of the entrytype field in any set children.

entrysetcount field (integer)

This field holds an integer indicating the position of a set member in the entry set
(starting at 1). This field is only available in the subentries of an entry set.

hash field (string)

This field is special in that it is only available locally in name formatting directives.
It holds a hash string which uniquely identifies individual names in a name list. This
information is available for all names in all name lists. See also namehash and
fullhash.

namehash field (string)

A hash string which uniquely identifies the 1abelname list. This is useful for
recurrence checks. For example, a citation style which replaces recurrent authors or
editors with a string like ‘idem’ could save the namehash field with \savefield
and use it in a comparison with \iffieldequals later (see §§ 4.6.1 and 4.6.2).
The namehash is derived from the truncated 1abelname list, i. e, it is responsive
tomaxcitenames and mincitenames. See also hash and fullhash.

bibnamehash field (string)

As namehash but responsive to maxbibnames and minbibnames. This is not
used in standard styles but may be used to make tests in bibliography lists (such as
those used to determine whether dashes should replace repeated authors) behave
differently.

<namelist>namehash field (string)
As namehash for the name list called ‘namelist’.
<namelist>bibnamehash field (string)

As bibnamehash for the name list called ‘namelist’.

166

fullhash

<namelist>fullhash

pageref

sortinit

sortinithash

clonesourcekey

urlraw

labelalpha

field (string)

A hash string which uniquely identifies the 1abelname list. This fields differs
from namehash in two details: 1) The shortauthor and shorteditor lists
are ignored when generating the hash. 2) The hash always refers to the full list,
ignoring maxnames and minnames. See also hash and namehash.

field (string)

As fullhash for the name list called ‘namelist’.
list (literal)

If the backref package option is enabled, this list holds the page numbers of the
pages on which the respective bibliography entry is cited. If there are refsection
environments in the document, the back references are local to the reference sections.

field (literal)
This field holds the initial character of the information used during sorting.
field (string)

This field holds a hash of the (locale-specific) Unicode Collation Algorithm primary
weight of the first extended grapheme cluster (essentially the first character) of
the string used during sorting. This is useful when subdividing the bibliography
alphabetically and is used internally by \bibinitsep (see § 3.11.4).

field (string)

This field holds the entry key of the entry from which an entry was cloned. Clones
are created for entries which are mentioned in related fields as part of related
entry processing, for example.

field (verbatim)

This is the unencoded, raw version of any url. This is intended for use when the
display version and clickable link version of a URL are different. This can be the case
when the URL contains special or Unicode characters. In the case where no such
characters occur, may be identical to the url.

4.2.4.2 Fields for Use in Citation Labels
field (literal)

A label similar to the labels generated by the alpha .bst style of traditional BibTeX.
This default label consists of initials drawn from the 1abelname list plus the last
two digits of the publication year. The 1abel field may be used to override its non-
numeric portion. If the 1abel field is defined, biblatex will use its value and ap-
pend the last two digits of the publication year when generating 1abelalpha. The
shorthand field may be used to override the entire label. If defined, 1labelalpha
is the shorthand rather than an automatically generated label. Users can specify a
template used to construct the alphabetic label (see § 4.5.5) and the default template
mirrors the format mentioned for bibtex above. A complete ‘alphabetic’ label consists
of the fields 1abelalpha plus extraalpha. Note that the labelalpha and
extraalpha fields need to be requested with the package option 1labelalpha
(§ 3.1.2.3). See also extraalpha as well as \1labelalphaothers in § 3.11.1.

167

extraalpha

labelname

extraname

labelnumber

labelprefix

labeltitle

field (integer)

The ‘alphabetic’ citation scheme usually requires a letter to be appended to the label
if the bibliography contains two or more works by the same author which were all
published in the same year. In this case, the extraalpha field holds an integer
which may be converted to a letter with \mknumalph or formatted in some other
way. This field is similar to the role of extradate in the author-year scheme. A
complete ‘alphabetic’ label consists of the fields 1abelalpha plus extraalpha.
Note that the 1abelalpha and extraalpha fields need to be requested with the
package option labelalpha, see § 3.1.2.3 for details. See also 1labelalpha as
well as \1labelalphaothersin § 3.11.1. Table 7 summarises the various extra*
disambiguation counters and what they track.

list (name)

The name to be printed in citations. This list is a copy of either the shortauthor,
the author, the shorteditor, the editor, or the translator list, which
are normally checked for in this order. If no authors and editors are available, this
list is undefined. Note that this list is also responsive to the use<name>, options,
see § 3.1.3. Citation styles should use this list when printing the name in a citation.
This list is provided for convenience only and does not carry any additional meaning.
This field may be customized. See § 4.5.10 for details.

field (integer)

Holds a count of the number of bibliography entries within a refsection which
derive from the same 1abelname list. This counter takes account of uniquename
settings (see § 3.1.2.3). While not used by any standard styles, this field is useful in
styles which wish to number bibliography entries on a per-1abelname basis. This
field will only exist if there is a 1abelname. The extraname counter is related
to, but conceptually different from \ifsingletitle (see § 3.1.2.3 and § 4.6.2).

field (literal)

The number of the bibliography entry, as required by numeric citation schemes. If the
shorthand field is defined, biblatex does not assign a number to the respective
entry. In this case 1abelnumber is the shorthand rather than a number. Numeric
styles must use the value of this field instead of a counter. Note that this field needs
to be requested with the package option 1abelnumber, see § 3.1.2.3 for details.
Also see the package option defernumbers in § 3.1.2.1.

field (literal)

If the 1abelprefix option of \newrefcontext has been set in order to pre-
fix all entries in a subbibliography with a fixed string, this string is available in
the labelprefix field of all affected entries. If no prefix has been set, the
labelprefix field of the respective entry is undefined. See the labelprefix
option of \newrefcontext in § 3.7.10 for details. If the shorthand field is
defined, biblatex does not assign the prefix to the labelprefix field of the
respective entry. In this case, the labelprefix field is undefined.

field (literal)

The printable title of a work. In some circumstances, a style might need to choose a
title from a list of a possible title fields. For example, citation styles printing short

168

extratitle

extratitleyear

labelyear

labelendyear

labelmonth

labelendmonth

titles may want to print the shorttitle field if it exists but otherwise print the
titlefield. The list of fields to be considered when constructing labeltitle may
be customized. See § 4.5.10 for details. Note that the extratitle field needs to be
requested with the package option 1labeltitle, see § 3.1.2.3 for details. See also
extratitle. Note also that the extratitleyear field needs to be requested
with the package option 1abeltitleyear. See also extratitleyear.

field (integer)

It is sometimes useful, for example in author-title citation schemes, to be able to
disambiguate works with the same title. For works by the same 1abelname with
the same labeltitle, the extratitle field holds an integer which may be
converted to a letter with \mknumalph or formatted in some other way (or it can
be merely used as a flag to say that some other field such as a date should be used in
conjunction with the labeltitle field). This field is undefined if there is only one
work with the same labeltitle by the same labelname in the bibliography.
Note that the extratitle field needs to be requested with the package option
labeltitle, see § 3.1.2.3 for details. See also 1abeltitle. Table 7 summarises
the various extra* disambiguation counters and what they track.

field (integer)

It is sometimes useful, for example in author-title citation schemes, to be able to disam-
biguate works with the same title in the same year but with no author. For works with
the same labeltitle and with the same 1abelyear, the extratitleyear
field holds an integer which may be converted to a letter with \mknumalph or
formatted in some other way (or it can be merely used as a flag to say that some other
field such as a publisher should be used in conjunction with the labelyear field).
This field is undefined if there is only one work with the same 1labeltitle and
labelyear inthe bibliography. Note that the extratitleyear field needs to be
requested with the package option 1abeltitleyear, see § 3.1.2.3 for details. See
also labeltitleyear. Table 7 summarises the various extra* disambiguation
counters and what they track.

field (literal)

The year of the date field selected by \DeclareLabeldate (§4.5.10) or the year
field, for use in author-year labels. A complete author-year label consists of the fields
labelyear plusextradate. Note that the labelyear and extradate fields
need to be requested with the package option 1abeldateparts, see § 3.1.2.3 for
details. See also extradate.

field (literal)

The end year of the date field selected by \DeclareLabeldate (§ 4.5.10) if the
selected date is a range.

field (datepart)

The month of the date field selected by \DeclareLabeldate (§ 4.5.10), or the
month field for use in author-year labels. Note that the 1abelmonth field needs to
be requested with the package option labeldateparts, see § 3.1.2.3 for details.

field (datepart)

The end month of the date field selected by \DeclareLabeldate (§ 4.5.10) if the
selected date is a range.

169

labelday

labelendday

extradate

extradatescope

field (datepart)

The month of the date field selected by \DeclareLabeldate (§ 4.5.10) for use in
author-year labels. Note that the 1abelday field needs to be requested with the
package option labeldateparts, see § 3.1.2.3 for details.

field (datepart)

The end day of the date field selected by \DeclarelLabeldate (§ 4.5.10) if the
selected date is a range.

field (integer)

The author-year citation scheme usually requires a letter to be appended to the
year if the bibliography contains two or more works by the same author which
were all published in the same year. In this case, the extradate field holds an
integer which may be converted to a letter with \mknumalph or formatted in
some other way. This field is undefined if there is only one work by the author in
the bibliography or if all works by the author have different publication years. A
complete author-year label consists of the fields 1abelyear plus extradate.
Note that the 1abelyear and extradate fields need to be requested with the
package option labeldateparts, see § 3.1.2.3 for details. See also labelyear.
Table 7 summarises the various extra* disambiguation counters and what they
track.

field (literal)

This field contains the name of the most specific field which determined the value of
extradate. It is not used by the standard styles but may be useful in controlling
the placement of the extradate field value.

4.2.4.3 Date Component Fields

Note that it is possible to define new date fields in the datamodel which behave
exactly like the default data model date fields described in this section.

See table 10 for an overview of how the date fields in bib files are related to the
date fields provided by the style interface. When testing for a field like origdate
in a style, use code like:

\iffieldundef{origyear}{...}{...}

This will tell you if the corresponding date is defined at all. This test:

\iffieldundef{origendyear}{...}{...}

will tell you if the corresponding date is defined and a (fully specified) range. This
test:

\iffieldequalstr{origendyear}{}{...}{...}

will tell you if the corresponding date is defined and an open-ended range. Open-
ended ranges are indicated by an empty endyear component (as opposed to an
undefined endyear component). See § 2.3.8 and table 3 on page 39 for further
examples.

170

Table 10: Date Interface

bib File Data Interface

Field Value (Example) Field Value (Example)

date 1988 day undefined
month undefined
year 1988
season undefined
endday undefined
endmonth undefined
endyear undefined
endseason undefined
hour undefined
minute undefined
second undefined
timezone undefined
endhour undefined
endminute undefined
endsecond undefined
endtimezone undefined

date 1997/ day undefined
month undefined
year 1997
season undefined
endday undefined
endmonth undefined
endyear empty
endseason undefined
hour undefined
minute undefined
second undefined
timezone undefined
endhour undefined
endminute undefined
endsecond undefined
endtimezone undefined

urldate 2009-01-31 urlday 31
urlmonth 01
urlyear 2009
urlseason undefined
urlendday undefined
urlendmonth undefined
urlendyear undefined
urlendseason undefined
urlhour undefined
urlminute undefined
urlsecond undefined
urltimezone undefined
urlendhour undefined
urlendminute undefined
urlendsecond undefined
urlendtimezone undefined

urldate 2009-01-31T15:34:04%Z urlday 31
urlmonth 01
urlyear 2009
urlseason undefined
urlendday undefined
urlendmonth undefined
urlendyear undefined
urlendseason undefined
urlhour 15
urlminute 34

171

Table 10: Date Interface (cont’d)

urldate 2009-01-31T15:34:04+05:00
urldate 2009-01-31T15:34:04/

2009-01-31T16:04:34
origdate 2002-21/2002-23

eventdate 1995-01-31/1995-02-05

172

urlsecond
urltimezone
urlendhour
urlendminute
urlendsecond
urlendtimezone
urlday
urlmonth
urlyear
urlseason
urlendday
urlendmonth
urlendyear
urlendseason
urlhour
urlminute
urlsecond
urltimezone
urlendhour
urlendminute
urlendsecond
urlendtimezone
urlday

urlmonth
urlyear
urlseason
urlendday
urlendmonth
urlendyear
urlendseason
urlhour
urlminute
urlsecond
urltimezone
urlendhour
urlendminute
urlendsecond
urlendtimezone
origday
origmonth
origyear
origseason
origendday
origendmonth
origendyear
origendseason
orighour
origminute
origsecond
origtimezone
origendhour
origendminute
origendsecond
origendtimezone
eventday
eventmonth
eventyear
eventseason
eventendday
eventendmonth
eventendyear

04

Z
undefined
undefined
undefined
undefined
31

01

2009
undefined
undefined
undefined
undefined
undefined
15

34

04

+0500
undefined
undefined
undefined
undefined
31

1

2009
undefined
31

1

2009
undefined
15

34

4
floating
16

4

34
floating
undefined
01

2002
spring
undefined
02

2002
autumn
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
31

01

1995
undefined
05

02

1995

hour

minute

second

timezone

day

month

year

season

endhour

Table 10: Date Interface (cont’d)

eventendseason undefined
eventhour undefined
eventminute undefined
eventsecond undefined
eventtimezone undefined
eventendhour undefined
eventendminute undefined
eventendsecond undefined
eventendtimezone undefined

field (datepart)

This field holds the hour component of the date field. If the date is a range, it holds
the hour component of the start date.

field (datepart)

This field holds the minute component of the date field. If the date is a range, it
holds the minute component of the start date.

field (datepart)

This field holds the second component of the date field. If the date is a range, it
holds the second component of the start date.

field (datepart)

This field holds the timezone component of the date field. If the date is a range, it
holds the timezone component of the start date.

field (datepart)

This field holds the day component of the date field. If the date is a range, it holds
the day component of the start date.

field (datepart)

This field is the month as given in the database file or it holds the month component
of the date field. If the date is a range, it holds the month component of the start
date.

field (datepart)

This field is the year as given in the database file or it holds the year component of
the date field. If the date is a range, it holds the year component of the start date.

field (datepart)

This field holds the season component of the date field as specified by 1508601-2
4.7 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the date is a range,
it holds the season component of the start date.

field (datepart)

If the date specification in the date field is a range, this field holds the hour compo-
nent of the end date.

173

endminute

endsecond

endtimezone

endday

endmonth

endyear

endseason

orighour

origminute

origsecond

origtimezone

field (datepart)

If the date specification in the date field is a range, this field holds the minute
component of the end date.

field (datepart)

If the date specification in the date field is a range, this field holds the second
component of the end date.

field (datepart)

If the date specification in the date field is a range, this field holds the timezone
component of the end date.

field (datepart)

If the date specification in the date field is a range, this field holds the day component
of the end date.

field (datepart)

If the date specification in the date field is a range, this field holds the month
component of the end date.

field (datepart)

If the date specification in the date field is a range, this field holds the year compo-
nent of the end date. A blank (but defined) endyear component indicates an open
ended date range.

field (datepart)

If the date specification in the date field is a range, this field holds the season
component of the end date as specified by 1508601-2 4.7 (§ 2.3.8). It contains a
season localisation string (§ 4.9.2.21). A blank (but defined) endseason component
indicates an open ended date range.

field (datepart)

This field holds the hour component of the origdate field. If the date is a range, it
holds the hour component of the start date.

field (datepart)

This field holds the minute component of the origdate field. If the date is a range,
it holds the minute component of the start date.

field (datepart)

This field holds the second component of the origdate field. If the date is a range,
it holds the second component of the start date.

field (datepart)

This field holds the timezone component of the origdate field. If the date is a
range, it holds the timezone component of the start date.

174

origday

origmonth

origyear

origseason

origendhour

origendminute

origendsecond

origendtimezone

origendday

origendmonth

origendyear

field (datepart)

This field holds the day component of the origdate field. If the date is a range, it
holds the day component of the start date.

field (datepart)

This field holds the month component of the origdate field. If the date is a range,
it holds the month component of the start date.

field (datepart)

This field holds the year component of the origdate field. If the date is a range, it
holds the year component of the start date.

field (datepart)

This field holds the season component of the origdate field as specified by
1508601-2 4.7 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the
date is a range, it holds the season component of the start date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the hour
component of the end date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the minute
component of the end date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the second
component of the end date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the timezone
component of the end date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the day
component of the end date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the month
component of the end date.

field (datepart)

If the date specification in the origdate field is a range, this field holds the year
component of the end date. A blank (but defined) origendyear component
indicates an open ended origdate range.

175

origendseason

eventhour

eventminute

eventsecond

eventtimezone

eventday

eventmonth

eventyear

eventseason

eventendhour

eventendminute

field (datepart)

If the date specification in the origdate field is a range, this field holds the season
component of the end date as specified by 1s08601-2 4.7 (§ 2.3.8). It contains a season
localisation string (§ 4.9.2.21). A blank (but defined) origendseason component
indicates an open ended origdate range.

field (datepart)

This field holds the hour component of the eventdate field. If the date is a range,
it holds the hour component of the start date.

field (datepart)

This field holds the minute component of the eventdate field. If the date is a
range, it holds the minute component of the start date.

field (datepart)

This field holds the second component of the eventdate field. If the date is a range,
it holds the second component of the start date.

field (datepart)

This field holds the timezone component of the eventdate field. If the date is a
range, it holds the timezone component of the start date.

field (datepart)

This field holds the day component of the eventdate field. If the date is a range,
it holds the day component of the start date.

field (datepart)

This field holds the month component of the eventdate field. If the date is a range,
it holds the month component of the start date.

field (datepart)

This field holds the year component of the eventdate field. If the date is a range,
it holds the year component of the start date.

field (datepart)

This field holds the season component of the eventdate field as specified by
1508601-2 4.7 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the date
is a range, it holds the season component of the start date.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the hour
component of the end date.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the minute
component of the end date.

176

eventendsecond

eventendtimezone

eventendday

eventendmonth

eventendyear

eventendseason

urlhour

urlminute

urlsecond

timezone

urlday

urlmonth

field (datepart)

If the date specification in the eventdate field is a range, this field holds the second
component of the end date.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the
timezone component of the end date.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the day
component of the end date.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the month
component of the end date.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the year
component of the end date. A blank (but defined) eventendyear component
indicates an open ended eventdate range.

field (datepart)

If the date specification in the eventdate field is a range, this field holds the season
component of the end date as specified by 1508601-2 4.7 (§ 2.3.8). It contains a season
localisation string (§ 4.9.2.21). A blank (but defined) eventendseason component
indicates an open ended eventdate range.

field (datepart)

This field holds the hour component of the urldate field. If the date is a range, it
holds the hour component of the start date.

field (datepart)

This field holds the minute component of the urldate field. If the date is a range,
it holds the minute component of the start date.

field (datepart)

This field holds the second component of the urldate field. If the date is a range,
it holds the second component of the start date.

field (urldatepart)

This field holds the timezone component of the ur1date field. If the date is a range,
it holds the timezone component of the start date.

field (datepart)
This field holds the day component of the urldate field.
field (datepart)

This field holds the month component of the urldate field.

177

urlyear

urlseason

urlendhour

urlendminute

urlendsecond

urlendtimezone

urlendday

urlendmonth

urlendyear

urlendseason

field (datepart)
This field holds the year component of the urldate field.
field (datepart)

This field holds the season component of the ur1date field as specified by 1508601-2
4.7 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the date is a range,
it holds the season component of the start date.

field (datepart)

If the date specification in the urldate field is a range, this field holds the hour
component of the end date.

field (datepart)

If the date specification in the urldate field is a range, this field holds the minute
component of the end date.

field (datepart)

If the date specification in the urldate field is a range, this field holds the second
component of the end date.

field (datepart)

If the date specification in the ur1date field is a range, this field holds the timezone
component of the end date.

field (datepart)

If the date specification in the urldate field is a range, this field holds the day
component of the end date.

field (datepart)

If the date specification in the urldate field is a range, this field holds the month
component of the end date.

field (datepart)

If the date specification in the urldate field is a range, this field holds the year
component of the end date. A blank (but defined) urlendyear component indicates
an open ended urldate range.

field (datepart)

If the date specification in the urldate field is a range, this field holds the season
component of the end date as specified by 1508601-2 4.7 (§ 2.3.8). It contains a season
localisation string (§ 4.9.2.21). A blank (but defined) urlendseason component
indicates an open ended urldate range.

178

4.3 Citation Styles

A citation style is a set of commands such as \ cite which print different types
of citations. Such styles are defined in files with the suffix cbx. The biblatex
package loads the selected citation style file at the end of the package. Note that a
small repertory of frequently used macros shared by several of the standard citation
styles is also included in biblatex.def. This file is loaded at the end of the
package as well, prior to the selected citation style. It also contains the definitions of
the commands from § 3.8.5.

4.3.1 Citation Style Files

Before we go over the individual commands available in citation style files, consider
this example of the overall structure of a typical cbx file:

\ProvidesFile{example.cbx}[2006/03/15 v1.0 biblatex
— citation style]

\DeclareCiteCommand{\cite}{...}{...}{...}{...}
\DeclareCiteCommand{\parencite} [\mkbibparens

— J1{.. H{.. (.. ..}
\DeclareCiteCommand{\footcite} [\mkbibfootnote

— I{.. .. (. 0 .00
\DeclareCiteCommand{\textcite}{...}{...}{...}{...}
\endinput

\RequireCitationStyle{(style)}

This command is optional and intended for specialized citation styles built on top of
a more generic style. It loads the citation style style.cbx.

\InitializeCitationStyle{(code)}

Specifies arbitrary (code) required to initialize or reset the citation style. This
hook will be executed once at package load-time and every time the \citereset
command from § 3.8.8 is used. The \citereset command also resets the in-
ternal citation trackers of this package. The reset will affect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2.
When used in a refsection environment, the reset of the citation tracker is local
to the current refsection environment.

\OnManualCitation{(code)}

Specifies arbitrary (code) required for a partial reset of the citation style. This
hook will be executed every time the \mancite command from § 3.8.8 is used. It is
particularly useful in citation styles which replace repeated citations by abbreviations
like ‘ibidem’ or ‘op. cit” which may get ambiguous if automatically generated and
manual citations are mixed. The \mancite command also resets the internal
‘ibidem’ and ‘idem’ trackers of this package. The reset will affect the \ifciteibid
and \ifciteidem tests discussed in § 4.6.2.

179

\DeclareCiteCommand{(command)} [(wrapper)] { (precode)} { (loopcode)} { (sepcode) } { (postcode) }
\DeclareCiteCommand* { (command)} [(wrapper)] { (precode)} { (loopcode)} { (sepcode)} { (postcode) }

This is the core command used to define all citation commands. It takes one optional
and five mandatory arguments. The (command) is the command to be defined, for
example \cite. If the optional (wrapper) argument is given, the entire citation will
be passed to the (wrapper) as an argument, i. e., the wrapper command must take
one mandatory argument.’! The (precode) is arbitrary code to be executed at the
beginning of the citation. It will typically handle the (prenote) argument which is
available in the prenote field. It may also be used to initialize macros required by
the (loopcode). The (loopcode) is arbitrary code to be executed for each entry key
passed to the (command). This is the core code which prints the citation labels or any
other data. The (sepcode) is arbitrary code to be executed after each iteration of the
(loopcode). 1t will only be executed if a list of entry keys is passed to the (command).
The (sepcode) will usually insert some kind of separator, such as a comma or a
semicolon. The (postcode) is arbitrary code to be executed at the end of the citation.
The (postcode) will typically handle the (postnote) argument which is available in
the postnote field.3> The starred variant of \DeclareCiteCommand defines
a starred (command). For example, \DeclareCiteCommand* {cite} would
define \citex*.*

\DeclareMultiCiteCommand{(command)} [(wrapper)] {(cite)} { (delimiter)}

This command defines ‘multicite’ commands (§ 3.8.3). The (command) is the mul-
ticite command to be defined, for example \cites. It is automatically made ro-
bust. Multicite commands are built on top of backend commands defined with
\DeclareCiteCommand and the (cite) argument specifies the name of the back-
end command to be used. Note that the wrapper of the backend command (i. e.,
the (wrapper) argument passed to \DeclareCiteCommand) is ignored. Use the
optional (wrapper) argument to specify an alternative wrapper. The (delimiter) is
the string to be printed as a separator between the individual citations in the list. This
will typically be \multicitedelim. The following examples are real definitions
taken from biblatex.def:

\DeclareMultiCiteCommand{\cites}%
{\cite}{\multicitedelim}

\DeclareMultiCiteCommand{\parencites} [\mkbibparens]%
{\parencite}{\multicitedelim}

\DeclareMultiCiteCommand{\footcites} [\mkbibfootnotel%
{\footcite}{\multicitedelim}

*Typical examples of wrapper commands are \mkbibparens and \mkbibfootnote.

*2The bibliographic data available to the (loopcode) is the data of the entry currently being processed.
In addition to that, the data of the first entry is available to the (precode) and the data of the last one
is available to the (postcode). ‘First’ and ‘last’ refer to the order in which the citations are printed.
If the sortcites package option is active, this is the order of the list after sorting. Note that no
bibliographic data is available to the (sepcode).

*Note that the regular variant of \DeclareCiteCommand defines a starred version of the
(command) implicitly, unless the starred version has been defined before. This is intended as
a fallback. The implicit definition is an alias for the regular variant.

180

\DeclareAutoCiteCommand{(name)} [{position)] {(cite)} { (multicite) }

This command provides definitions for the \autocite and \autocites com-
mands from § 3.8.4. The definitions are enabled with the autocite package option
from § 3.1.2.1. The (name) is an identifier which serves as the value passed to the
package option. The autocite commands are built on top of backend commands
like \parencite and \parencites. The arguments (cite) and (multicite) spec-
ify the backend commands to use. The (cite) argument refers to \autocite and
(multicite) refers to \autocites. The (position) argument controls the handling
of any punctuation marks after the citation. Possible values are 1, r, £. r means that
the punctuation is placed to the right of the citation, i. e., it will not be moved around.
1 means that any punctuation after the citation is moved to the left of the citation. £
is like r in a footnote and like 1 otherwise. This argument is optional and defaults
to r. See also \DeclareAutoPunctuation in § 4.7.5 and the autopunct
package option in § 3.1.2.1. The following examples are real definitions taken from
biblatex.def:

\DeclareAutoCiteCommand{plain}{\cite}{\cites}
\DeclareAutoCiteCommand{inline} {\parencite} {\parencites

— }
\DeclareAutoCiteCommand{footnote} [1l] {\footcite}{

— \footcites}
\DeclareAutoCiteCommand{footnote} [f] {\smartcite}{

— \smartcites}

A definition provided in the document preamble can be subsequently adopted with
the following: (see § 3.2.2).

\ExecuteBibliographyOptions{autocite=name}

\DeclareCitePunctuationPosition{(command)} {{position)}

Set up the cite command (command) to move punctuation marks after the citation
like \autocite. The (position) argument can take the values r, 1, £, ¢, o and d.
If an unknown (position) identifier is used, it defaults to o.

r The punctuation mark is not moved and remains to the right of the
citation.
1 The punctuation mark is moved to the left of the citation and thus

appears before it.

f Like r in footnotes and like 1 otherwise.

c Pass the punctuation on to the internal implementation of the citation
commands. It will then be executed within the (wrapper) command
if given.

o Retain the default setup of c for citation defined commands without

(wrapper) command and 1 for citation commands defined with a
(wrapper) command.

d Drop the explicit punctuation mark. It will only be available as the
field postpunct.

181

prenote

postnote

multiprenote

multipostnote

volcitevolume

volcitepages

postpunct

This command can not be used for \autocite, to configure \autocite use the
optional (position) argument for \DeclareAutoCiteCommand.

4.3.2 Special Fields

The following fields are used by biblatex to pass data to citation commands.
They are not used in bib files but defined automatically by the package. From the
perspective of a citation style, they are not different from the fields in a bib file. See
also § 4.2.4.

field (literal)

The (prenote) argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the (prenote) argument is missing
or empty, this field is undefined.

field (literal)

The (postnote) argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the (postnote) argument is missing
or empty, this field is undefined.

field (literal)

The (multiprenote) argument passed to a multicite command. This field is specific
to citations and not available in the bibliography. If the (multiprenote) argument is
missing or empty, this field is undefined.

field (literal)

The (multipostnote) argument passed to a multicite command. This field is specific
to citations and not available in the bibliography. If the (multipostnote) argument is
missing or empty, this field is undefined.

field (literal)

The (volume) argument passed to \volcite or arelated citation command (§ 3.8.6).
This field is specific to \volcite citations and not available in the bibliography or
other citations.

field (literal)

The (pages) argument passed to \volcite or arelated citation command (§ 3.8.6).
This field is specific to \volcite citations and not available in the bibliography or
other citations. If the (pages) argument is missing or empty, this field is undefined.

field (punctuation command)

The trailing punctuation argument implicitly passed to a citation command. This field
is specific to citations and not available in the bibliography. If the character follow-
ing a given citation command is not specified in \DeclareAutoPunctuation

(§ 4.7.5), this field is undefined.

4.4 Data Interface

The data interface are the facilities used to format and print all bibliographic data.
These facilities are available in both bibliography and citation styles.

182

4.4.1 Data Commands

This section introduces the main data interface of the biblatex package. These
are the commands doing most of the work, i. e., they actually print the data provided
in lists and fields.

\DeprecateField{(field)} { (message)}
\DeprecateList {(list)} { (message)}
\DeprecateName { (name) } { (message) }

When an attempt is made to print (field), (list), (name), a deprecation warning is
issued with the additional (message). This aids style authors who are changing field
names in their style. Note that the deprecated item must no longer be defined in the
datamodel for this work; (field), (list) or (name) cannot be listed anywhere as an
argument to \DeclareDatamodelFields.

\DeprecateFieldWithReplacement {(field)} { (replacement)}
\DeprecateListWithReplacement {(list)} { (replacement)}
\DeprecateNameWithReplacement {(name)} { (replacement) }

Similar to \DeprecateField, \DeprecatelList and \DeprecateName.
The commands do not only issue a deprecation warning, they try to define a replace-
ment for the deprecated field that is printed in its stead. The \replacement must
be of the same type as the deprecated (field), (list) or (name). If the formatting of
(replacement) should be applied when printing the deprecated field, that needs to be
requested with \DeclareFieldAlias (see § 4.4.2). Note that the deprecated item
must no longer be defined in the datamodel for this work; (field), (list) or (name)
cannot be listed anywhere as an argument to \DeclareDatamodelFields.

\printfield[(format)] {(field)}

This command prints a (field) using the formatting directive (format), as defined
with \DeclareFieldFormat. If a type-specific (format) has been declared, the
type-specific formatting directive takes precedence over the generic one. If the (field)
is undefined, nothing is printed. If the (format) is omitted, \printfield tries
using the name of the field as a format name. For example, if the tit1le field is to be
printed and the (format) is not specified, it will try to use the field format title.?
In this case, any type-specific formatting directive will also take precedence over
the generic one. If all of these formats are undefined, it falls back to default asa
last resort. Note that \printfield provides the name of the field currently being
processed in \currentfield for use in field formatting directives.

\printlist [{format)] [(start)—(stop)] {(literal list)}

This command loops over all items in a (literal list), starting at item number (start)
and stopping at item number (stop), including (start) and (stop) (all lists are num-
bered starting at 1). Each item is printed using the formatting directive (format),
as defined with \DeclareListFormat. If a type-specific (format) has been
declared, the type-specific formatting directive takes precedence over the generic
one. If the (literal list) is undefined, nothing is printed. If the (format) is omitted,
\printlist tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one.
If all of these formats are undefined, it falls back to default as a last resort. The

3*In other words, \printfield{title} isequivalentto \printfield[title]{title}.

183

(start) argument defaults to 1; (stop) defaults to the total number of items in the list.
If the total number is greater than (maxitems), (stop) defaults to (minitems) (see
§3.1.2.1). See \printnames for further details. Note that \print1list provides
the name of the literal list currently being processed in \currentlist for use in
list formatting directives.

\printnames [(format)] [(start)—(stop)] { (name list) }

This command loops over all items in a (name list), starting at item number (start)
and stopping at item number (stop), including (start) and (stop) (all lists are num-
bered starting at 1). Each item is printed using the formatting directive (format),
as defined with \DeclareNameFormat. If a type-specific (format) has been
declared, the type-specific formatting directive takes precedence over the generic
one. If the (name list) is undefined, nothing is printed. If the (format) is omitted,
\printnames tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one.
If all of these formats are undefined, it falls back to default as a last resort. The
(start) argument defaults to 1; (stop) defaults to the total number of items in the
list. If the total number is greater than (maxnames), (stop) defaults to (minnames)
(see § 3.1.2.1). If you want to select a range but use the default list format, the first
optional argument must still be given, but is left empty:

\printnames[] [1-3]{...}

One of (start) and (stop) may be omitted, hence the following arguments are all
valid:

\printnames[...][-1]
\printnames[...][2-]
\printnames[...][1-3

If you want to override (maxnames) and (minnames) and force printing of the entire
list, you may refer to the 1isttotal counter in the second optional argument:

\printnames[...] [-\value{listtotal}]{...}

Whenever \printnames and \print1list process alist, information concerning
the current state is accessible by way of four counters: the 1isttotal counter
holds the total number of items in the current list, 1 i stcount holds the number
of the item currently being processed, 1iststart is the (start) argument passed
to \printnames or \printlist, liststop is the (stop) argument. These
counters are intended for use in list formatting directives. 1isttotal may also be
used in the second optional argument to \printnames and \printlist. Note
that these counters are local to list formatting directives and do not hold meaningful
values when used anywhere else. For every list, there is also a counter by the same
name which holds the total number of items in the corresponding list. For example,
the author counter holds the total number of items in the author list. These
counters are similar to 1 isttotal except that they may also be used independently
of list formatting directives. There are also maxnames and minnames as well as
maxitems and minitems counters which hold the values of the corresponding

184

package options. See § 4.10.5 for a complete list of such internal counters. Note that
\printnames provides the name of the name list currently being processed in
\currentname for use in name formatting directives.

\printtext [(format)] {(text)}

This command prints (text), which may be printable text or arbitrary code gen-
erating printable text. It clears the punctuation buffer before inserting (text) and
informs biblatex that printable text has been inserted. This ensures that all pre-
ceding and following \newblock and \newunit commands have the desired
effect. \printfieldand \printnames as well as \bibstring and its com-
panion commands (see § 4.8) do that automatically. Using this command is required
if a bibliography styles inserts literal text (including the commands from §§ 4.7.3 and
4.7.4) to ensure that block and unit punctuation works as advertised in § 4.7.1. The
optional (format) argument specifies a field formatting directive to be used to format
(text). This may also be useful when several fields are to be printed as one chunk,
for example, by enclosing the entire chunk in parentheses or quotation marks. If a
type-specific (format) has been declared, the type-specific formatting directive takes
precedence over the generic one. If the (format) is omitted, the (text) is printed as
is. See also § 4.11.7 for some practical hints.

\printfile [(format)] {(file)}

This command is similar to \printtext except that the second argument is a file
name rather than literal text. The (file) argument must be the name of a valid LaTeX
file found in TeX’s search path. \printfile will use \ input to load this (file).
If there is no such file, \printfile does nothing. The optional (format) argument
specifies a field formatting directive to be applied to the (file). If a type-specific
(format) has been declared, the type-specific formatting directive takes precedence
over the generic one. If the (format) is omitted, the (file) is printed as is. Note that
this feature needs to be enabled explicitly by setting the package option 1oadfiles
from § 3.1.2.1. By default, \printfile will not input any files.

\printdate This command prints the date of the entry, as specified in the fields date or month/
year. The date format is controlled by the package option date from § 3.1.2.1.
Additional formatting (fonts etc.) may be applied by adjusting the field format date
(§ 4.10.4). Note that this command interfaces with the punctuation tracker. There is
no need to wrap it in a \printtext command.

\printdateextra Similarto \printdate butincorporates the extradate field in the date spec-
ification. This is useful for bibliography styles designed for author-year citations.

\printlabeldate Similar to \printdate but prints the date field determined by
\DeclareLabeldate. The date format is controlled by the package op-
tion labeldate from § 3.1.2.1. Additional formatting may be applied by adjusting
the field format 1abeldate (§ 4.10.4).

\printlabeldateextra Similarto \printlabeldate butincorporatesthe extradate fieldin
the date specification. This is useful for bibliography styles designed for author-year
citations.

\print<datetype>date As \printdate but prints the <datetype>date of the entry.
The date format is controlled by the package option <datetype>date from
§ 3.1.2.1. Additional formatting may be applied by adjusting the field format
<datetype>date (§ 4.10.4). The <datetype>s in the default data model are
“ (for the main date field), ‘orig’, ‘event’ and ‘url’.

185

\printtime This command prints the time range of the entry, as specified in the date field (see
§ 2.3.8). The time format is controlled by the package option time from § 3.1.2.1.
Additional formatting (fonts etc.) may be applied by adjusting the field format
time (§ 4.10.4). Relevant to time formatting are the timezeros option and the
\bibtimesep and \bibtimezonesep macros (§ 3.11.3). Note that this com-
mand interfaces with the punctuation tracker. There is no need to wrap it in a
\printtext command. Note that this command prints a stand-alone time range
apart from the date elements. With the <datepart>dateusetime option, you
can have the printed along with a date when printing a date range instead of printing
the time range completely separately, which is what this command allows for.

\print<datetype>time As \printtime but prints the <datetype>time of the entry.
The time format is controlled by the package option <datetype>time from
§ 3.1.2.1. Additional formatting may be applied by adjusting the field format
<datetype>time (§ 4.10.4). The <datetype>s in the default data model are
“ (for the main date field), ‘orig’, ‘event’ and ‘url’.

\indexfield[(format)] {(field)}

This command is similar to \printfield except that the (field) is not printed
but added to the index using the formatting directive (format), as defined with
\DeclareIndexFieldFormat. If a type-specific (format) has been declared, it
takes precedence over the generic one. If the (field) is undefined, this command does
nothing. If the (format) is omitted, \ indexfield tries using the name of the field
as a format name. In this case, any type-specific formatting directive will also take
precedence over the generic one. If all of these formats are undefined, it falls back to
default as a last resort.

\indexlist [(format)] [(start)—(stop)] { (literal list)}

This command is similar to \print1list except that the items in the list are not
printed but added to the index using the formatting directive (format), as defined
with \DeclareIndexListFormat. Ifatype-specific (format) hasbeen declared,
the type-specific formatting directive takes precedence over the generic one. If the
(literal list) is undefined, this command does nothing. If the (format) is omitted,
\indexlist tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one. If
all of these formats are undefined, it falls back to default as a last resort.

\indexnames [(format)] [(start)—(stop)] { (name list) }

This command is similar to \printnames except that the items in the list are not
printed but added to the index using the formatting directive (format), as defined
with \DeclareIndexNameFormat. Ifatype-specific (format) has been declared,
the type-specific formatting directive takes precedence over the generic one. If the
(name list) is undefined, this command does nothing. If the (format) is omitted,
\indexnames tries using the name of the list as a format name. In this case, any
type-specific formatting directive will also take precedence over the generic one. If
all of these formats are undefined, it falls back to default as a last resort.

\entrydata{(key)} {(code)}
\entrydata* {(key)} {(code)}

Data commands like \print field normally use the data of the entry currently
being processed. You may use \entrydata to switch contexts locally. The (key) is

186

the entry key of the entry to use locally. The (code) is arbitrary code to be executed in
this context. This code will be executed in a group. See § 4.11.6 for an example. Note
that this command will automatically switch languages if the autolang package
option is enabled. The starred version \entrydata* will clone all fields of the
enclosing entry, using field, counter, and other resource names prefixed with the
string ‘saved’. This is useful when comparing two data sets. For example, inside the
(code) argument, the author field holds the author of entry (key) and the author of
the enclosing entry is available as savedauthor. The author counter holds the
number of names in the author field of (key); the savedauthor counter refers
to the author count of the enclosing entry.

\entryset {(precode)} { (postcode) }

This command is intended for use in bibliography drivers handling @set entries. It
will loop over all members of the set, as indicated by the ent ryset field, and execute
the appropriate driver for the respective set member. This is similar to executing the
\usedriver command from § 4.6.4 for each set member. The (precode) is arbitrary
code to be executed prior to processing each item in the set. The (postcode) is arbitrary
code to be executed immediately after processing each item. Both arguments are
mandatory in terms of the syntax but may be left empty. See § 4.11.1 for usage
examples.

\DeclareFieldInputHandler {(field)} {(code)}

This command can be used to define a data input handler for (field) when it is
read from the .bb1l. The (code) is passed one argument (#1), which contains the
input field value, it should then redefine the command \NewValue, which holds
the desired output field value. For example, to ignore the volumes field when it
appears, you could do

\DeclareFieldInputHandler{volumes} {\def\NewValue({}}

Generally, you would want to use \DeclareSourcemap (see § 4.5.3) to remove
and modify fields but this alternative method may be useful in some circumstances
when the emphasis is on appearance rather than data since the (code) can be arbitraty
TeX.

In general, \DeclareFieldInputHandler should not be used to apply format-
ting to a field, since that should happen with \DeclareFieldFormat, so the
following is just a toy example that shows how \DeclareFieldInputHandler
works.

\DeclareFieldInputHandler{volumes} {\def\NewValue {
— \textbf{#1}}}

\DeclareListInputHandler{(list)} {{code)}

As \DeclareFieldInputHandler but for lists. Within the (code), the macro
\NewValue contains the value of the list and \NewCount contains the number
of items in the list. Note that \NewValue as well as the single argument to (code)
contain the internal representation of the list.

187

\DeclareNameInputHandler {(name)} {{code)}

As\DeclareFieldInputHandler butfor names. Within the (code), the macro
\NewValue contains the value of the name, \NewCount contains the number of
individual names in the name and \NewOption contains any per-name options
passed in the .bb1. Note that \NewValue as well as the single argument to (code)
contain the internal representation of the name list.

4.4.2 Formatting Directives

This section introduces the commands used to define the formatting directives re-
quired by the data commands from § 4.4.1. Note that all standard formats are defined
inbiblatex.def.

\DeclareFieldFormat [(entrytype, ...)] { {(format)} {(code)}
\DeclareFieldFormat* {(format)} {(code)}

Defines the field format (format). This formatting directive is arbitrary (code) to
be executed by \printfield. The value of the field will be passed to the (code)
as its first and only argument. The name of the field currently being processed
is available to the (code) as \currentfield. If an (entrytype) is specified, the
format is specific to that type. The (entrytype) argument may be a comma-separated
list of values. The starred variant of this command is similar to the regular version,
except that all type-specific formats are cleared.

\DeclareListFormat [(entrytype, ...)] {{format)} {{code)}
\DeclareListFormat* {(format)} {(code)}

Defines the literal list format (format). This formatting directive is arbitrary (code)
to be executed for every item in a list processed by \print1list. The current item
will be passed to the (code) as its first and only argument. The name of the literal
list currently being processed is available to the (code) as \currentlist. If an
(entrytype) is specified, the format is specific to that type. The {entrytype) argument
may be a comma-separated list of values. Note that the formatting directive also
handles the punctuation to be inserted between the individual items in the list. You
need to check whether you are in the middle of or at the end of the list, i. e., whether
listcount is smaller than or equal to 1iststop. The starred variant of this
command is similar to the regular version, except that all type-specific formats are
cleared.

\DeclareNameFormat [(entrytype, ...)] { (format)} { {code) }
\DeclareNameFormat* {(format)} {(code)}

Defines the name list format (format). This formatting directive is arbitrary (code) to
be executed for every name in a list processed by \printnames. If an (entrytype)
is specified, the format is specific to that type. The (entrytype) argument may be a
comma-separated list of values. The individual parts of a name will be available in
automatically created macros (see below). The default data mode defines four name
part which correspond to the standard BibTeX name parts arguments:

family The family name(s), know as ‘last’ in BibTeX. If a name consists of a single
part only (for example, ‘Aristotle’), this part will be treated as the family name.

given The given name(s). Note that given names are referred to as the ‘first’
names in the BibTeX file format documentation.

188

prefix Any name prefices, for example von, van, of, da, de, del, della, etc. Note
that name prefices are referred to as the ‘von’ part of the name in the BibTeX
file format documentation.

suffix Any name suffices, for example Jr, Sr. Note that name suffices are referred
to as the ‘Jr’ part of the name in the BibTeX file format documentation.

The value of the datamodel ‘nameparts’ constant (see § 4.2.3) creates two macros for
each name part in the datamodel for the name. So, for example, in the default data
model, name formats will have defined the following macros:

\namepartprefix
\namepartprefixi
\namepartfamily
\namepartfamilyi
\namepartsuffix
\namepartsuffixi
\namepartgiven
\namepartgiveni

If a certain part of a name is not available, the corresponding macro will be empty,
hence you may use, for example, the et ocolbox testslike \ 1 fde fvoid to check for
the individual parts of a name. The name of the name list currently being processed
is available to the (code) as \currentname. Note that the formatting directive
also handles the punctuation to be inserted between separate names and between
the individual parts of a name. You need to check whether you are in the middle
of or at the end of the list, i. e., whether 1istcount is smaller than or equal to
liststop. See also § 3.14.4. The starred variant of this command is similar to the
regular version, except that all type-specific formats are cleared.

\DeclareListWrapperFormat [(entrytype, ...)] { (format)} { (code)}
\DeclareListWrapperFormat* {(format)} {(code)}

Defines the list wrapper format (format). This formatting directive is arbitrary (code)
to be executed once for the entire list processed by \printlist. The name of the
literal list currently being processed is available to the (code) as \currentlist.
If an (entrytype) is specified, the format is specific to that type. The (entrytype)
argument may be a comma-separated list of values. The starred variant of this
command is similar to the regular version, except that all type-specific formats are
cleared.

\DeclareNameWrapperFormat [(entrytype, ...)]1 { (format)} { (code) }
\DeclareNameWrapperFormat* {(format)} {(code)}

Defines the list wrapper format (format). This formatting directive is arbitrary
(code) to be executed once for the entire name list processed by \printnames.
The name of the literal list currently being processed is available to the (code) as
\currentname. If an (entrytype) is specified, the format is specific to that type.
The (entrytype) argument may be a comma-separated list of values. The starred
variant of this command is similar to the regular version, except that all type-specific
formats are cleared.

189

\DeclarelIndexFieldFormat [(entrytype, ...)] { (format)} { {code)}
\DeclareIndexFieldFormat* {(format)} {(code)}

Defines the field format (format). This formatting directive is arbitrary (code) to
be executed by \ indexfield. The value of the field will be passed to the (code)
as its first and only argument. The name of the field currently being processed
is available to the (code) as \currentfield. If an (entrytype) is specified, the
format is specific to that type. The (entrytype) argument may be a comma-separated
list of values. This command is similar to \DeclareFieldFormat except that
the data handled by the (code) is not intended to be printed but written to the index.
Note that \indexfield will execute the (code) as is, i. e., the (code) must include
\index or a similar command. The starred variant of this command is similar to
the regular version, except that all type-specific formats are cleared.

\DeclarelIndexListFormat [(entrytype, ...)]1 {(format)} {{code)}
\DeclareIndexListFormat* {(format)} {(code)}

Defines the literal list format (format). This formatting directive is arbitrary (code) to
be executed for every item in a list processed by \ index 11 st. The current item will
be passed to the (code) as its only argument. The name of the literal list currently be-
ing processed is available to the (code) as \currentlist. If an (entrytype) is spec-
ified, the format is specific to that type. The (entrytype) argument may be a comma-
separated list of values. This command is similar to \DeclareListFormat ex-
cept that the data handled by the (code) is not intended to be printed but written
to the index. Note that \index1ist will execute the (code) as is, i. e., the (code)
must include \ index or a similar command. The starred variant of this command
is similar to the regular version, except that all type-specific formats are cleared.

\DeclareIndexNameFormat [(entrytype, ...)] { (format)} { (code)}
\DeclarelIndexNameFormat* {(format)} { (code)}

Defines the name list format (format). This formatting directive is arbitrary (code) to
be executed for every name in a list processed by \ indexnames. The name of the
name list currently being processed is available to the (code) as \currentname.
If an (entrytype) is specified, the format is specific to that type. The (entrytype)
argument may be a comma-separated list of values. The parts of the name will
be passed to the (code) as separate arguments. This command is very similar to
\DeclareNameFormat except that the data handled by the (code) is not intended
to be printed but written to the index. Note that \ indexnames will execute the
(code) as is, i. e., the (code) must include \ index or a similar command. The starred
variant of this command is similar to the regular version, except that all type-specific
formats are cleared.

\DeclareFieldAlias [(entrytype)] {({alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the field format (format). If an (entrytype) is
specified, the alias is specific to that type. The (format entry type) is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareListAlias [(entrytype)] {({alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the literal list format (format). If an (entrytype)
is specified, the alias is specific to that type. The (format entry type) is the entry

190

type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareNameAlias [(entry type)] {(alias)} [(format entry type)] { (format) }

Declares (alias) to be an alias for the name list format (format). If an (entrytype)
is specified, the alias is specific to that type. The (format entry type) is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareListWrapperAlias [(entry type)] {(alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the outer list format (format). If an (entrytype)
is specified, the alias is specific to that type. The (format entry type) is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareNameWrapperAlias [(entry type)] {(alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the outer name list format (format). If an
(entrytype) is specified, the alias is specific to that type. The (format entry type)
is the entry type of the backend format. This is only required when declaring an
alias for a type-specific formatting directive.

\DeclarelIndexFieldAlias [(entry type)] {(alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the field format (format). If an (entrytype) is
specified, the alias is specific to that type. The (format entry type) is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclarelIndexListAlias [(entry type)] {{alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the literal list format (format). If an (entrytype)
is specified, the alias is specific to that type. The (format entry type) is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclarelIndexNameAlias [(entry type)] {{alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the name list format (format). If an (entrytype)
is specified, the alias is specific to that type. The (format entry type) is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeprecateFieldFormatWithReplacement [(entry type)] {(alias)} [(format entry type)] { (format)}

Declares (alias) to be an alias for the name list format (format) and issue a depre-
cation warning. If an (entrytype) is specified, the alias is specific to that type. The
(format entry type) is the entry type of the backend format. This is only required
when declaring an alias for a type-specific formatting directive.

\DeprecateListFormatWithReplacement [(entry type)] {(alias)} [(format entry type)] { (format)}

Similar to \DeprecateFieldFormatWithReplacement but for list formats.

191

\DeprecateNameFormatWithReplacement [(entry type)] {{alias)} [(format entry type)] { (format)}

Similar to \DeprecateFieldFormatWithReplacement but for name for-
mats.

\DeprecateListWrapperFormatWithReplacement [(entry type)] {(alias)} [(format entry type)] { (format)}

Similar to \DeprecateFieldFormatWithReplacement but for outer list for-
mats.

\DeprecateNameWrapperFormatWithReplacement [(entry type)] {{alias)} [(format entry type)] { (format) }

Similar to \DeprecateFieldFormatWithReplacement but for outer name
formats.

\DeprecateIndexFieldFormatWithReplacement [(entry type)] {(alias)} [(format entry type)] { (format)}

Similar to \DeprecateFieldFormatWithReplacement but for index field
formats.

\DeprecateIndexListFormatWithReplacement [(entry type)] {{alias)} [(format entry type)] { (format)}

Similar to \DeprecateFieldFormatWithReplacement but for index list
formats.

\DeprecateIndexNameFormatWithReplacement [(entry type)] {{alias)} [(format entry type)] { (format) }

Similar to \DeprecateFieldFormatWithReplacement but for index name
formats.

4.5 Customization
4.5.1 Related Entries

The related entries feature comprises the following components:
+ Special fields in an entry to set up and describe relationships
« Optionally, localisation strings to prefix the related data
« Macros to extract and print the related data
« Formats to format the localisation string and related data

The special fields are related, relatedtype, relatedstring and
relatedoptions:

related A separated list of keys of entries which are related to this entry in some way. Note
the order of the keys is important. The data from multiple related entries is printed
in the order of the keys listed in this field.

relatedtype The type of relationship. This serves three purposes. If the value of this field

resolves to a localisation string identifier, then the resulting localised string is
printed before the data from the related entries. Secondly, if there is a macro called
related: (relatedtype), this is used to format the data from the related entries. If
no such macro exists, then the macro related:default is used. Lastly, if there
is a format named related: (relatedtype), then it is used to format both the
localised string and related entry data. If there is no related type specific format, the
related format is used.

192

relatedstring

relatedoptions

If an entry contains this field, then if value of the field resolves to a localisation
string identifier, the localisation key value specified is printed before data from the
related entries. If the field does not specify a localisation key, its value is printed
literally. If both relatedtype and relatedstring are present in an entry,
relatedstring is used for the pre-data string (but relatedtype is still used
to determine the macro and format to use when printing the data).

A list of per-entry options to set on the related entry (actually on the clone of the
related entry which is used as a data source—the actual related entry is not modified
because it might be cited directly itself).

The related entry feature is enabled by default by the package option related
from § 3.1.2.1. The related information entry data from the related entries is included
via a \usebibmacro{related} call. Standard styles call this macro towards
the end of each driver. Style authors should ensure the existence of (or take note of
existing) localisation strings which are useful as values for the relatedtype field,
such as translationof or perhaps translatedas. A plural variant can be
identified with the localisation key (relatedtype) s. This key’s corresponding string is
printed whenever more than one entry is specified in related. Bibliography macros
and formatting directives for printing entries related by (relatedtype) should be
defined using the name related: (relatedtype). Thefilebiblatex.def contains
macros and formats for some common relation types which can be used as templates.
In particular, the \entrydata* command is essential in such macros in order to
make the data of the related entries available. Examples of entries using this feature
can be found in the biblatex distribution examples file biblatex-examples.
bib. There are some specific formatting macros for this feature which control
delimiters and separators in related entry information, see § 4.10.1.

4.5.2 Datasource Sets

It is useful to be able to define named sets of datasource field names for use in loops
etc. In addition, biber can use such sets in order to apply options and perform
operations on particular sets of datasource fields. The following macros allow the user
to define arbitrary sets of datasource fields, exposed to biblatex as etoolbox
lists and to biber in the .bcf.

\DeclareDatafieldSet {(name)} { (specification) }

\member

Declare a set of datasource fields with name (name).

name=(set name)

The name of the set.

The (specification) is one or more \member items:

fieldtype=(fieldtype)
datatype=(datatype)
field=(fieldname)

A \member specification appends fields to the set. Fields can be specified by data-
model (fieldtype) and/or (datatype) (see § 4.5.4). Alternatively, fields can be explic-
itly added by name using the (field) option. Once defined, the set is available as

193

an etoolbox list called \datafieldset ‘setname’ and is also passed via the
.bcf tobiber.

For example, here are the default sets defined by biblatex for name fields and
title fields:

\DeclareDatafieldSet{setnames} {
\member [datatype=name, fieldtype=list]

\DeclareDatafieldSet{settitles}{
\member [field=title]
\member [field=booktitle]
\member [field=eventtitle]
\member [field=issuetitle]
\member [field=journaltitle]
\member [field=maintitle]
\member [field=origtitle]

This defines the macros \datafieldsetsetnames and
\datafieldsetsettitles as etoolbox lists containing the names of
the member datasource fields specified.

4.5.3 Dynamic Modification of Data

Bibliographic data sources which are automatically generated or which you have no
control over can be a problem if you need to edit them in some way. For this reason,
biber has the ability to modify data as it is read so that you can apply modifications
to the source data stream without actually changing it. The modification can be
defined in biber’s config file (see biber docs), or via biblatex macros in which
case you can apply the modification only for specific documents, styles or globally.

Source mapping happens during data parsing and therefore before any other
operation such as inheritance and sorting.

Source mappings can be defined at different “levels” which are applied in a defined
order. See the biblatex manual regarding these macros:

user-level maps defined with \DeclareSourcemap—
user-level maps defined in the biber config file (see biber docs)—
style-level maps defined with \DeclareStyleSourcemap—
driver-level maps defined with \DeclareDriverSourcemap

\DeclareSourcemap { (specification) }

Defines source data modification (mapping) rules which can be used to perform any
combination of the following tasks:

«Map data source entrytypes to different entrytypes
«Map datasource fields to different fields

194

+Add new fields to an entry
«Remove fields from an entry

+Modify the contents of a field using standard Perl regular expression match
and replace®

«Restrict any of the above operations to entries coming from particular data-
sources which you defined in \addresource macros

+Restrict any of the above operations to entries only of a certain entrytype

«Restrict any of the above operations to entries in a particular reference section

The (specification) is an undelimited list of \maps directives which specify contain-
ers for mappings rules applying to a particular data source type (§ 3.7.1). Spaces, tabs,
and line endings may be used freely to visually arrange the (specification). Blank
lines are not permissible. This command may only be used in the preamble and can
be used multiple times, the maps being run in order of definition.

\maps [(options)] { (elements) }

Contains an ordered set of \map elements each of which is a logically related set of
mapping steps to apply to the data source. The (options) are:

datatype=bibtex,biblatexml default: bibtex
Data source type to which the contained \map directives apply (§ 3.7.1).
overwrite=true, false default: false

Specify whether a mapping rule is allowed to overwrite already existing data in
an entry. If this option is not specified, the default is false. The short form
overwrite is equivalent to overwrite=true.

\map [(options)] { (restrictions,steps) }

A container for an ordered set of map \ steps, optionally restricted to particular
entrytypes or data sources. This is a grouping element to allow a set of mapping steps
to apply only to specific entrytypes or data sources. Mapping steps must always be
contained within a \map element. The (options) are:

overwrite=true, false

As the same option on the parent \maps element. This option allows an override on
a per-map group basis. If this option is not specified, the default is the parent \maps
element option value. The short form overwrite is equivalent to overwrite=
true.

foreach=(loopval)

Loop over all \ steps in this \map, setting the special variable $SMAPLOOP to each
of the comma-separated values contained in (loopval). (loopval) can either be the
name of a datafield set defined with \DeclareDatafieldSet (see § 4.5.2), a
datasource field which is fetched and parsed as a comma-separated values list or
an explicit comma-separated values list. (loopval) is determined in this order. This
allows the user to repeat a group of \ steps for each value (loopval). Using regexp
maps, it is possible to create a CSV field for use with this functionality. The special

»See for example https://perldoc.perl.org/perlretut.html, https://perldoc.
perl.org/perlrequick.html and https://perldoc.perl.org/perlre.html.
There are many more resources available about regular expessions in Perl.

195

https://perldoc.perl.org/perlretut.html
https://perldoc.perl.org/perlrequick.html
https://perldoc.perl.org/perlrequick.html
https://perldoc.perl.org/perlre.html

variable SMAPUNIQ may also be used in the \ steps to generate a random unique
string. This can be useful when creating keys for new entries. An example:

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map [overwrite, foreach={author,editor, translator
— }1{
\step[fieldsource=\regexp{SMAPLOOP}, match={Smith
— }, replace={Jones}]
}

refsection=(integer)

Only apply the contained \ step commands to entries in the reference section with
number (refsection).

\perdatasource { (datasource) }

Restricts all \ steps in this \map element to entries from the named (datasource).
The (datasource) name should be exactly as given in a \addresource macro
defining a data source for the document. Multiple \perdatasource restrictions
are allowed within a \map element.

\pertype { (entrytype) }

Restricts all \steps in this \map element to entries of the named (entrytype).
Multiple \pertype restrictions are allowed within a \map element.

\pernottype {(entrytype) }

Restricts all \ steps in this \map element to entries not of the named (entrytype).
Multiple \pernottype restrictions are allowed within a \map element.

\step [(options)]

A mapping step. Each step is applied sequentially to every relevant entry where
‘relevant’ means those entries which correspond to the data source type, entrytype
and data source name restrictions mentioned above. Each step is applied to the entry
as it appears after the application of all previous steps. The mapping performed by
the step is determined by the following (option)s:

typesource={entrytype)
typetarget=(entrytype)
fieldsource=(entryfield)
notfield=(entryfield)
fieldtarget=(entryfield)
match=(regexp)
matchi=(regexp)
notmatch=(regexp)
notmatchi=(regexp)

196

replace=(regexp)
fieldset=(entryfield)
fieldvalue=(string)
entryclone=(clonekey)
entrynew=(entrynewkey)
entrynewtype=(string)
entrytarget=(string)

cited=true, false default: false
nocited=true, false default: false
citedornocited=true, false default: false
allnocited=true, false default: false
starnocited=true, false default: false
entrynocite=true, false default: false
entrynull=true, false default: false
append=true, false default: false
appendstrict=true, false default: false
final=true, false default: false
null=true, false default: false
origfield=true, false default: false
origfieldval=true, false default: false
origentrytype=true, false default: false

For all boolean \ step options, the short form option is equivalent to option=
true. The following rules for a mapping step apply:

Note that the options cited, nocited, citedornocited, allnocited and
starnocited are unique in that they can make the results of a sourcemap differ
depending on the refsection. This is because a datasource to which source mapping
applies may be used in several refsections and source mappings are applied when
fetching the data from the datasources for a refsection. Citation commands are
local to a refsection and therefore may differ for the same entry from refsection
to refsection. For example, the same entry may be \cited in one refsection but
\nocited in another, resulting in different source map results and therefore data
between the refsections. This can be avoided if desired, by limiting source maps to
specific refsections only (see refsection option to the \map command above).

JIf entrynew is set, a new entry is created with the entry key entrynewkey

and the entry type given in the option entrynewtype. This entry is only
in-scope during the processing of the current entry and can be referenced
by entrytarget. In entrynewkey, you may use standard Perl regular
expression backreferences to captures from a previous match step.

+When a fieldset step has entrytarget set to the entrykey of an entry

created by entrynew, the target for the field set will be the entrytarget
entry rather than the entry being currently processed. This allows users to
create new entries and set fields in them.

197

Jfentrynociteisusedinaentrynewor entryclone step, the new/clone
entry will be included in the .bb1 as if the entry/clone had been \nociteed
in the document.

JIf entrynull is set, processing of the \map immediately terminates and
the current entry is not created. It is as if it did not exist in the datasource.
Obviously, you should select the entries which you want to apply this to using
prior mapping steps.

JIf entryclone is set, a clone of the entry is created with an entry key
clonekey. Obviously this may cause labelling problems in author/year styles
etc. and should be used with care. The cloned entry is in-scope during the
processing of the current entry and can be modified by passing its key as the
value to entrytarget. In clonekey, you may use standard Perl regular
expression backreferences to captures from a previous match step.

JIf cited is used then only apply the step if the entry key of an entry was
specifically cited via \cite.

JIf nocited is used then only apply the step if the entry key of an entry was
specifically nocited via \nocite or was included via \nocite{*}.

JIf citedornocited is used then only apply the step if the entry key of an
entry was specifically cited via \cite or specifically nocited via \nocite.

JIf allnocited is used then only apply the step if the entry key of an entry
was included via \nocite{*}.

JIf starnocited is used then only apply the step if the entry key of an entry
was included solely because of \nocite {*}. This implies that the entry was
neither explicitly \ citeed nor explicitly \nociteed.

«Change the typesource (entrytype) to the typetarget (entrytype), if
defined. If final is true then if the (entrytype) of the entry is not
typesource, processing of the parent \map immediately terminates.

«Change the fieldsource (entryfield) to fieldtarget, if defined. If
final is true then if there is no fieldsource (entryfield) in the entry,
processing of the parent \map immediately terminates.

JIf notfieldis true only if the (entryfield) does not exist. Usually used with
final so that if an entry does contain (entryfield), the map terminates.

JIf match is defined but replace is not, only apply the step if the
fieldsource (entryfield) matches the match regular expression (logic is
reversed if you use notmatch and case-insensitive if you use the versions
ending in ‘i’)*®. You may use capture parenthesis as usual and refer to these
($1...$9) in later fieldvalue specifications. This allows you to pull out parts
of some fields and put these parts in other fields.

«Perform a regular expression match and replace on the value of the
fieldsource (entryfield) if match and replace are defined.

JIf fieldset is defined, then its value is (entryfield) which will be set to a
value specified by further options. If overwrite is false for this step and the
field to set already exists then the map step is ignored. If final is also true
for this step, then processing of the parent map stops at this point. If append
is true, then the value to set is appended to the current value of (entryfield).

*Regular expressions are full Perl 5.16 regular expressions. This means you may need to deal with
special characters, see examples.

198

appendstrict only appends to (entryfield) if (entryfield) is not empty. The
value to set is specified by a mandatory one and only one of the following

options:
o fieldvalue — The fieldset (entryfield) is set to the fieldvalue
(string)
onull —The fieldset (entryfield) is ignored, as if it did not exist in the
datasource

o origentrytype — The fieldset (entryfield) is set to the most re-
cently mentioned typesource (entrytype) name

oorigfield — The fieldset (entryfield) is set to the most recently
mentioned fieldsource (entryfield) name

oorigfieldval —The fieldset (entryfield) is set to the most recently
mentioned fieldsource value

With BibTeX datasources, you may specify the pseudo-field entrykey for
fieldsource which is the citation key of the entry. With biblatexml the
entrykey is a normal attribute and can be reference like any other attribute. Natu-
rally, this ‘field’ cannot be changed (used as fieldset, fieldtarget or changed
using replace).

Macros used in \step are expanded. Unexpandable contents should be pro-
tected with \detokenize, regular expressions can be escaped using the dedicated
\regexp command (see the examples below).

\DeclareStyleSourcemap {(specification) }

This command sets the source mappings used by a style. Such mappings are concep-
tually separate from user mappings defined with \DeclareSourcemap and are
applied directly after user maps. The syntax is identical to \DeclareSourcemap.
This command is provided for style authors so that any maps defined for the
style do not interfere with user maps or the default driver maps defined with
\DeclareDriverSourcemap. This command is for use in style files and can be
used multiple times, the maps being run in order of definition.

\DeclareDriverSourcemap [(datatype=driver)] { (specification) }

This command sets the driver default source mappings for the specified
(driver). Such mappings are conceptually separate from user mappings
defined with \DeclareSourcemap and style mapping defined with
\DeclareStyleSourcemap. They consist of mappings which are part
of the driver setup. Users should not normally need to change these. Driver
default mapping are applied after user mappings (\DeclareSourcemap) and
style mappings (\DeclareStyleSourcemap). These defaults are described in
Appendix § A. The (specification) is identical to that for \DeclareSourcemap
but without the \maps elements: the (specification) is just a list of \map elements
since each \DeclareDriverSourcemap only applies to one datatype driver.
See the default definitions in Appendix § A for examples.

Here are some data source mapping examples:

\DeclareSourcemap {
\maps [datatype=bibtex] {

199

\map {
\perdatasource{examplel.bib}
\perdatasource{example?.bib}
\step[fieldset=keywords, fieldvalue={keywl, keyw2
— }]
\step[fieldsource=entrykey]
\step[fieldset=note, origfieldval]

This would add a keywords field with value ‘keyw1, keyw?2’ and set the note field
to the entry key to all entries which are found in either the examplesl.bib or
examples2.bib files.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step[fieldsource=title]
\step|[fieldset=note, origfieldval]

Copy the title field to the note field unless the note field already exists.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step|[typesource=chat, typetarget=customa, final]
\step[fieldset=type, origentrytype]

Any chat entrytypes would become customa entrytypes and would automatically
have a type field set to ‘chat’ unless the type field already exists in the entry
(because overwrite is false by default). This mapping applies only to entries of
type @chat since the first step has final set and so if the typesource does not
match the entry entrytype, processing of this \map immediately terminates.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\perdatasource{examples.bib}
\pertype{article}
\pertype{book}
\step[fieldset=abstract, null]
\step[fieldset=note, fieldvalue={Auto-created
— this field}]

200

}

Any entries of entrytype @article or @book from the examples.bib data-
source would have their abstract fields removed and a note field added with
value ‘Auto-created this field’.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step[fieldset=abstract, null]
\step[fieldsource=conductor, fieldtarget=namea]
\step[fieldsource=gps, fieldtarget=usera]

}

This removes abstract fields from any entry, changes conductor fields to
namea fields and changes gps fields to usera fields.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step[fieldsource=pubmedid, fieldtarget=eprint,
«— final]
\step[fieldset=eprinttype, origfield]
\step[fieldset=userd, fieldvalue={Some string of
— things}]
}

}

Applies only to entries with pubmed fields and maps pubmedid fields to eprint
fields, sets the eprinttype field to ‘pubmedid’ and also sets the userd field to
the string ‘Some string of things’.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step[fieldsource=series,
match=\regexp{\A\d* (.+) },
replace=\regexp{\L$1}]

}

Here, the contents of the series field have leading numbers stripped and the
remainder of the contents lowercased. Since regular expressions usually contain all
sort of special characters, it is best to enclose them in the provided \ regexp macro
as shown—this will pass the expression through to biber correctly.

201

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {

\step[fieldsource=maintitle,
match=\regexp{Collected\s+Works.+Freud},
final]

\step[fieldset=keywords, fieldvalue=freud]

Here, if for an entry, the maintitle field matches a particular regular expression,
we set a special keyword so we can, for example, make a references section just for
certain items.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step[fieldsource=lista, match=\regexp{regexp},
— final]
\step[fieldset=lista, null]

If an entry has a 11ista field which matches regular expression ‘regexp’, then it is
removed.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map [overwrite=false] {
\step[fieldsource=author]
\step[fieldset=editor, origfieldval, final]
\step[fieldsource=editor, match=\regexp{\A(.+?)
— \s+and.*}, replace={$1}]
}

For any entry with an author field, try to set editor to the same as author. If
this fails because editor already exists, stop, otherwise truncate editor to just
the first name in the name list.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {

\step[fieldsource=author,
match={Smith, Bill},
replace={Smith, William}]

\step[fieldsource=author,

202

match={Jones, Baz},
replace={Jones, Barry}]

Here, we use multiple match/replace for the same field to regularise some inconstant
name variants. Bear in mind that \ step processing within a map element is se-
quential and so the changes from a previous \ steps are already committed. Note
that we don’t need the \ regexp macro to protect the regular expressions in this
example as they contain no characters which need special escaping. Please note that
due to the difficulty of protecting regular expressions in KIEX, there should be no
literal spaces in the argument to \ regexp. Please use escape code equivalents if
spaces are needed. For example, this example, if using \ regexp, should be:

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {

\step[fieldsource=author,
match=\regexp{Smith, \s+Bill},
replace=\regexp{Smith, \x20William}]

\step[fieldsource=author,
match=\regexp{Jones, \s+Baz},
replace=\regexp{Jones, \x20Barry}]

Here, we have used the hexadecimal escape sequence ‘\x20’ in place of literal spaces
in the replacement strings.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map [overwrite] {
\step[fieldsource=author, match={Doe,}, final]

\step[fieldset=shortauthor, origfieldval]
\step[fieldset=sortname, origfieldval]
\step[fieldsource=shortauthor,
match=\regexp{Doe, \s* (2:\.|ohn) (?:[-]1%*) (?:
— P\.|Paul) *},
replace={Doe, John Paul}]
\step[fieldsource=sortname,
match=\regexp{Doe, \s* (2:\.|ohn) (?:[-]1%) (?:
— P\.|Paul) *},
replace={Doe, John Paul}]

Only applies to entries with an author field matching ‘Doe;. First the author
field is copied to both the shortauthor and sortname fields, overwriting them

203

if they already exist. Then, these two new fields are modified to canonicalise a
particular name, which presumably has some variants in the data source.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map [overwrite] {
\step[fieldsource=verba, final]
\step[fieldset=verbb, fieldvalue=/, append]
\step[fieldset=verbb, origfieldval, append]
\step[fieldsource=verbb, final]
\step[fieldset=verbc, fieldvalue=/, append]
\step[fieldset=verbc, origfieldval, append]

This example demonstrates the sequential nature of the step processing and the
append option. If an entry has a verba field then first, a forward slash is appended
to the verbb field. Then, the contents of verba are appended to the verbb field. A
slash is then appended to the verbc field and the contents of verbb are appended
to the verbc field.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map[overwrite] {
\step[fieldset=autourl, fieldvalue={http://
— scholar.google.com/scholar?qg="1}]
\step|[fieldsource=title]
\step[fieldset=autourl, origfieldval, append]
\step[fieldset=autourl, fieldvalue={"+author:},
— append]
\step|[fieldsource=author, match=\regexp{\A([",]+)
= \&%*, }]
\step[fieldset=autourl, fieldvalue={$1}, append]
\step[fieldset=autourl, fieldvalue={&as ylo=},
— append]
\step[fieldsource=year]
\step[fieldset=autourl, origfieldval, append]
\step[fieldset=autourl, fieldvalue={&as yhi=},
— append]
\step[fieldset=autourl, origfieldval, append]

This example assumes you have created a field called autourl using the datamodel
macros from § 4.5.4 in order to hold, for example, a Google Scholar query URL auto-
created from elements of the entry. The example progressively extracts information
from the entry, constructing the URL as it goes. It demonstrates that it is possible
to refer to parenthetical matches from the most recent match in any following
fieldvalue which allows extracting the family name from the author, assuming

204

a ‘family, given’ format. The resulting field could then be used as a hyperlink from,
for example, the title of the work in the bibliography.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\step[fieldsource=title, match={A Title}, final]
\step[entrynull]

Any entry with a title field matching ‘A Title’ will be completely ignored.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\pernottype{book}
\pernottype{article}
\step[entrynull]

Any entry which is not a @book or @article will be ignored.

\DeclareSourcemap {
\maps [datatype=bibtex] {
\map {
\perdatasource{biblatex-examples.bib}
\step[entryclone={rel-}]

Here, a clone of an entry from the specified data source will be created. The entry
key of the clone will be the same as the original but prefixed by the value of the
entryclone parameter. The cloned entry would still need to be cited in the docu-
ment using its new entry key. This type of mapping step should be used with care
as it may produce labelling problems in authoryear styles which use, for example,
extradate. One use case is for numeric styles which contain multiple bibliogra-
phies containing the same entry. In this case, you may need different bibliography
number labeld for the same entry and this is very tricky when there is only one entry
which needs different labels. Creating clones with different entry keys solves this
problem.

biblatexml datasources are more structured than BibTeX since they are XML.
Sourcemapping is possible with biblatexml too but the specifications of source
and target fields etc. also support XPath 1.0 paths in order to be able to work with
the structured data. Fields can be specified as per the BibTeX examples above and
these are converted into XPath 1.0 queries internally as necessary. For example:

205

\DeclareSourcemap {
\maps [datatype=biblatexml] {

\map {
\step[fieldsource=\regexp{./bltx:names[@type="'author
— '"]/bltx:name[2]/bltx:namepart[Qtype="family']},

match=\regexp{\ASmith},
replace={Jones}]

}

\map {

\step[fieldsource=editor, fieldtarget=translator]

}

\map {

\step[fieldsource=\regexp{./bltx:names[@type="
— editor'l},
fieldtarget=\regexp{./bltx:names[@type="
— translator']}]
}
\map {
\step[fieldset=\regexp{./bltx:names[@type="author
— ']/bltx:name[2]/Quseprefix},
fieldvalue={false}]

These maps, respectively,

« Replace the family name ‘Smith’ of the second author name with ‘Jones’
« Move the editor to translator
+ Move the editor to translator but with explicit XPaths

+ Set the per-namelist useprefix option on the author name list to ‘false’

4.5.4 Data Model Specification

The data model which biblatex uses consists of four main elements:
« Specification of constant strings and lists of strings
« Specification of valid Entrytypes

« Specification of valid Fields along with their type, datatype and any special
flags

« Specification of which Fields are valid in which Entrytypes

« Specification of constraints which can be used to validate data against the data
model

The default data model is defined in the core biblatex file blx~dm. def using
the macros described in this section. The default data model is described in detail
in § 2. The data model is used internally by biblatex and also by the backend.

206

In practice, changing the data model means that you can define the entrytypes and
fields for your datasources and validate your data against the data model. Naturally,
this is not much use unless your style supports any new entrytypes or fields and it
raises issues of portability between styles (although this can be mitigated by using
the dynamic data modification functionality described in § 4.5.3).

Note that while the biber/BibTeX input site is not case sensitive when it comes
to entry types and field names (Perl’s Unicode case folding is used to normalise
field names and entry types), the LaTeX side is case sensitive and uses the exact
capitalisation from the data model.

Validation against the data model means that after mapping your data sources into
the data model, biber (using its --validate datamodel option) can check:

« Whether all entrytypes are valid entrytypes
+ Whether all fields are valid fields for their entrytype

« Whether the fields obey various constraints on their format which you specify

Redefining the data model can be done in several places. Style authors can
create a . dbx file which contains the data model macros required and this will
be loaded automatically when using the biblatex package style option by
looking for a file named after the style with a .dbx extension (just like the
.cbx and .Dbbx files for a style). If the style option is not used but rather the
citestyle and bibstyle options, then the package will try to load .dbx
files called <citestyle>.dbx and <bibstyle>.dbx. Alternatively, the
name of the data model file can be different from any of the style option names by
specifying the name (without . dbx extension) to the package datamodel option.
After loading the style data model file, biblatex then loads, if present, a users
biblatex-dm.cfg which should be put somewhere biblatex can find it, just
like the main configuration file biblatex.cfg. To summarise, the data model is
determined by adding to the data model from each of these locations, in order:

blx-dm.def—
<datamodel option>.dbx —
<style option>.dbx —
<citestyle option>.dbx and <bibstyle option>.dbx —
biblatex-dm.cfg

It is not possible to add to a loaded data model by using the macros below in your
preamble as the preamble is read after biblatex has defined critical internal macros
based on the data model. If any data model macro is used in a document, it will
be ignored and a warning will be generated. The data model is defined using the
following macros:

\DeclareDatamodelConstant [(options)] { (name)} { (constantdef’) }

Declares the (name) as a datamodel constant with definition (constantdef). Such
constants are typically used internally by biber.

type=string, list default: string

A constant can be a simple string (default if the (type) option is omitted) or a comma-
separated list of strings.

207

\DeclareDatamodelEntrytypes [(options)] { (entrytypes)}

Declares the comma-separated list of (entrytypes) to be valid entrytypes in the data
model. As usual in TeX csv lists, make sure each element is immediately followed by
a comma or the closing brace—no extraneous whitespace.

skipout=true, false default: false

This entrytype is not output to the .bb1l. Typically used for special entrytypes
which are processed and consumed by the backend such as @xdata.

\DeclareDatamodelFields [(options)] { (fields)}

Declares the comma-separated list of (fields) to be valid fields in the data model
with associated comma-separated (options). The (type) and (datatype) options are
mandatory. All valid (options) are:

type=(field type)
Set the type of the field as described in § 2.2.1, typically ‘field’ or ‘list’.
format=(field format)

Any special format of the field. Normally unspecified but can take the value “xsv’
which tells biber that this field has a separated values format. The exact separator
can be controlled with the biber option xsvsep and defaults to the expected
comma surrounded by optional whitespace.

datatype=(field datatype)

Set the datatype of the field as described in § 2.2.1. For example, ‘name’ or ‘literal’.
nullok=true, false default: false
The field is allowed to be defined but empty.

skipout=true, false default: false

The field is not output to the .bb1l and is therefore not present during biblatex
style processing. As usual in TeX csv lists, make sure each element is immediately
followed by a comma or the closing brace—no extraneous whitespace.

label=true, false default: false

The field can be used as a label in a bibliography or bibliography list. Specifying
this causes biblatex to create several helper macros for the field so that there are
some internal lengths and headings etc. defined.

\DeclareDatamodelEntryfields [(entrytypes)] { (fields)}

Declares that the comma-separated list of (fields) is valid for the comma-separated
list of (entrytypes). If (entrytypes) is not given, the fields are valid for all entrytypes.
As usual in TeX csv lists, make sure each element is immediately followed by a
comma or the closing brace—no extraneous whitespace.

\DeclareDatamodelConstraints [(entrytypes)] { (specification)}

If a comma-separated list of (entrytypes) is given, the constraints apply only to those
entrytypes. The (specification) is an undelimited list of \constraint directives
which specify a constraint. Spaces, tabs, and line endings may be used freely to
visually arrange the (specification). Blank lines are not permissible.

208

\constraint [(type=constrainttype)] { (elements) }
Specifies a constraint of type (constrainttype). Valid constraint types are:

type=data,mandatory, conditional

Constraints of type ‘data’ put restrictions on the value of a field. Constraints of type
‘mandatory’ specify which fields or combinations of fields an entrytype should have.
Constraints of type ‘conditional’ allow more sophisticated conditional and quantified
field constraints.

datatype=integer, isbn, issn, ismn, datepart, pattern
For constraints of type (data), constrain field values to be the given datatype.
rangemin=(num)

For constraints of (type) ‘data’ and (datatype) ‘integer’, constrain field values to be
at least (num).

rangemax=(num)

For constraints of (type) ‘data’ and (datatype) ‘integer’, constrain field values to be
at most (numy).

pattern=(patt)

For constraints of (type) ‘data’ and (datatype) ‘pattern’, constrain field values to
match regular expression pattern (patt). It is best to wrap any regular expression in
the macro \regexp, see § 4.5.3.

A \constraint macro may contain any of the following:
\constraintfieldsor{(fields)}

For constraints of (type) ‘mandatory’, specifies that an entry must contain a boolean
OR of the \constraintfields.

\constraintfieldsxor{(fields)}

For constraints of (type) ‘mandatory’, specifies that an entry must contain a boolean
XOR of the \constraintfields.

\antecedent [(quantifier=quantspec)] { (fields) }

For constraints of (type) ‘conditional’, specifies a quantified set of
\constraintfields which must be satisfied before the \consequent
of the constraint is checked. (quantspec) should have one of the following values:

quantifier=all, one, none

Specifies how many of the \constrainfield’s inside the \antecedent have
to be present to satisfy the antecedent of the conditional constraint.

\consequent [(quantifier=quantspec)] { (fields) }

For constraints of (type) ‘conditional’, specifies a quantified set of
\constraintfields which must be satisfied if the preceding \antecedent
of the constraint was satisfied. (quantspec) should have one of the following values:

quantifier=all, one, none

Specifies how many of the \constraintfield’sinside the \consequent have
to be present to satisfy the consequent of the conditional constraint.

209

\constraintfield{(field)}

For constraints of (type) ‘data’, the constraint applies to this (field). For constraints
of (type) ‘mandatory’, the entry must contain this (field).

The data model declaration macros may be used multiple times as they append to the
previous definitions. In order to replace, change or remove existing definitions (such
as the default model which is loaded with biblatex), you should reset (clear) the
current definition and then set what you want using the following macros. Typically,
these macros will be the first things in any biblatex-dm. cfg file:

\ResetDatamodelEntrytypes

Clear all data model entrytype information.
\ResetDatamodelFields

Clear all data model field information.
\ResetDatamodelEntryfields

Clear all data model fields for entrytypes information.
\ResetDatamodelConstraints

Clear all data model fields Constraints information.

Here is an example of a simple data model. Refer to the core biblatex file
blx-dm.def for the default data model specification.

\ResetDatamodelEntrytypes
\ResetDatamodelFields
\ResetDatamodelEntryfields
\ResetDatamodelConstraints

\DeclareDatamodelEntrytypes{entrytypel, entrytype2}

\DeclareDatamodelFields [type=field, datatype=literal] {
— fieldl, field2, field3, field4}

\DeclareDatamodelEntryfields{fieldl}

\DeclareDatamodelEntryfields|[entrytypel] {field2, field3}

\DeclareDatamodelEntryfields[entrytype2]{field2, field3,
— field4d}

\DeclareDatamodelConstraints[entrytypel] {
\constraint [type=data, datatype=integer, rangemin=3,
— rangemax=10] {
\constraintfield{fieldl}
}
\constraint [type=mandatory] {
\constraintfield{fieldl}
\constraintfieldsxor{
\constraintfield{field2}
\constraintfield{field3}

210

}
\DeclareDatamodelConstraints{
\constraint [type=conditional] {
\antecedent [quantifier=none] {
\constraintfield{field?2}
}

\consequent [quantifier=all]{
\constraintfield{field3}
\constraintfield{field4}

This model specifies:

+ Clear the default data model completely

« Two valid entry types @entrytypel and @entrytype?2

« Four valid literal field fields

« fieldl is valid for all entrytypes

o field2 and field3 are valid for entrytypel

o field2, field3 and field4 are valid for Rentrytype?2

« For @entrytypel:
- fieldl must be an integer between 3 and 10
- fieldl must be present

— One and only one of field2 or £ield3 must be present

« For any entrytype, if field?2 is not present, field3 and field4 must be
present

4.5.5 Labels

Alphabetic styles use a label to identify bibliography entries. This label is constructed
from components of the entry using a template which describes how to build the
label. The template can be customised on a global or per-type basis. A separate
template is used to specify how to extract parts of name fields for labels, since names
can be quite complex fields.

\DeclareLabelalphaTemplate [] {(specification)}

Defines the alphabetic label template for the given entrytypes. If no entrytypes
are specified in the first argument, then the global label template is defined. The
(specification) is an undelimited list of \ Labelelement directives which specify
the elements used to build the label. Spaces, tabs, and line endings may be used
freely to visually arrange the (specification). Blank lines are not permissible. This
command may only be used in the preamble.

211

\labelelement {(elements)}

Specifies the elements used to build the label. The (elements) are an undelimited
listof \field or \1iteral commands which are evaluated in the order in which
they are given. The first \field or \1literal which expands to a non-empty
string is used as the \1labelelement expansion and the next \labelelement,
if any, is then processed.

\field[(options)] {(field)}

If (field) is non-empty, use it as the current label \1labelelement, subject to
the options below. Useful values for (field) are typically the name list type fields,
date fields, and title fields. You may also use the ‘citekey’ or ‘entrykey‘ pseudo-
fields to specify the citation/entry key as part of the label. Name list fields are
treated specially and when a name list field is specified, the template defined with
\DeclareLabelalphaNameTemplate is used to extract parts from the name
which then returns the string that the \field option uses.

final=true, false default: false

This option marks a \ field directive as the final one in the (specification). If the
(field) is non-empty, then this field is used for the label and the remainder of the
(specification) will be ignored. The short form final is equivalent to final=
true.

lowercase=true, false default: false

Forces the label part derived from the field to lowercase. By default, the case is taken
from the field source and not modified.

strwidth=(integer) default: 1

The number of characters of the (field) to use. This setting may be overrid-
den by an individual name part when extracting characters from a name. See
\DeclareLabelalphaNameTemplate below.

strside=left, right default: left

The side of the string from which to take the st rwidth number of characters. This
setting may be overridden by an individual name part when extracting characters
from a name. See \DeclareLabelalphaNameTemplate below.

padside=left, right default: right

Side to pad the label part when using the padchar option. Only for use with
fixed-width label strings (strwidth).

padchar=(character)

If present, pads the label part on the padside side with the specified character to
the length of strwidth. Only for use with fixed-width label strings (strwidth).

uppercase=true, false default: false

Forces the label part derived from the field to uppercase. By default, the case is taken
from the field source and not modified.

varwidth=true, false default: false

Use a variable width, left-side substring of characters from the string returned for
(field). The length of the string is determined by the minimum length needed to
disambiguate the substring from all other (field) elements in the same position in
the label. For name list fields, this means that each name substring is disambiguated

212

from all other name substrings which occur in the same position in the name list
(see examples below). This option overrides strwidth if both are used. The
short form varwidth is equivalent to varwidth=true. For name list fields, the
\nameparts with the pre option set are prepended to the string returned from
this disambiguation.

varwidthnorm=true, false default: false

As varwidth but will force the disambiguated substrings for the (field) to be the
same length as the longest disambiguated substring. This can be used to regularise
the format of the labels if desired. This option overrides st rwidth if both are used.
The short form varwidthnormis equivalent to varwidthnorm=true.

varwidthlist=true, false default: false

Alternative method of automatic label disambiguation where the field as a whole
is disambiguated from all other fields in the same label position. For non-name list
fields, this is equivalent to varwidth. For name list fields, names in a name list are
not disambiguated from other names in the same position in their name lists but
instead the entire name list is disambiguated as a whole from other name lists (see
examples below). This option overrides st rwidth if both are used. The short form
varwidthlist is equivalent to varwidthlist=true. For name list fields, the
\nameparts with the pre option set are prepended to the string returned from
this disambiguation.

strwidthmax=(integer)

When using varwidth, this option sets a limit (in number of characters) on the
length of variable width substrings. This option can be used to regularise the label.

strfixedcount=(integer) default: 1

When using varwidthnorm, there must be at least strfixedcount disam-
biguated substrings with the same, maximal length to trigger the forcing of all
disambiguated substrings to this same maximal length.

i fnames=(range)

Only use this \ field specification if it is a name list field with a number of names
matching the i fnames range value. This allows a \1labelelement to be condi-
tionalised on name length (see below). The range can specified as in the following
examples:

ifnames=3 -> Only apply to name lists containing
— exactly 3 names

ifnames={2-4} -> Only apply to name lists containing
— minimum 2 and maximum 4 names

ifnames={-3} -> Only apply to name lists containing at
<~ most 3 names
ifnames={2-} -> Only apply to name lists containing at

— least 2 names

names=(range)

By default, for name list fields, the names used range from the first name to the
maxalphanames/minalphanames truncation. This option can be used to over-
ride this with an explicit range of names to consider. The plus ‘+’ sign is a special end
of range marker denoting the truncation point of max/minalphanames. The range
separator can be any number of characters with the Unicode Dash property. For
example:

213

names=3 -> Use first 3 names in the name list

names={2-3} -> Use second and thirds names only

names={-3} -> Same as 1-3

names={2-} -> Use all names starting with the second
— name (ignoring max/minalphanames truncation)

names={2-+} -> Use all names starting with the second
— name (respecting max/minalphanames truncation)

namessep=(string) default: empty
An arbitrary string separator to put between names in a namelist.
noalphaothers=true, false default: false

By default, \1labelalphaothers is appended to label parts derived from name
lists if there are more names in the list than are shown in the label part. This option
can be used to disable the default behaviour.

\literal {(characters)}

Insert the literal (characters) into the label at this point.

When a name list \ £ ie1d is specified, the method of extracting the string is specified
by a separate template specified by the following command:

\DeclareLabelalphaNameTemplate [(name)] {(specification)}

Defines the 1abelalphaname template (name). The (name) is optional and de-
faults to (‘global’).

Such templates specify how to extract a label string from a name list whena \field
specification in \DeclareLabelalphaTemplate contains a name list.

\namepart [(options)] { (namepart) }

(namepart) is one of the datamodel nameparts defined with the
\DeclareDatamodelConstant command (see § 4.2.3). The (options)
are:

use=true, false default: false

Only use the (namepart) in constructing the label information if there is a corre-
sponding option use ‘namepart’ and that option is true.

pre=true, false default: false

When constructing label strings from names, the \namepart without a
pre option will be used to construct label string, passing through disam-
biguation, substring etc. operations as specified by the \field options in
\DeclareLabelalpaTemplate. Then the \namepart options with the pre
option set will be prepended to the result, (in the order given, if there are more than
one such \nameparts). This allows to unconditionally prepend certain namepart
information to name label strings, like name prefices. Note that the uppercase
and lowercase options of \fieldin \DeclareLabelalphaTemplate are
applied to the entire label returned from \DeclareLabelalphaTemplate, both
pre parts and non pre.

214

compound=true, false default: false

For static (non-varwidth) disambiguation in \DeclarelLabelalphaTemplate,
treat nameparts separated by whitespace or hyphens (compound names) as separate
names for label generation. This means that when forming a label out of, for example
the surname ‘Ballam Forsyth’ with a 1 character, left-side substring, this name would
give ‘BF’ with compound=true and ‘B’ with compound=false. The short form
compound is equivalent to compound=true.

strwidth=(integer) default: 1
The number of characters of the (namepart) to use.
strside=left, right default: left

The side of the string from which to take the st rwidth number of characters.

Note that the templates for labels can be defined per-type and you should be aware
of this when using the automatically disambiguated label functionality. Disambigua-
tion is not per-type as this might lead to ambiguity due to different label formats for
different types being isolated from each others disambiguation process. Normally,
you will want to use very different label formats for different types to make the type
obvious by the label.

Here are some examples. The default global biblatex alphabetic label tem-
plate is defined below. Firstly, shorthand has final=true and so if there is a
shorthand field, it is used as the label and nothing more of the template is consid-
ered. Next, the 1abel field is used as the first label element if it exists. Otherwise, if
there is only one name (i fnames=1) in the 1abelname list, then three characters
from the left side of the family name in the 1abelname are used as the first label
element. If the 1abelname has more than one name in it, one character from the
left side of each family name is used as the first label element. The second label
element consists of 2 characters from the right side of the year field.

The default template for constructing labels from names is also shown. This
prepends the first character from the left side of any prefix (if the useprefix
option is true) to a label extracted from the family name (according to the options on
the calling \field option from \DeclareLabelalphaTemplate), allowing
for compound family names.

\DeclarelLabelalphaTemplate {
\labelelement {
\field[final] {shorthand}
\field{label}
\field[strwidth=3, strside=left,ifnames=1] {labelname
— }
\field[strwidth=1, strside=left] {labelname}
}
\labelelement {
\field[strwidth=2, strside=right] {year}

\DeclareLabelalphaNameTemplate {
\namepart [use=true, pre=true, strwidth=1, compound=
— true] {prefix}
\namepart{family}

215

To get an idea of how the label automatic disambiguation works, consider the fol-
lowing author lists:

Agassi, Chang, Laver (2000)
Agassi, Connors, Lendl (2001)
Agassi, Courier, Laver (2002)
Borg, Connors, Edberg (2003)
Borg, Connors, Emerson (2004)

Assuming a template declaration such as:

\DeclarelLabelalphaTemplate{
\labelelement {
\field[varwidth] {labelname}

Then the labels would be:

Agassi, Chang, Laver [AChLa]
Agassi, Connors, Lendl [AConLe]
Agassi, Courier, Laver [ACoula]
Borg, Connors, Edberg [BConEd]
Borg, Connors, Emerson [BConEm]

With normalised variable width labels defined:

\DeclareLabelalphaTemplate {
\labelelement{
\field[varwidthnorm] { labelname}

You would get the following as the substrings of names in each position are extended
to the length of the longest substring in that same position:

Agassi, Chang, Laver []
Agassi, Connors, Lendl []
Agassi, Courier, Laver [ACoula]
Borg, Connors, Edberg [BConEd]
Borg, Connors, Emerson [BConEm]

With a restriction to two characters for the name components of the label element
defined like this:

\DeclarelLabelalphaTemplate {
\labelelement {
\field[varwidthnorm, strwidthmax=2] {labelname}

216

This would be the result (note that the individual family name label parts are no
longer unambiguous):

Agassi, Chang, Laver [AChLa]
Agassi, Connors, Lendl [ACoLe]
Agassi, Courier, Laver [ACoLa]
Borg, Connors, Edberg [BCoEd]
Borg, Connors, Emerson [BCoEm]

Alternatively, you could choose to disambiguate the name lists as a whole with:

\DeclarelLabelalphaTemplate{
\labelelement {
\field[varwidthlist] {labelname}

Which would result in:
Agassi, Chang, Laver AChL]
Agassi, Connors, Lendl ACoL]

Borg, Connors, Edberg BCEd]

[
[
Agassi, Courier, Laver [ACL]
[
Borg, Connors, Emerson [BCE]

Perhaps you only want to consider at most two names for label generation but
disambiguate at the whole name list level:

\DeclarelLabelalphaTemplate{
\labelelement{
\field[varwidthlist, names=2] {labelname}

Which would result in:
Agassi, Chang, Laver ACh+]
Agassi, Connors, Lendl ACo+]

Borg, Connors, Edberg BC+a]

[

[
Agassi, Courier, Laver [AC+]

[
Borg, Connors, Emerson [BC+Db]

In this last example, you can see \labelalphaothers has been appended to
show that there are more names. The last two labels now require disambiguating
with \extraalpha as there is no way of disambiguating this label name list with
only two names.

Finally, here is an example using multiple label elements:

\DeclarelLabelalphaTemplate {
\labelelement {

217

\field[varwidthlist] {labelname}

}

\labelelement {
\literal{-}

}

\labelelement{
\field[strwidth=3,strside=right] {labelyear}

Which would result in:
Agassi, Chang, Laver AChL-000]
Agassi, Connors, Lendl AConL-001]

Borg, Connors, Edberg BCEd-003]

[
[
Agassi, Courier, Laver [ACouL-002]
[
Borg, Connors, Emerson [BCEm-004]

Here is another rather contrived example showing that you don’t need to specially
quote LaTeX special characters (apart from ‘%’, obviously) when specifying padding
characters and literals:

\DeclareLabelalphaTemplate{
\labelelement {
\literal{>}
}
\labelelement {
\literal{\%}
}
\labelelement{
\field[namessep={/}, strwidth=4, padchar=]({
— labelname}
}
\labelelement{
\field[strwidth=3, padchar=&, padside=left]{title}
}
\labelelement{
\field[strwidth=2, strside=right] {year}

which given:

@Book{test,
author = {XXX YY and WWW ZZ},
title = {T},
year = {2007},

would resulting a label looking like this:

[>%YY/ZZ &&TO7]

218

Generating labels from fields may involve some difficulties when you have fields
containing diacritics, hyphens, spaces etc. Often, you want to ignore things like
separator characters or spaces when generating labels. An option is provided to
customise the regular expression(s) to strip from a field before it is passed to the
label generation system.

\DeclareNolabel {(specification) }

Defines regular expressions to strip from any field before generating a label part
for the field. The (specification) is an undelimited list of \nolabel directives
which specify the regular expressions to remove from fields. Spaces, tabs and line
endings may be used freely to visually arrange the (specification). Blank lines are
not permissible. This command may only be used in the preamble.

\nolabel {(regexp)}

Any number of \nolabel commands can be given each of which specifies to remove
the (regexp) from the copy of the field which the label generation system sees. Since
regular expressions usually contain special characters, it is best to enclose them in
the provided \ regexp macro as shown—this will pass the expression through to
biber correctly.

If there is no \DeclareNolabel specification, biber will default to:

\DeclareNolabel{

% strip punctuation, symbols, separator and control
< characters

\nolabel {\regexp{ [\p{P}\p{S}\p{C}]1+}}

This biber default strips punctuation, symbol, separator and control characters
from fields before passing the field string to the label generation system.

\DeclareNolabelwidthcount {(specification)}

Defines regular expressions to ignore from any field when counting charac-
ters in fixed-width substrings. The (specification) is an undelimited list of
\nolabelwidthcount directives which specify the regular expressions to ig-
nore when counting characters for fixed-width substrings. Spaces, tabs and line
endings may be used freely to visually arrange the (specification). Blank lines are
not permissible. This command may only be used in the preamble.

\nolabelwidthcount {(regexp)}

Any number of \nolabelwidthcount commands can be given each of which
specifies to ignore the (regexp) when generating fixed-width substrings during
label generation. Since regular expressions usually contain special characters, it is
best to enclose them in the provided \ regexp macro as shown—this will pass the
expression through to biber correctly.

There is no default \DeclareNolabelwidthcount specification. Note that

this setting is only taken into account when using fixed-width substrings (non-
varwidth) during label part generation. See § 4.5.5.

219

4.5.6 Sorting

In addition to the predefined sorting templates discussed in § 3.5, it is possible to
define new ones or modify the default definitions. The sorting process may be
customized further by excluding certain fields from sorting on a per-type basis and
by automatically populating the presort field on a per-type basis.

\DeclareSortingTemplate [(options)] { (name)} { (specification)}

Defines the sorting template (name). The (name) is the identifier passed to
the sorting option (§ 3.1.2.1) when selecting the sorting template. The
\DeclareSortingTemplate command supports the following optional argu-
ments:

locale=(locale)

The locale for the sorting template which then overrides the global sorting locale in
the sortlocale option discussed in § 3.1.2.1.

The (specification) is an undelimited list of \sort directives which specify the
elements to be considered in the sorting process. Spaces, tabs, and line endings may
be used freely to visually arrange the (specification). Blank lines are not permissible.
This command may only be used in the preamble.

\sort {(elements) }

Specifies the elements considered in the sorting process. The (elements) are an
undelimited list of \field, \literal, and \citeorder commands which are
evaluated in the order in which they are given. If an element is defined, it is added
to the sort key and the sorting routine skips to the next \sort directive. If it is
undefined, the next element is evaluated. Since literal strings are always defined, any
\literal commands should be the sole or the last element in a \ sort directive.
All (elements) should be the same datatype as described in § 2.2.2 since they will be
potentially compared to any of the other (elements) in other entries.. The \sort
command supports the following optional arguments:

locale=(locale)

Override the locale used for sorting at the level of a particular set of sort-
ing elements. If specified, the locale overrides the locale set at the level of
\DeclareSortingTemplate and also the global setting. See also the discussion
of the global sorting locale option sortlocale in §3.1.2.1.

direction=ascending, descending default: ascending

The sort direction, which may be either ascending or descending. The default
is ascending order.

final=true, false default: false

This option marks a \ sort directive as the final one in the (specification). If one of
the (elements) is available, the remainder of the (specification) will be ignored. The
short form final is equivalent to final=true.

sortcase=true, false

Whether or not to sort case-sensitively. The default setting depends on the global
sortcase option.

220

sortupper=true, false

Whether or not to sort in “uppercase before lowercase’ (t rue) or ‘lowercase before
uppercase’ order (false). The default setting depends on the global sortupper
option.

\field[(key=value, ...)] {(field)}

The \field element adds a (field) to the sorting specification. If the (field) is
undefined, the element is skipped. The \field command supports the following
optional arguments:

padside=left, right default: left

Pads a field on the left or right side using padchar so that its width is
padwidth. If no padding option is set, no padding is done at all. If any padding
option is specified, then padding is performed and the missing options are assigned
built-in default values. If padding and substring matching are both specified, the
substring match is performed first.

padwidth=(integer) default: 4
The target width in characters.

padchar=(character) default: 0
The character to be used when padding the field.

strside=left, right default: left

Performs a substring match on the 1eft or right side of the field. The number
of characters to match is specified by the corresponding strwidth option. If no
substring option is set, no substring matching is performed at all. If any substring
option is specified, then substring matching is performed and the missing options
are assigned built-in default values. If padding and substring matching are both
specified, the substring match is performed first.

strwidth=(integer) default: 4

The number of characters to match.

\literal{(string)}

\citeorder

The \literal element adds a literal (string) to the sorting specification. This is
useful as a fallback if some fields are not available.

The \citeorder element has a special meaning. It requests a sort based on
the lexical order of the actual citations. For entries cited within the same citation
command like:

\cite{one, two}

there is a distinction between the lexical order and the semantic order. Here “one”
and “two” have the same semantic order but a unique lexical order. The semantic
order only matters if you specify further sorting to disambiguate entries with the
same semantic order. For example, this is the definition of the none sorting template:

\DeclareSortingTemplate{none} {
\sort{\citeorder}

221

This sorts the bibliography purely lexically by the order of the keys in the citation
commands. In the example above, it sorts “one” before “two”. However, suppose that
you consider “one” and “two” to have the same order (semantic order) since they are
cited at the same time and want to further sort these by year. Suppose “two” has an
earlier year than “one™:

\DeclareSortingTemplate{noneyear} {
\sort{\citeorder}
\sort{year}

This sorts “two” before “one”, even though lexically, “one” would sort before “two”.
This is possible because the semantic order can be disambiguated by the further
sorting on year. With the standard none sorting template, the lexical order and
semantic order are identical because there is nothing further to disambiguate them.
This means that you can use \citeorder just like any other sorting specification
element, choosing how to further sort entries cited at the same time (in the same
citation command).

\DeclareSortingNamekeyTemplate [(name)] {(specification)}

Defines how the sorting keys for names are constructed. This can change the sorting
order of names arbitrarily because you can choose how to put together the name parts
when constructing the string to compare when sorting. The sorting key construction
template so defined is called (name) which defaults to “global” if this optional
parameter is absent. When constructing the sorting key for a name, a sorting key for
each name part is constructed and the key for each name is formed into an ordered
key list with a special internal separator. The point of this option is to accommodate
languages or situations where sorting of names needs to be customised (for example,
Icelandic names are sometimes sorted by given names rather than by family names).
This macro may be used multiple times to define templates with different names
which can then be referred to later. Sorting name key templates can be specified at
the following scopes, in order of increasing precedence:

«The default template defined without the optional name argument

«Given as the sortingnamekeytemplate option to a reference context (see
§ 3.7.10)

+Given as a per-entry option sortnamekeytemplate in a bibliography data
source entry

«Given as a per-namelist option sortnamekeytemplate

«Given as a per-name option sortnamekeytemplate

By default there is only a global template which has the following (specification):

\DeclareSortingNamekeyTemplate {
\keypart{
\namepart [use=true] {prefix}
\namepart{family}
}
\keypart{
\namepart{given}

222

}
\keypart {
\namepart{suffix}
}
\keypart{
\namepart [use=false] {prefix}

This means that the key is constructed by concatenating, in order, the name prefix
(only if the useprefix option is true) with the family name(s), the given names(s),
the name suffix and then the name prefix (only if the useprefix option is false).

\keypart{(part)}

(part) is an ordered list of of \namepart and \literal specifications which
are concatenated together when constructing a part of the name sorting key. The
\keyparts are then concatenated together with terminal padding to ensure correct
sorting.

\literal {(string)}
A literal string to insert into the name sorting key.
\namepart { (name)}
Specifies the (name) of a namepart to use in constructing the name sorting key.

use=true, false default: true

Indicates that the namepart (name) is only to be used in this concatenation position
if the corresponding use *‘name’ option is set to the specified boolean value.

inits=true, false default: true

Indicates that only the initials of namepart (name) are to be used in constructing
the sorting specification.

As an example, suppose you wanted to be able to sort names by given name rather
than family name, you could define a sorting name key template like this:

\DeclareSortingNamekeyTemplate [givenfirst] {
\keypart {
\namepart{given}
}
\keypart{
\namepart [use=true] {prefix}
}
\keypart{
\namepart{family}
}
\keypart {
\namepart [use=false] {prefix}

223

You can then use the name givenfirst at the appropriate scope in order to make
biber use this template when constructing sorting name keys. For example, you
could enable this for one bibliography list like this:

\begin{refcontext} [sortnamekeytemplate=givenfirst]
\printbibliography
\end{refcontext}

or perhaps you only want to do this for a particular entry:

@BOOK{ key,
OPTIONS = {sortnamekeytemplate=givenfirst},
AUTHOR = {Arnar Vigfusson}

or just a name list by using the option as a pseudo-name which will be ignored:

@BOOK{key,
AUTHOR = {sortnamekeytemplate=givenfirst and Arnar
— Vigfusson}

or just a single name by passing the option as part of the extended name information
format which biber supports (see biber doc):

@BOOK { key,
AUTHOR = {given=Arnar, family=Vigfusson,
— sortnamekeytemplate=givenfirst}

Now we give some examples of sorting templates. In the first example, we define
a simple name/title/year template. The name element may be either the author,
the editor, or the translator. Given this specification, the sorting routine will
use the first element which is available and continue with the title. Note that the
options use<name> options are considered automatically in the sorting process:

\DeclareSortingTemplate{sample} {

\sort{
\field{author}
\field{editor}
\field{translator}

}

\sort{
\field{title}

}

\sort{
\field{year}

224

In the next example, we define the same template in a more elaborate way, considering
special fields such as presort, sortkey, sortname, etc. Since the sortkey
field specifies the master sort key, it needs to override all other elements except for
presort. This is indicated by the £inal option. If the sortkey field is available,
processing will stop at this point. If not, the sorting routine continues with the
next \sort directive. This setup corresponds to the default definition of the nty
template:

\DeclareSortingTemplate{nty}{

\sort{
\field{presort}

}

\sort[final] {
\field{sortkey}

}

\sort{
\field{sortname}
\field{author}
\field{editor}
\field{translator}
\field{sorttitle}
\field{title}

}

\sort{
\field{sorttitle}
\field{title}

}

\sort{
\field{sortyear}
\field{year}

Finally, here is an example of a sorting template which overrides the global sorting
locale and additionally overrides again when sorting by the origtitle field. Note
the use in the template-level override of a babel/polyglossia language name instead
of a real locale identifier. biber will map this to a suitable, real locale identifier (in
this case, sv_SE):

\DeclareSortingTemplate[locale=swedish] {custom} {

\sort{
\field{sortname}
\field{author}
\field{editor}
\field{translator}
\field{sorttitle}
\field{title}

}

\sort[locale=de DE phonebook] {
\field{origtitle}

225

\DeclareSortExclusion{ (entrytype, ...)} { (field, ...)}

Specifies fields to be excluded from sorting on a per-type basis. The (entrytype)
argument and the (field) argument may be a comma-separated list of values. A
blank (field) argument will clear all exclusions for this (entrytype). A value of *’ for
(entrytype) will exclude (field,...) for every entrytype. This is equivalent to simply
deleting the field from the sorting specification and is only normally used in combina-
tion with \DeclareSortInclusion when one wishes to exclude a field for all
but explicitly included entrytypes. See example in \DeclareSortInclusion
below. This command may only be used in the preamble.

\DeclareSortInclusion{(entrytype, ...)} {(field, ...)}

Only used along with \DeclareSortExclusion. Specifies fields to be included
in sorting on a per-type basis. This allows the user to exclude a field from sorting
for all entrytypes and then to override this for certain entrytypes. This is easier
sometimes than using \DeclareSortExclusion to list exclusions for many
entrytypes. The (entrytype) argument and the (field) argument may be a comma-
separated list of values. This command may only be used in the preamble. For
example, this would use title during sorting only for Garticles:

\DeclareSortExclusion{*}{title}
\DeclareSortInclusion{article}{title}

\DeclarePresort [(entrytype, ...)] { (string)}

Specifies a string to be used to automatically populate the presort field of entries
without a presort field. The presort may be defined globally or on a per-type
basis. If the optional (entrytype) argument is given, the (string) applies to the
respective entry type. If not, it serves as the global default value. Specifying an
(entrytype) in conjunction with a blank (string) will clear the type-specific setting.
The (entrytype) argument may be a comma-separated list of values. This command
may only be used in the preamble.

\DeclareSortTranslit [(entrytype)] { (specification)}

Languages which can be written in different scripts or alphabets often only have
CLDR sorting tailoring for one script and it is expected that you transliterate into
the supported script for sorting purposes. A common example is Sanskrit which
is often written in academic contexts in IAST romanised script but which needs to
be sorted in the ‘sa’ locale which expects the Devanagari script. Another common
case is transliteration of Russian Cyrillic into Latin as defined by the ALA-LC stan-
dard. Such requirement means that it is necessary to transliterate into the sorting
script internally. \DeclareSortTranslit declares which parts of an entry you
would like to transliterate for sorting purposes. Without the (entrytype) parame-
ter, the (specification) applies to all entrytypes. The (specification) is one or more
\translit commands:

226

Table 11: Valid transliteration pairs

From To Description
iast devanagari Sanskrit IAST to Devanagari
russian ala-lc ALA-LC romanisation for Russian

russian bgn/pcgn-standard BGN/PCGN:1947 (Standard Variant), Cyrillic to Latin, Russian

\translit [(langids)] { (field or fieldset)} { (from)} { (to)}

Specifies that the data field field or all fields in a fieldset (fieldset) declared with
\DeclareDatafieldSet (see §4.5.2) should be transliterated from script (from)
to script (to) for sorting purposes. The field/set argument should be “*’ to apply
transliteration to all fields. The valid (from) and (to) values are given in table 11. The
optional (langids) parameter is a comma-separated list of 1angid fields and the
transliteration will apply only to bibliography entries containing one of the 1angids
in the list. Note that biblatex does not aim to support general transliteration,
only those which are useful for sorting purposes. Please open a GitHub ticket for
biblatex if you think you need additional transliterations.

An example of transliterating titles so that they sort correctly in Sanskrit. This
example assumes that entries that should have their title fields transliterated have a
langid field set to ‘sanskrit’.

\DeclareDatafieldSet{settitles}{
\member [field=title]
\member [field=booktitle]
\member [field=eventtitle]
\member [field=issuetitle]
\member [field=journaltitle]
\member [field=maintitle]
\member [field=origtitle]

\DeclareSortTranslit{
\translit[sanskrit]{settitles}{iast}{devanagari}

4.5.7 Bibliography List Filters

When using customisable bibliography lists (See § 3.7.3), usually one wants to re-
turn in the .bbl only those entries which have the particular fields which the
bibliography list is summarising. For example, when printing a normal list of short-
hands, you want the list returned by biber in the .bbl to contain only those
entries which have a shorthand field. This is accomplished by defining a bibliogra-
phy list filter using the \DeclareBiblistFilter command. This differs from
the filters defined using \defbibfilter (see § 3.7.9) since the filters defined by
\defbibfilter runinside biblatex after the .bbl has been generated.

227

\DeclareBiblistFilter{(name)} {(specification)}

Defines a bibliography list filter with (name). The (specification) consists of one or
more \filter or \filteror macros, all of which must be satisfied for the entry
to pass the filter:

\filter [(filterspec)] { (filter)}

Filter entries according to the (filterspec) and (filter). (filterspec) can be one of:

type/nottype Entry is/is not of entrytype (filter)
subtype/notsubtype Entry is/is not of subtype (filter)
keyword/notkeyword Entry has/does not have keyword (filter)

field/notfield Entry has/does not have a field called (filter)

\filteror{(type)} {(filters)}

A wrapper around one or more \filter commands specifying that they form a
disjunctive set, i.e. any one of the (filters) must be satisfied.

Fields in the datamodel which are marked as ‘Label fields’ (see § 4.5.4) automatically
have a filter defined for them with the same name and which filters out any entries
which do no contain the field. For example, biblatex automatically generates a
filter for the shorthand field:

\DeclareBiblistFilter{shorthand} {
\filter[type=field, filter=shorthand]

4.5.8 Controlling Name Initials Generation

Generating initials for name parts from a given name involves some difficulties when
you have names with prefixes, diacritics, hyphens etc. Often, you want to ignore
things like prefixes when generating initials so that the initials for “al-Hasan” is just
“H” instead of “a-H”. This is tricky when you also have names like “Ho-Pun” where
you want the initials to be “H-P”, for example.

\DeclareNoinit {(specification) }

Defines regular expressions to strip from names before generating initials. The
(specification) is an undelimited list of \noinit directives which specify the regular
expressions to remove from the name. Spaces, tabs and line endings may be used
freely to visually arrange the (specification). Blank lines are not permissible. This
command may only be used in the preamble.

228

\noinit {(regexp)}

Any number of \noinit commands can be given each of which specifies to remove
the (regexp) from the copy of the name which the initials generation system sees.
Since regular expressions usually contain special characters, it is best to enclose them
in the provided \ regexp macro as shown—this will pass the expression through to
biber correctly.

If there is no \DeclareNoinit specification, biber will default to:

\DeclareNoinit/{

% strip lowercase prefixes like 'al-' when generating
<~ initials from names
\noinit{\regexp{\b\p{Ll}{2}\p{Pd}}}
% strip some common diacritics when generating

— initials from names

\noinit{\regexp{[\x{2bf}\x{2018}]1}}

This biber default strips a couple of diacritics and also strips lowercase prefixes
from names before generating initials.

4.5.9 Fine Tuning Sorting

It can be useful to fine tune sorting so that it ignores certain parts of particular fields.

\DeclareNosort {(specification) }

Defines regular expressions to strip from particular fields or types of fields when
sorting. The (specification) is an undelimited list of \nosort directives which
specify the regular expressions to remove from particular fields or type of field.
Spaces, tabs and line endings may be used freely to visually arrange the (specification).
Blank lines are not permissible. This command may only be used in the preamble.

\nosort {(field or datafield set) } { (regexp) }

Any number of \nosort commands can be given each of which specifies to remove
the (regexp) from the (field) or (datafield set). A (datafield set) is simply a conve-
nience grouping of semantically similar fields from which you might want to remove
a regexp.